UNIVERSITY OF CALIFORNIA

Tense Logic and the Theory of Linear Order

A dissertation submltted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Philosophy

by

Johan Anthony Willem Kamp

Committee 1in charge:
Professor Richard Montague, Chairman
Professor C., C. Chahg
Professor David B. Kaplan
Professor Yiennis N. Moschovakils

Professor J, Howard Sobel

1968



The digsertation of Johan Anthony Willem Kamp is
approved, and 1t 1s scceptable 1n quality and form

for publication on microfilm:

Deond Kanlaw

M .-

%r\amv@/x N M asr_\mm/g/k&\
0 2 0/
N Nocandd v{-gré%ﬁ

77
W ??/ 12
‘,0”4- P I

ngifzzée Chairman

Universlity of California, Los Angeles

1968

i1



TABLE OF CONTENTS

PAGE -
Acknowledgement. . . . . . . . ¢ ¢ ¢ 4 4 e e 4 W iv
Vita and Publications. vi
Abstract . . . . . . . . . L L L 000 s e e e e vil
CHAPTER
I. INTRODUCTION. . . . ¢ ¢ ¢« ¢ o « o o o o« o = 1
II. TENSES AND THEIR EXPRESSIBILITY . . . . . . 15
ITII. THE MAIN THEOREM. . . . . . . . « « « « o . 39
IV, OTHER RESULTS ON EXPRESSIBILITY . . . . . . 95

BIBLIOGRAPHY . . . . . . ¢ . ¢ v v & v = o v o o 118

i1t



RCXNOWLEDGEMENT

I owe my interest in the general aubJject with which
thls dissertation deals, tense logic, to Professor A, N.
Prior, whose stimulating course at UCLAL in the fall of 1965
was my first opportunity to becoine acquailnted with thie
area of loglc. The provlem which thls dissertation treats
aroge in a natural way from certein questions discussed 1n
his classes. Also the interest that he has taken in my
work sfter his departure from UCLA has greatly encouraged
me to investiga‘e the present problem.

I thank Professors C. C., Chang. D, Kaplan, Y,
Moschovakis and H. Sobel for serving on my committee and
for the many valuable discussions that I was privileged tco
have with them on the present and other toplecs during the
past f'ew years.

Very helpful tc me also were discussions with
Professors A. Ehrenfeucht, D. Scott, and A.Tarski. Pro-~
fessor Scott suggested to me the proper form of theorem
IITI-1. Professors Tarski and Ehrenfeucht have helped me
to see more clearly the relation between the subject of
this dissertation and the purely universal second crder
theory of linear orderings,

I find it difficult to appropriately describe what

I owe to my thesis adviser, Professor Richard Montague.

iv



The 1nfiuence he has had on my formation goes far beyond
what I have learned from the discussions that we had about
this dissertation. I am very grateful not only for the
many things he has taught me but perhaps even more for the
example that he has set me in so many respects. I shall
try to always live up {0 his intellectual standards.

I could not mention by name everyone who helped me
prepare this final version and meet a nearly impossible
deadline. However, I feel that I do nmot do injustice to
&ll those who remain unnamed when I state here expllicitly
my gratefulness to Claire Vonne for her fast and accursate
typing and to Judith Ng, Toke Hcppenbrouwers and Mary West
for their willingness to sacrifice time and sleep for the

sake of this dlssertation.



VITA

September 5, 1940--Born, Den Burg, Texel, The Netherlands

1958-1961--Undergraduate, Ri jksuniversiteit, Leiden,
“  The Netherlands

1961-1965--Graduate, Universiteit van Amsterdam,
Amsterdam, The Netherlands

1965--Doctoraal Wijsbegeertc

1965-1968--University or California, Los Angeles

PUBLICATIONS

The Calculus of Deductive Theories. Forthcoming.

vi



ABSTRACT OF THE DISSERTATION

Tense Logic and the Thecry of Linear Order
by
Johan Anthony Willem Kamp
Doctor of Philosophy in Philosophy
University of California, Los Angeles, 1968

Professor Richard Montague, Chalirman

In the past few years several tense operators
(1ike P and F, reading: 'it was the case that...' and
'1t will be the case that....' respectively) have been
closely investigated. Axiom-systems for such operators
were given and in many cases the deductive completeness
of these systems was shown.

No attention was palid, however, to the definitional

completeness of such systems: All truth-functional opera-

Lors are expressible 1n terms of, say, =3 and A

In a similar fashion one might ask whether all tense
operators are expressible in terms of given ones (e.g. P
and F, together with sentential connectives). But what is

a tense operator?

Notice the natural correspondence between the

{formulae
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Pq, (where 9, is a propositional variable) and

(F)(e <ty A Q).

In the second formula the individuai variables are thought
of a: ranging over time (with to "representing"” the
present) and < as being the temporal order. Simi-
larly between
59,4, (reaaing: 'it has been the case that q,
ever since 1t was the case that q;') and (Fe)(e<ty A
Q (t) /~\dt'(t‘<t' <ty > Qx(t'))), and between

Uq;a, (reading: 'it will be the case that q,
until 1t is the case that q,') and (Jt)(t < tAQ(t)A
Ve (tgdtr <t =>0,(t"))).

In this way we associate with each formula ‘¢> of

lst order logic s.th.

1) Ci) contains one binary relation constant 'L

and further only monadic predicate constants Ql""’Qn’

2) qb has exactly one free variable t,,

an n-place tense operator.

In view of the familiarity of P and F one might
wish that all tense operators were expressible in terms of
those and sentential connectives. However, 1 time is
dense, the 2-place operator S 18 not expressible in terms

of any set of l-place operators together with sentential

connectives. On the other hand, if time is complete (i.e.
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if every nonempty set of moments which has a lower (upper)
bound has a greatest lower {least upper) bound), every
tense operator 1s expressible in terms of S, U and sen-
tential connectives. This last result glves a normal form

for 1lst order formulae with properties 1) and 2).
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CHAPTER 1
INTRODUCTION

The Sentence
(1) 'Greece 1s a k*ngdom,' is true now (May 10, 1968);
but it has been false before; and who knows if 1t will be
true tomorrow? This property--of being true at some
moments and false at others--(1) shares with many, if not
most,; sentences of English, and other natural languages.
The dependency of the truth of a sentence on the moment at
which it 18 asserted, i1s a sgpeclal cace of a more general
phenomenon: the truth cf a sentence may depcnd oo the cir-
cumstances under which it is asserted. The time of its
assertion 1s only one aspect of these circumstances; but
other aspects may be relevant as well. So will the truth
of the sentence: 'I am home' depend not only on the time
of assertian but also on the place where 1t 1is asserted &nd
the person who asserts it.

Tense logic, however, is concerned only with the
way in which the truth of a sentence depends on the time of
its assertion. 1Its aim 1s to study how the truth of a
sentence at one moment 1s related to the truth of certaln
other sentences at tThat or other moments; and in particular

to analyze the meaning (or function) of those expressions



by means of which we convert a sentence--or combline several
sentences--into an assertion about the truth of that sen-
tence-~--or these sentences at the same or other times. An
example of such an expression is 'it was the case that,'
which will convert any English sentence sinto the sentence
'it was the case that s'; here

(2) thé%iatter sentence is true at a moment t if and only
if s is true at some moment previcus to t.

It should be clear that the truth of the statement (2)
depends exclusively on the meaning of the expression 'it
was the case that.' (2) is paradigmatic of the semantilc
2lationships that tense loglic deals with; and its close
correspondence to the meaning of 'it was the case that'
exemplifies the correspondences that exist in general
between semantical relationships like the one exoressed by
(2) on the one hand and expressions like 'it was the case'
on the other. This indicates that studying relationships
like (2) or expressions like 'it was the case that' really
amounts to the same thing.

Other English expressicns with which tense logic deals are
e.g.

(3) 'it will be the case that,''it i1s being the case that,'
'until,' 'before,' 'after,' 'while.'

Besldes them English contains still other devices which

form out of a given sentence an assertion about its truth



at other moments, but which cannot be identified with par-
ticular words or word groups. They are the tenses. As a
matter of fact they constitute the most common means of
forming out of sentences aséertions about their truth at
other times; which justifies the name of this area of logic.
In ordinary logic sentences are either true or
false. More preclsely, any interpretation for a language L
of, say, first order loglc, wlill assign to each sentence
of L a definite truth value, either T{ruth)(or 1) or
F(alsehood) (or 0).
This fact conflicts with what we have observed sc far about
sentences like (1). Indeed, according to the vliew embodied
in ordinary model theory, (1) is not really a sentence at
all, since its truth value is not definite bhut fluctuates
with time; on this view (1) 1s rather like a formula with
one free variable, ranging over times, which 1s satisfiled
by a moment whenever, as we say, (1) "is true at" that
moment .
Indeed we can symbolize sentence like (1) within first
order loglc, 1f we treat them as such formulae. But the
theory impliclt in such a treatment is unsatisfactory in
varicus ways. In the first place 1t‘1s rather odd that,
as thls theory suggests, most Engiish sentences--among them
the grammatically most central examples--should not really

be sentences at all. I.e. the theory proposes a concept of



'sentence' which seems to have very little to do with the
intuitive meaning of the word. In the second place the
theory leads us to regard what appear to be n-place rela-
tions in English as (n + 1l)-place relations. Thus the
expression 'is a kingdom'--apparently a l-place predicate--
has to be analyzed as standing for a 2-place relation
between countries and times. In thls way we can indeed
symbolize (1), e.g. by

(4) K(G,t),

where K stands for 'is a kingdom at,' G stands for 'Greece,’
and t 1s a variable that takes moments as values,

This symbolization raises a third difficulty. (&%)
is meaningful only if times exist. ' And so this approach
commits us to the assumption of the existence of time, in
a sense which i1s prior to language. This commitment 1is =2
rather strong one, which some will be reluctant to make.

It would he desirable to have a logical theory of that
fragment of language in which moments are not mentioned
explicitly--and of which (1) and similar sentences are
part--wnich ig not based on the assumption that times
exlst--with th: option of developing, on the basis of that
theory, a concept cf & moment, which c¢ould then be used for
a semantlcal account of the part of language where moments
are mentloned explicitly.

The three points raised here make the epproach



suggested above qulte unacceptable. ILet us therefore
abandon ordinary loglc as the framewonrk for tense loglc.
Rather we will accept the lesson that English seems to
teach us and reccgnize that the truth of a sentence may
vary with time.

That the truth of a sentence may vary with time,
though,--as we sald we would assume,--not with other
aspects of the context, we can express alternatively by
saying that the things expressed by sentences, propositions,
are functions from times to truth values rather than simple
truth values. If propositions are functions from times to
truth values rather than truth valucs, the number of propo-
sitional functions--funcstions from propositions to proposi-
tions will be much larg2r than that of the so-called truth
functions, the functiona from truth values ﬁo truth values.
For example there are only four l-place truth functions.
But 1f time 1s infinite then the number of l-place propo-
sitional functions is infinite also. Some of these propo-
sitional functions will correspond in a natural way t=
ftruth functions. Thus corresponds to the truth functlion
N,--defined by N(C) = 1, N(1) = O - the propositional
function N*, defined by N*(p) = x-tN(P(t)). However, most
propositional functions do not correspond in this manner to
truth functions. As an example may serve the propositional

function PAST, defined by:



PAST (p)(t) = 1 if and only if there is a t' before t such
that p(t) = 1. N* may be called truthfunctional in =o far
as for any proposition p and moment t the value of N¥*(p) at
t depends only on the value of p at t (but not on thé values
of p at other moments). Let us therefore put in general:

An n-place propositional function 0 1is truthfunctional if

for any propositions Pys-.sPy and moment t the value of
O(pl,...,pn) depends only on the values of p,,...p, at t.
Clearly the truth functions and the truth-functional propo-
sitional functions correspond to each other in a one to one
way.

Some of the truth functions correspond to expres-
sions of English, like e.g. 'lt 1s not the case that,'
'and,' 'or.' 1Indeed they may be regarded as the meanirngs
of these expressions. Thus we may regard the functlon N as
the meaning of the expression '1t is not the case that.'
If, however, propositions are functions from times to
truth values instead of simple truth values, then we should
not regard the truth functions themselvcs as the meanings
of such expressions but rather the corresponding truth-
functional propositional functions; e.g. the meaning of 'it
is not the case that' should be the function N* rather then
the function N. Ve saw already that many propositional
functions are not truth-functional. One may wonder if they

teo can be regarded as the meanings of certaln English



expressions. For some this 1s indeed the case. An cxampie
is the function PAST mentioned above, which can be regarded
as the meaning of the expresslon 'it was the case that' or,
alternatively, of the past tenss. 1Indeed, if s 1s any sen-
tence of English, then both the sentence 'lt was the case
that s8' and the past tense of s are true at a moment t 1if
and only i1f s is true at some moment previous to t. In a
similar way we can identify the meanings of the other ex-
pressions listed in (3) with non-truth-functional propo-
sltional functions; and in general this will be the case
for any expression of the class that we indicated, however
vaguely, by the examples given in (3).

A3 we sald before, the analysis of expressions like
'it was the case that' 1s one of the central goals of tense
logic. Thus a formal system will be a suitable framework
for tense logical investigations only if such expizssions
can be represented within it. Now both the grammatical
function of these expressions and the remarks made above
about their meanings show their similarity to the senten-
tial connectives. It 1s therefore natural to develop a
formal system for tense logic in which these expressions
are represented as sententlal operators. If such a sysiem
contalns some such operators as primitives then others will
in general be expressible in terms of them--in the same way

as many--in fact all--sentential connectives can be



expressed within a system of propositional calculus the
primitive connectives of which are implication and negation.
On the other hand composition of truth-functional proposi-
tional functions will always produce functions which are
agaln truth-functional. Thus any operator which can be
apressed within a system in which the primitive operators
are truth functional will again be truth-functional; and a
system in which non truth-functional operators are expres-
sible must have such non-truth-functional cperators among
its primitives.

In fact, several people have developed in the
recent past formal systems of tense loglc by adding to a
glven system of ordinary logic certain non-truth-functional

operators, so-called tense operators. Many of these sys~-

tems are propositional calcuil, of which onl, formation
rules, axlioms and inference rules are gpecified, but for
which no model theory is glven. A tense predicate logic
was developed by Cocchiarella; he gave beslides formation
rules, axioms and infersince rules also a model theory and
showed the deductive completeness of his system. The first
system of tense logic which was adeguate for its purposes,
a3 we have tried to outline them here, was given by Prior.
His system was originally a propositional calculus without
formal semantlics. Cocchlarella later extended the system

to a predicate logic, provided a model theory and proved

deductive completeness. In this paper we will pay



excluslve attention to the Prior-Cocchiarella system and

Lo systems which are like it except that thelr primitive
tense operators may be different. Presently we will con-
sider only the propositional part of the Prior-Cocchiarella
system, essentlslly Prior's original system together with
the natural model theory, which was first developed by
Montague. We will call this part 'TLO.'

TLO 13 characterized as follows:

a) Vocabulary:

sentential constants: Qps 93s--
sententlal operators: l-place: = , P, ¥
2-place: A L,- — , &
b) Formulae:
(1) a, ic 2 formula
(11) 1I1f C , I are formulae, then —7), (c AT,
(C vy (L =>m) (L m), 2l an
F(: are formulae.
¢c) Let J be a binary structure--i.e. a pair (T,< ) ,
where T 1s a nonempty set and < 1s 2 binary relation on

T 1

(We think of T as the set of moments of time and of
< as the earlier-later relation between moments.)
A possible interpretation for TL, relative to J~ is a pair

{ €, R ), where Q 1s a sequence 2 of subsets of T and R

lBy a sequeice we will always understand a segquence
of length .

2Henceforth J~ and <T,4> will be binary struc-
tures. Moreover, it i always assumed that J = (T,<) .
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is the function with domain{— , A ,V , > ,e> ,pF]
and range consisting of 1- and 2-place functions from
d (T) 2 inte M (T) such that
(1)R (J) =T -J, for J = T.

(11) 2, (J,K) = JnK for J, K€ T.

(1i1) 2 |, (J,K) = JUK, for J, K = T.

(1v) %ﬁ(J,K) = (T -J)uUK, for J, K& T.

{v) %H(J,K) = ((T~-J)UK A ((T -K)vwd), for J,KE T
(v1) Ap(3) = {te T:t.\!dt' <t} for JeT.

(vi1) Rp(d) = {t € T:t¥J t < 1}, fordeT.

d) Truth:

For any possible interpretation & = <Q,'ﬁl>, formula 7) of
TL, and t € T " 7) is true at t in (¢ " 1s defined by the

following two clauses:
(1) a4 is true at t in (h 1rf t € Q3

(2) if Z 1s an n-place sentential operator of TLO and

UO""’77n-1 are formulae of TLj,
Z7)gs-++»T) .y 18 true at t in O aee v € i({trem: 7,

is true at t' in & },..., { t' € T:7) _; 1s true at t'
in G } ).

(N.B.: in the above clause n is of course elther 1 or 2;
we gave the definitlion in this--presently unnecessarily--
general form for later reference.)

e) Velidity:

A formula 7) of TL, is J -valid iff for all possible
interpretations 6& for Tl, relative to J~ and all t€ T

Spor any set A JJ (A) 18 to be the power set of A.



7 is true at ¢t in (¥ . Two formulae 7) and C are

J~ -equivalent iff 7) <« C 18 J -valid.

The vaiid formulae of ordinary propositional logic
are the formal counterparts of those English secnterces
which are true in view of the meanings of the sententizal
connectives alone. Similarly the valid formulae of TLb
ought to be defined in such a vay thet they are the counter-
parts of those English sentences which are, as we will say,

tense valild, i.e. true Just in view of the meaaings of the

sentential connectives and the past and future tenses.
Which English sentences are tense valid depends, however,

on the character of time., For example, if time 1s linear,
then a sentence 1f 1{ will be the case that it was the case
that s, then either it is the case that s or 1t was the

cagse that g or 1% will bs the case that s' 1s tense valid;
but cuch & sentence is not tense valid 1f time is not
linear. -

Thus, which formulae of TLb should be called valid
depends on the properties of time. Tense logic should
perhaps rather investigate, for certain properties of time,
which sentences are tense valid just in view of those prop-
ertles. For thls purpose we will identify properties of
the earlier-later relation with classes of binary struc-
tures, and thus ccme to the following definlition of valid-
ity relative to a class of binary structures,

Definition: lLet 7ﬁ be a class of binary structures. A
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formula 7 1is 1{-Na11d iff for every §7~e 7%» N 1is
;7P:valid. We have to declide which classes 76 of
binary structures to conslider. Thils decision is inevit-

ably a bit arbitrary. We could take all such classes

into account. It seems more natvural. however, to assume
once and for all that time has certain properties, of which
we are firmly convinced, and which are, as it were, impli-
clt in the meanings of the words 'earlier' and 'later.' In
fact we.wlll assume that the ordering of time is linear;
i.e., we conaider ﬁ%{-validity only for classes °ﬁﬁ all
members of which are linear orderings.

Definition: A binary structure {7,<)  1s a linear

ordering iff

(1) £ 1s asymmeirie

il) < is traisitive
and (ii1) < is connected on T.
The assumptions that the earlier-later relation is asym-
metric and transitive seem to be beyond controversy. Some
people may question the plausibility of the assumption that
the ordering is cornected. We personally feel however that
this assumption 1s also firmly rooted in our intuition of
time and of the meanings of tenses.

For future reverence we introduce the followlng par-
ticular linear orderings and classes of linear orderings:

Tdn: the class of all linear orderings
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the class of all dense linear orderings; 1.e.,
the class of ali linear orderings <i,<i7 such
that if 1,3 € 1 and 1 £ jJ then there is a k € I
such that 1 < k and k € j.

the class of all discrete linear orderings;
i.e., the class of all linear orderings «<1,<>
such that for all 1€ I it is the case that 1if
there 1s a J€ I such that 1 < J then there 1s
a J'€ I such that 1 € J' and for no kK € I

i< kand k < J', and i1f there is a J€ I such
that J < 1 then there is a J'€ I such tha;
J'<¢ 1 and fornok€ I j'< k and k< 1.

the class of complete linear orderings; i.e.,
the class of all linear orderings <I,<‘7

such that every nonempty subset of 1 which has
a < -lower bound has a < -greatest lower
bound and every nonempty subset of I which has
a < -upper bound has & ( -least upper bound.
the linear ordering <In’<j.n> where In 1s
the set of integers and LQn 1s the natural
ordering of the integers.

the linear ordering <Ra, <1‘Za > , where Ra 1s
the set of natural numbers, and <f¢aa is the
natural ordering of the raticnal numbers.

the linear ordering <‘R»e, < Re > ; where
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Re is the set of real numbers and <7ie is the
natural ordering of the real numbers.

It follows from a result by A. Ehrenfeuchtu that
for all of the classes 7{z defined above the set of fﬁ
valid Coriuiae of TLy 1s decicable.

Frobably the first person to present complete axiom
systems for the sets of 7%L- valid formulae for several
classes “klu was Prior; he had, however, no proofs of
their completeness. Cocchlarella appears toc have been
firgst to prove the completeness of a particular axiom sys-
tem for the Lin-valid formulae of TLO.5 His method of
proof also ylelds complete axiomatizatlions for the sets of

Lin-, Den-, and 78 a-valid sentences.

4A Ehrenfeucht, "Decidability of the T
Linear Order Relation," A.M.S. Notices, Vol. 6, No. 3,
Issue 38 (June 1959) pp. 556. See also: H. Liuchii and
J. Leonard, "On the Elementary Theory of Linear Order,"
Fundamenta Mathematica, Vol. 53 (1966), pp. 109-115.

SNino B. Cocchiarella, "Tense and Modal Logic: A
Study in the Topology of Temporai Reference’ (unpub-ished
dissertation, University of California, Ios Angeles, 1560).
See also: ino B. Cocchiarella, "A Completeness Theorem
for Tense Lo ic," Abstract, The Journal of Symbolic Logic,
Vol. 31 (196%), p. 689.



CHAPTER II
TENSES AND THEIR EXPRESSIBILITY

The observations made 1n Chapter I show, in our
opinion, that the system TL0 provides an adequate explana-
tion of the funetion of the simple past and future tenses.
However, as we remarked, there are many other tenses and
tense-like expressions in English (cf. (3) on p. 2), and we
want an explanation of thelr function as well.

There 18 a way in which a formal representation of
these other English tense operators can be obtalned quite
easlilyv: We simply add to the vocabulary orf TLb new sen-
tential operators of the right number of places and change
every possible interpretation ~<Q,¢8 >; relative to 572 to
a possible interpretation <Q,7%’> where 731 1c an exten-
sion of %Z, whose domain includes these new operators and
which assigns to each such operator the meaning (relative
to(?7 ol' the corresponding English tense operator.

Iet us consider as an example the English expres-
sion
(1) . . . 'it was the case that . . . before iy was the
case that . . . .!

This expression clearly functions ss & binary tense opera-

L},from (1)

tor, and 1ts meaning is the 2-place function

15



16

intodJ(T) ziven by

I?T(J,K) ={t€fr ’Vt'e,ifvt"ex(?" < t and t' < t")}:

We can represent (1) b&wextending TLo to a language TL&

as follows:

(1) we extend the vocabulary of TLO with a 2-place sen-
tential operator Z (and adapt, of course, the defi-
nition of a formula accordingly); and

(11) we modify the interpretations (Q,R ) of TL,
relative to \jy, in such a way that domain
R --{‘ﬁ s A, Y, T, & P,F,Z:} and
H(z) =B 7

The truth-definiticn of p. 10 will then automatically pro-

vide the correct notlon of truth for TLD'. This definition

of truth is in agreement with the intended meaning of Z;

indeed, one easlly verifies that according to this defini-

tion it 1s the case for arbltrary formulae UO, Ul of TLO',
interpretations 5& for TLO', relative to‘jﬂ, and t € T that

(2). . . 27y N, 1s true at t in (k if and only if there

is a t" before t and t' before t" such that 7, 1s true at

t"in & and 7 1is true at t' in & .

There 18, however, another way in which we can rep-
resent (1) in TLO, without introducing & new Eentential
operator. For there is for any two formulse 770 and 7) 1
of TL, another formula of TLy--viz. P{7);AP7),)--the truth

0
of which depends on the truth of UO and 7], 1in exactly the
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same way as the truth of 2770771 depended on the truth of
UO and77l. Indeed, one easily verifles that for any pos-
sible interpretation b for TLO relative to J
(3) . P(MyaP7N;) is true at t in & iff there is a t"
before t and a £' before t" such that T)l is true at t" in
(& and Mo 1s true at t' in (e. (3 ) justifies us in
saying that the complex expression P(7)14\P'UO) represents
(%) '1t was the case that 1o before 1t was the case that
T)l' in TLO; or, in other words, that there 1s a 2-place
function £ which maps formulae of TLO into formulae of
'I‘L0 such that {or any two formulae UO and Ul of TLO,
£{ N> 113{ = P(7N;APN,)!) represents (4). This function
f 1s of course completely characierized by the formula

P(ql"qu)’ since for any two formulae Uo and 7], of TL,

£( 770:7)1) = [P(q]_[\_? qoﬂ qyf" gl_
If a syntactic function--say of n places,--can be charac-
terized in this manner by any formula of TLb at all, then
it can also be characterized by a formula of TLO which
centains the propositional constants YRR ) and no

others. ,Let us therefore restrict our attention to

lror any formulae 7),7) .o U and propositiopal
constants g ,Q. we understgnd by [(n] o ...
the result 8f subs?ituting in 7} 770 for qo,iqh.Ior ql,

. Un for q .
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formulae of this special kind.

Definition 1. A formula 77 of TLO is called an n-place

schema if 1t contains the propositional constants
UAgs -+ 9951 and no others,

Thus the formula P(ql'A qu) 1s indeed a schema.
¥Moreover, the remarks sbove suggest that we can regard
this schema as representing the English expression (1).

An alternative, though essentially equiva-
lent, Justification for this is given by the fact that for

any possible interpretation X for TL., relative to J

(5). . . .BT({toET: qp 1s true at t in 0«}, {ter:
q, is true at t in 0,1 }) = {_t ET: P(qlAqu) is true at
t in Q@ g}

Generglizing from this example we can say that an
n-place schemavs TL, represents an (English) tense opera-
tor S (relative- to J ) if the meaning M of S (relative to

J ) is such that
{ter: Nistrueat tin & § am({ ter: q, is true
attin O %,..., {ter:q, s trueat tin & §).

We can now rephrase the question whether all
Enrglish tense operators are expressible within TLb as the
questlon 1f each tense operator is represented by a schema
of TLO. The answer to this question depends of course on
the properties of time. Nonetheless it sesms to be almost
unambiguously negative. For the present progressive tense

--whose meaning Pr ., relative to \Jw, is defined by
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t'e T (t'4t and t¢t" and t'€ J and
3
t"€ J and t"/'\éT (1f t' < t''7'¢t" then t'''€ J))} , for

all J £ T,--1s represented, relative to Q7‘, by no l-place

:Pr(J)s{teT:t4V

schema of TLO, if only :7‘ is a linear ordering and T is
infinite. We will prove this assertion in Chapter IV,

In view of this negative result 1t is-natural to
look for other tense operators such that within a tense
logic with those operators as primitive operators all
English tense operators can be represented. We have not
yet explained what 1t means for an operator to be repre-
sentable in such an arbitrary logic. But the generaliza-
tion from {5) to this more comprehensive notion is rather
straightforward. Let us remark first that the question
whether a tense operator is representable (relative to J )
in TL0 depends only on its meaning (relative to Q?I) and
the meanings (relative to J~ ) of the primitive operators
of TLO. And this should be the case not Jjust for TLO, but
for tense loglcs with other primitive operators as well.
Therefore we will concentrate on the meanings, relative to

J~ , of the tense operators,--1.e., on functions (in
general n-place) from v (T) into kj (T).
We will define when such a function is (J -)

expressible in terms of other such functions. Then an

English tense operator can be saild to be representable

(relative to J ) within a tense logical system TL if its
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meaning (relative to N ) 18 ( J -) expressible in terms
of the meanings (relative to CT’) of the primitive opera-
tors of TL.

Before we proceed to define ./ -expressibly, how-

ever, let us first determine which functions from &J (T)
into &J(T) should be regarded as meanings (relative to J )
of English tense operators. It 1s of course absurq to
suppose that all such functions are the meanings (relative
to J ) of English tense operators (especially if T is
infinite, which is a2 natural assumption). One way to
attempt to answer this question would be to make up an
inventory of all the tense operators of English. But such
an investigetion would be cumbersome and not very illumi-
nating. We will rather use a more formal device to single
out a natural class of functions from (T) into Agf(T)
and then later discuss how this clase 1s related to the
class of meanings, relative to C?d, of English tense oper-
ators. We remark that for each of the tense operators men-
tloned so far its meaning f, relative to :7', can be
defined by

o I N { t€ T :p(t,Qq,....,Q,_ 1) |, where

qb is an expression that involves besldes t and the
Qi's only the symbol <& and other time varigbles, and is
bulit up from these elements by means of sentential con-
nection and quantification over time. A brief investiga-

tion of English confirms that this is the case for a wide
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variety of English tense operators. Thils suggests how we
can define a class of tenses which is both natural and
comprehensive. In order to specify this class we first
define a particular first order languzge L.

Definition 2. L is the first order language characterized

by the following vocabulary:

Variables: ¢t t

o T1s---
Logical constants: @, A ,VY ,77 €7 (connectives);

A , 3 (quantifiers)
Non-logical constants: a) £ (2 - place predicate constant)

b) Po,Pl,...(all 1 - place predi-
cate constants

(Formulae of L and models for L are defined in the usual
way. )

We willl pay particular attention to those formulae
-of “L-which contain the variable to free and have no other
free variables, and which, for some number n, contain the
predicate constants PO""’ Pn-l’ and no other 1 - place

predicate constants. We will call such formulae n - place

tense defining formulae.

Definition 3. a) For any n - place tense delining formula

qb of L EEg_.J”- tense defined by ¢) (in symbols:
Téfiqb)) is the n - place function f from.xf(T) to.xj(T)
such that for Qu,..., @ €T, £(Qys..,Qy 1) = { t€ T: ¢
satisfies ® in (1,4  Qgyee-sQgsee- )
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b) An n - place function from.MY(T) Into
;é (T) 1s a first order definable tense if it 1s the tense

defined by some tense defining formula of L.

We will from now on restrict our attention t¢ first crder
definable tenses, and we will often refer to these simply
as 'ftenses.'

Now that we have specified the set of tenses with
which we want to deal, let us reconslder the problem whether
there exists a finlte number of tenses in terms of which
all other tenses are expressible.

Before defining, for any ;7/- tense f and set of

J -tenses S, 'f 1s expressible in terms of S' we intro-

duce the notions of a sententlal language for a set of

tense defining formulae of L and of a sententlial language

for a set of QT’-tenses.

Definition 4. ILet S be a set of tense defining formulae.

a) A sentential language for S is a one-one function G

with range S and with a domain consisting of symbols
different from qo,ql, .....
b) Let & be a sentential language for S.
(1) Pormulae of G are defined byV
1) a is a formula
2) If Z€ Dom G, G(Z) 1s an n-place tense defining
formula and 770""’77n-1 are formulae of G,

then 2 UO...T7n_1 is a formula of G.
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(11) A formula of G is an n-place schema if it con-

tains all the constants C SYRERFL " and no others.
(111) An interpretation determined by G, relative to
jy , 1s a pair <Q,”R«) ; where
a) Q is a sequence of subsets of T.
b) R 1s a function.
¢c) Dom ‘A = Dom G.
d) For Z € Dom %, ﬂz - 'rej_(a(z))
For 7] a formula of G, 01 an interpretation for G rela-

tive to J and t € T, 'n is true at t in (k' is defined

as under d) of the characterization of TL, (cf. Chapter I,
p. 10). Similarly part e) of that characterization gives

the notions of I -ya2lidity ané T - equivalence for

formulae of G.

Definition 5. Iet S be a set of \_71- tenses

a) G is a sentential language for S if and only if there

is a set S' of tense defining formulae such that G is a
sentential language for S' and there 18 2 ene-one function
D from S onte S' such that for all f in S f is the J -
tense J - expressed by D(f).
b) Iet G be 2 sentential language for S.

1) fZ‘T {G) 1s the function # such that bom A =
Dom G and for Z € Dom X, #(2) 1s the J'- tense defined by
@¢(z) (If throughout a given discussion the structure J 1is
fixed, we will often write A instead of ﬁj_,).
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2) let 7 be an n-place schema. The J -tense I

expressed by n relative to G 1s the n-piace function from

 (T) into of (T) such that for any subsets Qys+++Qy.y OF
T, £(Qps...Q_1) ={t€ T: 1s true at t in

(G- rpgs - ) R @Y }

¢) Let f be an n-place \7‘—ten8e. Then f 1is Jr:expressible

in termg of S i1f there 1s a sententlal language G for S and
an n-place schema of G such that f is the J -tense

expressed by 7] relative to G.

In Chapter I we were primarily interested in an
absolute notion of validity for formulae of TL., rather
than the relativized notion of J - validity. Similarly, in
the present context we would like to find a natural abso-
lute notion of expressibllity rather than the relative
notion of J - expressibliity defined above. As in Chapter
I we can, in order to obtain such an absolute notion, either
identify time with a particular linear ordering < and
thus define expressibility as J - expressibility; or else

consider various classes of linear orderings. Our obJjec-
tion against the first alternative 1s the same as before.
We will again pursue the second alternative.

Definition 6. ILet 7 be a class of linear orderings.

a) lLet <ﬁ be an n-place tense deflning formula of L.
The n - place A - tense-function defined by ¢ (in symbols:
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Te,, ($)) 1s the function f with domain A , where for
every eQ = < I, < > € 7[ i& is an n-place funetion
from&ﬁ(T) to M(T) such that for all Qs 1 € 1,
qu (Qgs -+ +5Q,_q) = {15 I : 1 satisfies @ in

(1, ¢, Qgeves@yyeee) 5

b) An n-place (first order definable) H - tense-function

is a function f such that for some n-place tense
defining formula ¢) f 1s the n-place 7% -~ tense-function
defined by

When giving names to particular \7,‘ tenses and

1ﬁ - tense-functions, we will follow this policy: We
attach names primarily to tense defining formulae. For
example we call the formula — Po(to) 'NOT' and the for-
mula ( 5 £y )(t, < ty A Polty)) 'PAST.! We then denote,
for any class K of linear orderings, the K - tense-
function defined by such a tense definling formula, by the
name of that formula with subscript H. . Thus the H -
tense-functicn defined by NOT will be denoted by 'NOTki and
the K - tense defined by PAST, by 'PAST y-' In contexts
where no ambiguity regarding ’RL can arise we wili cften
omit the subscript ?{..

Let us now give names to a few tense defining for-
mulae which will play & prominent role in what follows:
NOT is the formula =— Po(to)

AND is the formula (Po(to) A Pl(tc))
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PAST 1s the formula (3 t1)(£;<€ t5 A Pylty))
FUTURE 1s the formula (3 tl)(to <ty A Po(tl))
SINCE is the formula ( 3 tl)(tl <ty A Po(tl)
A (Y E)(64 t5 A £ 4ty Py(t5)))
UNTIL is the formula (3 tl)(to< ty A Po(tl) A
(¥ t5)(tg< ty A tp< tg = Pr(t,)))

Definition 7. Let ‘H. be a class of linear orderings, S

a class of 7{, - tense-~-functions.

a) & is a sentential language for S if there exists a set

S' of tense defining formulae and a one-one function D

from S onto S' such that for any f € S, f is the 7{_ - tense-
function definei by D(f), and G is a sentential language
for 8'.

b) Let G be a sententlal language for S, 7) an n-place

schema of G. The n-place 7’{_ - tense-function expreésed by

T} 1is the n-place 7{ - tense-function f such that for
any EX = <1,< > ¢ K ana Qpse-sQuq € 1,
fd (Qqs«-+sQy_1) ={ 1€ I: 7) 1s true at i in
<<Q.G_....,Q_j.l_1,...> ,ﬁ& (G)>}
/) - 7{
c) let £ be an n-place /L - tense-function. f is -

expresslble in terms of S if and only 1f there 1is a sen-

tentlal language G for S and an n-place schema 7] ¢f G

such that { 1s the n-place 7C - tenge-function 7{ -
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Clearly, 1if 7{ is a class of linear orderings,
7{_’ c K, S is a set of 7{- tense-functions and f 1s
a ‘?{-uense-fuu&tion which is 7{-expressible in
terms of S, then the J - tense-function £ 1 K.
is 7{' -expressible in terms of the set {gr K! : g€ S}

of ;{' - tense-~function. In particuiar,

if all Lin - tense-functlions are expressible in terms of

some given Lin - tense-functions fo,. f then for any

"y -1
class —K of linear orderings it 1s the case that all 7‘{ -
tense-functions are 7{ - expressible in terms of the H =
tense-functions fo p 7{_, o ,fr_lf‘ }{_‘ . Unfortunately we are
unable to exhlbit a finife collection of Lin - tense-
functions in terms of which all other Lin - tense-functions
are Lin - expressible. The question whether such a collec-
tion can be exhiblted at all, is open. However,

Theorem 1. All Com - tense-functions are Com - expressaible
in terms of the Com - tense-functions NOTCom, ANDcom’

SINCE and UNTI

Com I"Com'
The proof of theorem 1 will be given in Chapter III. As
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this proof will show, theorem 1 can be strengthened to
Theorem 2. There 1s a primitive necursive functlon Exp
from tense defining formulae to schemata of TLl, such that
for any tense defining formula ¢> Exp ((ﬁ ) Com -
expresses the Com - tense-function defined by qb
Theorems 1 and 2 show the importance of sentential languages
for the set NOT; AND, SINCE and UNTIL. Indeed, 1t will be
convenient in the sequel to be able to refer to one par-
ticular such language. Therefore we define
Definition 8. TL, 1s the sententlal language <:1,NOT\7 .
{A D) , (s ,smceE ) , (U, UNTIL) for the
set { NOT, AND, SINCE, UNTIL |

Our basic goal was to deslgn a tense logical sys-
tem in which all English tense operators can be repre-
sented. In the last few pages we have been dealing only
with the rather abstract notion of a first order definable
tense. The relevance of that discussion--and 1n particular
of theorems 1 and 2--for our original problem depends on
the relationship between this notion and the tense opera-
tors of English. Part of this relatlonship is clarified by
theorems 1 and 2 themselves. Indeed, they tell us that--
provided time is complete--all first order definable tenses
are expressible by what we are Justified in calling English
tense operators. It suffices to notice that the tenses

SINCE and UNTIL are the meanings of the English expressions.
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(5) 'It has been the case that ... since it was the cas

(1]

that ...' and

(6) 'It will be the case that ... until it will be the
case that ...,' respectively. Thus by theorem 2 we can
for each first corder definable tense effectively find a
complex English expression, bullt up with the help of the
words 'not' and 'and' and the expressions (5) and (6), of
which this tense 1s the meaning.

This st¢111 leaves open the questicn whether all
English tense operators are representable in a language
like TL1. This question is of course not without ambi-
gulty for it depends on what English expresslions we are
prepared tc regard as tense operators. One easily veri-
fidés that indeed a very large number of expressions which
are naturally classifled as tense operators because of
their function have first order definable tenses as their
meanings. Yet there are expressions which deserve to be
regarded as tense operators but which are nonetheless not
representable within TLl. The words 'mostly' and 'usu-
ally' are examples of such expressions. The impossibility
of representing these particular expressions stems from the
fact that their meanings involve a measgure on time in an
essential manner., 1In ract this seems to be the case when-
ever an English expression that should be regarded as a

tense operator cannot be represented within TL1:
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For each of the English expresaions which we have
encountered so far and which, though naturally regarded as
tense operators, cannot be represented within TL., the
impossibility of representing 1t stems trom the measure-
thecretic aspects of its meaning. |

Thus far we have only consldered sentential tense
logics. We will now turn briefly to predicate tense logic.
We first consider Cocchiarella's system, of which we havé
already presented the sentential part, viz, TLO., This
system--to which we will refer as TLQ—-is characterized as
foilows:

Definition 9.

Vocabulary: Varilables Vos Vyse--
Loglcal constants —,P, F (l-place sentential
operators)
A, 7,7 (2-place sen-
tential operators)
3,V (quantifiers)
Non-logical constants qg, ql,...(sentential
constants)
Ql, 01,....05, &, ...
(1-place, 2-place,...predi-
cate letters; the superscript

gives the number of places.)
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Formulae:
1) q, is a formula.

n
2) If x »X,_q are variables then Q; X5,...,X

O, ¢ s ‘l
1s a formula and xo<x1 is a feormule,
3) 1If CP, W are formulae then

P, (DAY (DY@ Y L(P e V),

PqD , F ¢> , are formulae
4) If QS 1s a formula and x is a variable then
(3x) , and (V x) ¢ are formulae.

Semantics: A possible interpretation for TL, relative to
T, 1s a triple {A,F, R ) such that

1) A 1s a function with domain T and a range con-

slsting of sets, at least one of which is not
empty.
2) F 1s a function the domain of which is the set of
predicate letters and sententlal letters of ’I‘Le.
3) F (qi) is a proposition,
L) F(Q?) 18 a funetion with domain T such that for
te T F(Q?) (t) is an n-place relation onUAa.’
5) 72 is a function with domain {"\ AT Jar S 8 P,F}
and range consisting of l1- and 2-place functions

trom(T) to&d(T) such that
(1) A_(3) =T -Jfor JET

2For any function of df is the range of f .
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(12) % 5 (3,K)
(111) ﬁv (J,K)
(1v) A, (3,K)
(v) R, (9K)
JKET
(vi) Kp(3) = {t¢ T:,}éJ (t'<_TU} for JS T
(vi1) Rp(d) = {t € Tit\,éJ (t<,rt')} for JET

JOK for J,K € T

JUK for J,KET
(T - J)UK for J,KET
((r - J)LK)Q((T - K)uJ) for

f

If 01 1s a possible interpretation for 'I‘L2 then hy UOZ
ve understand the set U such that for some A, F, ﬁ s

\
Oy = /\A, F,H) endu=-UQa

Satisfaction: Let (K = <A, F,R> be a pcssible inter-
~pretation for TL,, relative to jv

For t € T, a sequence a of elements of U,
and a formula ¢ of TL, 'a sat(isfies) ¢
at t in OL ' 1s defined as follows:

o

(1) sat qq at t in (h 1ff t € F(qy).

(11) a sat Qf Vi reeeV ot b in Gk 1er
n—

-\

8, ,..., a e F(Q2)(¢).
—ko’ —kn-l> i

(111) a sat -:d) at t in Ok 1£f te fz_"({“g € T:
a sat d) at t' in 01.3),
(1v) & sat (Pay) at t 1n (k arr te ﬁA({t%T:

sat ¢at t' in 0(},

{t'é T: a sat Y at t' in 013)

jo
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(v) asat (pvid)attinlk 1rr teR (
‘it'E T: a sat @ at t' in & } 3
{ trerasat yaveian ()

(vi) asat (O->y)attin (h 1er te R _(
{t'E T:g_satﬁbatt'in (k } s
{ t'¢ t:asatPat t' in & §)

(vi1) a sat (P ey ) at t 1n & 11 te R (
-{ £'€ T:asat att' in R % ;
{t'¢ 7: asat Yatt tafk()

sat P at t 1n (b 1rr te A ({ tre m
gsatqb at t' in (X }).

(1x) asat F at t 1n Crier t€ RF({t'oiT:
a'sat Qat t' in Gk g)

(x) asat (V v,) P at t 1n (k 1rf for all

(vii1)

|

b L

bEU(}z’EI satgl) attinO{.

(x1) a sat (Fv,) d) at t in (¢ 1ff for some b
€vy a P sat ¢ at t in

{By g?— we understand the sequence which iz 1like

a except that the i-th member is b.)

/
As before we say, for any class 7L of binary structures,

that a formula 7] of TL, is 7{ - valild if or every J =

< I,< > end possible interpretation 0( for 'I‘L2 rela-

tive to f ; sequence a of members of UO( and 1 € I,

a sat

77 at 1 in al



Cocchiarella succeeded in axiomatizing thé.set of
Lin-valld formulae of TL2. However, not for all classes
7% which we considered before is the set of #{ -vaiid
formulae of TL, axiomatizable. Indeed, D. Scott has
recently shown that the set of Eﬁrl-valid formulae and
the set of 7€e - valid formulae of TL2 are not even arith-
metical.

In view of theorem 1 it 1s more natural to develop
a predicate tense logic the primitive sentential operators
of which denote, beslides some sententlal connectlves, the
tenses SINCE and UNTIL, |
We obtain one such system--let us call 1t 'TLB'—-by extend-
ing TLl in the same way as we extended TLO to obtaln TLQ.
If we assume that the ordering of time 1s complete, then
TL3 is, like TLl, a system in which all first order defin-
able tenses can be represented.
If we extend TL3 to a system TLB' which contains the new
n-place sentential operator Z, and let the n-place Conm-
tense-function f be the 'meaning' of Z (i.e. we change the
notion of a possivle interpretation <A, F,'ﬁz> s relative
‘o \jy, so that the domain of 7Z includes Z and ﬁ%-(jw )s



35

then every formula C# of TLB' will be Com-equivalent to

a formula qb' of Ti.
We obtain qb' as follows. Iet 7) be an n-place schema of
TLl which Com - expresses f. {By theorem 1 there is such a
schema!) We replace every part of qb of the form leo...
w%-l by the formula [77]3%2’ e g%ffr . One easily
verifles for the formula qb' which results from those
replacements, that if Ck is a possible interpretation for
TLB" t € T and a 1s a sequence of elements of Ulﬁ » then
a satisfies ' at t in (} 1ff a satisfies ¢ at t in (k
This functional completeness property makes TL3 a very
natural system for tense logic. In particular it 1s to be
preferred over TL2 as its expressing force is so much
larger and 1ts syntax and semantics are hardly more compli-
cated. As a matter of fact many simple English tense oper-
ators which occur frequently and whose meaning 1s crucilal
to many important philosophical arguments, can be repre-
sented in TL3 but not in TL2. Examples of such expressions
are: the expressions (5) and (6), the present progressive
tense and the expressions: |

'It has been the case for some time that...'

'It will be the case for some time that...'

'It has been the case that ... since the last time that

it was the case that...'

'It will be the case that ... before the first time that it
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will be the case that ...'

The representabillity of these tense operators within TL3
follows--1f we assume that time is complete--from the
easlily verifiiable fact that their meanings are first order
definable. That these operators cannct be represented
within TL2 is harder to show. Moreover, the non-
representabllity of such an operator within TLE, relative
to \TJ, can be shown only if J~ satisfies certain cordi-
tions (for example, if J is a linear ordering and T 1is
finite then all the expressions abcve can be represented
within TL,, relative to J ). Some theorems related to
this matter are given in Chapter 1V,

In the same chapter we will alsc show that a sys-
tem simpler than TL3 (e.g. a system where all the primitive
tense operators other than the truth functional connectives
are l-place), but with the same expressive power, does not
exist.

From the last two paragraphs we may conclude that
TL3 is inferior to no other systems which are 1like iy
except for the meanings of thelr primitive sentential
cperators. In view of the distinguished position that TL3
occupies among all systems of this type, it would be of
particular interest to give, for various classes '7£ of
linear orderings, complete axiomatizations for ite 7{_-

valid formulae. Of course axlomatization of the set of
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7%‘- valid formulae of 'I‘L3 is impossible for all those
classes 7{ for which the set of ‘7{- valid formulae of
TL, can not be axlomatized. On the other hand it is
easlly seen that the sets of Lin - valid, of Den - valid,
of fa - valid and of Dis - valid formulae of TL, (as well
as the sets S of ;{ - valld formulae of several other
subclasses A of Lin) can be axiomatized. However, no
interesting and intultively satisfylng axiomatization of
any of these sets has been glven yet.

The importance of theorems 1 and 2 for the problem
of finding a simple and adequate system for tense logir.
depends on the plausibllity of the assumption that time is
complete. Of the most natural hypotheses about the charac-
ter of time, two--viz. that it 1s like the integers and
that 1t is like the real numbers--imply that 1t is complete.
Indeed, we have the immedlate corollaries of theorem 1:

Corollary 1l: All}Qe - tenses areﬁ?e - gxpressible in terms

Re’

of the Ke - tenses NOT ANDf , SINCE g
e e
and UNTIL ﬁ_e

Corollary : All hi- tenses are Re - expressible in terms

of thetln - tenses NOT , AND  , SINCE
n On A
and UNTILQQ“
But if time is like the rational numbers, then 1ts ordering
is not complete. And in this case theorem 1 definitely

fails. 1Indeed, it will be shown in Chapter IV that some
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‘ﬁLa - tense 1s not 7g§ expressible in terms of NO?Rg,
ANDﬁ;, SINCERé and UNTILﬁg. However, since theorem 1
holds for the real numbers the'ﬁ? - tenses which are not
1ia -~ expressible in terms of the above-mentioned tenses
mugt be intimately related to the differences between the
real numbers and the ratlionals, l1.e. with the exlstence or
non-existence of least upper and greatest lower bounds.

We do not belleve that such tenses can be expressed in
English without explicit reference to moments. Thus there
is good reason to assume that even if time 18 like the
rational numbers those first order tenses which can be
expressed by means of English tense operators are expres-

sible in terms of NOT, AND, SINCE and UNTIL.



CHAPTER III
THE MAIN THEOREM

This chapter is concerned exclueively with the
proof of Theorem I1.1. '
Iet us notice first that Theorem II.l can be
regarded as a normal form theorem for the tense defining
formulae of L. Indeed iet & be the set of formulae
defined by:
(1) Py (%) € Z
(11) It @ ,¥ ¢ € then ~ P, (P A Y ) e &
(111) I @ ,¥ € T and 1, J are the first and
second numbers respactively such that ti and ¢t 3 do not
occur in ¢ or Y/ then
(3 t) kg« tg A [PITE) A (V) (8 <tynt < by —

[y/] %j—))é ¢ ?
and °

(Eti)(t0<ti A [C}S]f»i A (Y tJ- )(to < tJ N tJ < ‘\“"1—)

tD
(YlEe T
o

(iv) No formula qS 18 in C except by (1), (i1), and
(111).

FPurther, let, for any class 7((, of binary structures
and formula QS of L, ¢ be ?{, - valid if for every

1For any formula ¢ of L and variables x, y of
we understand by [ ]_*_ " the result of replacing y by
throughout @ . y

L
X
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<I,(> é H, €1 and sequence Q of subsets of I,i
satisfies 4) in <I, <, Qo, Ql,...> ; and let two
formulae ¢ and \ of Lbe # - equivalent 1f ¢ &Y
is 7{ - valid. For' q5 a formula of L and Hy € C we say
that Y/ A - expresses c[) ire qb and ) are H - equiva-
lent .

Then Theorem II.1 is equlvalent to the statement
(theorem 2 below):
(A) For every tense défining formula d) of L there is a
tense defining formula (P! in € which is Com-equivalent
to ‘

In order to show the equivalence of (A) and
Theorem II.1 let us introduce the following notions:

Definiticn 1. E {s an enumeration of the formulae of

L. Iet ¢ be a formula of L. Let \J be a formula of L
with exactly one free varilable x 2and let Q be a l-place
predicate letter of L. By [¢ ]é{L we understand the
formula d)‘ii which we obtain by replacing each éubfomula
of ¢ of the form Q(y) by the formula [{/']--, where '
1s the rirst alphabetic variant of \J 1n E'none of whose
bound variables occur in ¢ . We wlll refer to this scrt
of substlitution as P-substitution.

Definition 2. S and U are 2~place functions which map the

pairs of formulae of L which have exactly one free
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variable x, (which i8 the same for both) into fcrmulae of

L wvhich have x as theilr only free variable. They are

defined by the fcllowing clause:

If Cf) s Y are formulae of L, x is a variable which scours

free in both b and Y/ and neither d) nor Y/ has free

variables other than x, then

S(h i) = (_:,i'tti)(tI Cx A [qS]E;— A (VtJ)(ti< EyAty<x
- [y 154)

- ' t, |

U, ) = (Tty)(x<ty ALPI5— A (V ty)
t

(x < tya tg<ty = [Wlgd)),

where 1 and J are the first and second number, respec-

tively, such that t, and tJ do not occur in P or in 'S

One easlly sees that if Cf);'([! € Y, then g(CfD ;lp)é ot
Definition 3. D is the one-one functiorn such that

(1) the domain of D 1s the set of formulae of TLy;

(11) the range of D is C ;

(111) D(ay) = ®y ();

(iv) If 7 4s a formula of TL;, then D(— M ) = - DN)

(v) 1If M and ?; are formulae of TL,, then
D((n nE)) =(M)aD( L)), D(s L) =s(p(),
(£ )), ananwn &) =umM), oL .

One easily verifies that

(R1) YN 4s an n-place schema of T
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D(N) is an n-place tense defining formula of L.
(R2) If Y] 1s a formula of TL,, Q 18 a sequence of
subgets of Tand ¢t € T then M 1s true at t in
(a, ﬁT(TLl),\ Aff t satisfies D( V] ) in (T, < ,@,,
Q\,... > . To see that Theorem II.l implies (A), we
argue as follows: Ilet qb be an n-place tense defining
formula of L. By Theorem II.l1 there 1s an n-place schema
N of TLl, which Com-expresses the Com-tense-function
defined by ¢> , 1.e. if <I <> € Com, QO’ 29 19
1 €1, then 7] is true at 1 in QﬁQ & 1 > A, <>
TL1)> iff 1 satisfies ¢ 1in (1, <L, y).
So by (R2) 1 sat @ 1in <I, , &, ,..,Qn_1>
iff 1 sat D( M ) in <I, <, """Qn-l""> for any
(1,¢) € com Qy..., Q_,% Tand1 € I. And
thus @ and the formula D{ V) )) 1 n £ are Com-equivalent.
To see that (A) implies theorem II.l let f be an n-place
first order definable Com-tense-fun:tion. By (A) there 1s
an n-place tense defining formula gb in ¢ which defines
f. Let 1) be the n-place schema of TL1 such that D {0 )
= Cp; then by(Ré)D(Y\) Com-expresses f.
Before we give the proof of theorem 2 we will first prove
another theorem, which states the existence of a normal
form for arbitrary formulae of L (rather than just for the

tense defining formulae).

We introduce the following additional notions and
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conventions.
Convention 1. We say that ti precedes tJ if and only 1if
1< 3;

Conventlon 2. We will often write 'X<{y<z' for 'x<yaycz';

] 7 ! v T |}
also X< ee & Xp for X< xeAxevix}/\.../\xrd(xr

In analogy to the notion of K -validity and equivalence

for formulae of a sentential language for a set of tense

defining formulae of L, we put

Definition 4. ILet 7{, be a class of binary structures.

A formula (}5 of L 1s LK. -consistent if — Cb is not
ﬂ-valid; otherwlse Cb is K-inconsistent.

Until further notice 'valid,' 'equivalent;' 'consistent,'
'inconsistent,' will stand for ‘Lin-valid,' ‘Lin-equivalent,
'Lin-consistent' and 'Lin~inconsistent,' respectively.

Definition 5. Assume that (b 1s a formula (of L) in

which no variable i1s bound by two different guantifiere or
occurs both free and bound. Then

a) x precedes y in ¢p Iff
elther (1) x, v free in d; and x precedes y
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or (11) x free in qb end y bound in 4)

or (i11) x, y bound in ¢ and the quantifier that
binds y is in the scope of the quantifier that
binds x.

b) x is initlal in ¢ if x is bound in Cf) and is pre-

ceded by no other bound variables in C,D . ( Fis the
case we will also refer to the quantifier that binds -
x as initial).

Definition 6. (1) A formula 7T of L 1s a temporal

prefix 1f and only if T 1s a conjunction of formulae
of the forms: x { yor x = y.

(11) ILet 7{ be a class of binary struc-
tures. A temporal pretfix 7/ is 7”1_ -complete if and
only 1f for every temporal prefix 177' all the vari-
ables of which are among those of T7 , we have either
Ke v 2>  or KE 7r>-71 (Clearly, if 77,

7" are 7(( -complete, ,"‘{ -consistent prefixes
with the same varisbles, then 7’{# e 77" or
\f/d: 7 - --TT'). We say that 77 1s couplete 1if 7‘{
is Lin-complete.

(111) Let J7 be a complete, conslstent
temporal prefix. Then

a) x 1s an essential variable in

77 if and only il x occurs in 77 and for all y
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different from x that occur in “JT” and for which Lin F
77> x = y, x precedes y.
b) x comes after y in 7y if x, y are

essential in W andlinkF r->y < x and for all z differ-

ent from X and y that occur in T, Lin k77> a(y<=

AZ<X)
8
¢) x is the 1 v variable in 7 if and

only if x 1s essential and for no y x comes after y

in 77 . x 1is the n+1%% variable in T 1ff there is
th

a y such that y is the n” variable in 77 and x comes
after y in “J1

1(77’) 1s the greatest number n such that for some x

th variable in 7T

x 18 the n
x is the last variable in 7 iff x 1s the 1( 7 )P

varisble in J7 .

d) A temporal prefix is standard

iff .

1) T 1is complete and consistent.

2) No atomic formula occurs more
than once in 77 .

3) Every conjunct x £ y occurs
vefore every conjunct u = v, ‘

by If Link "o {x< y Aydlz),
then the formula x < 2z 18 not & conjunct of 77 .

5) If x <y and u <v occur in 7
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and LanF¥- y<u, then x ¢ y occurs before u<v in 7 .
6) If x occurs in 7Y and x pre-
cedes y and LinF 77 = x = y, then Y contains no
conjunct y = u, y <u, u {y (for any ul!).
7) If X =y occurs in T then x
is essential in 7/ . If x = y and u = v cceur in 77
and u comes alter x in “J7 then x = y occurs before
u=vin 7 . The formula x = x occurs in Ty iff x
is the only variable of .
Moreover we will say that a temporal prefix 77 is(a pre-
fix) in XyseeesX, 18 X9, . 0,%, are the free
variables of 7.
Remarks:
1) IfT, Jr* are complete prefixes in the same vari-
ables, then Lin F 7 &7 77 or Lin ® 7 —> — 77’ .
2) Every consistent prefix whose variables are among
XyseeesXy, is Lin-equivalent to a disjunction of complete,

conslstent prefixes in XyseoesXne

3) If 77 1s a complete, consistent prefix, then there
is & unigue standard prefix 777" in the same variasbles as
7 , such that Lin £ ¥ « ' .

¥) 1t 97, 77, are standard prefixes and LinF Ve 7;’;
then 7= 77 '

5) 1If 77 is a standard prefix and contains only one

variable, x, then 77 is the formula X = X.



&7

Definltion 7.

a) For each variable x. At{(x) is the set of all conjunc-
tions of formulae of the forms Q(x) and =0 Q(x), together
with the formula: P,(x)v = Py(x).

Thus >\xAt(x) is a function from variables to sets of
formulae.

We will now define three similar functions Bef(ore),

Aft(er) and Bet(ween) (2*}7[&0?-') b_yhr‘ecursion:.
b) 1) Befgy{x) = Aft (x) = Bety(x,y) = 1,

2) Befn+l(x) - Befn(x)u{(g z)(z € x A c}:lA ...Ac"bm),

(Y2)(z<x = P, V...V ): zisavariadte, mew,

2% a A\ (Pi€ AL (D) UBef(2) U Bet(z,0) |

igm

£t (x) = ATt (x) U { (3z)(h ez AP A ADy,
(Vz)(x¢z = qJJ, V"'Vd}m) :z05 a8 variablg mew, z4x,

AP e at (2) U are, (2) U Bet, (X’Z))};

Ben+l (X,y’)a Bet (x,y) L {(32)()g(z/\z<y/\cp A
vm/\fb) (V;)(,‘<qu<y-3¢‘ Voo v b e

<83 variable mew, z £ xy

/\(qbié At(z) U et (x,z) U Bet_ (z,y)f
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Bef(x) = U Bef (x); Aft(x) = U art (x); Beti{x,y) =
n n n n
U .
= Bet, (x,y);
Bef = K,L]Befn(bL ); Aft = LLJ Aft (L0 );
Bet, = U Bet (ti,t)

| . Uoapr U
Bef = %J Bef ; Aft ,.an Aft; Bet = \J Bet .

Definition 8. Let r be a natural number #* O.

a) A standard formula_qb i_nxl,.. .»%X., 1s 2 disjunction
VCP.L where each qSL is a conjuncticon of a standard
L

prefix T{’i in XysoeesX

r and a conjunction é\q)L,J such

that if Yys--.s¥g are the essential variables of 'T,-’i,
listed in the order in which they appear in ’{r'i, then for

S S|
a1 3, Py e U)o Bet (Vys¥yeyq) U

W=l
Bef (yl) U Aft(y )

b) q‘) is a standard formula if there are r, Xy,...,X,

such that qb is & standard formula in XyseeosX

r.
Tneorem 1. Let r be a natural number ?’ 0.

Every formula of L with free variables XysenerXy, is Lin-

equivalent to a standard formula in XyseeesXn.
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Proof .
Every formula of L is loglcally equivalent to a formula of
L in prenex normal form with the same free variables.
Therefore it suffices to prove the theorem for prenex for-
mulae. We proceed by induction on the number of quanti-
flers. Let C'b be a formula of L with free varlables
XysenesXye We may of course assume that no variable occurs
both bound and free in qb , or is bound by two different
quantiflers in ¢ .
1) C;b contains no quantifiers. In this case the exis-
tence of an equivalent standard formula follows from well-
known facts about .ae propositional calculus and some of
our remarks about prefixes:
We bring ¢ in disjunctive normal form 770’ . Consider a
disjunct 8 of ”L}j . 8 wlll be a conjunction of atomic
formulae and negations thereof. We can write 8 as 30
N 51 ANooo A Sr’ where 30 consists of those conjuncts
of 8 that involve the symbols 'a' or '¢ ', and for
i=1,.,r, 81 is the conjunction of the conjuncts of 8
of the forms Q(xi) or—=Q(xy). In 30 we can replace
each conjunct Y =2 by Y<z n2<y and each con-
Junct " y<z by vy =zvz<Ky , obtaining thus an equi-
valent formula 870- .

Iet us first assume that 80 is consistent. Then 5‘0

1s also consistent and is therefore, as one easlily sees,
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equivalent to a disjunction of consistent prefixes, and
thus, by remarks 2) and B)Gn 4 also equivaleni to a ﬂlcjunc—
tion of standard prefixes, \/)/ . Thus 8 is equivalent
to \/ (\/\J /K\ SK 'I‘heJ latter formula is a standard
furmula if at least one of the 81{ (k = 1,...,r) is not
empty. But 1f all Sk are empty then 8 is equivalent to
Y

{ )3 A (Py(xy) v 7 Po(xl))). The case where <8 o 1s
empty then reduces to the case where é;o is the formula

X = Xy . ir 8 1s inconsistent then 5 is equivalent
to P, (xl)/\ — Po(xl), which 18 equivalent to a standard
formula. Thus each disjunct of (j) is equivalent to a
standard formula. It follows that Ci) is equivalent to

a standard formula.

2) Let C¢> be (2 x ) ¢ , and assume the theorem for
?ﬁ . We may assume that 1#' contains x; for otherwiae
gb is equivalent to 2# and the theorem follows for
qb at once. By assumption @b is equivalent to a

\ / o
standard formula v. (76 A %} yULL1 ). So q5 1s equi-

valent to

1)... Vo@xm, a A g
L R
It suffices to show that each d*sj_nc of (1) is equiva-

lent to a standard formula in XysoeesXy,e Consider the

disjunct

2)... (3 x ‘)T/\f\z,ﬂ ) of (1).

J
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a) Assume 77 contains a formula y = x . Then this is
the only conjunct of 77 in which x occurs. We omit this
conjunct from 77 and so obtain a standard prefix 77 ' 1n

XqseeesX (In case that 77 contains no other conjuncts

r.
I}

than y = x --i.e. vhen r = 1--, we let 7 be the for-

mula y =y , which is again a standard prefix in

Xyseees xr.) In this case none of the wl will contain x

80 that (2) is equivalent to T A /\ 4f , which 1is

clearly a standard prefix in XyseensXoe

b) Assume 77 contains a formula x =y . Then x is
essential in 7Y . Let z be the first variable (in the
list t,,t5,...) such that x =2z occurs in T/ . We
replace x everywhere in 777 by z and omit the resulting
conjunct z = z (unless r = 1!). In this way we obtain

a standard prefix in XiseesX Moreover we replace x

r
everywhere by z in the Zp’\} , thus obtaining formulae I{JJ
(2) will then be equivalent to 7 A /\ Vf‘ , the latter

being again clearly a standard formula in XyseeesXy

¢) Assume T contains no formulae of the forms y = Xx
and x =y . So the conjuncts of 7 in which x occurs
are either

(1) x<y (for some unique y) alone or

(11) y<x (for some unique y) alone or

(111) y<x and x<{z (for some unique y,z)

Iet us assume (1). We omlt x<y from 77 and obtaln a
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standard prefix in Xq,....,x,. (Again, if r = 1, then we
put 7T' equal toy = y) If no yﬂ contains x then (2) 1is
equivalent to W 'A /\ HVJ , which 1is easily seen to be
standard Otherwise (2) 1s equivalient to

/\?.,US A(Tx)(x< y/\/\yfh ), where the 2}}3 are
those 'yf that do not contain x, and the yjk are the
others.

The last formula is again standard in XyseerasX Cases

r’
(11) and (111) are treated similarly.

3) Let C}D be (V X )’Zp‘ and assume the theorem for '{/j

(3).... \/ (7Ti/\/\751 3 ). Again we may assume that Y/
contains x w1th respect to the TT' we distinguish the
cases

a) 77; contains a formula x = y

b) 7Try contains a formula y = x

cl) 174 contalns no formulae of the forms X = y or

Yy = X and at most one conjunct containing x
c2)‘TTi contains no formulae of the forms x = y bui
dces contain y< x, x < z for some y,z
In cas=zs (b) and (cl) we obtain a standard prefix Tf;
in XKysereosky gimply by omitting from 77; the conjuncts
that contain x (with the usual provision for the case

where r = 1). In case (c2) we obtain & standard prefix
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by replacing y<xAx<z by y<z. Further we let in

these three ca:seaﬁi be the conjunction of the conjuncts

of ’)‘Ti that contain x, and we putl/fii 3 -=11Ui IR Suppose
that (1) applies to 77’ Llet again y be the firat variable
such that x = y appears in Tfi. We obtain'hg by replacing
X everywhere 1in 77”1 by v and omitting y = y from the

result (unless r = 1). Further we put ﬁi equal to X = y
and letl}f‘;, 3 be the formulae which are obtained by substi-
tution of y for x in lPi,J' Then clearly (3) 1s equivalent
to

(4)... \/mr1 VRIS HN

In (4) some of the ’TTi may be the same even though their
indices are different. However, we can rewrite (4)

equivalently as

V(Pk/\ \/ (ﬁkh/\ Y i,n, 3

where the Pk are all different standard prefixes in

Xy5+.0.,%, 2nd each /6)k,h 18 equal to some ﬂi in (4)

and eachlpk h,J to some Ilfi 5 in (&). Since the ’ok
3 b J >

are mutually exclusive (i.e. if J # J', then Lin

- (/O.1 /\;OJ. )) and do not contain x, P is equivalent
to

(5)-... \'/k (’Ok N (\d X) L\\/ (/Gh Aé\wk’h:;}))

It will again be sufficient to show that each disjunct of
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(5) is equivalent to a standard formula. Consider the

disjunct
(6).... P A (V x) \/kr\ (ﬂh A /J\ ‘7Uh,,'j)
let us assume that Yys....¥4 are the essential variables of

° , listed in the order in which they appear in O .
Again, some of the /9h may be the same, but we can rewrite

(6) equivalently as

: ;o
M LAYV (Bon VY V)
where all the A9é are different, each lé?g is equal to

ﬁ ‘
some /4, in (6) and each ‘l/fg’m’p is equal to some wh,\']

in (6). We bhave Lin F —w(PAﬂg/\ /:,)g/) If we have,
moreover,

(8).... MnFP -2 g/%,mm(ﬂ1SQMka
to

P A (V x)(ﬂg‘?/\\/ We,m,p)?

P
which in turm 1is equivaient to

©)eee. DN N(p A VB, N Yemp)

Suppose that (8) does not hold. let Zys....,Z, be those

Yq (q¢ £ 8) such that x precedes Vq and z,,_41,...,2, the

others. /3g is one of the formulee x<(yl,y1 L x Nx Yos
....,ys_1<_x/\X<:ys,ys X, X = Zyseeos X m Zo52, 1 =

X,,..,Zs = X,

Since (8) feils, some of the formulae in the 1ist do not
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occur among the ﬁg. let yl,..., )/p be all those. Then
(7) 1& equivalent to

). iy L At (Va8 N Yoo A
(V x)( Ye = (Pgx) A = Pox))
We will show that (9) 1s equivalent to a standard formula.

The argument will egqually apply to {iC). Consider the

conjunct

11).... A (V)G — V of (J).

( ) p A} Y Y ﬁ P .L'u‘ P )

If (3 1is an equality then x cannot occur in any 1?? . For

elther x was not essential in the prefixes I , of (3)

which we 'split' into 0 and /3 and so the corresponding

formulae 1?1,3 of (3) do not contain x; but each Y, 1s

equal to one of those; or else x is nct essentlial in the

Ty that were split into © and /3 . Then the correspond-
{

ing -Vji,d were immediately replaced by formulae y)i,J in

which x does not oceur; and in this case each 1#% of (11)

oceurs among these EUi y+ 8o in either case (11) 1s equi-

valent to \/(/O A Hﬂ ). One easily verifies that each

r
and thus (11) is equivalent to a standard formula in

disjunct /D A V% is a standard formula in X0 X

X1seeesXp,. Suppose that /3 consists of inequalities. If

none of the 1JF contains x then (11) 1is equivalent

o V(P AYp) v (P A (N RUBD Pylx)amPx))
So suppose that some QPF does contain x. If all ng

contain x then (11) 1s a standard formula. Otherwise (11)
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1s equivalent to
Ve Ay v (paldxB— v W, ), where

the Y, are the 2, in which x does not occur and the
lp'él are the other 3, . Again this 1s a standard for-
mula. One easily sees that since each conjunct of (9) is
equivalent to a standard formula which involves no other
prefixes than Jc , (9) 1s 1tself equivalent to a standard

formula. This completes tne proof of theorem 1.

We gave theorem 1 primarily because it 1s needed 1in our
proof of theorem 2, However, theorem 1 has, 1t seems to
us, some interest in 1%self,--even in the presence of
theorem 2, since it'gives a normal form for a larger class
of formulae and it asserts that such a formula and 1ts
normal fom aiLi:e Lin- rather than Com-equivalent.:

Theorem 1 deals itself oniy with formulae which have at
least one free variable. However, it has as an lmmedlate
consequence cerollaryl below, which states a corresponding

normal form for sentences of L.

Definitiony. A sentence y of L is a standard sentence if and

only irf there 1s a variable x and a formuls ¢5sﬁznabrdinx,
such that i is (3x )gﬁ or & 1is (V&).;L

Corollary 1. Every sentence of L is Lin-equivalent to a

boolean combination of standard senternces.
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Convention 3. a) If 9 » £ are formulae of TL; we will
% ' g 1 ' 7z ' '
write 'S( 7), J )' instead of 'S Z ' and 'U(N,J)

instead of 'U 7} g !

b) outermost parentheses will be omitted--

e.g. we write ' M A 1 (S AT))" instead of
(A AT A
We also adopt standard conventlions concerning perer-

theses for: formulae of I,.

Definitioni0. The following are l-place functions from

formulae of TL, to formulae of TL;. They are characterized
by:

P(n) =s(m,"(y» A1),

F(n) =u(n,aih AN,

H(n) = P(77),

6(N) =F(0),

(M) =s(uUnarwp),n),

¢'(M) =u(YpAm, ni,

P'(7} ) =3 H'(qN) and

F'(n ) =26'(1N ), where F) is an arbiltrary formula of
'I‘Ll.

(It 1s worth noticing that the schemata corresponding to
the functions P and F--i.e. formulae S5(qg,v 90;‘7 a,)) and
U(qp 4 g A qo))——Lin-express in TL; the past and future
tenses, respectively.

Indeed, if 7  is a linear ordering, . a possible inter-
pretation determined by TLl, relative to 7. sand t ¢ T
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then for any formula n of TL; P(77 ) is true at t in (]
iff there 18 a t'¢ T, such that t' &t and nis true at t'in (Y
and F( n ) is true at t in O if and only if there 1s a
t'e T such that t < t' and 7} 1s true at t'in OC.
In a similar way H( n ) Lin- expresses the fact
Athat"? has always been true in the past, G 7 ) that 7)
will always be true in the future, Ff( 7 ) that N was
true uninterruptedly from gsome moment in the past up to the
present, . P'( n ) that 7 has been
true at past moments infinitely close to the present and
Fﬂ(n) that r) will be true at future moments infinitely
close to the present)
For each of the functions defined in definitioni9 we intro-
duce the analogous l-place functions from formulae of L

to formulae of L which have exactly one free variable.

Definition 11. For any formula ¢ of L with exactly one

free varlable

P (@) =5 (@, 1(Pn ),
F(p)=U(g, (¢ a0P)),
K(g)="P(q],

¢ (p)="F(®),

H(@ ) =3 (ipa1d), D),
¢ (f)=u(~{ea19), @)
P'(@ ) =:mHGS ),

P'(p) = 16 (29),

#
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Definition 11. Let .‘../ be a class of linear structures,
q) a formula of L in which only x occurs free. ILet

ye £. (4 %- xpresses b (in terms of AND, NOT,

SINCE and UNTIL) if ¢ 1s A -equivalent to a formula
W

some alphabetic variant of V . We say that the formula

which comes by proper substitution of x for to in

7} of TLy K -expresses ¢ 1if D(/7 ) K -expresses

We will again often write 'expressed,' 'expressible' etc.

instead of 'Lin-expressed,' 'Lin-expressible 'egte¢, -

We state the following obvious facts concerning

expressibility for formulae of L.

let @,, @, be formulae of L, X;,X, € Zf,) and 7),, 7),

formulae of TL,;.

('E’S) If C‘DI is K -expressed by)\/](nl) and ’7172

1s K -expressed by X, () then @, G, A P,

s( ¢,,¢) and U (P, P,) are Z/ -expressed by
—'XJ. ( r}l).a_ XJ-/\X}_ :(771 A 772. ) 4

S (A, X, ) (s (7,73 and u (X, X.) (U (7, 1))

respectively.

In particular P ( ¢7 ), F (¢,) ,....are expressed by
PUX) (B(N) )y B (X)) (R(DD,....

( Rq) If @y, P are }./ -expressed by)(1 (7,), X,
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(77,) respectively, then [Q’i]@" is %—expressed by

LI (D
We will now proceed to prove
Theorem 2. Every tense defining formula is Com-equivalent
to a member of Zf
We have to show that every tense defining formula 1s Com-
expressible. In view of theorem 1 it suffices to prove
that every standard formula in which only to occurs free 1s
Com-expressible. It will be convenlent, however, to prove
the slightly stronger ctatement that for any variable x,
the standard formulae which have only x free are Com-
expressible.
Every standard formula with one free variable, x say, 1is
equivalent to a boolean combination of members of At(x) U
Bef(x) U Aft(x). Therefore, since all members of At are
Com-expressible, it will suffice to show that the classes
Bef and Aft consist of Com-expressible formulae, It is
natural to try to prove this by induction on the dsfiniticen
of Bef and Aft. Thus, assuming that all formulae of Befn
and Aftn are Com-expressible, we want to show the sgame fact
for a formula <t> of, say, Befn+1. But Cb will in general
be defined in terms not only of members of BefnL)Aftn but
also of members of Bet,. 3o it will be necessary to prove
some facts about the class Bet es well. On the other hand

we may reatrict cur sttention to the class é@ of those
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members of Bef UAft which do not have proper subformulae
that belong to Bef UAft. For assuming that all members of
c@ are exvressible we can show the Com-expressibllity of
all members of Bef UAft as follows: Ifcp & Bef, U Aft,,
then CP does not have proper subformulae which belong to
Bef U Aft and therefore belongs to £) . suppose now that
¢ € Ber ,, YAt , and that all members of Bef UAft are
Com-expresslble. LetCP’,. . .,Cbk be all those proper
subformulae of (P which belong to Bef U Aft and which are
not part of a larger proper subformula of (Tb which belongs
to Bef U Aft. ILet yy,...,¥, be the unique free variables
of Cbl y e .,¢k respectively. Choose distinct predicate
letters Q;,...,Q which do not occur in C,t . Let Ci)’ be
obtained by replacing for i = 1,...,k <}>1 by Qi(yi) in

Qb . Then d,D’ i1s a member of D and therefore expressible.

Let Y) express ¢p'. Further C;')l,..., Cbk

velong to BefnUAftn and thus are expressible by assumption.

LetM,..., M, express <f>', ce ,Cbk respectively. Thon C{) is
.. Y T
expressad by Lr(] A .. D% Where q; 1s the propo-
q, clK
sitional constant that corcesponds to Q (1.e. V (qi -
(ko)

Py and Q = PJ)!).

We can restrict our attention even further, namely to
these members of @ which begin with an existential
quantifier. For if @ € [) and @ begins with a
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universal quanti;‘ier, then — cp is equivalent to a formula
I/J € QB which begins with an existential quantifier. To
verify this clalim we observe that we may submit — CP to
the follcwing transformations which preserve equivalence:
We can move the initial negation aign of —-;d) inside all
the way to the formulae of the forms Q(x) or - Q(x), and
cancel double negations in front of such formulae, thus
cbtaining a formula \.P ', In I?U' some existentisl quanti-
fier may stand in front of 8 boolean combination of members
of At UBet which contains disjunction signs, rather than
in front of a pure conJunction of such formulae. However,
we can bring such boolean combinatlons in disjunctive
normal form and then distribute the existential quantifier
over the disjunction. Clearly we have to repeaﬁ this only
a finite number of times in order to obtaln a formula ‘qJ
equivalent to I/JI in which all existential quantifiers are
followed by conjunctions. One easiliy verifies that 2;!
belongs to r@ .

Thus our task reduces to showing that}arbitrary
members of Bet have some property. I such that if
b 1(x,¥)5.. .CPm(x,y) have I, ¥ ,,..,W ¢ bt(x) and
Kjseeos Kp € At(y), then
12) ... (3 x)(x<yna /3\2;;.’/\ /L\ ;) and

P ™ -
(3 v)(x<yn /\«\ Ky A {\ d)i. ) are Com-expressible.In

order to state the property I we introduce the fcllowing
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sets cf formulae:

Definition

of B (asic) p(ast) (x,y) and B (aslc) f(uture) (x,y):

Bp, (x,y) = {Pi(x)/\ (V z)(x(z(y-—)PJ(z)) ’ Pk(y):
i,J,k &€ @and x,y,z are distinct variable%
BEy(x,¥) = {Py(x)~ (V2)(x<z¢y2,(2)) A B (¥): .
i,J,k€w and x,y,r are distinct variablesj

Bp ,1(x,¥) = {Pi(x) AR z)(x¢zey A (Y V) (xevez =

Py(v)) A P):
1,Jéwand b ¢ Bp (z,y) and x,y,z,v
are distinct variables}

Bf ,1(x,¥) = { (3 z)(x<z<y A Cb A (Y v)(z(v(y—aPJ(v)))
A Pi(y):
1,3,€w and @ € Bf (x,2z) and x,y,z,v are
distinct variables}

Bo(x,y) = UBp, (x,y)s BF(x.y) = {Be (x,y)

Bpnr. iL,JJ Bpn(ti’td); Bfn = Bfn (ti,tj)

Bp = UB% ; Bf = Lr{Brn
Convention . Iet d: be a formula of L and let x,y be
variables.

By (3x<y) Cb we understand the formula



64
(3x) ( x<yarP) and by ( I x>y)@ the formula (3 x)
(y<x AE).

Definition
Let Bp_ (v) = U {(At,<y) ¢ PeBp, (Li,Y) )
¢

() = U{(FL>Y) P « BELY. t1) |

Bp,

With each formula ¢ ¢ Bp, U Bf, we assoclate the

2n+l - place sequence S( ¢ ) of predicate letters which
lists all the occurrences of such letters in ¢ in order
of sppearance in q& from left to right. Similarly we
let se( @) be the sequence of all those occurrences
(1isted in order of appearance) which are not in the scope
of a unlversal quantifier. Thus for example, 1if q)

is the formula
Pi(x) A (3T z)(xczey A (Vu)(x<u«z P (u)) A
Pa(z) A (Vv)(zevey = P5(v)))) aRL(y),

S(@) = (P),Py,Py,F5,Pp%  and Se(P ) = (Py,PpPo) .

If ¢ 1s of the form Q (y) then we put S{( ¢ ) =

Se(d) = (Q)
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Definition

Let gb “ Bp(x,y) U Bf(x,y) and s(cp) = <Ql,...,Q2n_l>
let [T, = <M, <, _I_’> be a linear structure (1i.e.

<;M,‘< > 1s a linear ordering and P is a sequence of
subsets of M), Then we say that the sequence <tl""’tn>
of points of M satisfies ¢ in ST 1ff

(1) El’...’§2 R .<} En and
(11)  for i =1,...,n t, €&, , and

(111) for i1 =1,...,n-1, if £t € M and by < 24y,
then t ¢ Qoy -
(Here by @ we understand that subset P, of M such that
P, = Q). Also, 1if Y = (3 x < y)c# ory = (3y>x)¢
¢ ,
then <'91"°"§n> satisfies’ Y in o arere <§1""’§n>
satisfies’ qb in M

Remarks
1) For each 2n+l - ploce seguence S of predicate let-

ters and distinct veriables x,y there are d> € Bp (x.y)
n
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and Y & Bf (x,y) such that s(¢p) = s(z/./) = S.

2) 1t P, Y € Bp(x,y) U Bf(x,y) and 5(P) = s(3y)
then Lin F ¢ © w .

3) From 1), 2) it follows that for every ¢ & Bp(x,y)
(Bf(x,y)) there is a Y € Bf(x,y) (Bp(x,y)) such that
Lin f @ & w .

4) IrpeBp(x.y) u Bf(x,y), M = <M,<, P, 5 P ,..>
an arblitrary linear structure and t,,t, are points of M
such that &, < t,, then §,,t, satisfy (in the standard
sense of 1lst order logic) Cb in m iff there 18 a sequence
<y_1_. e, yn> of points in M which satisfies' @ in

f{ , such that y; = &, and y_ = t,. Similarly, if

¢ €Bp(y) (Bf(y))and m as above, then t; satisfles

Cfb in m if and only if there isJ <yl,...,yn_>which
satisfies 43 in M , where y = t; (¥; = t;).

| Definition
2)  Legly) = L (Vxi(xcy = (3ad(acacy Ay (2))):
1¢é w and x,y,z are distinct variables}.

Ligty) = i\(Vx)(y<x—-7<'3z)(y<z<x A By(2))):

146w and x,y,2 are distinet variables } s

Lo, () = { (Vxitxdy = (Buitmcusy a (Qv) (ueveagl)
<p & Bp, (u,v) and x,y,u,0 are distinct variables}
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’

thgy) = }\(\V’X)(w x = {3 u)lycuexa
(Iv)u<vex /\c;b))):qS & Bp, (u,v) and
X,¥,u,Vv are distinct variables% o

Lpn - %_J Lpn(ti);Lfn" ?Lfn(ti)i

Lo) = Ylog)s Len) = ULEGLe o Y s
LeaVULle ,
n n

b} et E(y) be the closure of At(y) U Bp(r) VW

Br(y) U Lp(y) U Le)
under conjunction, disjunction, negation and precper sub-
stitutlion of formulae for predicate letters. Iet E =
UE (t,)
{ b §
¢) The sets of formulae E(lementary) p(ast)(x,y) and
E(lementary) f(uture) (x,y) are defined by
[}
ip(x,y) = g CP : there are a 4: & Bp(x,y) n €w
.
and P,....4 & E such that P =
[
' 1B, €2
) n o)

E{ (x,y) = {cb : there are d_bl & Bi (x,y),

n £ W and C,Bo,...,CPn € E such that
Po-oBIgE

(R5) 1f & & Ep(x,y) (EF {x.y)). Then
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(Ax<y) b ¢ E(y) (Fy>zx) ¢ € E(x))

"R6) T1f ¢ € Ep (x,y){E€(x,y)) andy & &, then
[c/:]—gj— ¢ Ep(x,y) (E€ (x,¥))

Definition: let c;b be a formula of L with no other

free variasbles than x and y.

Then Cfb has the property I(x,y) if and only if there

is a disjunction \/343] of members of Ep(x.y) such that:
(13)....ComE x<cy = (& V'A 43_))

Remarks

R7) If cj: has the property I (x,y) and f & & then
[qb ] —g{— has the property I(x,y)

R 8) If :{3 é E(x) and y 1s any variable other than x,
then‘cp has the property I(x,y), since Com F x4y —>
(P (P A (¥ z Mzxezy > (Py(z) v py(z)) A

(Po(¥) v—1P4(y)))
For the same reason qb has the property I (y,x).
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Lemma 1., All members of Bp (y)\U Bf (y) are Lin-

expressible.

Proof: We prove that all members of Bp(y) are expressible.
That all members of Bp(y) are expressible is proved in
the same way. We delinz Ly induction on n the sets of
formulae

Bp¥ (x,y,1) (where x and y are variables and 1 € U):
Bp¥ (x,y,1) {(Bx)(xq,r APy (x)A (VW 2) (x¢z¢y >
Py(2)) A By(y)):

z 1s a variable distinct from x and y and J,k € w}

Bp*. (%x,¥,1) = {.[cb] %g; : JEw, PJ ccecurs only

‘n+1 J

once in CP and there 13 & variable z such that
3
C‘b € Elp; (x,z,1) and cf) € Bpn(z,y,i)j

Bp* (v) = U Bp*(t,5,1)
" 1,

One easily verifies, by inductlon on n, that each member of

Bpn(y) is equivalent to a member of Bp¥ (v). PFor exampie,

(Fx)(x<yaPy(x) A (Tz)(xezey A (Vu} (xcu<z = Py(u)) A
P5(z) A (V) (2<v<y =2By(V)))) A Pg(Y)

is equivalent to

(32) (2 A(IR) (x<z 2Py (x) A (Vu)(xcutz 2Py (u))ab5(2) A

(F v)(z¢viy 2 B (v))) A Bgly)
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It 1s easy to see that all members of Bp¥*(y) = L)Bpg(y) are
expressible. §

For if d) is in Bpif(},r),- then C,b is

(Ax)(x<y A P, (x) A (V :z)(x<z<y—9!"1(2)))/\&< (y), for some
x,z,1,J,k, and thus expressed by S(qi,qJ) A Qe Since the
members of Bp§+1(y) are obtained by means of p-
substitution of a member of Bpi(y) into a member of Bp;(y),
‘the expressibility of the'members of Bp;+l(y) follows from
the expressibllity of the members cf Bp;(y) by quu

This completes the proof of lemma 1.

Lemma 2. All members of Ip v Lf are Lin-expressiblej.
Proof': We will prove only that the members of Ip are Lin-
expreasible.If (> & Lp, then b is of the form
(Vx)(x(y——)(g z) (x<z<y A PJ(z))). The latter formula
is acecording to definition 10 eqral to P! (PJ(y) and
1s thus expressible, in view of R 1.

Suppose P ¢ Lp,. ILet P be the formula

(V) (x<y = (3u) (x<u<y A (FV)(U<vCy AR () A
(Vz)(ucz(vopy(z))ar, ()

Let Y = Py(y) A (3V)va(Vz) (yezcv 5py(2)) AR (V)

We claim that cp is equivalent to:

(14)... P' (W) A (Vx)(x<y = (T v) (xvg APL{V)))

It is obvious that (:J implies (14). To see that (14)
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impliez QD , consider any linear structure A -

<g, <, P > and a peint t, in ﬂ, satisfying (14).
Iet t; be any point of M such that 314 to- We have to
shew that
(15)... there are t,,t, & M such that t) < £5 £ 54

and t, € P, E}é Py @nd for all t between t, and t;, t € Py

Since t, satisfies P'(Y) in fI1 there 1s a point t,
between t; and t, and a point ty such that &, < t55 such

that t, £ By, £5 € Py and for all t between t, and t,,

If ts < tg then (15) holds. Sc suppcse t, < t5. Then for

LeP,

all t between t, and t,, t € By. Further, since t, satis-
fies the second conjunct of (14) there is a t’—b, between
t, and t, such that t, € P, . Since for all t between t,
and t,, Ee_f_’_d, (15) holds again. Since this 1is the case
for arbitrary fTL, (1%) implies ctD .

Both conjuncts of (14) are expressible, the first in view
of R 3, and the second because of the assertion above,

Thus by R 4, {(14) is expressible. So (P is expressible.

We shall now show, For n>b;t'he expressibllity of the members of
Lpn+1, under the assumption that all members of Lpn are
expresslble. The argument will be essentially the same as

the one we Just used for Lpl.

let b £1p ;. Thus P is

(k/x)(x(y—%( Julz<uiy A (3 V)(““W’“P)))
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for some variables x,y,u,v and some ‘gﬁé Bfm_l(u,v). Let
<Q1,...,Q2n+3> = S(¥). et X ¢ Bf(u,v) such that
S(X ) = <Q3,...,“Q2n+3> ; and let O De the formula
(Vx)(x<y= (3 u)lxcucy A (T v)(ucveya¥))).

Then 0 ¢ Lpn(y) and therefore QO is expressible, by

assumption. Also P'((dv>u) YY) is expressible, as
P'({Jv>u)y) ¢ Bf. We claim that CP is equivalent to

(16)... P ((IvOu) W) A L .

Again it 1s obvious that C;b implies (16). To see that the
converse holds, we consider agzin an arbitrary linear

to of M
which satisfies (16). ILet t; be a point of M such that

structure /i = <‘f, <, P > and a point t

t; < ty. We have to show that there exist %o,y such that
(17) o o 0 _t_1< £2< P_B(Eo ¢
and 5,85 satlsfy Yf in JTU.  since t,

satlsfies (16) it also satisfies P'(( 3 v) u) W ). One
easily sees that M must then contain a sequence <21’ ceny

A o i .
P—n+2> of points of M which satisfies (3 v) u) S
where u; lles between t; and t,. Again, if u - < %,,
Sny2e
+2 >/ EO Then there 18 a k< n such that

then (17) holds if we replace Y, by u, and 33 by

Suppose that u,

u, < _1:0 and Ek+1>/ '50. Since i’o satisfies Y in m s

there are w, w' in M

such that u < wdw' < t, and w,w'
satisfy X in m . Then, as before, we can assert the
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existence of a sequence <—2""’—n+2> which satisfies'

X 1n M, where Vo=wand v ., =W'. One easily

Ine2
verifies that the sequence <u1, L ALY PR A >

satisfles Y in [T . Therefore (17) holds with u;
instead of t, and v, +2 1nstead of 23' We conclude that
(16) implies C]S . It follows that ;b is expressible,.

Iemma 3: All members ot E are expresslble.
Proof: By lemmas 1,2 all members of At v Bp v Bf U Ipwif
are expressible. Then by R %4, all members of E are

expressible,

Convention. From now on, to the end of this chapter,

'valld,' 'equivalent,' ‘expressible,' etc., will stand for
'Com-valid,' 'Com-equivalent,! 'Com-expressive,' etc., rather

than 'Lin-valid,’'.

Lemma 4: If dD, Y have the property I(x,y) then qb/\l/i
hes the property I(x,y).
Proof: let Cb, 77U have the property I(x,y).
So there are Cbl”"’¢m’ 1,’,‘1,..., ’”n €& Ep(x,¥)
such that Lin F x< - (¢ & }7¢»,-)
and Lia #X<]—->(9W‘>c/¥!) o, Linkx < ¥ - (P A%HV%/\W)}«SO i¢
suffices to show that if C]b lp € Ep(x,y) then there
are 'Vl, >\p & Ep(x,y) such that L F "<Y")(¢’\y""’\é‘f)
Assume that CP, 77U € Ep(x,y); then, for some numbers m,
n, there are ', Y' ¢ Bp(x,y) such that



S(c'b') - <P1’P2""’P2m+1\/ and S(y') = <P2m+2,...,

P2m+2m'2>and

Cbl""’¢2n1+l’ wl,-.-,w2n+1éE, such that
¢ - [ ¢'J%‘-' s Qp&pnt]

and W= [p']¥x . WARD
pq,mfz Pimrll')'*'L
Suppose that

P | '
(18) b Lin F x <y (@)’A yU'eﬁkﬁQ,for some ><1a~-s%% &
Ep(x,y).

Then, if we put, for k = 1,...,p, .
XK=EX;]§7-@M!EL‘¥’_*&&_, L.mrz X<y (Cf‘/\ylé-)‘\K/}(K)
1

Pim et Painer  Prnsims

So 1t suffices to show (78).

We Introduce the following terminclogy:

Iet us call a binary relation R a guasi-ordering 1iff R 1s
reflexive and transitive and for all a, b ¢ Fld (R)

<a,b> &R or <b,a> & R.

For a quasi-ordering R we define: 2a = b (mogR) iff
<a,b>éR and <b,a> € R.
If R and R‘ are quasi-orderings, then we call F a fusion

of Rand R' if F € (F1d(R) U F1d(R'))3 F 18 a quasi-

ordering, F N (P1d(R) x F1d(R)) = R and F (N (Fld (R') x
F1ld(R')) = R'.

Iet us call a finlte sequence all members of which are

different a pure sequence. Of course one may regard &

_pure sequence S as a quasi-ordering, l.e., we may identify
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S with the reflexive binary relation R on the set of its
membexrs such that for different members &« 2nd b of S
<a,b> € R iff a precedes b in S. Thus we can also speak
about fuslons of two pure sequences. If S and S' are pure

and have no common members, then they form a pure pair.

lIet S, S' form a pure palir and let F be a fusion of S and

S'. Then we call a member b of S; independent relative to F

if for no member a of S 8 = b (mad F). If U is the set

consisting of the members of S and the lndependent members

of S', then F establishes a linear order on U. We will

call the cardinality of U the length of F.

According to this terminology Se( ¢ ') and Se(y ') form a

pure pailr,

Let Fy,....F, be all those fusions of Se( ') and
Se(‘q}') such that for 1 = 1,..., p

(19)... Py = Pyo (mod F,), and

Pomsl = Pomgonso (WOd Fy).

Ietug {Pl,-..,Pam.*an+2§-

With each F; we assoclate a formula c# q P8 follows:
Let ny be the length of Fi' Ilet <:Ql""’Qni> list all
the members of Se(Cp ') and those members of Se(W '} which
are independent relative to Fi’ in the order that F1

establishes between them. Let o’1 be a formula cf
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BP,_1 (x,y) 1in which no l-place predicate letter occurs

more than once. Let S (o) ) = <Qi,---,.§ni-1>~

We define a function fi from U to subsets of {1,...,
2“1'12\ as follows:

1) 1if Q is a member of Se( ¢b') or Se( '), then
fi(Q) = {Qk-l% , where k is the unique number such
that Q = Q,(mod F,).

2) if Q is P2J for some j<m, then fi(Q)
T, .

2') if Q 1s P2j+1 for some J such that m+l £ J<m4n,
then
£,(Q) = {ks eny -1 : Ufi (Ppy)<k < Ufi (P2J+2)§
One easily sees that 1), 2) and 2') define £, for all
members of U, and that for each k¢ 2ni—1 there 18 a Q 1n
U such that kéfi(Q). Further we put, for k = 1,...,
en,-1, O, = le(x)/\ cee A ri(x), where le...,ri are

all those Q's such that k ¢ FL (Q).

Finally, let X = [ crl 1 "Q,L‘ B &1\4:_1.
1 QET\L"l
Clearly, for i = 1,...,p, X, € Ep(x,y).

We claim that Lin F x<.y~—‘7(Cb'/\1)5' <« Xi)

In the first place we have to show that each Xi implies
both ci)l and 1{;!. let f{l = (\y_, <, P > be an arbitrary
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linear structure and t,,t, be points of M such that &; < %,
and t.,%, satisfy K’i in ﬁ"( . Then there are points
Y,...,u, 1in M such that u, = t,, B’“i = $s ang for K = 1,
.+.sNy, and any predicate letter Q, woe @ . iff

2k-1 ¢ fi(Q) and for k = 1,...,n,-1 all t between v, and

&

W, .1 belong to @ . iff 2k [ fi(Q).

Let k(1),...,k(m+1l) be those numbers < 2n,-1 such that for
J=1,...,m+l fi(Pz ) = k(J). Then one easily verifies
J=1

\
that <3-"k(1}""’ l_x_k(m+l)> satisfiles ct'. Further,
since [ satlsfies (23), k(1) = 1 and k(m+1) = n,. Thus
(1) = B 08 Yy (1) = bor 304 y.Ep catisty b in
m . It follows that Xi implies dD ', In the same way
one showe that X 4 implies 1{1 ',

In the second place we have to show that ¢' A lP' impliles
P

\/ .

LV 7«‘( .

L=1 )

Le. M = < M, <, P > be an arbitrary linear

structure and t,,t, be points of M which satisfy P A ¥
in M . Then, since ty.%, satisfy Cb' , there is a
sequence <51’ .o "Hm+1> of points of M which satisfies'
B}
q‘)' in ﬁ\ sucn that 11_1 - _‘El, }_lm+1 - _t_2.
Also since t,, t, satisfy *SU' in U, there is a

.

sequence <:‘119 ceeyV 701‘ points of M such that 1_1_1-21,

—+1

%_&.l = Ee) and <y_l, .. .,l’m+1> Eatisfies' yj '~ <

Induces & fusion F of Se( ' ) and Se( Y ') so that

By Q we understand here the interpretation of @ in M.
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\
<P2h-—l’ Pompax ) € F 0T uy & v and <P2m+2k’
P'c’.h-1> ¢F 1ff v, {w,. Clearly, F satisfies (19)
and 1s thus one of the Fi listed above., One easily veri-

fies that t),t, satisfy X, in .
This completes the proof of Lemma &4,

iemma 5, If Xx;y,z are distinct varlables, X\,..., Xm
belong to E(z), ¢"""Cbn have the property I(x,z) and

Y,.on, 'Lpr have the property I(z,y) then
m ) P
(20)... (3z) (x<z<y A /,L\ Xi A /‘;\¢J A /\ 1}5’,)
' K

has the property I{x,y).

Proof: ILet Xi CbJ, W-k, be a8 in the hypothesis
of the lemma. By the defin“tion of E, X = /mi\?ﬂ ¢ E.
Therefore it suffices to prove the lemma for m = 1. More-
over, we may restrict ourselves tn the case where ?< 1 1is
Qo(z) where Q, 1s a predicate letter which occurs in none
of the C;>J and Y . Then the lemma follows for arbitrary
X 1 € E(2z) by R 8. So assume m = l’Xl = Qy(z) and Q%
occurs in none of the PrreeasPus Waseeos Yoy
By lem:a 4 /_\\Cb.\ (cell 1t '-b') has the property I(x,z)
and /k\ YWy (call it"{,p') has the property 1I(z,y). So
there are 0,..., 0, € Ep(x,z) such that Com F x<z =
(D & \{j P; )end T ,....0 ¢ Ep(z,y) such that
Com & z(y( W e \S{ i)
Then (20) is equivalent to \7 \S/ (F2)(x<z<y A Q (z)A
¢



79

()é /\O—t)' .

So it suffices to show that if P = Rp(x,z) and O ¢ Ep(z,y),
then

(21)... (3 z) (xzzcyAQO(z)AP/\G )

has the property I(x,y).

Again in view of R 8 we may restrict attention to the case
where © ¢ Bp(x,z), o° € Bp(z,y) and no predicate letter
occurs more than once inp AC. let Q' be the last mmember
of s(/p ) and Q' the first member of S(<S” ). Let S be
the sequence such that <Q"> ~ 8 =58(c"). let 77 be a
member of Bp(x,y) such that S(T7) = s( o )7s, and iet

' =[] Qa(2) A Q‘(a)‘ A QY (2) Then 7' €

Ep(x,y) and, as 1s easily verified, {21) is equi-
valent to 7 '.

lemma 6. Let ¢ ¢ Bp, (x,y). Let o = <§, <, §>
be a structure such that <§, <> is a linear ordering.

Let ), tps b3, & € M such that §,< by L &y & &y

Assume that t,,t, satisfy P (x,y) in fo and that t,, &

satisfy ¢ (x,y) in M . Then t),85 satisfy D (x,y)
in fn if and only if 1_:_3 satisfies (4 x < y)P (x,y) 1n
Proof: Obviously if &),ts satlsfy ¢ (r,y) 1 MM then £
satisfies (dx<y) 4,5 {(x,y) in m .

To prove the lemma in the other direction, &ssume that _*_5_3
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satisfles (3 x < y)<f: (x,y). Then there 138 a sequence

<11""Xn+1> such that Vsl = t and <l""’zn+l>
satisfies’ ‘ffb

(>

o

)

Suppose f_lg Vy. Since t;.t, satisfy 43
(%x,¥y) such that

< Wnel

sequence(W, ,..,W,  ,)which satisfies b

Wy =tyendw ., =%,. Sincew) £ vy and v, there

1s a k { n such that w, £ It foliows that

We $ Y < Wpyg-
Wos oWy, gk+1,...,y_n+l>satisfies' cp (x,2). Thus
Y (uy_l) and 3;_3 (mv +1) satisfy cf> (x,¥). Suppose
vy < t). Since t,,t, satisfy CP (x,¥), there is a sequence
<__l,...,w +l\7 which satisfies' ch (x,¥) such that
Wy =%t and w = L, Since v {w andw < ¥,_,., there

1 -+l T = N =y “ne i
is a k< n such that Yaksﬁk < Va1 Thus <$11 PR

¥ !k+1"')!n+1> satisfies’' P (x,y). So t (=w;) and
ts (=v,,1) satisfy qu (x,y).
Lemma 7. Iet x,y,u,v be distinct variables and ¥Y,, 'lP'Q

formulae of L.

a) let CF ¢ Bp (v,y). Then there are a natural number p,

conjunctions c’o,.o., o’p of members of Bp (u,y) and dis-

Junctlons /Oo""’/Op of members of Bp (v,u) such that
(1)

(@2) ... (3 u) (xeudy A Y, A (\7 v)(x(v(ut-?“kp'2 CP))

is Lin-equivalent to
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P
\/ (3 u) (x¢ucy A ’L,Ul Ao’it\(\d v) (x<v<u-77-}12\’/pi)),

and
(11) each Py (1€ p) contains at most one disjunct with
the same length as ¢ » and no disjunct with greater length.

b) ILet d> € Bp(x,v). Then there are a natural number p

and formulae c’o,...,O"p € Bp(x,u),/oo,...,_/?p I3

Bp(u,v)
such that
(1) (Fu) (x<u<y/\ﬁ,b’l/\(\/v) (u<wey —“}7{12 \V] 43 ))
is Lin-equivalent to

P .
\/ (Ju) (x<ucy A 7./;1/\0'_,; AN v) (uevey S (AR ))
L

and

(11) Py (1 £ p) setisfies a (1i).
Proof: We prove a). The proof of b) is similar,
Assume <b ¢ Bp, (v,y). Let (Rys Sq )seves (Rr’ Sr)
be all the different palrs of sequences of predicate
letters such that R/™S, = S (P ) and S, has length } 2.
For 1 = 0,..., r iet 'Z(1) abbreviate the statement:

'S; begins with a member of Se( ¢ )'. Let for (=0.yv



8¢c.

{s{ if Z(1)

S¥ =) *

1 @) sy if not 2(1) and Q 1s the first member
of Si

N
[Ri @) 1f Z(1) and Q 1s the first member of Sy
Rf =

\ ~
= \R; (Q,Q) 1if not Z(1) and Q iz the first member
of Si
let 2r+1 be the set of all functions from {O,..,,r } into
fo,l} . With each & e 2™l e asmociate Q{ ,Qd ,ﬁk

as follows:

Iet for 1 = 0,..., r

G, 1f a(i) =1
W (@)= %5

‘v'o
! .
a /. 1)
Put O /?\qu() ;

Oy = the conjunction of the formulae 0y such that

x(1) = 1;

al

-

o)

ch that

§

Elm the disjunction of the formulae

e
-

(i) = 1.
Clearly &= \V/ G5’
xea"t! o .
Thus { Ju) {x<ucy /\1701/\( Vv )(x<v<u-)\rl/2 vV @ ))
is Lin-equivalent to

(Ju) (xaucy Ay A VO A (V) (xevau-sy, V@)

ae‘lrﬁl
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which ir turn is equivalent to

V (Fu) (x<ucy Ay A O'o'(/\(\'/"v) (x<v<u—>‘§l/2ng })
xay"t ,

This last formula Lin-implies

(23).... V (3u) (x<u<y A Yy ATy A (Vv)(x<v<u -
xe™

Yo v fy))
Furthermore each disjunct of {23) Lin-implies (22). It
follows that (22) and (23) are Lin-equivalent.

Lemma 8. If x,y,z are distinct variables and F is a finite
subset of At{z) U Bp{x,z) U Bp(z,y), then
(24).... (Vz){xez<y~ Vy) has the property I(x,y).

per
Proof. f{et ua understand by the length of a formula qﬁ

¢ Bp U Bf the length of S(@). For ¢ ¢ At we put the
length of ¢p equal to 1. For finite subsets F, F' of
At UBp we define: F'< F 1iff for some number n all for-
mulae in F' have length < n and F contains more formulae
of length n than F', Clearly < 1is well-founded. We
prove the lemma by induction cn <X . 8o let x, y, = be
distinct variables, and F a finite non-empty subset of AY z)
() Bp(x,z) U Bp(z,y), and let us assume the lemma for all
triples of distinct variables u,v,w and all F' < Bp(u,w)
U At{w)UBp(w,v) such that F' < F. We may asaume that
all predicate letteirs that occur in any member of F occur

only once {i.e. only once in that member of F and in no
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other member of F). For suppose that the lemma holds for
all G € At)UBet(xz) U Bet(zy) which satisfy this extra con-
ditlcn and are such that for all FP' P'<XF iff F'2 G. Among
these G there is a Go which 18 the range of a one-one func-
tion with domain F that preserves length. Since the lemma
holds for G,, it also holds for F, by R 3. 1If F =At(z)
then (24) is clearly equivalent to a member of Ep(x,y) and
thus has the property I(x,y). So we may assume that F¢At(z).
We may also assume that ¥ contains at least one member of
the form Q(z), where Q occurs in no other member of F. For
let Qy(z) be such a formula and let Gy= F U {Qo(z)} .  Then
for all F', F'< G 1ff F'« F and so, since the lemma holds
for Go, it holds for F.

Since (Vz)(x<z<y——7w\/$1/) is equivalent to[(Vz) (x<z<y-f/;\/ctﬁ)_]
€F -

B(z) v 21 B(z)
%
holds for F if it holds for G. Let ¢ be a member of F

it follows from R8 that the lemma

of maximal length. Let F' =F - { @} .

puring the remainder of this proof we will for any variable
v and any Y € F', understand by y( v) the formula which
we obtain when we replace z everywhere in k’U by v. For
C;/J we will exhibit both free variables.

let Y= ( Yz)(x<z<y - V(:f/) Show that ¥ has I(x,y).

Cage I: @ & Bpn(x,z). Let V,w,u;,u, be distinct vari-

ables, different from x, y,z.
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Consider the followling formulae:
Ay = “1(Iv)(x<vey » P(x,v))
% = (Vv)(x<v = (Fw){xewevng(x,w))
Ay = XULY N <,'(S(x,m1 A= (2 V) (x<veayaP(Xv))
X, m xcugcyn (Vv)(uevey—- (3w) (ulk w< vag(x,w)))
A —\qb(x,ul)/\ (3 v)(xeveu, n @ (x,v))
Ay = (V) (veys (Fw)(vawey A (x,w)))
/15 = Xy i Px,unj 4 (B vj{upgeveya P(x,v))
/33 = X<y A(VV) (x4ve ugdidw) (v <we u2/\<ﬁ(x,w))) A
AP (x,udA (I v) (up<ve vAdx.v))
Fl =%
0o = %/ fBy
%= S (3w By
N = XA (T W) 3y
Fp= (Fu)(Xyr (o]2)
Tp = (Fuy) &y A N
e (Ju) (5~ (Juy (3,1 )
Y= (Fu) (nlw) [2)5")
Ty= Huy) xz3 4 /3,
B (Fw) (o3n (Fuy) (A1)
Tom (Fu,) (K5 A (Tup) /a5 150)

})
One easily verifies that Com = V' ¥: . So X is Com-

11
equivalent to }_/1 (rir X ). We will now introduce
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fori=1,...,11 a form. Y:, such that Lin ¥ ¥ A ¥ > X
and Lin = X. % . Then we have Com F X & \;/LX;;
moreover the )(L will be chosen in such a way that we can
prove that they have the property I(x,y).

Let X, = (Vz)(x<z<y — \{ﬁlf)

Then clearly Lin F xlfi ard Link ;AN = Xy

Let Xz = 5 A (V2) {xczey = (Fx<z) P (x,2) vy}é/r,y/ ]
Then clearly Lin F ¥, AX—¥,. To show that X, implies X
we argue as follows: Letfm = (M,‘;B}be an arbitrary
linear structure and t1,t, points of M such that t; « %,
which satisfy X, . We have to show for each point t
between t, and s that there is a We€F such that §l’ t or
t,t, satisfy ¥ (according as Y & Bp(x,z) or We&Bp(z,y))
So let t be a point between gl and Lg. If EI’E satisfy
some W& F'NBp(x,z) or t,t, satlsfy some Y« F'nBp(z,y),
then we are done.

So let us assume that neither 1s the case. Then t must
satisfy (Ix<z) @Pix,z).

We want to show that t;,t satisfy @ (x,z) in fn . 1In
view of lemma 6 it suffices to show that there is a ts & M
such that §1.433<;§ and t,, §3 satisfy ¢(x,z) in M , and
& tye M such that t <t and t;, t, satisfy ¢ (x,z) in M .
But this is clearly the case since t, satisfies &; in M.

and t, satisfles »2, 1in M .



let X 3 =&y A (Buyi{x<us< y A cp(x,ua)/\

(Vv)(x<v<u2-—) (Ix<v )Pz, v) v V\/I(v))/\
¥ee!

(VV)(uge vey = y,\{:f"(v”)

It 1s fairly obvlous that yz A X 1mplies XB' For con-

sider the formula:
(25).... o, A (Tuy) (xcuey A% u,) /\q\l/é'py/ (us) A
(Vv)(x:.v<u2'~9 y}:pyb(v))/\ (Vv)(u2<v<y—>-rcp(x,v)

A y\éyf(v»)

Clearly (25) is ezulvalent to ¥z3AX . One easily sees that

(25) implies X3 .

To see that )(3 Implies X wWe argue as follows:

letfm = (M, £, P) be an arbitrary linear structure

and 31’52 polnts in M such that t, < i, and &;,t, satisfy
As . Ilet t, be a polnt between t; and %, such that t,,

to satisfy ¢ and for all t between t, and t, there is a
& P' such that either t,,t or t, t, satisfy Y

(according as W € Bp(x,z) or ¥ € Bp(z,y). Clearly if

%g<E, then there is a W e&PF such that either %y, t satlsfy
¥ or t,t, satisfy Y (according as Y & Bp(x,z) or
¥ € Bp(z,v)). If t =ty then i,t satisfy ¢ . Ift

< t, then we use lemma 6.

Let X, = &4 (Fuy)(xcugey a (Vv) (xeveus7(Ix<v) ?'5!*. v)
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] V\/y(v )) /\\/}/j(u ) A {Vv,\u.ec v<y-_.;'y/\£§‘p(v)));

We'F!

X = (3u1)(x<u <T A (W) (xeveny > Mp(u)) A 4 (x,0) A

(Vv )(uyc vey = » #AONE

X6 = (Eul)(x<u <y Ag(x;uq) A (Vv;\x<v.<u1—’\/}”(V))
pe'r

A VY I ay < vaey s (Ixev) (xv) v Vy(v)))

y/e}"’ ’

/\’7 = (3u1)(x<u14y/\¢(x,u1) A (Vv)(x <v<u.l—->\/y/(v))
l’.(/é/—"

4 (-3112)(1114112<y ~(Vv) (uev <u, -
(a, 'd ; ’ 1% AV
x<v ) P(x,v)i wl{/’{( 1) A Pxup)

ANV ugcv <y 5 V),
'ye,”l'

XB = (Jup)(xcuycy n (V) (xeveu; = V¥ (v) A
506/'1,'

¢(x,u1) A (Fuy) (uy<us <y a 9l\//EI}‘/ (up) N
(Vo )(uy < v<uy= (@xev ) %) v Vv
#ér’

(VW) (< v ey = V(i)
per

Xg = (Fuy) (xeuy<y (V) (x<veuy —-?VU’(V)) /\\/3/’("0
peF
A (W) (u< v<y~(3x<v>¢ (x,v)v Vip(v)))
ye T
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Xio = (Fuy) (x<ucy /\(Vv)(x/.vcul—-)%y/rglv)) Ayypgul)
A (Quz)(ulg us< y A (Wv) ( U< v <up (Tx<v ) @(x,v)

V) A7) (ug< v < y—»l/y(v)))) A (X, U2))
per' per

X1 = (Fuxcuc vy A (V) (x<vauy —)VL//(V ))AVV(u,
1 yer! per’

A (Fug)(uy cupeya (W)(uy 2 v u24(3x<v)¢(x)v)

vWVwl)) AV ()
ek ;«’zéP'
ro D upeve vy Vip())

For 1 = 4,...,11 the proofs that Lin k yi AN = X,
and Lin k X.l > X are similar to those for 1 = 1,2,3.
We omit them. It remains to be shown for 1 =1,...,11
that X, has the property i{x,y).
X, has the property 1I(x,y) by induction hypothesis.

1i=2: Let £ = (V¥z){x<czey = V¥). The third con-
jw P Ggtzd v Ax< 2l Plrz
Junct of X 5 1s equivalent to [ 2 = X< &) Jrg

o
Moresover  has I(x,y) by induction hypothesis. So the
third conjunct of X , has I(x,y) in view of R 8.
To see that «, has I(x,y) we argue as follows: Let

S(F) = <QpseesQp> - et P =

G,(x) A (Fu)(xcucya{tM{xcvan - QN0
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If n = 1 then let (‘" e (Fv)(x<v o (3w)(xcwav "G.‘S(w)))’
otherwise let £ = (VW (xc v = (iv{) (x<’w24v N

[Dw)(wy <wy < Vll\@,))), where @' 1s a member of Bp (wy,W, )

such that S(s:P' ) = <Q3""’Q2m»r> . One easily verifies
that Lin Fx< vV - ( o P'AP" ). Purther both £’ and
©” have the property I(x,y).
For ©' 18 equivaleat to 2 member of Ep(x,y). If n=1
then ©" 1s equivalent to a member of Ep(x,y). If n > 1
then " belongs to Lf(x) and thus is equivalent to a
member of Ep(x,y). In the same way we show that /3, has
I{x,y), Thus all conjuncts of X.z have I(x,y). It
follows from lemma 5 that X, has I(x,y

1 = 3. We just showed that the first conjunct of X3, i.e.
&y, has the property I(x,y). So let us consider the

second conjunct of )(3. If F' <= At (z) then this dis-
Junct belongs to Ep(x,y) and thus has I(x,y). So let us

assume that P' & At {z). Suppose that £ ¢ Bp (z,y)
NF'. Let F" = F' - {p]

We can then write the second conjunct of X > equivalently

as

3 , Vv) ; Vo
( Bup)(xcupcy 4@ (x,uy) A ( v(u2<»<y—>y“},{/(v))

(Vv) (xeveuy=(( 2 x<v) @ (x,v)vVp(v)) v ¢ ))
%é ald
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By lemma 7 this last formula is equivalent to a disjunction

(25) .... o\(/(3112) (x/_u2<y AP (x5u5) 1 (Vv)
(upevey— y/\é/ﬂl//(\!)) NG A( V) (x<vey, —

((Ax<v) ¢ (x,v) V \/}U(v) v A
pern

where each of (he Oy 18 a conjunction of members of
_Bp(uz,y) and eath £is a disjunction of members
Fo’(,o,... ,@'”m of Bp(x,u,) at most
one of which has the same length as p and none of which
hag greater length. It follows that F" o fﬁ,o; cees Po()”d)}
< F.
If P" € At(z) then we can conclude, using the induction
hypothesis, that for each disjunct of (25), its conjuncts
beginning with a universal quantirfier have I (u2, y) and
I(x,ug) respectively.
It foilows from lemma 5 that every disjunct of (25) has
I(x,y). It ®" & Av (z), then we apply 7 again, this
time to each dlsjunct of (25). This process will even-
tually cxhaust F'--At (z) completely and leave us with a
disJjunction each disjunct of which has I (x,y). This
completes the proof that the second conjunct of X3
has I (x,y). It follows that X3 has I {x,y).  Ina
simiixr fashion one shows that (‘\’4, «++s {17 have the
property I (x,y). This completes the proof that X has
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I (x,y) for the case that ¢ ¢ Bp (x,z). If ¢ ¢ Bp(z,¥)
we only need to remember that there is a @' & Bf (z,¥)
such that S (@') =S (). If weput F* = (P - {®})

U { CP’} an argument entirely symmetrical to the one
given above will show that { V¥ z) (x<z<y - V;Sf:)
hes I (x,y). However, the last formula is equiv;{ent to

(¥Vz) (x<zey = \/7// ). Thus again ¥ has I (x,v).
Thils completes the induction step and thus the proof of

lamma 8.

Lemma 9. 'If x,y,z are distinct variables, X ,..., X,,
belong to E(z), % ,9)? have the property I(x,z) and

¥, ..., P have the property I (z,y) then

m ; |
{(26)... (Vz) (x¢czcy — y X, v \:} @, v /%‘
t : J

n

has the property I (x,y).

Proof: Iet Jy,....,7,. > (Z),...,q)n“, %,,%
be as in the hypothesis. Put X = VX P = 4/ ;

Y o= VWM . Clearly X &E (z), ¢ has I (x z) and
) A
that com F X(z-->(¢<—i P.)
S

Similarly lct G,,...,C; & Ep (z,y) such that Com |~

3
z<y = (Y& VC:- ). Then (26) is equivalenti to

! - $
(27) ... ( Vz) (x<z¢y ~ X Vv VP v E./G_:

)

So it suffices to show that (27) has the property I (x,y).
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But this can be inferred from Lemma 8 by the same reasoning

that was used in the proof of Lemma 5.

Lemma 10. All conjunctions of members of Bet (x,y) U
At (x) & At (y) have the property I (x,y).

Proof: Iet us first remark that all members of Ep (x,y)
have I (x,y). This follows from Lemmas 1 and % and R 8.
Further
(1) All members of Bet, (x,y) have the property

I (x,y), since every member of Bety (x,y) 1is

equivalent to a member of Ep (x,y).

(11) Suppose that for all variables u, v all members
of Bet, (u,v) have I (u,v). Then it follows from lemmas
5 and 9 that all members of Bet ,, (x,y) have I (x,y) for
all x and y. Thus all members of Bet {(x,y) have the prop-
erty I (x,y). It follows from lemma 4 that all conjunc-
tions of members of Bet (x,y) U At (x) UAt(y) have

I (x,y).

We can now prove theorem 2, As we observed 1t suffices to
show that every @e o 1s Com-expressible. So let @ ¢ oJ .
Suppose that ¢ ¢ Bef (y). Then ¢ 1s of the form
(28)... ( 2 x) (x<y A Pon... L AE ), vhere &, seees P

1

q
Bet (x,y) u At (x) UAt(y) - By Lemma 10 there are
Yo reees Z//P & Ep (x,y) such that {28) is Com-
o
equivalent to (3x) (x<y A V ¥ ) and thus to
v
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P )
V(3 x<y) ¥ 4o 211 disjuncts of which are
J

memhers of E; therefore, by Lemma 3,q is (ém-expressible.

If @ ¢ Aft (y) the argument is the same.

i



CHAPTER IV
OTHER RESULTS ON EXPRESSIBILITY

In this chapter we will consider weaker notions of
expressibility (such askﬁ;-expressibility and&gn-
expressibility). We first prove a theorem which is of
crucial importance in connectlon with Theorem 1.1 and which

we announced already in the first chapter.

THEOREM 1. SINCE and UNTIL are not ﬁe-expressible in terms

of sententisl connectives and monadic /le-tenses.

In the prcof of this theorem we will make use of
Theorem I.1; this 1s not really necessary but sim-
plifies the argument. The idea of the proof is the follow-
ing:

We choose two particular7€e-propositions (1.e. sub-
sets of ie) Po and Pl, and real numbers t, t' and show
that ifﬁJ is the set consisting of all monadiche-tenses
and thefZe-connectives NOT and AND and 7] is any formula of
a sententlal language TL for S, which contains no variables
other than 9 and qy s then 7) is true at t in
<<PO, Pl,...> R (TL)) 1f T is true at t' in

<< Pos Ppsees) K (TL)> . On the other hand 1t will be

immedlate from the choice of Pys Py t, t' that the formula

95
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S(qg> Q;) of TL, i true at t in <<P0, Pl,...> ,%Z(TLl)>
but not at t' in << Py Pl,...>,‘£(TL1) . Thus the Ke-

tense SINCE 1s expressed by no formula 7 of TL.

Convention: 1In thls chapter we use the following notatiocn:

If <I, < > is a linear ordering and, 1, 1'€ I,
1 £ 1' then (1,1') and [4,1'] will denote the 'open' and
"elosed' intervals with i1 and 1' as endpoints, respectively
(1.e., the sets {J € 1: 1< 3 A 3< 1'} and
{Jé I 1£ J A 3L i'})(

Definitlon 1. a) A ﬂe-proposition P 1s discrete if and

only if for all t € Re there is a y € Re such that
téﬂe vy and (t,y}) () P = g and there is a z € Re such that
z <, t and (z,8) 0 P =dg.

b) P is unbounded 1 and only if either
P=g or for all £t € Re there is a y € Re such that
t <p,vandy € Pand there iz & z € Be suen that
z A\QetandzeP. ’
¢) DU(P) if and only if either P is dis-

crete and unbounded 2r Re - P 1is discrete and unbounded.

LEMMA 1. Iet PcRe and DU(P). Then for any formula 7 of

TL].

(1)  {teRe: g 1strueat tin (P,...) , R (1) )}
1s one of the four sets Re,® , P, Re - P.

Proof. By induction on 7% . ILet P £ Re and DU(P). For
formulae n of TLi put
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7 = JteRe: nis true at tin ((p,...)
v (TL1)> , We will assume that P is dis-
crete and unbounded. 1In case that Re - P 1s discrete and

unbounded the argument is essentlally the same.

—

1) 7 =aq4 : 7N =P.
2) a) Let 7 ""C’ and assume (1) for C ; then (1)
holds for 7) .
b) Similarly 1f 7 = (A & and (1) holds for ( and
€ then (1) holds for 7]
3) a) Let 7] = S( C ,9 ), ang assume (1) for C and
8. 1t L =for @ =gor @ =pPthen j=p. 1r O
nmorésRe-Pwdgﬁﬁ,mm;5=m.
b) similarly if ) =U(( , 8 ) then 7 = goor 7 =
Re.

COROLLARYt. Iet O be a monadic tense, P aﬁe-proposit:l\cm
such that DU(P). Then O(P) 1s one of the sets P, Re - P,
Re, 4.

Proof: 1In view of coretiary I.1, thare i1s a formula 7} of
TL, with no other variables than q5 such that O(P) =

{t € Re: 7 is true at t in<<P,...> ,\R(TLI)>} :
By the Lemma 1 the right hand side is equal to one cf the

four above mentioned sets.

IEMMA 2. Let n€ W and let Pl,...,Pn be discrete
unbounded subsets of Re such that for 1, J £ n, 1 # J
P, 0 Fy = @. Then for each set P in the field of subsets
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of Re generated by Py,..., P there is a subset ED(P) of
{Pl,..., P}such that either P =UP (P) or Re - P =UP (P).
Proof: By inductlion on the principle of generation.
1) 1f P = P, then put £ (p) ={p,}.
2) If P=Re - P', put £ (P) = P (P').
3) let P = P'() P". If p' <UP (P') ana P"= vl
then put P (p) = P (') 0 Fr").
If Re - P' =UP (P') and Re - P" =UP (P") then put P (P) =
P U P,
If Re - P! -U?)(P') and P" -U?>(P") then put ?)(P) =
Py - Peen
1r ' UP (P) and Re - P" <UP (P) then put P (p)
P -P .
Iet.ﬁl be the set of all monadic'ﬁ?-tenses together
with the'ﬁé»connectives AND and NOT, Let TM be a senten-

tial language for o .

LEMMA 3. Let Pl""" Pn be discrete unbounded Re-:tu bsets
of Re such that for 1, J £ n, 1 £J, B, Py =g,
Then for every fermula 7] of TM { t € Re: 7} is true at t
in <<Pl,..., Ps L) R (TM)>} belongs to the field of
subsets of Re generated by Pl""’ Pn.

Proof: TImmediate from Corollary 1 and lemma 2,
Now let P0 be the set of all even numbers, 4na R

the set of all odd numbers. Then PO and P1 are discrete
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and unbounded and.Po(W P, = g. Since every member of the
fleld of subsets of Re generated by P0 and Pl elther con-
tains all real numbers which are not integers, or none such,
it follows from Jemma > that for every formula 7] of TM

and real numbers t, t' which are not integers

(1) 77 1s true at t in <<Po, Pl,...> ,‘f{ (TM)> ifr N

1s true at t! in <<Po’ Praeee ) » R (TH) ) .

On the other hand the formula
(2) s(qo,-w ql) of TL, is true at +1/2 in

<<PO,P1,... ) ,ﬁ('rLa)> but not at - 1/2 in
(o Broeee ) JR(m) )

If SINCE were expressible in terms of fT\ then there
would be a formula 7) of TM such that for all t € Re 7)
is true at t in <<Po, Pyse.. > , 7Q. (TM)> 1rfs(qy, ™ q;)
1s true at t in <( Pgs Pyseer ) s A (TLZ)\) . But this 1is
impossible in view of (1) and (2). Therefore SINCE is not
expressible in terms of monadic operators. Similerly
since the formula U(qo,"l ql) of TL, is true at - 1/2 in

<< Py Pl,...>_. ”R(TIE)> but not at + 1/2 in
<<PO’ Pis- - > ,ﬁ (TL2)> , UNTIL is no’cﬂe—exp?essible

in terms of

Theorem 1 states the inexpressibility of SINCE and
UNTIL in terms of monadic tenses and sentential connectives,
on the assumption that time is like the real numbers. How-

ever, from the proof of Theorem 1 one easily sees that the
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same fact 1s true if time is like any other particular
dense linear order with more than one element. The situa-

tion is different however if time is diascrete.

Definition 2. PAI\STl is thed n~tense defined by the for-

mula

(3t) (8¢t A Polty) A (VEu) (E0¢80<ty = Poit,) A —By(t,))).
FUTUREl 1s the'bQ n-tense defined by

(3860t A Poleg) A (Vep) (Bcta <ty = Polty) A = Po(tol))
ISOLP 1s theMn-tense defined by '

(Ft1)(t3< t5 A Polty) A (Fto)(to< t3A TP {t5) A
(V £5) (£<85¢81 = By (£5)aPo (L AV ) (E1< 8y <t 2 Ro(Ey)))

ISOLF 1s the EQn—tense defined by

(3 £1) (tgety A Polty)a (3 t5)(t,4 toh T Po(ts) A

(v B5) (£3¢t5<85 2 o (b5 )nmPo (850 A (V1)) (B0¢E)c b2 Rt ).
let QJ be the set of@n-‘censes { ISOLP, ISOLF, PASTJ,
FUTURE, NOT, AND }

THEOREM 2. The Jn-tenses SINCE and UNTIL are &g.n-expressible
in terms of sz .

Proof: ILet TS be the sentential language for 3}3 such that
TS(S,) = ISOLP, TS(Ul) = ISOLF, TS(P,) = PASTL, TS(Fl) =
FUTURFi, TS(— ) = NOT, TS(A ) = AND.

Let. 7) ; be the formula



o

(qo/\ Fl-—w QA qul) v (= QuA—d; A Fl"‘q()’\Flpi"‘qo) v
Pi{maga—mayaFymag A FFymqg) of TS,

and7), the formula

(agA Pymaga Prag) v(maga=ay A Py ggaPyPy—gy) v

Let Cl o= {quo‘-’ (qul A (FlquOVFlqul))]A[(quO v
(F1a9A F1F194)) v (Fi(nag 4 9 )AF Py (magagy ) A U3 1) )T

Let o = [P;a4V (P19, A (P1P1a, V Py P1ay ))IA[(Pya, v
(Pya;A E1P1a5)) Vv (P (1 ayA a1 )AP By (M aga a4) A Sy70) ]

Then
(1) The%Qn-tense UNTIL is the t';Qn—tense expressed by Cl’
and
(2) The\\gn—tense SINCE is the dne-tense expressed by Ce.
We wiil prove only (1). The proof of (2) is the
same .
Iet us state exrlicitly properties of the operators
Pl’ Fl’ .’31, 'u’1 which should be chbvious from the formulae
that characterize the corresponding EQ n-tenses:

For any interpretation 0( for TS relative to tyn,

7 a formuls of TS and 1 € In
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F;7) is true at 1 in O 11 7 1is true at 1 -1 in (h.

F;7) 1s true et 1 in (X 1rf 7 1is true at 1+1 in(Ch.

S,7 1s true at 1 in (X 1ff there is a < 1¥such
that 7) 1s true at J 1in
(k. and 77 1s false at
J -11in 01 and for all
k such that J<k<1,71s
false ot k in (k .

U, 1s true at 1 in Ch iff there s a j>1 such

k such that 1 < k< J, N is
false at k in (K .

To show (1) it suffices to demonstrate that if
Py,P; £ Inand t & In, then
(5) ,1s true at t 1n <<PO, Pyse-. > . R (TS)>
iff there is a t'>t such that t' € P, and for all t"
such that t { t" t', t" & P;. We will show this for
t = 0. The argument will be seen tc apply to artitrary t.

First assume the right hand side of (3). It is
clear that the first conjunct of Q 1 is true at 0. To
show that the second conJunct (call it (\;i) is true at 0,

we argue as follows: Let 1 be the smallest integer > O

1Hencefor‘ch we will write ' ' for '<t9\ ' and
'J>1 for "1 L. n



such that 1€ Py and for a2ll § such that 0<J ¢1, J€ P,. If
1=1o0ori=2, then clearly C‘ is true at 0 in
<<PO,P1,... > ,7Q.(TS)> since the first or second dis-
Junet 1s true at 0 in <<P0,Pl,.. > ,’R(TS)> , respectively.
So suppose that 1 2 3. We show that the third
disjunct of {; is true at 0 (in <<PO,P1...> R (2s))).
Certainly 1ts first twe conjunctis gre true at 0; for
i 1s the amallest integer > 0 such that i€ Py and for all
j such that 0 € J €1, J ¢ Py
We further show that 1 is the smzllest integer
> O at which 7), is true, and that 7], 1s false at

ince 1ts first disjunct is true

o

14+1, 7], 1s true at &
at 1. Purther each disjunct of T)l 1s false st 1 + 1; for
the first two contain the conjunct Fl-'\ Q5 and so could be
true at 1 + 1 only 1if q, were falgse at 1. The third
could be true at 1 + 1 only 1f the second were true at

1 + 2, which 1s again impossible for it contains the con-
Junct FlFl—qu. Further for all J such that 0<j< n

is false at J. For the first disjunct of 7 1s falss

[}

at such J since it contains the conjunct ChY v second
1s false Lecause of the conlunct — a;5 the third 1s false
at J4<1 - 1 because of the conJunct =, and at 1 - 1
because cf the conjunct = Q-

Now assume that the right hand side of (3) fails
with O for t. We want to show that C 1 is not true at 0.
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let us assume that the first conjunct of C 1 is true at
0. Then since the right hand side of (3) fails, 1€ Pl,
2¢ P, 1f Py, 2 § Py. We want to show Ghat C; , the
second conjunct of C 12 is false at 0. Clenrly the rirst
two disjuncts of C; are false at 0. We show that U; 7}
i1s false at O, sd that alsc the third disjunct is false at
0. Therefor we argue as follows: Since the right hand
side of (3) Tails, eilther

a) there 1s an 1> O such that 1§ Py, 1§ P, and for
all J such that 0 < J< 1, J€ P;, J§ Py or else

b) there is no 1 > O such that 1€ Py-

a) Since i 4 Py, 1 2 3; we will show that 771 is
true at 1 - 1 and at 1 ané at no J such that 0< j<i - 1.

771 is true at 1 since its second disjunct is true at 1.
Simllarly the third disjunct cof 771 is true at 1 - 1, and
80 ‘nl is true at 1 - 1. Now let J be a positive integer
< i1 -1, The first disjunct of 771 is false at J since it
contains Un; the second 18 false at J since it contains
- 9 and the third since 1t contains — ql--whereas qy 1s
true at j + 1. It fellows that U, 7), is false at O.

b) The first disjunct of 7] 1 is false at all positive
integers. Further the second aind third are both false at
1. 1If 771 1s true at no positive integer then U; 7, is
falgse at O. So suppose that 771 is true at some positive

integer. ILet k be the smalleet such. Then the second
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disjunct of 77l is not true at k, for in that case the
third would be true at k ~ 1, -- which 1s positive since
k>1l. So the third disjunct is true at k but then the
second disjunct 1s true at k + 1. So 7’)1 is true at k and
at k + 1 and at no integer between 0 and k. Therefore

Ul 7, is felse at 0. Q. E.D.

The tgn-tenses ISOLP and ISOLF are not very
simple. And so it would be nice 1f in Theorem 2 we could
replace the set Aﬂo by a set of simpler or more famillar
tenses, 2.g., by the sget \g‘ = {PAST s FUTURFE

1 1’
FUTURE, NOT, AND} . That this 1s not the case 1s shown

PAST,

by the following
THEOREM 3. ISOLP and ISOLF are notbt‘gn-expmssible in
terms of &3‘

Proof: ILet TS' be the sentential language for the set
menticned in the theorem, such that TS'(Pj= FAST , TS'(F)

= FUTURE , TS'(Py) = PAST; , TS'(F,) = FUTUREl s
TS'(M)= NOT , TS'(A)= AND .

Iet PO ={n : néu)v U{(Qn) + 1: nGQJ}

Then .LSOLF(PO) = {160.:\V((2n)2< 1< (2n + 1)2} and
ISOLP(Py) =21} u{ieu V((2n+3) < 1 £ (2n+4) + 1)}
On the other hand we will show that for each formuia 7} of
TS' therc are natural numbers nn, m such that 1if

7

n, n’>.nn and n° + mp, < 1<(n + 1)2 - mp and (1’)')2

2
mp < 1'<(n" + 1) -m fh@n N is true at 1 in

<\ 0, >= "Q )> iff 771is true at 1' in
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<<Po, . ._> ] * (TS')> . For arbitrary formula 7) of
TS' let 7 = {J € In: 7 is true at J in <<PO’...>,
ﬁ (TS‘)>} . We show by induction on 7)

(1) There are integers n77 , m77 , such that mn< n% and
{a) if n, n'> nn and n2+mn< i<(n+l)2-m

7

s

andn'a+m <i'<(n'+l)2-m

n n then 1e€7m 1ff 1'€ 77
' ~ S t
. (b) if—n,n >2 nn and _‘mn £ k mn hen
n- + k€ 7)) iff n' + k € n.
(1) Let n = qn- Take nn = 2, my = 2. Then

(1) clearly hclds.

(11) Let n = C, and assume (1) for C .
Clearly if C » Np , My satisfy (l.a) and {1.b), then
7, ny , my, satisfy (l.a) and (1.b). It follows that
(1) holds for 7

(ii1; Let 7 = C/\ Hand assume (1) for \C
and for 6 . Let ny = max(ne, ne) and mr) = max(mc ,
mg ). We observe that for any formula QO of TS'

(2)‘if‘/0,npg.mp satisfy (1.a) ({1.b)) and n> n,. . mz,mp

e

then B n, m satisfy (l.a) ((1.b)).

satisfy (1.a) and (1.b) and v s

N, m77 satisfy (177.8) and (1.b). One then easily con-
cludes that A B , n77 , m77 satisfy (1.a) and
(1.b). |
(1v) Let n = Plc and assume (1) for C
Put n_ =ne + 1, m_ =mp + 1. Clearly m_ < (n )2, and
noC 7 n

n L 7
C

by (2) C y fip s m satisfy (1.a) and {1.b).
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2
(a) Let kK> np andk2+mn <1 < (k+1) -
,k'2+m <i'<(k'+1)2-m .
1 oo 2 7 =2
<1-1<(k+1)" -m, and k'" +my <1' -1 < (k' + 1)
6

m 'I'henk2+m,o

o

S -
-mp . Therefore 1 - 1€ { 1r£ 17 - 1€ [ ; therefore
1e parrite 7.

(b) Iet G<j<m s then kK + J€ 7 1fF (" + ) -

2 1 2 -
1€ f o (kKT + ) - 1€ § skt 4 ge 7.
(v) Let n = FIC, and assume {1) feor C
Similar to (1v).
(vi) Let p =P C and assume (1) for C .
7

5 -
(a) Suppose there 18 an 1 n , such that i€ C .

i
27) » J€ 7} and (1.a) and (1.b) follow
m

immedlately for 7}, n

Let n =(nC+2), my = 0.

Then for all J 2 n
nt oo -
(b) Suppose there is no 1< n?'77 such that 1 € { .
Then in particular for all i such that (n, + 1)2 £1<
(nC + 2)2, 14 13 . Then in view of the fact that C ,
nC s mC satisfy (l.a) and (1.b),for all 1 (nC + 2)2

1¢(:.Thusforall17,n 1¢ﬁandson,n

1 n’
m n satisfy (l.a) and (1.b).
?
(vit) n=F ¢ end assume (1) for ( . Put
nn =(nc+2),m7?=:0. , B
(a) Suppcsz there i1s no 1 £ nT), such that 1€ C ;

then, since c , n s mC satisfy (1l.a) and (1.b),

2
there will be no 1 3 ny either, such that 1 € C H
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and so for all 1 2 nzn, i # 7.7; it follows that 7, nn,
myp  satisfy (1.a) and (1.b).

(b) Suppose there is an 1 such that (n. + 1)2< i
(n + 2)2, and 1 € C . Let (nyp + 1)2 + j be such an

2
i. Then for all k np s k" +3e ([ . Therefore for all

D —
i> n,}, i€ FC . Consequently 7 , n m.A satisfy

n’ o
(1.2) and (1.p). Q.=.D.

It is also impoqsible to replace 1ln Theorem 2 the
set Aj by the set JU {ISOLP, ISOLF, PAST, FUTURE,
NOT, AND % . This follows from

-

THEOREM . PAS’I‘1 and FUTURE; are not E,Qn-expressible in
terms of J!B ”.
Eroof. Iet P, = {1€ In: 1 = 2(mod u)}. Then PAST,
() = : In 1 =3 {moa 1)} ana FUTURE, (%)) -
{i € In: i=1 (mod 4)} On the other hand we have
(1)for every formula ¥ of a sentential language TL for \23“
the set { 1€ In: 1 1is true at 1 in <<Po’...>)~Q(TL)>}
" 18 equal to one of the sets:
(1) 1In
(11) @
(111} {1 € In: 1 = 2 (mod 4)}
(iv) -[1 € In: 1 # 2 (mod 4)}
{(v) {1€¢ In:i=0 (mod &)}
(vi) {1€In:1#0 (mod2)}
(vit) {1¢€ In: 0 (mod 2)}
(viz1) {1 € In: 1 # 0 (mod 2)}

]

[N
|
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One easlly verifies that:
(a) (1) - {viii) form a field of subsets of In.
(b) ISOLF ((1)) = ISOLP ((1)) = (11)
ISOLF ((1i)) = ISOLP ((ii)) = (i1)
ISOLF ((111)) = ISOLP ((1i1)) = (1)
ISOLF ((iv)) = IsoLP ((iv)) = {v)
ISOLF ((v)) = ISorP ((v)) = (1)
ISOLF {(v-)) = ISOLP ((vi)) = (111)
ISOLF ((vii)) = ZSOLP ((vii)) = (1)
ISOLF ((viii)) = ISOLP {(viii)) = (1)
(where the roman numerals stand for the sets indexed by
them above.)
(¢) FUTURE (g) = PAST (@) = 4; and for any other
set Q in the fileld consisting of the sets (1) - (viii),
FUTURE (Q) = PAST (Q) = In. (a), (b) and (c) imply(1).QE.D.
We will now show that
THEOREM 5. There 1s a 1{:3 - tense which 1s not 72a -
expressible in terms of the 7ga - tenses NOT, AND, SINCE
and UNTIL.
Proof: Let us understand, in this proof, by (r,s), where
r and s are real numbers, the set of ratlonal numbers
between r and 8. We consider the following two interpre-

tations ' for TL,
Gk = <<Qa > %' (*L1)> and
0’.1 = <<Q: >)ﬂ-/(1‘L )>

where Q and Q' are the sets of rational numbers:
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a= U (21 + V2, 21 + 1 + Vv 2)

1€In

Q'=U(21+~J-2,21+1+’\F2—)u U (7 + 2
1$In_ i€ In 21 + 1
i¥0 " 3 120

V2 4 )
Then the following tense defining formula 1s satisfied by

¢

the rational number 3 in (k , but not by 3 in Ok :
(1)..(3 t )t <t, A P () A (VY t,)(t¢ tg Aty < ty =
(P (5) A (B 3)(E < <t A (Y Ey)(E5¢ £y < b5 = P ()]
v{-sPo(tz) A (3t3)(t1<t3< by (\v’tu)(t3< t, <t 7P

£))) ).

On the other hand 1t 1s the case for every formula 77 of

!

0

'1‘1..l which corntains no other sentential constants than qo
that
(2)..For any two rational numbers r and s

(a) If (reQiff se¢ Q) then 7) is true at r in e
iff T)istrueatsinoz.

(b) Iffr€ Q 4ff s€Q') then 7) is true at r in o
iff 7) is true at 8 in (k'.

(¢) If (reQ iff s€ Q') then 7rjis true at r in Ok
iff 7 18 true at s in 0?'.
The proof of (2) is by induction on 7). ILet us put for

arbitrary formulae of TLl:

Tin, = {I‘é Ra: 7 18 true at r in 01;
ﬁ’é = {re Ra: 7 1s trueatrinOt‘%

The induction goes as follows:
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(1) If n§
(11) It 7@

d  then (a), (b) and (c) are obvious.

- C or 1 =C A (9 then the induction
step 1s. just as in previous proofs of this chapter; we
leave the argument to the readei.

(111) M =s( ¢, 6).

Show {a). By inductlon hypothesis C and 6’ are
are among the sets @ Ra - Q, Ra and #. Iet r and s be
rational numbers such that re€ Q 1ff s¢ Q. Flrst suppose
that r€ Q and s¢ Q. If é& = Ra - Q u» 5& = ;25', then

7N 1s not true at r in (i ang N 18 not true at s in

(h . suppose that 6‘9—01 = fa. If 501 = @, then 7 1is
not true at r in (h and Y} 18 not true at s in h
Otherwise 7 is true at both r and s in 0‘( . Now sup-
pose that é-& = Q. Then, 1if ZC’( = @ or EO( =
Ra - Q, then 7] is true neither at r nor at s in O ;
if E"h = Ra or EOI = Q then n 18 true at both r ana
s in (}i This completes the proof of (a) for the case
where r and s belong to Q. The case in which they do not
belong to Q is handled in the same way.

Show {b). The srgument 1s cnalogous tc the argument

given under (a).

Show (c¢). From the induction hypothesis it follows

that

!

Q'
&SsRa—Q'

I~%
D
il

Q iff C&I
Ra - Q iff

gt
st #

<
i
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E&“Ra 1£F _Cb', = Ra
7“:;}( }diffcol = g

and that the same conditlons hold with 69 instead of C .

Using these facts we can show, by an argument simllar to
the one given under (a), that if r € Q 1ff s € Q then
7) is true at r in Ok ife 1) is‘true at s in (k'

(iv) 0 =0 ([, & ). The argument is the
same as under (1ii). This concludes the proof of (2) for
all formulae of TLl with no other sententlal constants
than qo. Thus for any 1 - place schema 7] of TLLl
the 1 - place 123 - tense f %za - expressed by 7 is
such that 3 € fp, (Q) 17F 3¢ fﬁ (Q') and so f 1s nct
the Ha - tense defined by (1). Q.E.D.

We conclude thlg chapter with the proof of the
assertion, made in Chapter II, that 1f there ars infinitely
many moments of time then the present progressive tense 1s
presalble in terms of PAST, FUTURE and sentential
connectives (see pp.’'1§/3). Let us first remark that the
questicon of how to define the present progressive 1s not
completely unambiguous. At flrst sight the most natural
definition seems to be by means of the tense defining

formula:

(1) Polty) A (3t <t A (VE,)(8 1< 6Kt
P(t,))) A
(3t3)(to< ty A (‘dt4 (tg< £y <t =1 2o(8))))
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The plausibility of this definition depends, however,
strongly on the assumption thai time 1s dense. (Indeed,

the existence of the progressive tense in certaln natural
languages may be evlidence that the speakers of those
languages think of time as being dense). But if time is
discrete then, according vo the definitlion suggested above,
the present progressive tense will colncide with the simple
present, and thus be expressible in terms of any set of
tenses, namely by the formula 'qo'. Thepefbre it is
better to adopt

(2) P(ty) A (Tt ) (6 <t AP () A (¥ 6,) (6, < b, &b

Po(t,))) A
(3 t3)(to< t3/\ Po(t3) /\.(V tlt)(to( tu‘/‘ t3——7
P,(t,)))

as the tense defilning formula for the present progressive.
The tense defined by
fined by (1) when time is dense and will not reduce to the
simple present when time i1s discrete. On the basis of
this latter definition we zan indeed show that the present
progressive 1s not expressible in terms of PAST and FUTURE
and sentential connectives 1f only time has infinitely
many polnts. As bvefore we represent the structure of time
as \.7'= (T, < 3

We first assume that time has no endpoints. Iet Lti: 1€

-y

Inﬁ be a subset of T such that for 1<, t1<.tj. Iot
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PO = [t-a’tgl U {tgiz 1e¢ In} . Then, i1f PR 1s the
tense defined by (2), PR(PO) = (t_5.tp). On the other

hand the field of subsets of T generated by P, consists of

0o
the sets T, P , Py» T-Py; and further PAST (P,) = PAST
(T-Py) = FUTURE ( Po) = FUTURE (T-P,) = PAST (T) =
FUTURE (T) = T and PAST (¢P) = FUTURE (b ) = & . It
follows that PR is not expressible in terms of the tenses
PAST, FUTURE and sententlal connectives.

Let us now assume that time has a first moment but

no last moment. ILet t, be the first moment of J (i.e.

0
the element of T such that for all t&éT t = ty or t5< t.)
Let {ti: 1€ co} be a subset of T such that for i < j,
t,< tJ. For 1¢w let Py = 5{"23’ Jé&>}U[t1+2,ti+4]:
Let TL be the sentential language {<P, PAST) (F, FUTURE)
~

<—‘ , NOT> A AND> y  for the set & = {pasr,

N L
FUTURE, NOT, AND }

We assign to each formula Y) of TL which contains no other

variables than q; a depth d (¥}) as follows:

d(qy) = 0
d(=1 %) = a(M)
AN AL) =max(d(M), a( & ))
a(Pn) =d(N) +2
a(FM) = a( )
For 1 ew 8and Y] a formula of TL let -ﬁi = (te'r:

Y 1= true xt t in <<P1,...>J A (TL)>}.
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For t £ T let F(t) = {t'é T: t< ¢! } . We show by
L
induction on T}

(1) If d(N) < 1 then F(td(n))ﬂp‘. is one of the following

sets:

Proof:
(1) 1§ = q4; then Y,‘i = 2, for all 13 > d(M)
(which is O in this case) and (1) follows immediately for

N

(11) Y} = 7 Z_,’; assume (1) for :: . Then (1) cleariy
holds for M) .
(i13) M = Z: A 9; assume (1) for & and for &
“stnce d(W) % (L) and ¢( V) )} > a(F ) 1t follows from

the induction hypothesis that for 1 2 d( 7 ) F(td(m)ﬂ .

is one of the four sets mentioned in (1).

(v) M} =F £ ; assume (1) for & . Let 1> d(M).
If there is a J>d( 7, ) such that tJé VES-‘ , then for every
k there is an "™ % k such that m¢ -C-_: , and 80 'T?g_ = T.

If there is no such J then F(tdm ))(\ n, = b .

(v) ¥ =P Z ; assume (1) for Z; . et 12 4 (n)
If there is a J > d(L) such that t € 7. then there is

™

a J <« d(Z:) + 2 such that t 3 Z: 'l\herefor'e F(td(Y‘()O
= F(td(n)). If there 1s no J >, d(Zj) such that t,¢€ (;

a———
N

then F(td(n)):; N will be either F( r‘d(Tl)l or :P
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depending on whether there 1z a j<d{( ) such that
Ye Z_;i , or not. From (1) it is clear that PR is not expres-
sible in terms of &5 . For let Y] be any formula of TL
with no other variables than q,. Iet i3 d("M ). Then
PR(P,) = (t1+2,‘c1+4). Tuis set 1s included in F(td(m).
so PR(P,;) N F(tdm)) = (ty,p. ty.y). But by (1) this
set does not coincide with F(td(h )) 0 {t: N} is true st t
/ -

in <<P1,...>, 7‘{ T L-A\ } y

A similar proof shows the 1lnexpressibllity of PR
in terms of \Qg in case time has a last, but not a first
point. 1Indeed 1in this case there will be a subset

'{ti: 16w } of T such that for 1 < J, t3< ty.

Putting for 1¢€¢ w P1 = ‘{’czi: ie w} J [t1+4,t1+2];

oy

for T" of TL, Y]j_ as before; letting P( ¢ ) = {t‘ €L

v < tg and defining the depth' of M by:
d'(qy) =0
d'(m M) =4a(N)
6'(N AL) =max(d' (M)} +a' (§))
al(py ) =a'(n)
d'(FN ) =4a (M )=+2;
we can snow that: '
(2) 1If 15 d'(Y]) then P(td,(Y}))ﬂ 772 is one of the

sets:

P(td'(n)) r] Pi’ P(tdi(‘(')>) - Pi’ P(td'(n))’ Cb s
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o Now assume that time has both 2 first and a last
moment. In that case there will be subsets { tiz i éw}
and {ti': 1ewj of T such that for 1,] € 3

ti<TtJ and if 1 < j then t, <‘TtJ and tJ<Tt' Iet

Pij = ‘{(tax,: kt@} t_) {t'k: kéw}U[ti-fg’ti-{-“lU

n.

LW ti4pl. Then PR(PiJ) = (ti+2,ti+4)U(tj+,$, t3+2),

and so if m>1 and n2J, then F(t,) N P(tr'x)nPR(PiJ) =

(t142,8544) U (£, tl,p). On the other hand, if Y| is
a formula of TL with no other variables than q,, d(Y) )")/

and d( ) ) > J, then, putting Y),, téeT: Y is
true at t in << 7 > }Q TL-)) } F(td( N )) 0
P(té,(n)) 0O Y}i,j is one of the four sets:

Fltg(m)) Op(tin)) 0 By Flegen)) 0 BGEG ()

'Pij’ F(td(\’?)) N P(té.(\q)), Cb . Thus again FR

is not expressible in *erms of \313



BIBLIOGRAPHY

118



BTIBLIOGRAPHY

Cocchiarella, Nino B. ™Tense and Modal Logic: A Study in
the Topology of Temporal Reference." Unpublished
Doctoral dissertatlion, The University of California,
Los Angeles, 1966.

. "A Completeness Theorem for Tense Lo%ic,”
The Jcurnal of Symbolic Logic, Vol. 31, No. &,
December» 1966, p. 689.

Ehrenfeucht, Andrzej. 'Decidability of the Theory of the
Linear Order Relation," A.M.S. Notices, Vol. 6,
No. 3, Issue 38, June 1959, pp. 556+

Liuchli, Hans, and J. Leonard. "On the Elementary Theory
of Llnear Order," Pundamenta Mathematica, Voi.
53, 1966, pp. 109-115.

Leonard, J. See Liuchlil and Leonard.

Prior, Arthur N. Past, Present and Puture. x. crd: The
Clarendon Press, 1967. 217 pp.

119



