H. Kamp

The Adequacy of Translation between Formal
and Natural Languages

Introduction

THIS PAPER WAS written in 1970.! It arose out of a project led by Mr John
Olney of the System Development Corporation in Santa Monica in which I
had participated during part of the period 1966-8 when I was at the
University of California at Los Angeles. This project tried to throw light on
the semantics of English discourse by translating parts of English texts (all
chosen from the Scientific American) into symbolic notation. The immense
difficulties accompanying such an effort should be evident to anybody who
has ever stopped to think about the complexity and variety of devices which
we employ in ordinary speech, whatever it is that we wish to communicate.
Indeed, the participants occasionally wondered whether anything would
have come of the project if there had been a sufficiently vivid perception of
these difficulties from the start. It soon became clear that the problem was
not so much that of translating the English texts into an already existing
formal system, such as first order or higher order logic, but rather that the
available symbolic languages themselves had to be reappraised and extended
at every turn. Almost every simple new English sentence required the
introduction of new symbolic notation or else a carefully argued defence of
the use of already existing symbolism to render a locution which had not
yet been dealt with before.

Although this work was by no means useless, it had carried so strong a
flavour of the ad hoc that we felt it was necessary to reflect upon the general
methodological question of how and in what sense ‘translations’ of the sort
we were attempting to give could contribute to linguistic theory. The present
paper is the result of my own efforts to come to grips with this problem. It
tries to provide a general and formally precise account of what should be
understood by a translation from one language into another. It should be
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276 Meaning and Translation

evident that such a formal account requires an underlying formal charac-
terisation of what a language is. In view of the nature of the problem which
led to the present investigation this characterisation had to encompass so-
called ‘formal’ or ‘symbolic’, as well as natural, languages.

I presume that this identification of formal and natural languages will now
meet with less resistance than it would have done in 1970. Even then, how-
ever, the view was not original, Indeed, it had at that time already been
defended by the late Richard Montague. Montague’s influence on the form
and content of this paper is so deep and pervasive that it seems pointless and
misleading to credit him separately with any specific ideas that will appear
below. Yet some remarks concerning his influence seem in order. My notions
of a formal syntax and an accompanying semantics differ only in details
from a similar proposal of Montague’s—such as that which can be found
in his 1968 paper ‘English as a Formal Language®—or in the article
‘Universal Grammar’ which was written at essentially the same time as the
pages following this introduction (see Montague, 19742). ‘Universal
Grammar’ contains, moreover, a formal definition of the concept of trans-
lation; like everything else in that paper it is a very elegant statement,
considerably more elegant than what the reader will find here. Indeed, I
discovered after completion of my own paper that it paralleled ‘Universal
Grammar’ in so many respects that its publication only seemed desirable
if it were substantially expanded, preferably with some concrete applications.
"The great merit of Montague’s work on grammar is that it provides absolutely
precise accounts, along the lines of his theoretical persuasion, of actual parts
of English. This has made him vulnerable to 2 good deal of criticism from
linguists; but on the other hand, it is because of the painstaking rigour and
lucidity of these concrete applications that his ideas have succeeded in
capturing the imagination of so many linguists and philosophers over the
past seven years.

The original purpose of this paper made the inclusion of such applications
unnecessary. After all, the translations which the project produced were in
principle available to anyone who requested them. However, the reader of
this volume could hardly be expected to go through the trouble of obtaining
them. In any case they are in a state so far removed from the ideal expounded
in this paper that their effect would probably have been to destroy, rather
than strengthen faith in the theory. I did consider adding to this article
a concrete example of a translation from a fragment of one natural language
into another; we now know more than we did five years ago about the
syntax and semantics (of the sort which is explained and used in this paper)
of fragments of natural languages, in particular languages other than



H. Kamp: Translation between Formal and Natural Languages 277

English, and also about the semantics of various extensions of the standard
systems of symbolic logic, which might be used as intermediaries in
translations between natural languages. Finally, however, I decided against
such a project. It would have added another ten pages to an already lengthy
paper; and, more crucially, I lacked the time to accomplish the task
adequately. I realise, however, that in the absence of such an addition much
of what this paper has to offer will appear schematic and divorced from the
reality of translating actual languages.

Some readers will have doubts about my approach to the theory of trans-
lation which even a concrete example of the sort I envisaged would not dispel.
I will try, in the remainder of this introduction, to give some indication of
how those doubts might eventually be put to rest.

The problems with which the actual translator must cope often seem
difficult beyond solution. Many of these difficulties are no doubt incidental.
Yet some of them may well be the symptoms of a much deeper and more
universal issue, much discussed in recent philosophical literature as the
‘indeterminacy of translation’. It seems even now to be a matter of dispute
exactly what the doctrine of indeterminacy amounts to. Since the ap-
pearance of Quine’s “Word and Object’ various authors have proposed
different and usually non-equivalent formulations of the doctrine; and as we
try to render the arguments for and against these different versions more
precise, ever finer distinctions will have to be drawn.

It would defeat the purpose of this introduction to go into these matters
in detail. So let me offer just one possible statement of the indeterminacy
thesis, which approximates, I believe, fairly closely what most would regard
as the central claim: the meaning of many expressions of any natural
language L is underdetermined by the verbal dispositions of the speakers
of L; and in view of this, there may exist alternative schemes for translating
L into some other language L’ such that there simply is no criterion that
designates one of these as the correct scheme; moreover, this situation may
arise even in a case where the translations s’ and s”, according to the re~
spective schemes, of the same sentence s of L. are incompatible sentences
of L.

The theory developed here ignores the indeterminacy issue completely.
Superficially 1t may even seem to contain the implicit denial that inde-
terminacy occurs. Those for whom indeterminacy is the fundamental
problem of translation would probably regard such denial as sufficient reason
to dismiss the theory as irrelevant. This obliges me to give, even at this early
stage, a brief outline of the analysis whose details are spelled out in the main
body of the paper.
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A translation from a language L into a language L’ is defined as a certain
function from the syntactic analyses of expressions (in particular, sentences)
of L to syntactic analyses of expressions of L’ of the same semantic type; the
adequacy of a translation is defined relative to a certain fixed association of
a model for L’ with each of the models of L. Relative to such an association
a given translation T is adequate if:

(1) it transforms each L-expression ¢ in its domain into an L’-expression
T(¢) such that for each model & for L, & assigns to ¢ the same
semantic value as the model for L’ associated with & assigns to T(d);
and

(2) the domain of T includes all (analyses of) sentences of L.

This characterisation may seem to be without empirical content insofar as
it depends on a prior association of the models of the two languages. But this
appraisal would be too harsh. Consider the case of Quine’s linguist who joins
a completely unknown tribe to learn their language L without any help from
interpreters, earlier compiled dictionaries, or the like. Among the models
for the language L there must be one in particular which represents the
actual world. The natives’ knowledge of L includes their ability to decide
of (some of) the sentences of L whether they are true (either true absolutely,
or true on particular occasions of use). Within the format of the grammar
used in this paper, that ability comes to this. The speaker can identify, at
least in principle, one of the models which belong to the semantics for L
as representing the world surrounding him (from the perspective of his
particular speech situation). Similarly, the linguist’s knowledge of his own
language L’ amounts to a parallel ability to identify the world surrounding
him as some model of the semantics for L', It is these two abilities which
form the empirical basis of the association relation relative to which the
adequacy of a translation scheme must be judged: when a speaker s of L.
and a speaker s of L’ are placed in the same situation, the model for L/
which s’ selects as corresponding to the situation must be the value which
the association function assigns to the L-model selected in that situation
by s.

What is the empirical significance of the claim that it is the model ¢ which
a speaker selects on a certain occasion as representing the world from that
particular perspective? This is a difficult question; and it is, among other
things, in the answer to this question that our views regarding the inde-
terminacy thesis will manifest themselves. If the language L were very
simple, say a language of first order predicate logic whose primitive predi-
cates all represent clearly recognisable and sharply demarcated qualities,



H. Kamp: Translation between Formal and Natural Languages 279

and if, moreover, it were possible to point at objects without ambiguity,
then the claim could be tested by asking the native speakers, pointing at
various objects in turn, whether or not they belong to the extensions of the
primitive predicates. This test could be pursued as far as desired, and if the
claim is correct, this could in principle be so discovered.

With actual spoken languages the situation is bound to be much more
complicated. The empirical evidence that can be gathered from the language
behaviour of the speakers of L is in all probability not sufficient to determine
which L-models correspond to particular contexts of use. It may well be
argued therefore that the association relation is only partially defined. (The
same considerations will of course apply to the correspondence between
contexts of use and models of the translator’s language L.".)

The indeterminacy of the association relation is not the only point where
indeterminacy may manifest itself. The translator who starts from scratch,
without any previous knowledge of the language L he is to translate into his
own language L', will, if he is to proceed along the lines of the theory of this
article, first have to formulate a syntax and semantics for L. And what criteria
are there to decide whether that part of his task has been properly accom-
plished? In the last analysis the only criterion is the success of the translation
scheme the translator manages to formulate on the basis of his syntax and
semantics for L ; and the success of a translation scheme can only be measured
in terms of the quality of the explanation that it provides of the language
behaviour of the speakers of L—or rather, of the explanation of this be-
haviour that is provided by a theory of which this scheme is part, but of
which it needs not be the only part. It is an interesting, though complicated,
question whether, or to what extent, the data about language behaviour will
allow the translator to assess separately the adequacy of any one of the various
components into which his theory of the language L breaks down (if it is
set out along the lines followed in the present paper). I am afraid however
that little about this can be said unless much more specific assumptions
about L (as well as about L) are considered.

The rapidly expanding literature on model theoretic semantics for natural
languages has to my knowledge been silent on the relation between the formal
models its theories postulate and the phenomena of actual language use
(such as assent to and dissent from sentential utterances, or language learn-~
ing) to which we have more or less direct access. This is a gap which must
ultimately be filled if we wish to develop model theoretic semantics into a
comprehensive theory of language which is securely anchored to the linguis-
tic facts we can observe. What follows does nothing to narrow that gap. I
can only hope that the reader will have some idea of how my proposal could
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be applied to concrete cases; for without it he will find what follows a sterile
exercise.

1. Formation rules

We will first develop a general, purely syntactical, notion of a language. A
language will be essentially a set of well-formed expressions; to each expres-
sion is assigned some grammatical category of the language. Rules referring
to these grammatical categories determine how given expressions may be
combined into more complicated ones. These rules are called formation
rules. The expressions of the language will all be strings of symbols that are
drawn from a certain set which is given in advance.

Our first concern will be with the characterisation of what sorts of
operations on strings we will allow. One might hope that only one operation
might suffice, viz. that of concatenation of strings. But this hope is vain.
Restriction to this sort of formation alone would lead to syntaxes for natural
languages which, if they could be given at all, would be cumbersome and
implausible (e.g. the number of grammatical categories they would have to
contain would be very large).

Thus we will have to allow for other types of formation as well. Among
the formation operations which are especially important is the one which
gives for any strings x, y and symbol g, the string that results from re-
placing 4 in x everywhere by y. (We will henceforth refer to this operation
as ‘substitution’.)

On the other hand, the notion of a formation rule should not be too wide.
In particular, formation rules should always be effective, in the sense that
for any given rule there will be an effective procedure by means of which
we can decide, for any expressions ey, . . ., €, €n.,, Whether e,,, comes
from applying the rule to ¢, . . ., 5 or not.

A notion of a formation rule that satisfies all these requirements can be
developed in terms of the notion formation language defined below. This
language is a system of first order predicate logic which contains only two
non-logical constants, a 2-place predicate constant C (where ¢ ') is to
be read as: ‘r is a substring of ") and a 2-place operation constant ™
(where T ™ 1" is to be read as: ‘the concatenation of  and ). Formation
rules will be characterised as operations which can be defined both by a
purely existential, and by a purely universal formula of the system. This
characterisation will on the one hand provide us with e.g. substitution, and
on the other hand warrant the effectiveness of all formation rules.
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Definition 1 : let S be a set and F an n-place function. The closure of S under ¥
(in symbols clx(S)) is defined as follows: Let
(1) So=3S;
(i) form=o0,1,2,...let
Sn+1 = Sn U {x:therearex,, ..., xn €Sy suchthat x = F(xy, ..., ¥a)}.
clg(S) = v Sa.

nEW

We say that F is well-founded on S iff S = clg(S - Range F).

Definition 2: by the formation language, F1, we understand the first order
language which is defined as follows:
Symbols: (1) variables: vy, vy, gy . . .

(2) logical constants: ~, A, V, =;

(3) az-placepredicate constantC and a 2-place operation constant ™ ;

(4) parentheses (, ).

Terms: (i) v¢is a term;
(ii) If =, v’ are terms then (z ™ <') is a term.

Formulae: (i) If =, ¢’ are terms then = = <’ and = C =’ are formulae;
(i) If &, ¢ are formulae, then ~d, (bA ), Vvid are formulae.

Interpretations :

An smterpretation for F1 is a pair (D, P} where

(1) D is a non-empty set;

(i) P is a two-place function with domain D;

(i1) P is well-founded on D;

(iv) If %, y, z, € D then P(x, P(y, 2)) = P(P(», ), 2);

V) If x,%', 7,9 €D and P(x, y) = P(x', »") then either (¥ = 1" and
y =) or there is a z € D such that (x = P(x’, z) and ' = P(z, 3))
or there is a z € D such that (" = P(x, z) and y = P(z, y')).

For any interpretation & = (D, P} for F1, any sequence? 4 of members
of D and any expression (i.e. term or formula) ¢ of I'1, the value assigned
by d in & to ¢ (in symbols: [$].z,q) i1s defined as follows:

M) [vd g.a = ds;

) [t~ "lg.a = P([T]fa[”d’ [*']z.0);

ot __Jrif{r]l g.a, 1sequal to[7] 7,a
(iif) [+ = v]g.e = o otherwise

2. By a sequence we understand a function the domain of which is the set of natural
numbers.
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(1 1iff there are @, 4, € D such that
either [‘r'] e = P(a, [1'] ﬂ'd)

(iv) [* C Tlg.a =4 or [T'] .0 = P(P(q, [} 1.0), §)

or [*] e = P([7] .0, )

| 0 otherwise

) [~8] o= {I if[d)]a,d =0

o otherwise

(i) [(0A )] o = {1 if [$] .o = 1and [¢] o = 1

o otherwise

1 if there is an @ € D such that

(vi) [Void] gp,a = {[ﬂb] Hrdarny = 1°

o otherwise

The elementary formulae of F1 are characterised by:
() T ==7"1s an elementary formula,

(ii) If ¢, ¢ are elementary formulae then ~¢, (A Y), Vvi(vi C vA )
and Avi(vs C vy — ¢)* are elementary formulae.

Definition 3: a k-place formation rule of Fr is a pair {¢,{) of elementary
formulae of F1 such that v,, . . ., vk, 5+, are all the free variables of ¢ and
all the free variables of ¢, and for any interpretation & = (D, P> and
sequence 4 of elements of D, [Vvg.14] 1.0 = [AV%41d] .-

Let (&, ¢> be a k-place formation rule of F1. Let & = (D, P} be an
interpretation for Fr and let 4, . . ., -, 4x be members of D. We say that
doy . « - g1, i satisfy {§, > in A ff for any sequence 4 of members of D,
if for i =o,..., k, di = di, then [Vog,,1¢0] .0 = 1.

It is obvious that concatenation itself corresponds to a formation
rule. Indeed, it is characterised by the pair {vg = v3Av, = vy " vy,
Vg = Vg — Vg = ¥y  Viy. 10 show that substitution can also be given as
a formation rule is somewhat more involved. Since the construction of the
proper pair (¢, ¢> is both cumbersome and straightforward, we omit it.

The notion of formation rule developed here has the disadvantage that it
is not recursive; 1.¢. the set of those pairs of elementary formulae ¢ and ¢
with v,, . . ., v free such that Vozd and ~Vog~1 are materially equivalent
in all interpretations, fails to be recursive (in the ordinary sense of recursive).
A more satisfactory notion of formation rule—i.e. one which is also suf-

3. If 4 is a sequence then by dé’. we understand the sequence which is like d except
AW
hat (d?) () = b.

4. We understand expressions like A v;p and (¢ - ¢) as metalinguistic abbreviations.
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ficiently powerful, but is such that the set of formation rules is itself
recursive—could probably be developed by means of systems of equations
analogous to those used to define the set of primitive recursive functions of
natural numbers.

2. Syntax

We now proceed to develop a general notion of syntax.

Convention: throughout the remainder of this paper let E be a non-empty
set and let P be a 2-place operation on E such that E and P satisfy the con-
ditions (1), (i1), (iit) in the definition of an interpretation on page 281; and let
& = (E, P). Clearly E - Range P is non-empty. We refer to the members
of E as the expressions of & and to the members of E — Range P as the
symbols or basic expressions of &.

Definition 4: by a formal syntax (for &) we understand a pair (%, 2>,
such that

(i) & is a function, the domain of which is the union of {o, 1} and a
subset of E and the range of which consists of sets of symbols.

(i) 7 1s a set of triples such that:
(iif) For each triple {r, &, ¢> € & there is a number £ such that r is a

k + 1-place sequence of subsets of the domain of & and (4, ¢ is
a k-place formation rule.

With any formal syntax & = (%, %) for & we associate 2 function { &,
with the same domain as 4, as follows:

(i) For « € Dom # let{ J(x) = B(a).

(it) If # is a natural number and « € Dom 4, then ¥ 531(«) =L () U
{y €E: there is a natural number %, and a member {r, ¢, {> of 2,
where r is k -+ 1-place and there are v,, . . ., Y;-; € E such that for
t=0,..,k— 1,7 etgo(ﬁ) whenever 8 €74, and {yy, . . ., Y31, 7D
satisfies (¢, 4> in &; and o € 7y}

(iif) For & € Dom 4, let { go(at) = U § ;,,(a).
HeEw

We think of the members of Dom % as names of grammatical categories.
For each @ e Dom 4, { ,o(x) will be regarded as the category the name of
which is «; the members of the %(«)’s will be referred to as the basic

expressions of &°. We will call the members of U  § go(«) the well-formed
«€Dom &

10
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expressions of & ; the members of { oo will be the formulae of & and the
members of { g™ the variables of &.

As an example might serve the case where E — Range P consists of all
words of English (and perhaps interpunction signs and blank space), one of
the members of Dom # is the expression ‘common noun phrase’, #
(‘commeon noun phrase’) is the set of all English common nouns (as ‘tree’,
‘house’, ‘thought’, ‘noun’), and { gz (‘common noun phrase’) consists of all
common noun phrases, i.e. common nouns together with compound
phrases like ‘big tree’, ‘house with a garden’, ‘thought that is wrong’,
‘common noun phrase’, etc.

'The members of % are called the rules of grammar of the syntax (&, %>.
They tell us not only how to obtain compound expressions from expressions
which belong to particular categories, but also to which categories the
resulting compound expression belongs. It is perhaps often assumed (either
explicitly or tacitly) that a simpler concept of syntax, in which no other
types of formation play a role than concatenation, would be sufficiently
general—and thus, in view of its simplicity, preferable to the notion defined
above. Applying this simplification to the concept just defined we would
obtain:

A formal syntax 1s a pair & = { &, &), where 4 is as above and & con-
sists of finite sequences of members of Dom Z. The categories { go(«) of
such a syntax would be defined by:

(1) € glo) = Z(x);
(if) L) =L o (@)U {y €E: there is a number k£, and re 7% and
Yor - - +» V-1 € E such that:
(@) r is a k + 1-place sequence;
(b) for i = 10 k—1 WECS",(H);
© v="P(.. {1, - ) Te-1)s
(d) xery};

(i) € y(on) =U{ go(oc).

Indeed, the syntaxes of all well-known finite languages of symbolic logic
are usually given in this simpler form; and that syntaxes for natural lan-
guages, like English, can be developed in this same simpler fashion, is not
impossible. It is, however, as was indicated before, unlikely that one would
obtain a natural syntax for English in this way. Such a syntax would prob-
ably involve an unduly large number of categories and would also probably

be incapable of resolving certain syntactic ambiguities (such as those related
to personal pronoun anaphora) and thus push such problems back to the
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semantical level, where, in our opinion, they do not belong. The lack of
success met by attempts to develop a formal syntax for English that employs
no other formation rules than simple concatenation suggests that this
approach is unsatisfactory. As Montague has pointed out—and as has since
also come to be accepted by an increasing number of linguists—a particularly
important formation rule is substitution. But there is no reason why
formation rules other than concatenation and substitution should not be
equally indispensable. A class of likely candidates is e.g. that of the various
deletion rules that have been discussed by transformationalists. It may turn
out that various other transformations will have to be adopted to achieve the
simplest theory of language.

The reasons why we have allowed the members of 7 to be sets of category
names, are similar to those which prompted us to introduce other means of
formation besides concatenation. Allowing only single names of categories
as members of the first components of formation rules would in practice
lead to unnaturally large numbers of categories and would, moreover, make
it more difficult to extend a formal syntax for a certain fragment of a natural
language to one which would cover a larger part of that language.

For every well-formed expression of a given formal syntax there is a cer-
tain ‘construction’ which establishes its well-formedness. Such ‘construc-
tions’ are essentially finite trees; and that is how we will represent them. We
call such construction trees analyses.

The definition of the notion of an analysis is quite straightforward. It
requires, however, some concepts related to the mathematical concept of a
tree, the definitions of which we will give first.

Definition 5: (a) A tree is a set T of finite sequences of natural numbers,
such that

(i) the empty sequence, o, belongs to T
(i) if s _ {n)% belongs to T then s belongs to Tand forallm <n,s _ <{m)
belongs to T.

(b) If Tisatreeand t, #' € T then we will say that ¢ is below ¢ (in symbols:
¢’ < 1) iff ¢ is a proper initial segment of #'. If €T and thereisno #'€ T
such that # is below ¢ then ¢ is called an endpoint of T. If ¢, 1’ €T, t' <t
and there is no ¢ € T such that #/ < ¢" and #” < ¢, then we say that ¢’ is a
stuccessor of t.

(c) Let T be a tree. T is a subtree of T iff T’ is a set such that for some
t e T it is the case that

5. By s_# we understand, in general, the concatenation of s and 7.
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(1) for all sequences 7, #' € T" iff ¢ e,
If (1) holds for T, T, # then we call ¢ a top of T in T.

(d) A decorated tree is a function whose domain i a tree. We refer to the
points, endpoints, etc. of a tree T also as the points, endpoints, etc. of any
decorated tree whose domain is T.

(¢) By a subtree of a decorated tree T we understand a function T* such
that Dom 'T” is a subtree of Dom T and that if s 1 top of Dom T'in Dom T,
T'()=T@_ ).

Definition 6 (a) Let T be a tree. A subset B of T js called a bar of T if B
satisfies the following conditions:

(i) If 7€ T then there is a ' € B such that either <tort' <y
(i) if £, €T, and t < # and # € B then ¢’ ¢ B.
(b) If T is a decorated tree then B is called a jar of T iff B is a bar of
Dom T.

Definstion 7: (a) Let & = (%, %) be a formal syntax., Let Y be a well-
formed expression of &. An analysis of v in & is a finite decorated tree A
such that:

(1) The range of A consists of pairs;
() if # is an endpoint of A, then [A(#)]o¢ belongs to the range of &
and [A@)] = <{o: [AW)]o € B(@)), o, 0);
(i11) if # is not an endpoint of A and Zoy « « +y 13— are all the successors of
¢ in A then there is 2 k-place rule <r, §, {> e <, such that:

(a) fori=o,...,k—1,ifaer then [A(t:)]o eB();
(b) if « e ¢ then [A()], ¢ Aa);

(©) [AGto)]os - . -, [A(ty )]0, [A()]o satisfy <o, §> in &
(@) [A@)L = <r, &, d;

(V) [A(Q)], = 1.

(b) Aisan analysisin & iff there is a well-formed expression vy of & such
that A is the analysis of y in &,

Since the formation rules of % are recursive, the concept of an analysis
in & will be recursive also provided % has a finite number of rules, Even
then it does not follow, however, that the concept of a well-formed expres-
sion of & is recursive. For in the first place, definition 7 does not exclude
the possibility of infinite analyses. But even where all analyses in % are

6. If s is a finite sequence then by [s]; we understand the ith component of s.
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finite it may be impossible to determine in terms of some directly identifi-
able features of the string ¢ (such as e.g. its length) any upper bound of the
analyses which ¢ would have if it were indeed well formed. In each of these
cases it may well be impossible to formulate a decision procedure for
well-formedness in &. If, however, (i) we have a uniform way of computing
for arbitrary expressions vy of &, a tree size such that if ¢ has any analysis,
then it has an analysis of at most that size; (ii) for every expression v in E
there are only finitely many pairs consisting of a £-place rule {r, ¢, {> € &
and a sequence of k expressions vy, . . ., v, € E such that v, ..., {—, ¥
satisfy Vv, in &; and (iii) we have a recursive method for finding, for

any y € E, all those pairs {{r, &, {)<{yq, - . -, Y;-1)p; then the concept of
well-formedness in & is indeed recursive.

Condition (1) 1s obviously satisfied if & has no formation rules other than
concatenation; but it is also a condition likely to be satisfied by syntaxes
which also have certain other formation rules (such as e.g. substitution).
That an expression could result in an infinite number of different ways
from the application of a rule to a certain number of other expressions, should
not be discarded automatically as absurd. For example, an expression P(r)
results from substitution of 1 for any symbol x different from P, in P(x).
However, here the pairs of a rule and a sequence of expressions to which the
rule should be applied to yield the expression in question, though perhaps
infinite in number, are very similar; if for the expression in question there
exists an analysis involving one of those pairs, presumably a similar analysis
will exist involving any of the other pairs. So it seems possible to modify
condition (ii) in such a manner as to permit cases like the one just men-
tioned and still yield a recursive concept of grammaticality—provided that
condition (iii) is also modified correspondingly.

Condition (iii) would probably hold in those syntaxes in which for each y
there are, as (i1) requires, only finitely many pairs. One can easily conceive
of the way in which (ii1) could be so adapted to more flexible alternatives
of condition (ii), so that the recursiveness of the set of well-formed expres-
sions remains guaranteed.

As a rule formal syntaxes for languages of symbolic logic are such that
every well-formed expression has exactly one analysis. It is wrong however
to demand this of formal syntaxes for natural languages. Indeed, syntactic
ambiguity 1s a well-known phenomenon; and we could deprive ourselves of
the means to account for this phenomenon if we insisted that each gram-
matical expression has a unique analysis.

In view of the possibility that a grammatical expression may have more
than one analysis we will from now on talk almost exclusively abour analyses
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even though our real interest will remain directed towards expressions, It
is only the possible ambiguity of the expressions that excludes them as the
immediate objects of the present technical development.

3- Levels of analysis; translations

The primary task of a translation (say, of one natural language into another)
is to transform the principal vehicles of communication, i.e. sentences, of the
first language into sentences of the second. Thus, if we were to regard only
this basic function of translations we could characterise them simply as
maps from sentences to sentences.

However, the way in which translations are defined and learned usually
involves not only sentences, but other kinds of expressions as well. A trans-
lation from one natural language into another, for example, is normally
given in the form of a dictionary (which usually pairs words with other
expressions) together with certain stipulations which specify how one should
render grammatical constructions of the first language within the second
language. We take this to be an essential feature of translations. Therefore
we will define a translation Tr (from a formal syntax & into a formal syntax
&) as a pair consisting of a function Tr,, which maps certain expressions
of &—henceforth referred to as the elementary expressions of Tr—onto
expressions of &, and a function Tr,, which maps #-place rules of grammar
of % onto n-place rules of %”.7 The translation of an expression of & which
results from applying the rule p of & to the elementary expressions
€1, - - -» n Will then be the result of applying the rule corresponding to
p by Tr; to the values of ¢y, . . ., ¢, under Tr,; etc.

The elementary expressions of the translations can be of various levels of
complexity: they can be words; but they also might be complex noun
phrases, complex verb phrases, etc. A translation will be less ‘revealing’
about the relations between the respective structures of the languages which
it links as its elementary expressions are more complex. Thus, from this
point of view, the simpler its elementary expressions are, the better the
translation is—the ideal being a translation the elementary expressions of
which are the basic expressions of the syntax to which it applies. However,
in practice one will often have to be content with translations, not all of the
elementary expressions of which are basic.

Thus it is natural to develop a concept of translation which allows for other
sets of elementary expressions than just the set of basic expressions of the

7. This is not quite correct, since it neglects the possibility that the ranges of Tr, and
Tr, contain schemata (which will be defined later on),
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syntax under consideration. But not every set of expressions is acceptable
as the sct of elementary expressions of a translation: if an expression e
occurs in the analysis of ¢’, then ¢ and ¢’ should not be elementary expres-
sions of the same translation. In order to single out those sets which are
acceptable as sets of elementary expressions, we introduce the notion of a
level of analysis.

Definition 8: Let & = (%, &) be a formal syntax.

(a) A level of analysis in & is a function % such that:

(1) the domain of % consists of analyses in &;

(if) for any analysis A in Dom %, #(A) is a bar of A;

(iti) if A is an analysis in &, A’ is a subtrec of A and #is a top of A’ in A,
then if A 1s in the domain of % and there is a #' in #(A) such that
"<t then A’ is in the domain of & and P(A)={r:(A¢" ¢
LAY t"=1t_ 1t}

(b) If &, &’ are levels of .analysis for & then we say that & is at least
as deep as £’ if (1) Dom %' < Dom.#; and (ii) if AeDom.%’" and
t' € #’'(A) then there is a € #(A) such that r < ¢'.

It is often the case that an expression of one language cannot be translated
into any particular expression of some other language, but that its function
can be rendered by some grammatical construction in that language. This
phenomenon is sufficiently common to be accounted for in our formal
characterisation of a translation. The notion of a schema, defined below, will
serve this purpose. A more detailed explanation of the notion follows the
definition.

Definition 9: (a) Let & = (&, ®) be a formal syntax. A k-place schema
i & 1s a pair S, > such that

(1) Sis a decorated tree;

(ii) ¢ is a k-place sequence of distinct endpoints of S;

(ii1) for all 7€ Dom S, S(¢) is a pair;

(iv) if 7 is an endpoint of S which is not a member of #, then S(¢) is a pair
<Y, o> where y e U Range & and p = ({a: v € B}, o, 0);

(v) for i=o,..,k—1, [S(#)], =0 and [S(#)), is a triple the oth
member of which is a set of category names of & and the 1st and
2nd members of which are o;

(vi) if 7 is a point of S, but not an endpoint, then [S(r)], is a rule
{r, &, 4> € . Further, if ¢, . . ., t,_; are the immediate successors
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of ¢ in S then [S(#)}, is an #-place rule; and if, fori =o,...,n -1,
r, is the last component of [[S(#)},], then #¢ < 7/, Finally, if for no
i<k, t¢<<t then [S(Zo)lo, - - - [S(t, -, [S(2)]o satisfy {r, d, $);
and if for some i < &, # < ¢ then [S(#)], = o.

(b) Let<S, > be a k-place schema in & and let A,, . . ., Az, be analyses
of & such that, fori=o,..., & — 1, if « € [[S(#)],], then [A«0)], €8 o7(x).
A result of applying (S, £) to A,, . . ., A, (in symbols: (S, >(Aq, . . ., A1)
is an analysis A of &, such that

(i) Dom S € Dom A;

(i) f rteDom S and fori = o, ..., & — 1, # # ¢ then [A(D)]; = [S(1));;
(i1) fori =o,..., & — 1, Asis a subtree of A and #; is a top of Asin A,
(iv) if e Dom S and for no i < k, #; < ¢ then A(?) = S(z).

It should be clear that for every k-place rule p of & there is a k-place
schema S such that whenever A,, . .., Ay are analyses of % then A is the
result of applying S to A,, . . ., Ax iff [Az(0)], comes from [A(0)],, . . .,
[Ax-1(0)]o in the sense of definition 4(ii).

The notion of a schema, as it is defined here, should be regarded as a
generalisation of the concept of a schema as it occurs in symbolic logic.
There by a k-place schema one usually understands a formula with £ free
variables, e.g. a formula of sentential calculus with £ free sentential variables
Doy - + s Pp-1- The result of applying the schema S to & formulae ¢, . . ., ¢,
is then simply the formula which we obtain if we replace in S p, everywhere
by bo, - - -5 P eVerywhere by &, ;.

Schemata play an important role in translations. They appear indispens-
able when an expression v of the language % from which we translate, does
not correspond to any particular expression of the language £’ into which
we translate, even though every expression ¢ of . which is formed from y
and other expressions vy, . . -, Y1 does correspond, in a uniform way, to a
complex expression ¢’ of &£’ formed out of the correspondents vy, . . ., Yz~
in Z’ of v, . . -, Yi~1- In such a case we can usually represent the construc-
tion which gives us ¢’ from ¢, ..., ;4 by a schema. As an example,
consider the situation where 2 is a sentential calculus which contains the
sentential connective A (representing conjunction), and £’ is a sentential
calculus, which has the same sentential constants as %, but contains no other
connectives than ~ (negation) and — (material implication). A natural
translation from . into ¥’ will transform a formula {¢A ¢) into, say,
~(—>~). A possible example from translations between natural languages
is provided by the respective means of expressing the possessive in, say,
Dutch and German, where Dutch expresses this relation with the help of
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the preposition ‘van’; and German by using the genitive. This means that
‘of” will not be explicitly translated, but the (possessive) Dutch contexts in
which it occurs are nonetheless systematically translatable into German
equivalents. It should not be too hard to determine what schema will do
this. (I speak here of a ‘possible’ example, as it is not excluded that the
genitive ending in German should be treated as a separate lexical item. It is
just conceivable that in this case we could translate Dutch ‘van’ into this
item, and formulate the relevant recursive clauses of the translation definition
in such a way that e.g. ‘het boek van mijn vader’ is converted into ‘das Buch
meines Vaters’.)

Defintion 10: let & = (B, %) and &' = (%', #?') be formal syntaxes
and let % be a level of analysis in . A translation from & into &' down to &
is a pair Tr == {Tr,, Tr,> of functions Tr, and Tr; such that:

(1) the domain of Tr, consists of all those analyses A in & such that
Z(A) = {o};

(i) for each A in the domain of Try, Tr,(A) is either an analysis in %,
or else a schema in &',

(1it) the domain of Tr, is %;

(iv) if p is a k-place rule in 7 then Tr,(p) is a k-place schema in &".

Definstion 1r1: let &£, &', £ be as above and let Tr = (Try, Tr,) be a
translation from & into %’ down to .#. We define a function Tr*, whose
domain consists of some (though not necessarily all) analyses A in the
domain of .Z, as follows, by recursion:

(i) if £(A) = {o} then Tr*(A) = TrA);
(1) if AeDom 2, (o), ...,{k — 1) are all the one-place sequences in
Dom A and for 1 =o,..., B — 1, there are analyses A; such that
(1) (&> is a top of As in A, and (i1) Tr*(A;) is defined, then
(a) if for all ;<< & Tr¥(As) is an analysis in & and [A(0)l, = ¢
then Tr¥(A) = Try(e)(Tr*(A), . . -, Tr(A,4));
(b} if there is aj < k such that Tr*(A;) is a £ — 1-place schema of &’
and for i < k, i # j, Tr*(A¢) is an analysis in &' then Tr*(A) =
TrHANTr*(Ao), - - - Tr¥( A1), Tr¥(Assy), - . o, Tr¥(Ax-y)).

It is clear that in general, Tr* will #ot be defined for 4/l analyses Dom .Z.
We say that Tr is adequate if the domain of Tr* includes all those analyses
in Dom % such that [A(0)], € {g(0). Thus we are willing to call the

10*
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translation adequate as long as all formulae of & (which do not fall ‘below’
our level of analysis %) are translated by Tr. This criterion is to a certain
extent arbitrary and may well be strengthened so as to include the require-
ment that other categories in % also be fully translated. Our actual choice
of the criterion above reflects our viewpoint that the basic goal of a transla-
tion 1s the proper transformation of sentences.

Let & be a formal syntax. Then for any other formal syntax &’ we can
ask the question if & is adequate for translation from & into it. This
question seems, In this absolute form, rather meaningless. But we have just
seen that, relative to a level of analysis & for &, the question does make
sense: ' can be regarded as adequate for translation from &, relative to 2,
if there is a translation Tr from & into &', down to %, such that the
domain of Tr* includes every analysis A € Dom . such that [A(0)], € { g7(0).
For given % and &’ the answer is less likely to be positive as the level of
analysis 2 1s deeper. Indeed, if & is at least as deep as ¥’ and there is an
adequate translation from & into &’ down to %, then there is also an
adequate translation from & into %’ down to £".

The concept of a translation could be strengthened in various ways, even
if we stay within the present, purely syntactic framework. A natural require-
ment would be, e.g., that the functions Tr, and Tr, be recursive. However,
we will not further pursue the question whether the notion of a translation
should or could be strengthened in such ways. A truly meaningful discussion
of translations is possible only if the meanings of the translated expressions
and of their translations are taken into account: a translation should preserve
the meaning of the expressions which 1t translates.

4. Types

We will characterise the meanings of well-formed expressions of any formal
syntax . in terms of intensional models for that syntax. Intensional models
should be regarded as indexed ‘collections’ of possible worlds. (We hesitate
to use the word ‘collection’, since cross-reference from one such possible
world to others usually occurs in intensional models.) A well-formed expres-
sion will denote at each index of an intensional model an entity of the
appropriate kind. By the intension which an intensional model assigns to a
well-formed expression y we understand the function which, for each index
of the model, gives the entity denoted by y at that index.

We said that a well-formed expression vy of a formal syntax & should
denote at each index of an intensional model for & an object ‘of the
appropriate kind’. What we mean by this might be best elucidated by
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means of an example. Suppose that & = (&, &) 1s a formal syntax for
English, according to which proper nouns and common nouns are well-
formed expressions. It is natural that any proper noun should denote in
each intensional model for & at each index an individual of that intensional
model; similarly a common noun should always denote a class of individuals.
Thus the objects denoted by a proper and a common noun, respectively,
are of different sorts: individuals as against classes of individuals. The
question what sert of entity an expression denotes should be distinguished
from the question whick entities are denoted by the expression at particular
indices in particular models.

It is somewhat problematic whether this question should be considered
as belonging to semantics or to syntax. It is syntactic insofar as the type of
object that an expression denotes ought to depend—it seems-—only on the
syntactic categories to which the expression belongs. Thus the question what
sorts of objects are the denotata of well-formed expressions seems to be on a
level which is intermediate between syntax and semantics. We will therefore

treat it separately from, and prior to, our formal development of semantics
itself.

Definition r2: for any natural number n > o the types of n-sorted logic are
defined recursively as follows:

() Fori=13,...,n+ 2, {8 is a type;

(i1) if m 1s any natural number > o0 and o, . . ., Tm-y, Tm are types then
D Toy e« oo Tm—y . £0) and
2> Tow + -« v Tm-1.w Tm o <O) are types.

Definition 13: let S be a n-place sequence of sets.

(a) For any type  of n-sorted logic the realisation of « in S (in symbols:
Res(r)) is defined recursively by:

(1) fori=3,...,n+ 2, Reg({®d) = Se;;
(i) (@ fr={D 150 .o Tmg o {0, Reg(r) =P (Reg(tp)) ® ...
® Res(tm-));
(b) if T =<{2>_ To_ - -+ Tm-1_ Tm _ <0y then Res(t) =
Res(Tm)ReS(TO) ® ...® Res(tm-y).

(b) Cis a category connected with S iff C is the realisation of some type of
n-sorted logic in S.

8. If x, y are sets, then we understand by ¥ & y the cartesian product of x; by x7 the
set of all functions with domain y and range included in x; and by Z(x) the power set of x.
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"The intensional models in terms of which we will characterise the seman-
tics for formal syntaxes, will be multi-valued, i.e. we will not limit ourselves
to models which are based upon two truth values, True and False, but in
principle admit any non-empty set of truth values. Thus the basic consti-
tuents from which a model is built up are: (1) a set of indices (I); (ii) a set of
individuals (D); and (iii) a set of truth values (V). The sorts of entities in
the model are completely determined by these three constituents. Among
them are—the set of individuals (D): the proper kind of denotata for proper
names; the set of functions from I into D: the proper kind of intensions for
proper nouns; the set of functions from I into P(D): the proper kind of
intensions for common nouns; the set of functions from I into V': the proper
kind of intensions for sentences; etc. In general we will identify these sorts
of entities of the model with the realisations of typesin (I, V, D). Thus the
set of possible models for a given formal syntax % is limited by the types
which are associated with the well-formed expressions of %. Each expres-
sion ought to have as its intension, in a model built from I, V, D, an entity
in the realisation in (I, V, D> of the type of the expression. Thus the set
of possible models for a formal syntax & is relative to a function which tells
us for each of the well-formed expressions of & the type of that expression.?
In view of the principle that the type of an expression ought to be determined
entirely by the syntactic categories to which the expression belongs, such
functions can be characterised as follows:

Definition 14: let & be a formal syntax.

(a) A type function for & is a function F such that:

(i) the domain of J consists of all non-empty sets S of category names
of & for which N {go() # &;

aecs
(ii) the range of 7~ consists of types of 3-sorted logic;
(i) if I" is a set of category names and there is a subset I of T and a
well-formed expression y of & such that for any category name

aof &, aeliffy €L (@), then T(T) = T(IV);l0

9. In familiar symbolic languages, such as first and higher order predicate logic, or the
theory of types as formulated by Church, the syntactic categories are themselves the types,
so that no further specification of this function is necessary.

10. The significance of condition (iii) is this. I want to assume that the type of an
expression is completely determined by the categories to which it belongs. The precise
intention of this assumption is that whenever %, - . . 8y are all the categories to which a
certain expression v belongs, and v has type 7, then any other expression belonging to
% - - ., % Must also be of type , irrespective of whether it belongs to yet some other
categories. Thus any superset of {«,, . . -» %;} which is in the domain of + must get the
same value that {«,, ..., «,} itself receives.
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(iv) ifoel then T(I) =) o 3> . {4 {8

(b) Let J be a type function for &. For any well-formed expression
v of & we understand by 7 (y) the type = such that if I' is the set of « such
that y e { go(x Jthen v = J(I'). If A is an analysis of &, then by 7 (A)
we understand 7 ([A(0)],)-

Type functions for formal syntaxes provide us with a further natural
criterion for adequacy of translations: the type of the translation of an
expression should be the same as the type of the expression itself. This
seems perfectly plausible for certain types, such as the type of sentences or
the type of singular terms. Whether the principle should hold for 4/l types
of expressions to which the translation function applies is perhaps not quite
so obvious. However, the semantic criteria for adequacy discussed below
will explain why it is indeed natural to demand that translations preserve
type without exception.

Thus we arrive at the following definition of adequacy.

Definition 15: let &, &' be formal syntaxes; let 7, J be type functions
for &, & respectively; and let &£ be a level of analysis for &#. A trans-
lation Tr of & into &' down to & is adequate relative to J and 7' iff:

(1) Tr is adequate; and
(ii) for each analysis A € Dom %, 7'(Tr*(A)) = J(A).

The principle that the type of an expression should be uniquely deter-
mined by the syntactic categories to which 1t belongs is always observed
in the syntaxes and semantics of languages of formal logic. Moreover,
presently existing grammars for natural languages are for the most part in
agreement with it. For example, English expressions which, according to
traditional English grammar, belong to the same category (categories) do as
a rule denote objects of the same type. There are, however, exceptions to
this rule. An example is the traditional category of adverbs. Certain adverbs
(e.g. ‘utterly’) can be used both as modifiers of verbs and of adjectives, and
as modifiers of other adverbs.

It seems to me that grammars whose categories do not always determine
the type are unsatisfactory and should be replaced by more refined systems
in which the type of an analysis only depends on the categories of its top.

11. The last condition warrants that the realisation of the type of a formula of &
in ¢I, V, D> will always be a function from I into V.



296 Meaning and Translation

5. Interpretations

Qur last characterisation of adequacy for translations is still not satisfactory.
A translation should preserve the meaning of the expressions it translates,
not just the semantic types. In order to do justice to this stronger require-
ment we will now turn to the interpretations, or models, themselves. As we
said above, our models are built from three basic sets: the set of indices, the
set of truth values, and the set of individuals. In addition to these basic sets
a model will include a function which assigns to each ‘basic’ expression an
entity of the appropriate kind—the intension of the expression—and a
function which assigns to each rule a function which will yield the intension
of an expression formed by means of that rule when applied to the intensions
of the component expressions.

We have spoken in the previous paragraph about ‘basic’ expressions. We
do not want to restrict ourselves to the case where these ‘basic’ expressions
are simply the members of the basic categories of the syntax & in question.
We also want to consider cases where the ‘basic’ expressions—or, rather,
their analyses—are those which are basic relative to some level of analysis
for &. The reason for this is the following. We want to say that a transla-
tion Tr from & into &, down to level &, is adequate if it preserves the
meaning of all the analyses translated. But only those analyses are trans-
lated which belong to the domain of .. Thus we are interested only in
their meanings; and it seems unnatural to demand in these circumstances
that the meanings of analyses in Dom .# be analysed further in terms of
meanings of subtrees of these analyses which do not belong to Dom .
Indeed, it may well be the case that we do not have such a semantical
analysis at all, even though we do have a satisfactory semantical analysis of
the meaning relations between the analyses which belong to Dom &. On
the other hand, the models for % which assign meaning only to those
analyses which belong to Dom .# should include those which we obtain
when we ‘restrict to Dom %’ any model for & relative to some level &£’
which is deeper than Z; i.e. for any model for & which assigns meanings
to all analyses in Dom .#” there should be a model which assigns meanings
only to the analyses in Dom %, and coincides with the former on all of
Dom .. This requirement causes a certain difficulty in connection with
variables.

In general, some of the basic expressions of a language will function as
variables. This is true not only of formal languages, but also of natural
languages, where in particular the personal pronouns play such a role (in
some, though not in all cases). Such expressions will not denote particular
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objects, but ‘range’ over classes of such objects. Expressions which contain
variables will generally not denote particular entities either, for their de-
notations may vary with the denotattons of the variables they contain. On
the other hand, such complex expressions, unlike the variables themselves,
will generally not range over the class of a// entities of the appropriate type.
For example, the phrase ‘house owned by x’ will generally denote different
sets of individuals, according as x denotes different persons, but these sets
will always be sets of houses. Thus among the models relative to a level of
analysis % on which ‘house owned by &’ is a basic expression, there should
be at least some in which this expression ranges over a subset of the appro-
priate category which is neither a singleton nor the whole category.

The question remains if we have any means to determine for any of the
analyses which are basic in %, whether it is a constant (i.e. ought to denote
always a particular object), a pure variable (i.e. ought to range over the whole
set of appropriate entities) or an expression which could range over other
sets of entities of the appropriate sort. If we have no knowledge at all of that
part of the syntactic analysis of an expression which lies ‘below’ &, then we
can distinguish among the expressions whose analyses are not below 2,
only: (i) pure variables, (ii) basic expressions of the syntax which are not
variables, and (iii) compound expressions; of the latter we would never know
whether they ‘contain free variables’ or not, and so any subset of entities of
the appropriate sort should be regarded as a possible range for such an
expression. However, the natural situation in the present context seems to
be one where we have, on the one hand, a complete syntactic analysis but,
on the other hand, only a partial semantical theory, i.e. a semantic analysis
which does not go down to the lowest level of our syntax. (This is—
approximately—the present state of linguistic description of English.) In
this sttuation we can, since we know the complete syntactic analysis of each
expression, include among the constants at least those expressions the
analyses of which contain no variables at all. If we could in addition recognise
whether a variable occurs free in the analysis then we could include among
the analyses which are to denote particular objects also those which, though
containing variables, do not contain free occurrences of variables. Since,
however, we have not discussed any syntactic characterisations of freedom
and bondage, we will not go into this matter any further.

Thus far we have spoken of denotations as well as of intensions. In the
technical development, however, it will be expedient to pay exclusive atten-
tion to intensions. In view of our stipulations about the connection between
intensions and denotations it is clear that where denotations exist, the
intension can always be retrieved from them. Thus if every expression did
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indeed have denotations (at all indices in each model) as well as an intension
we could, in principle base the semantic account entirely on denotations, and
then, if we so desired, introduce intensions by explicit definition. It is not
clear however that every expression has denotation. The intension of a
sentential connective, for example, seems to be a function from propositions
(i.e. functions from indices to truth values) to propositions. But what is
the denotation of a sentential connective at a particular index? We could
stipulate that at each index the denotation of the connective is what we have
just called its intension. But that procedure would seem to be rather arti~
ficial. And I do not know of any compensating advantages that might justify
us in adopting it in spite of this artificiality,

Thus intensions will be our central semantic entities; and type functions
for formal syntaxes should be understood as giving the type of the intension
of an expression, and not of its denotations (clause (iv) of definition 14
should be understood in this perspective).

It will turn out that the objects that models assign to analyses are not
themselves intensions, but functions from assignments to intensions. This
unpleasant complication arises because, on the one hand, the intensions of
expressions that ‘contain free variables’ will vary with the assignments and,
on the other hand, the intension of a compound expression under a given
assignment will depend not only on the intensions of the components under
that particular assignment, but also on the intentions of the components
under other assignments. (This is, in general, the case if one of the com-
ponent expressions is a variable binding operator—as are, for example, the
quantifiers in predicate logic.)

Definition 16: let & = (%, 2> be a formal syntax. Let £ be a level of
analysis for & and J a type function for . Let & =<1, V,D)> be a
triple of non-empty sets.

(a) An assignment range for &, T in 7, down to £, is a function U
such that:

(i) the domain of U consists of the analyses A of & such that #(A) = {o};
(i) if A e Dom U and [A(0)], € ¢r(1) then U(A) = Re (T (A));
(i11) if A e Dom U and for all e Dom A, [A(#)], ¢ (1) then there is
an x € Re /(7 (A)) such that U(A) = {«};
(iv) if A € Dom U, [A(0)], ¢ C¢7(1), but for some # € Dom A, [A(2)], €
Lo(1) then U(A) = Re (T (A)).
(b) Let U be an assignment-range for &, < in &, down to 2. The set
of assignments in'U (in symbols: As(U)) is the set of all functions F such that:
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(i) Dom F = Dom U; and
(i) for all A e Dom F, F(A) € U(A).
() A model for &, T, down to L, based upon & is a quadruple
I, V', U, Gy, where
@ I'slTand Ve V;
(if) U is an assignment range for &, 7 in &, down to .&;
(i) G is a function the domain of which is 22;
(iv) for each k-place rule p =<r, ¢, > in &, G(p) belongs to

Re /(T (rr)sORe (T (r) D @ ... @ Re 3 (T (ri—y) 2O,

(d) Let & =T, V', U, G> be a model for &, &, down to Z, based
upon 7,

() For any analysis A in Dom %, the value of A in & (in symbols:
A*(A)) is defined as follows:

(a) if Ae Dom U, then A*(A) = {KF,F(A)>:F e As(U)};

(b) if & e€Dom.Z — Dom U, [A(0)], = ¢, p is k-place, and for
i=0,..,k—1, (i) is a top of A; in A, then A*A) =
G(e)A*(Ao), . . ., A*(As-y)).

(if) For any analysis A € Dom % we understand by the assignment range

of A i & (in symbols: U Z%(A)) the range of A*(A).

(i) Let A be an analysis in Dom % and let [A(0)], be a formula of &,
We say that A holds in (@ iff for all FeU and for all iel,
A*A)F)i)e V.

As is apparent from the previous definition V’ should be regarded as the
set of truth values which each correspond to some form of truth in the theory
of many valued logics; the members of V' are usually referred to as the
‘designated truth values’. It is important to allow for the possibility that the
set I’ be a proper subset of I. The need for this arises for example within
certain accounts of necessity and possibility, where we want to say that A
holds in a given model ¢ if what (the sentence) A (represents) is true at
some one particular index of & which represents the actual world. The
remaining indices are nonetheless required for the recursive definition of
intension.

Definition 17: (a) A semantics for &, T, down to 2, is a class of models for
&, 7, down to Z.

(b) Let € be a semantics for &, 7, down to . Let A be an analysis in
Dom £ and suppose that [A(0)], € { g7(0). We say that A is analytic in € iff
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whenever & = (L, V, U, T, V,U,G)e¥, FeAs(U), and ic I, then
A*A)F)) e V.

Models, as defined here, are both intensional and multi-valued. If we were
only interested in the characterisation of sets of analytic formulae, a simpler
definition would have been sufficient. Indeed, in that case it would have been
sufficient to consider either ‘two-valued’ intensional models (i.e. models in
which V = {o, 1} and V' = {1}) or else multi-valued ‘extensional’ models
(i.e. models in which I is a singleton and I’ = 1). To be precise, if % is any
semantics for &, ., down to %, and I is the set of analyses in Dom .#
which are analytic in %, then there is a semantics %’ for &, 7, down to & ,
consisting of two-valued models only, such that I is the set of analyses in
Dom % which are analytic in ¢”. Similarly there is a semantics %’ consisting
of extensional models only, such that I is the set of analyses in Dom %
which are analytic in €”. I have nonetheless characterised models in the
general way of Definition 16, since I believe that the construction of in-
tuitively natural semantics for natural languages may well require both a
variety of possible worlds, and a wide range of truth values. (Indeed, it
appears now that vagueness—a phenomenon so pervasive in, and, it seems,
so essential to, languages which serve the needs of normal communication—
can best be treated in a model theory employing a large truth-value space
which, however, has the structure of a Boolean algebra, rather than that of
a linear ordering: see e.g. Fine, 1975; Kamp, 1975.)

Our definition of a model says hardly anything about the semantic inter~
pretation of the various rules of the syntax . Indeed, our conditions only
warrant that the semantic entity assigned to a compound expression will be
of the right type. However, it seems natural to impose further restrictions
on the semantic operations that correspond to the rules of grammar. For
example, it is plausible that, like the formation rules themselves, these
operations should be recursive. Another natural restriction would be given by
the condition that whenever <I,V,D,I',V',U,G) and <I,V,D,I', V', U, G">
are models for &, 77, down to Z, then G’ = G. A stronger limitation than
this last one would result if we were to characterise the interpretations of the
grammar rules as formulae of some appropriate language which define opera-
tions of the appropriate sort. The intension of an expression vy in a model %,
based upon (I, V, D), where vy results from applying the rule p toy,, . . ., Y5,
would then be the result of applying to the intensionsin & of v, . . ., yr_
respectively the operation defined in (I, V, D, As(U)> by the formula which
interprets p. Furthermore, by admitting only formulae of certain forms as
interpretations of rules of grammar we could guarantee recursiveness.!2

12. Montague’s general recursion theory, would be suited to this purpose.
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I realise that many questions in this area are left unanswered, but will not
go into this matter any further.

Definition 18: Let &, 7, & be as above and let .#’ be a level of analysis for
& such that & is at least as deep as .Z’.

() Let & =<1, V,D, T, V', U, G) be a model for &, 7, down to .#".
The restriction of (X 1o £’ is the septuple I, V, D, I, V', U’, G) where U’
characterised as follows:

(i) The domain of U’ consists of all those analyses A of % such that
2(A) = {o);
(it) if A e Dom U’ and A € Dom U then U’(A) = U(A);
(ii}) if A€ Dom U’ and A ¢ Dom U then U'(A) = U;Z(A)'

(b) Let % be a semantics for &, 7, down to £. The restriction of € to &
is the class of restrictions to .#’ of members of %.

It should be clear that if (¥’ is the restriction to %" of 2 model % for &,
7, down to &, then &’ is a model for &, 7, down to #’; that for every
assignment F in the assignment range of ¢ there is an assignment F’ in
the assignment range of ¢’ such that for all A e Dom %", A"*A)F) =
A*(A)(F); and that the restriction to £’ of a semantics for &, , down
to & is a semantics for &, 7, down to .Z.

The concept of a semantics for a formal syntax enables us to formulate
various new adequacy criteria for translations. I find it difficult to decide,
within the present general framework, which of these criteria should be
preferred and will therefore present the various possibilities that have
occurred to me. These semantic adequacy criteria will all be variations of
the principle, from which we started, that translations should preserve the
meaning of the expressions translated. This principle can be stated only if
with the expressions translated as well as with their translations there is
associated some kind of meaning. This will indeed be the case if, for the
syntax & from which we translate and for the syntax %’ into which we
translate, there are models & and &', respectively, down to sufficiently deep
levels of analysis for & and &’ If & and @’ are based on the same sets,
and if their sets of ‘true’ truth values and relevant indices coincide, the
principle that translations ought to preserve meaning can be formulated
without too much difficulty. If the models do not correspond in this way,
however, the meanings of a translated expression and its translation can in
general no longer be easily compared. Even in such situations certain, more
complicated, formulations of the principle could be given; but we will not
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pursue this. We will consider the principle only in connection with models
which correspond in the manner just explained.

I have said already it is not the task of linguistic theory to specify the
intended models uniquely. We must deal with classes of models. Let us
suppose that &, & are formal syntaxes, that 7, 7 are type functions for
&, &', that ¥ is a semantics for &, 7, and that € is a semantics for &,
7", In what sense can a translation from & into & preserve the intensions
that the expressions to which the translation applies are being given by the
various members of €'? There is perhaps no unique answer to this question.
But one possible answer is the following: for each model ¢ in % there ought
to be a model @’ in ¥ such that any analysis A to which the translation
applies has the same intension in ¥ as its translation has in @’. Consistent
with the limitations which we set ourselves above, we will require that &
and (@’ are based upon the same sets and have the same sets of true
designated truth values and relevant indices.

Thus the adequacy of a translation will be relative to a function from %
into € which gives us for each & in % a thus corresponding &’ in %" (In
case €' is a semantics for a natural language, one might perhaps require that
the function be onto €', but in the case where ¥’ is a semantics for a formal
language, this requirement would be counter-intuitive. To see this it suffices
to think of the translations from English into first-order logic which, under
the name ‘symbolisations’, play an important part in any introductory course
of formallogic. The ‘schemesof abbreviations® (see e.g. Kalish and Montague,
1964) on which such translations are usually based, can be regarded at least
in part as devices to determine which of the possible models for first-order
logic correspond to models for English, and thus which models for first-
order logic should be disregarded in this connection.

A translation, as defined in section 3, is always from a syntax & into a
syntax &, relative to a level of analysis & for &. Only analyses in Dom %
are translated, and thus a semantics € for & down to ¥ will suffice for a
proper formulation of the new adequacy criteria for such a translation.
But what kinds of semantics for &’ does such a formulation require?

We could demand that the semantics for & always consist only of models
which assign meanings to all analyses in . Indeed, if &’ is a syntax for a
formal language, this condition normally will be satisfied. But if %’ is a
syntax for a natural language, this requirement seems unduly severe. On the
other hand, it is clear that certain semantics €” for & will not yield complete
adequacy criteria for a given translation from & into ", simply because the
models in €’ may well fail to assign intensions to some of the translated
analyses. We could in such cases weaken the principle and demand only that
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whenever a model in € assigns an intension to the translation of an analysis A
in €, this intention must be the same as the intention assigned to A by the
corresponding model(s) in #. We will, however, not consider this possibility
and discuss only the situation where the models in %’ do indeed give inten-
sions to all analyses in the range of the translation function.

Let us return for a moment to the case in which 4 and %" are singletons.
Let ¢ = {} and €' = {A"}, and let us assume that ¢ and &' are based
upon the same sets and that their sets of relevant indices and true truth
values coincide. Let further Tr be a translation from & into &, down to .2,
and let (&’ assign intensions to all members of Range Tr¥*. Tr is adequate,
we have said, if ‘the intension assigned by ¢ to any analysis A in Dom Tr*
is the same as the intension that &’ assigns to Tr*(A). This statement,
however, is in need of explanation, as a model assigns to an analysis not
simply an intension but rather a function from assignments to intensions.
As a matter of fact, for many an analysis this function is constant. This will
be the case whenever the analysis in question is of an expression which does
not ‘contain any free variables’. One may, in many cases, be interested only
in expressions of this sort, and thus prepared to regard the translation as
adequate as long as it preserves thesr intensions. This condition will be
satisfied in particular if the translation preserves the assignment ranges of a//
analyses it translates.

We will adopt a condition which is even stronger and demand that to each
assignment F(F’) in the assignment range of &(<¥’) should correspond to
an assignment F'(F) in the assignment range of &'(&¥) such that for all
A € Dom Tr*, &"*(A)F") = *(A)(F). Unfortunately there is no obvious
way of pairing assignments in ¢¥ with assignments in ¢Z’, and thus the
procedure of defining such a correspondence will be slightly involved.

Definition 19: let &, &' be formal syntaxes; let 7 and 7 be type functions
for & and &, respectively; let & be a level of analysis for &, % a semantics
for &£, T down to &, Tr a translatlon from & into &, down to &, and

€' a semantics for &', 9’ down to some level £, such that for all
A e Dom Tr*, Tr*(A) e Dom &,

(a) A meak interpretation of Tr, relative to €, %' is a function In from
% into €', such that for all & € €, & and In(<%) are based upon the
same sets and have the same sets of relevant indices and designated truth
values.

(b) Let In be a weak interpretation of Tr relative to %, %’ We say that
In is adequate if for all (¥ € € and A € Dom Tr* U * (A) . d)(Tr*(A))



304 Meaning and Translation

(c) Tr is called weakly adequate relative to €, €' iff there is an adequate
weak interpretation for Tr, relative to €, 4.

(d) A strong interpretation of Tr, relative to €, €', is 2 pair {In, Co) such
that:

(1) In is a weak interpretation of Tr, relative to %, €”;
(1) Co is a function, with domain ¥’

(i) for & € €, Co() is a many-many correspondencel® between the
assignment ranges of ¢ and of In(c%).

(¢) Let (In, Co> be a strong interpretation for Tr, relative to €, €'. We
say that <In, Co} is adequate if whenever A e Dom Tr*, X c% and
CF, F’) € Co(¥) then A*(A)(F) = (In())*((Tr*(A))(F").

(f) We say that Tr is strongly adequate relative 1o €, €', iff there is an
adequate strong interpretation of Tr relative to €, %’.

Of course, various other notions of semantic adequacy could be introduced
as well. In particular we could limit the requirement that a translation pre-
serve the intensions of the expressions it translates to expressions of a certain
kind: to the class of all formulae; to the class of all expressions not contain-
ing free variables; to the class of all sentences (provided that the notions of
freedom and bondage have been given); or others. In each such case we may
distinguish between weak and strong adequacy; however, in some cases,
such as the last two of the three mentioned above, the two notions will
coincide.

The notions of semantic adequacy defined above have the following
propertics. Let &, &', 7, 7", %, €, %", Tr, &', be as in definition 19.

(1) Let #” be a semantics for &', down to &', and let €’ < €”. If Tr is

weakly (strongly) adequate, relative to %, €” then Tr is weakly (strongly)
adequate relative to €, ¢”. .

(2) Let €” be a semantics for &, down to % and let € < %”. If Tr is

weakly (strongly) adequate relative to #”, %" then Tr is weakly (strongly)
adequate relative to %, €.

(3) Let £” be a level of analysis for & such that . is at least as deep as
" and let €” be the restriction of € to #”. Then if Tr is weakly (strongly)

13. We call a binary relation R a many-many correspondence if whenever x R u,yRu
and y R v, then xR v. If Dom R = A and Range R = B then we say that R is a many-
many correspondence between A and B.
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adequate relative to %, ¢’, there is a translation Tr’ from & into &', down to
" which 1s weakly (strongly) adequate relative to €”, €”.

Thus it is no more difficult to give a semantically adequate translation
when the semantics of the language /0 which one translates is /ess specific
(i.e. contains more models) or the semantics for the language from which one
translates is more specific (i.e. contains fewer models). And if a level of
analysis . for a syntax & is at least as deep as some other level £, then it
will be easier to give a semantically adequate translation from & into &’
down to Z” than it is to give an adequate translation from & into &’
down to #—provided that the semantics for & down to #” is indeed the
restriction of the semantics down to &

7. Translations as a means of formulating semantics

So far our discussion of translations has been based on the assumption that
the languages they link are characterised as formal syntaxes and semantics
of the sorts defined in the previous sections. However, at the present
moment no such characterisation is available for any natural language,
in particular not for English, the language with which the project was
concerned.’® One may therefore wonder how this paper could have any
significance for the particular translations which were produced on this
project and the usefulness of which we promised to explain. For what would
the claim that such a translation is adequate amount to, in the term ‘adequate’
is meaningful only with respect to a semantics for English of which at best
fragments are available?

In answer to this question one might reply that, even though at the
present time we have no complete description of English in terms of a
formal syntax and semantics, such a description nevertheless ‘exists’; in
some abstract sense of ‘exist’. Thus our claim that the translations are
adequate is meaningful, insofar as it refers to this unknown, but yet existing,
description.

From this point of view it is difficult to see how we could ever be justified
in claiming a particular translation to be adequate. For such a justification
would undoubtedly require knowledge of the description to which this claim
implicitly refers.

We can, however, interpret the claim that a translation is adequate as a
claim about the semantical structure of English: the semantics must be such
that relative to it and the semantics of the formal language the translation is

14 Cf the introduction of this paper.
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adequate. Indeed, given the semantics for the latter language and a formal
syntax & for English, the translation uniquely specifies a semantics for
English, consisting of interpretations down to the same level of analysis as
that to which the translation itself goes. Each model of this semantics corre-
sponds to a model belonging to the semantics for the language into which
we translate; it is based upon the same sets as this latter model, and assigns
to the elementary expressions of the translation and to the rules of & what
the latter model assigns to the translations of these expressions and rules.

In fact, one of the most natural ways to formulate semantics for natural
languages (at least in the present state of semantical theory) may be just this:
to develop a formal language (in the sense of this paper) and then to give
translations from the natural language into it. This is essentially what we
have tried to do in the translation part of this project. The formal language
developed there is by no means complete, and in particular only fragments
of its semantics have as yet been developed. But the general lines along
which the details of the theory should be worked out are clear enough to
lend substance to the claim that the translations are correct,



