NICHOLAS ASHER AND HANS KAMP

SELF-REFERENCE, ATTITUDES AND PARADOX

I. MOTIVATIONS

Ll

There is a sense, Godel taught us, in which elementary arithmetic and
other theories of comparable power can express and prove facts about
their own syntax. Godel showed also how that capacity can be exploited
in the construction of certain “self-referential” sentences by a method of
what might be called syntactic diagonalization. The example of self-
reference which figures most prominently in Godel's own paper is the
sentence which appears to say of itself that it is not provable. But
that this is only one out of an infinity of self-reflective statements is
indicated by the following lemma' which we repeat here for general
reference.

LEMMA 1. Suppose T is an extension of QF (Robinson’s arithmetic
relativized to ). Let @ be a formula whose only free variable is v,.
Then there is a sentence  such that &7 Y < @(Y/v,), where, if n is
the Godel number of ¢, ¥ is the n-th numeral.

The Godel sentence, which asserts its own unprovability, is obtained
from Lemma 1 by taking ¢ to be the negation of the formula which
expresses provability from the axioms of 7. Another instance of the
lemma gives us Tarski’s theorem of the “undefinability of truth”, which
asserts that in extensions of Of and similar theories there can be no
formula ¢(v,) which “expresses truth”, in the sense that all instances of
the Tarski 7-schema’,

v = o(Y)

are provable in the theory.

Actually it is somewhat misleading to refer to Tarski’s Theorem as
the “undefinability” of truth, for the result is really stronger than that
term suggests. It is not just that in a theory such as Q% in which no
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: - predicate has been set aside specifically as a truth predicate, no formula
.. can be found that satisfies all instances of the T-schema; the same
., argument which proves the non-existence of such a formula also
= - establishes the perhaps even more surprising fact that a truth predicate

cannot be added to such theories. If we extend the language of, e.g., Q?
with a new 1-place predicate 7, and adopt all instances of the cor-
responding version of Tarski’s schema,

¥ = 1I(y),

;. as axioms, then the resulting theory is inconsistent. Both this last

observation and the undefinability theorem properly so-called are easy
corollaries of Lemma 1. To obtain the first, take 1 to be the formula

17(2,). This yields a particular sentence @ such that both ¢ < T(¥)

>and 9 < T1T(y) are theorems of the new theory, which shows the

.- theory to be inconsistent. The undefinability of truth is proved by the

same reductive argument,
The stronger version of Tarski’s Theorem may be viewed as an

incompatibility result: two theories, each of which appears to speak
“truly about its intended domain, nevertheless cannot be combined into

K consistent whole. In the case covered by Lemma 1, the first theory is

Q4, while the second theory is given by the set of all instances of
., Tarski’s Schema for the language of Q# extended with the predicate T.

.V As Montague discovered, there are many more results of this general
-~ type: Two intuitively true theories, the first comprehending, in one form

or another, the theory of its own syntax, and the second embodying
principles that seem to capture all or part of the “logic” of concepts
such as necessity, knowledge or belief, turn out to be jointly incon-

sistent. Montague (1963) shows how such results can be proved, in

much the same way as Tarski’s theorem about truth, by judicious
applications of Lemma 1. The majority of the axiom systems which turn
out to be incompatible with theories like QF are strictly weaker than
the set of instances of Tarski’s Schema. Examples are the modal
systems'S, and S, and — of particular relevance to the present paper
— certain doxastic and epistemic logics, each consisting of a number of
intuitively valid principles concerning ‘x knows that’ or ‘x believes
that'> Montague (1963) exhibits a quite weak epistemic system con-
sisting of all instances of the schemata (K1) K(®) = ¢; (K2) K(@), if

‘@ is an axiom of 1st order logic; (K3) K(¢ —~ %) — (K(9) » K(¥));

and (K4) K(K(®) — @). These principles all have a good deal of
intuitive plausibility when K is interpreted as ‘x knows that’. When the
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predicate is taken to stand for belief rather than knowledge the first is
no longer justified. However, Thomason (1980) shows that if (K1) is
replaced by the reasonable doxastic principle (B1) B(¢) — B(B(¢))
while (K2)—(K4) are retained (with, of course, B instead of K) then,
the resulting system, although not formally inconsistent, is clearly
unacceptable. We repeat this revised set explicitly for future reference:

(B1)  B(p) = BB(P))

(B2) B(@),if @ isan axiom of first order logic;
(B3)  B(g = %)~ (B(9) ~ B(¥V));

(B4) B(B(®)~— @)’

L2

This paper is concerned with the epistemic and doxastic incompatibility
theorems. Our active interest in the problems they raise was kindled by
Thomason (1980). Thomason argues that the results of Montague
(1963) apply not only to theories in which attitudinal concepts, such as
knowledge and belief, are treated as predicates of sentences, but also to
“representational” theories of the attitudes, which analyze these con-
cepts as relations to, or operations on (mental) representations. Such
representational treatments of the attitudes have found many advocates;
and it is probably true that some of their proponents have not been
sufficiently alert to the pitfalls of self-reference even after those had
been so clearly exposed in Montague (1963) and its predecessor,
Kaplan & Montague (1962). To such happy-go-lucky representational-
ists, Thomason (1980) is a stern warning of the obstacles that a precise
elaboration of their proposals would encounter.

Thomason’s argument is, at least on the face of it, straightforward.
He reasons as follows: Suppose that a certain attitude, say belief, is
treated as a property of “proposition-like” objects — let us call them
‘representations’ — which are built up from atomic constituents in much
the way that sentences are. Then, with enough arithmetic at our
disposal, we can associate a Gédel number with each such object and
we can mimic the relevant structural properties of and relations
between such objects by explicitly defined arithmetical predicates of
their Godel numbers. This Godelization of representations can then be
exploited to derive a contradiction in ways familiar from the work of
Godel, Tarski and Montague. '

We ourselves have been developing a theory of propositional atti-
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tudes with strong representational implications,* and thus seem to have
made ourselves vulnerable to Thomason’s critique. As a matter of fact
the general approach we have taken does not commit one irrevocably
to the kind of representationalism that Thomason recognized as trouble-
some. However, we are persuaded that a comprehensive theory of the
attitudes will have to take account of representational structure in such
a way that it lays itself open to paradox. (We will give some of our
reasons for this conviction presently.) It is our view therefore that
Thomason’s challenge should be met, not by eliminating the prob-
lematic forms of representationalism, but by developing a coherent
framework in which these forms are possible.

This conclusion differs from the one that many philosophers have
drawn from Montague’s incompatibility theorems. They have often
been interpreted as showing that notions such as knowledge, belief or
necessity cannot be treated as predicates of sentences or similarly
structured representational objects. This conclusion seemed reasonable
because, already at the time when the Montague results became known,
an alternative framework for studying the logic and semantics of modal
and attitudinal notions had been established.

L.3.

This alter{lative framework is based on the semantical foundations of
modal logic that were provided by Kripke and others in the late fifties
and early sixties. Necessity is represented, following C. I. Lewis, as a

one-place sentential operator O, and O¢ is analyzed as true in a
possible world w iff

(*) @ 1s true in all worlds that are possible alternatives to w.

Hintikka (1962) exploited what is in essence the same conception in an
analysis of knowledge and belief. Knowledge and belief are represented
as sentential operators K and B, and the truth conditions for sentences
‘K¢’ and ‘B’ are given in the general form exemplified by (*).

The possible worlds approach has been immensely fruitful, not only
because it has given us insight into the logic of the modalities proper,
but also because it has offered a unified treatment of a large variety of
notions belonging to intuitively distinct conceptual domains. Moreover,
it has the apparent advantage of being immune against the paradoxes
that Kaplan and Montague discovered. To be precise, let T be a theory
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such that: (1) the language of T is a first order modal language, i€. a ..
language of first order predicate logic with an additional 1-place
sentential operator O; (2) the axioms of T are (a) all instances of the
schemata of S5,° and (b) all necessitations of instances of the axioms
and schemata of QF;° then T is consistent. Moreover, T has Kripke
models which incorporate a standard model of arithmetic at each of
their worlds; that is, there are models M = (W, R, D, [ ]) such that at
some world w, € W all sentences of T are true in M at w,, and for
each world w € W, D,, (the universe at w) includes the set N of
natural numbers, and succ, +, and - have at w their standard inter-
pretations within N.

An analogous treatment of knowledge and belief is equally immune
to the paradoxes that cause trouble for the sentential and representa-
tional treatments. This follows from the claim just made about O,
together with the fact that all the familiar (and plausible) epistemic
and doxastic logics are subsystems of §s. Since modal treatments are
capable of validating the familiar epistemic and doxastic logics, whereas
their sentential and representational competitors do not, the former
seem preferable.

But they also have serious drawbacks. Perhaps the most obvious one
is that, in the form in which we have just described the modal approach,
it does not permit quantification over beliefs and similar entities. There
are many things that we are quite ready to say in ordinary discourse,
and which appear to have a well-defined meaning, but which can only
be formalized if such quantification is available; for instance

1) Bill believes everything that Joe believes.
(2) Some of the things Joe believes are not true.

and so on.

This, however, is a shortcoming that can be corrected without giving
up the aforementioned advantage. It was one of the accomplishments of
Montague’s Intensional Logic® that it managed to introduce quantifica-
tion over propositions in a theory which treats necessity, knowledge,
and belief as predicates of propositions without thereby lapsing into the
inconsistencies that, as he himself had noticed a few years earlier,
threaten the sentential treatments of knowledge and necessity, and this
without having to abandon any of the intuitively desirable principles of
modal, epistemic or doxastic logic. (For instance, there are models
for Intensional Logic in which the arithmetical predicates have their
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“intended interpretations at each world and in which a necessity pre-
.-dicate has an interpretation which validates all of Ss5.) Within the
. framework of Intensional Logic sentences such as (1) and (2) are

- ¢ straightforwardly formalizable; e.g. (2) can be rendered by a formula

" asserting that not every proposition Joe believes is a true proposition.

L However, there are other problems with the possible worlds ap-

:7, proach that are more serious. One, which arises equally for expressively
- weak theories like Hintikka’s and for more powerful systems such as

that provided by Montague’s Intensional Logic, is that in all of them

. exchange of necessarily equivalent sentences within the scope of atti-

- tudinal verbs cannot alter the truth value of the whole. For any two
»: sentences that are necessarily equivalent will, according to these the-
- ories, identify one and the same attitudinal object. But this does not
seem right. As has been noted by many critics of the possible worlds
_ approach towards intentionality, belief and other propositional attitudes

- “do not seem to obey this substitutivity principle. It often appears true to

"+ say that someone believes that S, but does not believe that S,, even
. though S and S, are in fact necessarily equivalent.

| Advocates of the possible worlds approach will reply that in such
cases it isn’t strictly speaking true that the subject does not believe that
S,. Rather, he has the belief, but does not recognize it under the
description which S, gives of it. For some of the cases that have been
put forward as counterexamples to the interchangability of necessary
equivalents in belief contexts this reply is more plausible than for
others. Examples in relation to which it is not particularly plausible are
‘those involving mathematical beliefs. Anyone, we suspect, who has
done serious mathematical work will at some point have lacked belief
in a hypothesis he subsequently discovered to be a theorem (either by
proving the statement himself, or by finding it was already proved by
someone else). The possible worlds theorist should, if he wishes to
remain consistent with the reply we have just put in his mouth, maintain
that, of course, such a mathematician did believe the proposition the
hypothesis expresses — which according to standard possible worlds
theory is the one and only necessary proposition — all along; it is just
that he did not realize that that proposition could be expressed by the
words in which the hypothesis happened to be presented.

~ According to this explanation many things we quite naturally say —
- e.g ‘I don’t believe that’, in response to a mathematical statement that
" happens to be a theorem — are (trivially) false. This seems counterintui-
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tive, and an indication that the account is artificial at best. More
importantly, even if we were prepared to overlook this, the difficulty
that the proposal is meant to overcome would still be with us. For
we would now have to acknowledge that among the beliefs people
normally hold there are in particular those to the effect that a certain
sentence S expresses a given proposition p.® Whatever the possible
worlds theorist may wish to say about such beliefs, it is clear that they
involve sentences essentially: There is no way to construe their contents
as involving only propositions, because it is precisely the point of these
beliefs that they are not preserved under necessary equivalence. So a
theory in which there is room for them will necessarily transcend the
bounds of possible worlds semantics.

A different response to the criticism is to point out that the possible
worlds analysis of belief is concerned only with implicit, not with
explicit belief. Here implicit belief is to be understood roughly as
follows: Someone implicitly believes that ¢ if @ is entailed by the
totality of his doxastic commitments, even if he himself cannot recog-
nize @ as expressing a proposition to which he subscribes. This is a
belief concept which the possible worlds analysis captures accurately
enough, and arguably we do use the verb believe at least some of the
time to refer to this kind of belief. As implied by the last paragraph,
however, it certainly isn’t the only notion of belief that enters intp
ordinary discourse and thought. Nor is it the only kind of belief that is
important for logic or philosophy. So, the most that the possible worlds
approach can claim is that it gives a satisfactory analysis of some of the
attitudinal concepts. For the remaining ones it is simply not suited.

There is a multitude of such concepts. Beliefs that relate sentences to
propositions they are thought to express are among them, but they do
not constitute by any means the only cases. Consider for example the
relation which holds between an agent K and a (declarative) sentence S
if ‘K is justified in asserting S°. This is a relation not unlike knowledge;
in particular it would appear to verify the schemata (K1)—(K4) we
cited in Section 1. At the same time it is a relation whose second
arguments are sentences, not propositions, and one that is not invariant
under necessary equivalence. To be fustified in asserting’ S — at least
on one interpretation of this phrase — you not only need to have a
justified belief in the proposition that S; you must also be aware that S
expresses that proposition. But you may be aware that the proposition
is expressed by a sentence S, and yet not be aware that it is expressed
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by some other, necessarily equivalent sentence S,. S0 you may be

. justified in asserting §, without being justified in asserting §,, even

: - though S, is necessarily equivalent to A

1.4.

These are only some of a number of interconnected reasons why the
" possible worlds approach becomes untenable when attitude theories
are modified so that they reflect ordinary intuitions about attitudinal
notions more faithfully and directly, or are expanded to incorporate a
larger variety of such notions. To conclude that the possible worlds
approach is not the answer to the paradoxical results of Kaplan and
Montague no further arguments are, we think, required. Even so we
© want to mention yet another difficulty, one which does not arise for
* . the expressively weak theories exemplified by Hintikka’s, but does
affect those which are as powerful as Montague’s treatment within the
framework of IL. This difficulty is related to an interesting aspect of
. the general problem that the paradoxes present and that, perhaps,
. Thomason’s words of caution did not, for all their persuasiveness, bring
~ clearly enough into focus.
:  Thomason emphasizes the importance of what he refers to as the
- “recursive” character of the representational objects — by which we
take him to mean the principle that propositions are built up by certain
combinatorial principles from basic constituents. From the perspective
-* of the believer reflecting upon the pature of his beliefs, this emphasis
*» seems appropriate. Suppose that a person’s beliefs involve representa-
i tions that he himself sees as built up recursively in much the same
. way that sentences are. Further, suppose that he has some means for
‘thinking about the constituent structure of representations in a suf-
.. -ficiently systematic and detailed way. Suppose finally that the inferences
" he is prepared to acknowledge as valid (and which he consequently
' feels he may use to arrive at new beliefs from beliefs he already has)
-include the schemata (B1)—(B4) as well as those of classical logic.
Then he will be able to go from any apparently harmless belief to an
explicitly contradictory one by faultlessly reasoning in a way that
parallels the argument of Thomason (1980). At this point such a person
should feel perplexed — no less so, in fact, than the philosopher who
sets out with the idea that belief must be analyzable as a predicate of
sentences and that (B1)—(B4) are valid principles for such a predicate,
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but who then, perhaps by reading Thomason, discovers to his surprise - :
that things just cannot be that way.° o

This is a description of the problem which looks at knowledge and &
belief from what might be called an internal perspective, one that
focuses on the subject’s own reflections about his knowledge and
beliefs. We can also look at the issue from an external perspective
which concentrates on the practice of knowledge and belief attribution,
and on the logic and meaning of those sentences of natural language (or
of some regimented substitute for it) which serve to make such attribu-
tions. The most important difference between these two perspectives
relates to the distinct formal frameworks that they suggest for an
analysis of the problem which confronts us. As we see it, a formaliza-
tion suited to the internal perspective ought to be much like that
adopted in the cited papers of Kaplan and Montague, one in which the
attitudes are represented as predicates that apply to the very expres-
sions in which they themselves occur.!! The external perspective sug-
gests a different framework, one more like what, if we are not mistaken,
Thomason, and many of those for whom his caveats were intended,
conceive a representational theory to be like. In such a theory the
objects of the attitudes — let us refer to them once more as ‘pro-
positions’ — are distinct from the sentences of the language in which
the theory is stated. But of course propositions and sentences are
systematically related. The sentences express propositions. Indeed, it is
only by analyzing the expression relation that the theory will be in a
position to explain what attitude attributions are made by the sentences
which are most commonly used for this purpose — those in which an
attitudinal verb, noun or adjective (e.g. believe, belief or credible) is
followed by a complement sentence serving to identify the content of
the attributed attitude.

It would seem reasonable to demand of such a theory that it be
capable of asserting certain intuitively true facts concerning the relation
of expression. If it is able to say too much about that relation, however,
it will fall prey to the very inconsistencies which the semantic and
attitudinal paradoxes produce in theories that treat the relevant notions
as sentential or representational predicates. The reason is that para-
doxical sentences can be constructed not only when the objects of the
attitudes have enough propositional structure intrinsically. It suffices to
have a mechanism for correlating the attitudinal objects with the sen-
tences by which they are expressed, and thereby “transferring”, as it
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- were, the syntactic structure of the sentence to the object it expresses.
- Under certain conditions — viz. when the correspondence is represent-
~able within the theory itself — this will lead to paradox in the familiar
 ways.

'~ To illustrate the point, consider Montague’s Intensional Logic,

=z which, as we noted, is immune to the paradoxes so long as it represents

. the attitudes as relations between individuals and sets of possible

“% worlds. But suppose IL is enriched with enough arithmetic to permit

"1 Godelization (e.g. we add the axioms of Q to the valid sentences of the

-+ theory). Let H be some particular Godelization relation — i.e. n stands

- in the relation H to the sentence % if 7 is the Goédel number, according
" to some chosen Godelization scheme, of . This relation determines a
second relation G between numbers and propositions, which holds
“between n and p if n is the Godel number of a sentence which

- »expresses p. Semantically this relation is completely defined; ie., its

~_extension is fully determined in each of the models of this extended
.-.System of IL. It might therefore seem harmless to add to this system a
~.‘b11.1ary predicate E to represent this relation, and to adopt as new
axioms such intuitively valid sentences as: (@) E(n, ~vy), where n is
!the numeral denoting the Gddel number n of y; (®) (Yu)(Sen(u) <
HEL {D)E (4, p)), where ‘Sen’ is the arithmetical predicate which is satisfied
.+ by just those numbers which are Gédel numbers of sentences; and (€)
L Vp(?(n, p) = (¥p = )), where n and ¥ are as under (a). However, this
: addition renders the system inconsistent. For we can now define a ‘truth’
predicate T of Godel numbers, viz. by T(u) = @p)(E(y, p) & ¥ p)),
fmd sh_ow that 7(9) < v is provable for arbitrary sentence 3. The
inconsistency then follows as usual.!2
Let us summarize the conclusions we have reached so far. Thomason’s
warning must be taken to heart by anyone advocating representational
2 ftheories of the propositional attitudes. But in fact the perils he observed
are even more pervasive than his paper makes clear. They equally affect
theories that do not attribute much structure to their attitudinal objects,
. but which are able to express a good deal about the connection
between these objects and the sentences expressing them. Only the
familiar systems of epistemic and doxastic logic, in which knowledge
and belief are treated as sentential operators, and which do not treat
propositions as objects of reference and quantification, seem solidly
protected from this difficulty. But those systems are so weak that they
can hardly serve as adequate frameworks for analyzing attitudinal




SELF-REFERENCE, ATTITUDES AND PARADOX - 95

concepts. Once a framework has the expressive power which a compre- -
hensive account of attitudinal expressions and constructions requires, it -
will succomb to paradox unless the attitudinal logics it countenances -
are substantially weaker than the familiar systems of epistemic and
doxastic logic.

L5.

In the two preceding sections we gave some of the considerations that
have convinced us that a viable account of the propositional attitudes
must acknowledge the syntactic or representational structure of atti-
tudinal objects; and thus that such a theory, if it is to remain consistent
within a setting that allows for self-reference, must achieve this by
placing fairly rigid limits on the attitudinal logics it endorses.'”> But what
are these limits? There are two sides to this question. First, we may se¢
it as a request for a specification, say, in axiomatic terms, of which sets
of doxastic, epistemic or other attitudinal principles lead to incon-
sistency and which do not. Secondly, we may look upon it as the
demand for a new conceptual foundation of attitudinal logics, one from
which such logics will emerge naturally, and in such a way that their
compatibility with classical logic and self-reference is warranted by the
general method that is used to define them. It is with this second
concern in mind that we undertook the formal investigations reported
in Part I1, and, in particular, adopted the model theory of IL.1.2.
Fortunately, we did not have to start from scratch. Over the last
fifteen years much progress has been made on the closely related
problems that arise in relation to the liar paradox. It is from this work,
much of which was initiated by Kripke’s seminal Outline of a Theory of
Truth, that we have taken our inspiration. In fact, Kripke's paper
suggests an analysis of necessity along the same lines as the account of
truth which he explicitly develops. The model theory we will present
here follows this suggestion quite closely. But there is one important
difference. Rather than remaining with Kripke’s own partial-valued
method we have opted for the bivalent theory developed by Herzberger
and Gupta.'*
~ We have adopted the Herzberger-Gupta approach because it cap-
tures certain aspects of the process of belief revision that the reflection
on epistemically or doxastically paradoxical statements tends to set in
motion. Belief revision is an important aspect of the truth paradoxes as
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“well, a point that many papers on the liar paradox have stressed and
that seems to have motivated Herzberger and Gupta to develop their
* alternative to Kripke's original idea. But it seems to us that in connec-
h;;f»tion with the epistemic and doxastic paradoxes the revision aspect is
" "especially important. This is illustrated by the hangman paradox, the
= study of which led Kaplan and Montague to the discoveries mentioned

2% in Section 1.

- The story of the hangman has many versions, but they all come to
" essentially the same thing. Here is one. A judge decrees on Sunday

. noon that a prisoner, X, is to be hanged at 6.00 a.m. on one of the next

- seven days, but that K will not know until 30 minutes before the time
" he will be hanged that the execution will take place on that particular
. day. By a series of superficially plausible inferences K concludes that

B the judge’s decree cannot be fulfilled. In this way he comes to believe

¢ that he cannot be executed, a euphoric condition which is ended

. abruptly when, at 530 am. on Wednesday morning, the hangman

- arrives to lead him away to the gallows. By 6.30 a.m., when death has
¢ been officially pronounced, the decree has, K’s deductions notwith-
“ Astanding, been carried out to the letter.

. The reasoning K goes through becomes easier to discuss if we
j"':simplify the story so that it involves only two days. (As has been

- observed before, this does not alter or eliminate any of the important

;}\:{ fe‘atures of the paradox.) In this simpler version the decree states that K
- will be executed at 6.00 on either Monday or Tuesday and that he will

not know when he will be executed until 30 minutes before it happens.
F or convenient reference, let us represent the decree as

(1) (M& (3t < t,)K,M) V (T & 73t <t1)K,T),
where ‘M’ (‘T") abbreviates ‘K will be hanged at 6.00 a.m. on Monday

(Tuesday)’; ‘K, @’ abbreviates ‘K knows at ¢ that ¢’ and ‘t); (‘t7)
abbreviates ‘5.30 a.m., Monday (Tuesday) morning’. K starts out in

- the belief that (1) is true, accepting it on the strength of the judge’s

*- authority. He then reasons as follows: Can they execute me on Tuesday?
"“No. For then, any time after 6.00 a.m. Monday I would know that I
~‘have not been executed on Monday, i.e. —3M. This would, in com-

-bination with my knowing (1), entail that I know that T at some time

‘before ¢, which contradicts (1). Therefore, since (1) entails 117, and I

.- know now that (1), I also know now, and thus at some time previous to
.y, that M. But that contradicts (1). So I cannot know (1) after all.
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In the story as we have told it, K considers this to establish that the
decree cannot be fulfilled. It has been claimed that this is a simple -
fallacy. All that K is entitled to infer at this point is that he does not ~*:
know that (1), not that (1) is false.”> We do not think however that this
bland observation does complete justice to the situation. The inference
might be defended as follows. At the outset K took (1) to be something
he could know because that is the norm for judges’ decrees; as a rule
we are entitled to take verdicts issued by a sitting magistrate as proposi-
tions we know to be true. But after K has inferred from this plausible
starting assumption that it is after all impossible for him to know that
the decree will be fulfilled, it seems not unreasonable that he should
come to see the decree as defective, and to reject it.!®

However, K’s subsequent reaction, that of relaxing in the comforting
conviction that the execution cannot take place, has no justification. He
would have been well-advised to reflect further on the conclusion
reached, and to reason as follows. “But if I do not know that the decree
is true now, then, presumably, I will not know this either if and when,
one of these next two days, they will come and hang me. So it would
after all be possible for the decree to be carried out.” Having thus
concluded that his grounds for rejecting the decree were no good, he
might then have returned to his original assumption that the decree is
something that he can take himself to know. At this point he would be
back where he started, poised for another deductive loop.!’

As a matter of fact K is guilty of a fallacy well before he makes the
alleged mistake of concluding that the decree cannot be fulfilled. This
fallacy occurs when he infers from the premise that he will know on
Monday after 6.00 a.m. that he has not been executed on Monday the
conclusion that he will then also know that he will be executed on
Tuesday. That inference depends on the further premise that he will
know at that point that the decree is true. It is tempting to infer this
premise from the standing assumption that the decree is known to him
as true at the earlier time when he makes the inference, on the principle
that knowledge once gained is to be had forever. But it is precisely in
the context of reflections such as those occasioned by the hangman
paradox that this principle becomes questionable. For in the course of
his reasoning K abandons beliefs he previously held. Thus, if any of
those beliefs qualified as knowledge while he had it, then — on the
reasonable assumption that one cannot be said to know what one does
not believe — he no longer has that knowledge once he has given up
the belief.
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" This fallacy illustrates what in recent years has come to be recognized
" as one of the main sources of non-monotonicity in human reasoning.!®
. When we reason about our own knowledge or beliefs we often alter our
.. beliefs in the process. As a consequence some of the very inferences we
+_have been drawing may become subsequently unsound, since they were
" based on premises that are no longer true. This possibility arises
" already when the subject confines his attention to the present: assump-
- “* tions about his beliefs or knowledge that were true at the outset may
* " become invalidated by the changes of mind that his reflections have
~* brought about in the meantime. But the non-monotonicity we en-
. counter in the deliberations of K has an added dimension, since they
-+ involve projections of what his beliefs will be like in the future. As K’s
_case makes evident, such deliberations can erode the very basis on
~ which these projections were made long before the beliefs on which
- they are based are in a position to confirm them.
This brief gloss of the hangman puzzle is reminiscent of certain
points that have been made in relation to the liar paradox. In particular,
the inference which K seems entitled to draw after he has rejected the
decree, and in reflecting on this has realized that the decree could be
fulfilled after all, recalls a familiar move in reasoning about the liar
- sentence “T am false™ after the sentence has been established as neither
- . true nor false, one notices that this is a state of affairs which contradicts
. what the sentence says, so that the sentence is false after all. The
' Intuitive justification for this inference is that at the point when it is
- made the actual state of affairs appears to be not as the sentence says it
tis. However, we expressly used the word ‘appears’ here, for whether the
actual state of affairs really is this way is precisely the point at issue; in
fact, only a few additional steps of the argument will make it seem to be
just the opposite.
~ K’s inference resembles this move in that it too yields a new assess-
ment of a certain sentence by having another look at a state of affairs
that is relevant to its truth.’® But there is nevertheless an important
difference between the two inferences. The person who infers that the
~ liar sentence is false after all does so because at that point the relevant
state of affairs appears to be contrary to what the sentence says. In
* contrast, when K concludes that the decree is after all capable of fulfill-
ment, he does so because the state of affairs in question — which, in his
case, includes his own beliefs — has undergone a real change.
Of course, by continuing to reason along the same lines K may soon



SELF-REFERENCE, ATTITUDES AND PARADOX 7. 99

find himself once again in a state in which he does believe that the
decree can be fulfilled. After that we may expect him to reach an
uncomfortable equilibrium, in which he simply does not know any
more whether or not he should believe the decree. Yet, there would
seem to be at least an initial period during which his belief states
undergo real changes as his reflections progress. It is for this reason
that we see revision as an especially significant aspect of the attitudinal
paradoxes, and that we have tried to find a framework which, even if it
ignores other important factors — such as, e.g., that of time, or the
relation between knowledge and belief — captures something of the
doxastic oscillations which these paradoxes tend to set in motion.

L6,

The framework we have adopted for the formal investigation reported
in Part II combines the iterative method developed in the cited papers
of Kripke, Herzberger and Gupta with Hintikka’s possible worlds
analysis of knowledge and belief. In the light of what we have said
about the possible worlds approach and our stated preferences for
theories that allow attitudes a certain sensitivity to representational
form, this is probably surprising. So here is a brief explanation of this
choice.

On the one hand our choice is a practical one: most recent technical
work on the logic and semantics of the attitudes presupposes the pos-
sible worlds analysis. By adopting this same analysis of intensionality,
we have, we believe, made it easier to appreciate those respects in
which the present treatment differs from extant theories, in particular
our use of a semi-inductive revision scheme in an intensional setting,
the exploration of which has been our primary concern in the investiga-
tions reported in Part II. A framework reflecting our own theoretical
prejudices more accurately would certainly have made the comparison
with existing proposals more tenuous.

Our choice, however, is not solely one of convenience. Moreover, it
is not as much in conflict with our theoretical convictions as it might
seem. As we have argued elsewhere,? there is not just one doxastic or
epistemic “logic”, but a variety of them, differing either because they are
associated with distinct notions of knowledge or belief, or because they
are designed to capture distinct concepts of logical consequence. Many
of those alternatives, however, turn out to be substantially weaker than
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theﬂ systems we have mentioned in Section 1, and fbften'they are weak
‘enough to be compatible with theories which can speak about their own
‘syntax. The familiar logics of implicit knowledge and belief are among

. “the few that need to be revised if these attitudes are treated as pre-

h - dicates of sentences in such theories. Most importantly, the investiga-

_:tions we have begun here chart the limits within which doxastic and

. epistemic logics must remain if they are to be compatible with these
.. theories. In this way they establish admissibility criteria that any com-

"% patible attitudinal logics, including those based on representational

- conceptions of knowledge and belief, must satisfy.2!

- While these reasons provide a certain justification for the framework

«. we have adopted, we do not regard it as definitive. In future work we
‘hope to reconsider the issues we address in Part I within a more
- explicitly representational setting,

II. FORMAL DEVELOPMENTS

\II.I. Semantics
Il

.. The results we mentioned in Section .1 pertain explicitly to theories
“which include certain fragments of arithmetic. Such theories can mimic
~ talk about their own syntax by identifying syntactic objects with natural
numbers and representing their syntactic properties and relations by
means of arithmetical predicates. This offers one way of constructing
“self-referential” sentences, sentences that behave as if they were
referring to themselves but which, stnctly speaking, talk about their
own codes. But not all self-reference is by proxy. There are theories
that we interpret as referring literally to their own expressions, and as
thereby permitting the construction of sentences which are self-referen-
tial in the strict sense of the word.

- For many purposes it is immaterial whether the theory one studies
can speak about its own syntax directly or only vicariously. We have
found, however, that for some of our purposes theories that allow for
~ literal self-reference are somewhat more natural. In theories that
°_ contain arithmetic, or which have equivalent means for representing
£ .syntax, there is what might be called a global potential for expressing
self-reference. As Lemma 1 of .1 asserts, such theories have, for each
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expressible property P, a sentence which is equivalent to the statement -

that it itself has P. However, many actual cases of self-reference do not * =
arise in this way, but rather because a singular term (e.g. a definite -~

description or a demonstrative) picks out, often for contingent reasons,
a sentence in which it itself occurs. Such examples have often been
studied in abstraction from other instances of self-reference.

While pursuing some of the same issues, we too have found it
convenient to investigate the relevant examples in settings where all
other instances of non-trivial self-reference are absent. The method by
which we secure this involves two separate devices. The first is to
consider models in which individual constants denote sentences con-
taining those constants. The second is to make sure that there are no
other self-referential sentences, by stipulating (a) that no constants
besides the given ones denote sentences in which they occur, and (b)
that the syntactic predicates needed to construct self-referential sen-
tences in the first way are not definable. Condition (b) can be imposed
by assigning the primitive predicates of the language interpretations that
draw no (or only rudimentary) distinctions between sentences.”* It is in
this connection that a framework permitting literal self-reference seems
more natural than one in which self-reference arises through arith-
metical simulation. In order to limit self-reference in an arithmetical
language to just those instances that are the subject of investigation, we
would have to give its arithmetical predicates interpretations that are
extremely non-standard. While this is technically feasible, the result is an
interpreted language that is arithmetic in name only. The distinction
between a theory that talks about its own expressions by referring to
correlated “numbers” and one which refers to its own expressions
directly has at this point become academic. For this reason we will
restrict our attention to literal self-reference.

I11.2,

Kripke (1975), Herzberger (1982), and Gupta (1982) treat truth as a
predicate T belonging to some language I and applicable to the
sentences of L. They develop methods for approximating the usually
unattainable ideal of finding an interpretation for L in which the
extension of 7 coincides with the set of all L sentences true on that
interpretation. These methods all involve repeated adjustment of the
extension of 7, where each adjustment consists in making the extension
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of T ‘equal to the set of sentences that have just been determined as
true. As a rule the process has to be repeated, since a change in the
- extension of T is likely to alter the set of true sentences as well. The
“present study follows this work in two ways: the first in that it treats
" belief — which is the only propositional attitude with which we deal in
‘this formal part of the paper — as a predicate of L which applies to the
- sentences of L, and the second in that it employs the same techniques
' to approximate the ideal of an interpretation in which the extensions of
~ the belief predicate coincide with the sets of sentences which, on the
~ [ interpretation, are in fact believed.
. But what is it for a sentence to be “in fact believed”? It is here that
“" we have decided to rely on the possible worlds approach: the sentences
. that are believed are those that are true in all the doxastically possible
- worlds. As in Hintikka’s theory which we briefly described in Section
: 1.2, the natural formalization of this principle makes belief itself relative
- to a world: the belief predicate B has an extension at each world w, and
:at each world w its extension should ideally coincide with the set of
- sentences true in each of w’s doxastic alternatives. When the two do not
Foincide, an adjustment is called for. We adjust by setting the extension
of B at w equal to the set of sentences true in each of w’s doxastic
.alternatives. -
~ We thus arrive at the following semantic framework. Let L be a
~language of first order logic with identity, which has a denumerable
“infinity of individual constants, but no function constants of one or
more places; we assume that L ‘has two distinguished 1-place pre-
dicates: S, a predicate to be thought of as true of all and only the
sentences of L; and B, a predicate that is to be thought of as true of all
and only those sentences which are believed by some fixed subject K.
We will refer to the set of constants of L as C, .
‘A model for L is aquadruple .# =(W, R, D,[ ]) such that;

()" Wisaset (of possible worlds);

;(i'i) R is a binary relation on W (wRw' means that w’ is a
doxastic alternative for K in"w; we will usually denote the
set of alternatives to w as [wR));

(iif) D is a function that assigns to each w € W a non-empty set
D,, (the domain of individuals at w);

(iv) [ ]is a function which assigns to each non-logical constant
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of L at each woﬂd a suitable extension: if ¢ is an individual ..
constant of L, [c], € U, cw(D,); and if Q is an n-ary .
predicate of L,[ O], S (U, e w(D,))™ -

) for each w € W,[S],, is the set of sentences of L;
(vi) foreachw € W,[S], & D,;
(viiy  foreach w € W,[B], &[S],.

For simplicity, we assume that models satisfy the following additional
conditions:

(viii)  the domain of individuals is constant — ie,forall w, w & W,

D, =D,=D,

(ix) each individual constant c is a rigid designator, i.e., for all w,
w e W,[Cﬂw=ﬂc]]w" ’

(X) the model is referentially complete, i.e. for each d € D and

w € W, there is a constant ¢ of L such that[c], = d.*

Besides the notion of a model we also need that of a model structure.
Model structures are like models except that they do not assign exten-
sions to the predicate B. In other words they are models for the
language L-{B} rather than for L. In general there is more than one
way of expanding a model structure into a model. Model structures will
be indicated by ordinary capitals, e.g. M, while we use script letters, e.g.
M, to refer to models.

Any model .# appears to provide two distinct means of determining
whether K believes that @ in a given world w. The first is to check
whether @ is true in all worlds w’ such that wRw’. The second is to
check whether ¢ & [B], . Ideally it should not matter which means
we choose; the extension of B should correctly reflect the beliefs K has
at w, as determined by the set of worlds that stand in the relation R to

w. So the following analogue of Tarski’s famous requirement ought to
hold:

Convention B: ¢ € [B],, iff ¥ is true in £ at all
w € [wR,].

We call # (doxastically) coherent iff Convention B is satisfied for
each sentence y and eachworld w € W,,.
Many models fail to meet Convention B. In an incoherent model .,
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[B], is a faulty tecord of what the alternativeness relation R has to

~say about K’s beliefs. To correct the faults, {B], must be adjusted.
-so that for all w € W, [B], , equals the set of sentences true at all
‘w € [wR,]* However, since adjustments in the extension of B at
- w € [wR,] can cause certain sentences to change their truth values at

- w', the new extension of B at w may still be out of synch with what-

“i1s true in all of w’s alternatives. In that case the new model is still
© incoherent, and a further round of adjustments is called for. Often the

adjustments will have to be made again and again before coherence is

" reached. Sometimes coherence will remain unattainable no matter how
~ “many times the procedure is repeated. In these respects our’ theory
- resembles the semi-inductive truth theories of Herzberger (1982) and

* Gupta (1982).

Another point of similarity with these theories is that even when the

ideal of full coherence is unattainable, repeated adjustments may lead
** to closer approximations of that ideal, in which there are fewer and

* . fewer exceptions to Convention B. It may happen, moreover, that
* any finite number of adjustments yields a model that can further be

.improved by another revision. In such situations, it is desirable to

collect the successive improvements gained through an w-sequence of

--revisions in a single model. Gupta and Herzberger propose different

. ules for doing this. Their rules handle the intuitively unequivocal cases

; . in the same way but differ on the cases in which intuition does not
~ provide firm guidelines. In fact, they are only two of an open ended set

~of alternative rules for revision, all of which coincide in the cases where

intuitions are clear. We have chosen Herzberger’s rule of revision,
in which the extension of B at w is to consist of all and only those

‘sentences which have been in [B],, uninterruptedly from some stage
onwards. Thus, the new extension records ¢ as believed (at w) if and

only if this has been on record unchallenged throughout some end
segment of the infinite sequence of revisions. Although we have no

- conclusive arguments favoring this rule over all its competitors, we will

show some of the implications of this choice for the logic of belief in

" SectionI1.2.2°

.~ . As with the mentioned theories of truth, the model which results
" from collecting all revisions achieved at finite stages of the adjustment

" procedure may still be capable of further improvements. Again, it may

" be that no finite sequence of further improvements produces an ap-
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proximation that is optimal. In that case we should once more collect
the improvements that have been achieved at all those stages. In general
we want to be able to collect the benefits of any unbounded sequence
of revisions (at successor stages) and collections (at limit stages) into a
single model.

Following Herzberger, then, we arrive at the following general defini-
tion of model revision. Given any model .# we define for each ordinal
a the model .# ¢, where #°¢=(W,,D,,R,,[ 1*),16]*=[6], for
all nonlogical constants 6 other than B, and [ B]* is defined as follows:

M [BIS, =1B].
(i) [Ble*!={g@ YW (WRW —[@] ., = 1)}
(iii) For limit ordinal a,
[Ble={@:@B < a)(YP)(B <y <a~-g&E[B])

We say that a sentence @ is stably true (false) in a model & at a
world w iff [@] 5, = 191, = 0) for all f. ¢ is positively
(negatively) stable in a model & at a world w iff ¢ € (&) ﬂBﬁj}’w for
all 8. Evidently, if [c] , = @ then @ is positively (negatively) stable i‘n
A at w iff B(c) is stably true (false) in .# at w. @ is called stable in
# at w iff @ is either stably true or stably false in . at w, and stable
in J# iff it is stable in . at all w € W, Furthermore, @ stabilizes at
an ordinal a in a model % (at a world w) iff a is the first ordinal B
such that ¢ is positively or negatively stable (at w) in #%. a is a
stabilization ordinal for # (at w) iff every ¢ that stabilizes in .# (at
w) stabilizes at some ordinal < a in .# (at w). Along the lines of
Herzberger (1982), it can be shown that for every model . there is a
¥ such that (i) for every sentence ¢ and any world w if ¢ stabilizes in
A at w then @ is positively or negatively stable in .7 at w, and (ii)
for each w and 8 > y [B], , S [Blf, . We call y a perfect stabiliza-
tion ordinal for #, and call .# " semistable. If B is any ordinal greater
or equal to the first perfect stabilization ordinal for .#, the model .##
is called a metastable model,

A model structure M which assigns viciously paradoxical interpreta-
tions to certain sentences cannot be turned into a coherent model in
any way whatever. We will call such a model structure essentially
incoherent: M is essentially incoherent iff every model that is an
expansion of M is incoherent.
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. Whether a model .# can be made coherent through revision depends
*on a number of factors. Three of these factors will be of special
. importance in what follows. They are: (i) the properties of the alterna-
., tiveness relation R, (i.e., whether R, is transitive, etc.); (ii) the initial
. extension [B]% , and (iii) the kinds of self-reference that are realized in
.+ . What is meant by (i) and (ii) should be clear. But (iii) requires
" explanation.
. There are essentially two semantic mechanisms by means of which
. self-reference can arise, naming and quantification. Self-reference

.. through naming, which we shall call designative self-reference, arises

~_when a constant refers to a sentence which contains that constant as a
- constituent. Some instances of designative self-reference — for instance
: Fhat of a constant ¢ which denotes the sentence B(c) — are relatively
- Innocuous. An example of troublesome designative self-reference is that
* of a constant b which denotes the sentence T1B(b). Indeed, we will see
. in Sec.tion IL.1.5 that a model structure M such that [b] = B(b) s
k_essentia.lly incoherent unless its alternativeness relation has some quite
‘counterintuitive property (see Proposition 7 below).
As has been known at least since medieval times, designative self-
“ reference need not involve just one constant. For instance, it- may
;{ happen that b denotes the sentence T1B(c) while ¢ denotes the sen-
tence B(b). A model structure in which this is so will be essentially
Jincoherent under the same conditions which entail essential incoher-
ence for a structure in which b denotes T1B(b). In general this kind of
“self”-reference may involve any finite number of constants. So the
-relevant general definition of designative self-reference is that there are
constants ¢;, ..., c,, such that forall i with 1 < i < n — 1, ¢; denotes
a sentence containing ¢; 4., and ¢, denotes a sentence containing c;.
‘When the set {cl, cee cn} satisfies these denotation conditions in the
model structure M we call it a self-referential set in M. We say that M
has designative self-reference iff there is some set of constants
{€1,. .., c,} whichis self-referential in M.
;. The other kind of self-reference arises whenever a quantifier in a
" sentence @ ranges over a set to which ¢ itself belongs. In our models,

~:all of whose universes include the set of sentences of L, such self-

“%, reference is literally ubiquitous. However, there are situations in which
7~ 'this kind of self-reference is nonetheless harmless. In the next section
we will take a closer look at the conditions under which this is s0.?°
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Since the subject of the present section is quantificational self-reference,
we will restrict our attention to model structures in which there are no
instances of designative self-reference. The following condition guaran-
tees this. Given any model structure M, let <,, be the transitive closure
of the relation which holds between two constants ¢; and c, iff [c,],, is
a sentence of L containing ¢, as a constituent. Evidently M has
designative self-reference iff <,, has a loop. So the model structures to
be considered here are those for which <,, is loop-free. As a matter of
fact we will impose a slightly stronger constramt viz. that <,, be well-
founded.?’

Through Godel’s work we know that in certain contexts exemplified
by theories of first order arithmetic, the power of quantificational self-
reference is unlimited. Lemma 1 gives a concise statement of this fact.
But for this to be so it is not enough that the sentences of L belong to
the domain of quantlflcatlon Gupta (1982) discusses this matter at
length. He addresses in particular the question precisely of how much
we may allow a theory to say about its own syntax before quantifica-
tional self-reference leads to paradox. The results of this section largely
follow his discussion. But Gupta is concerned with truth, not belief, and
therefore he does not have to contend with the complexities of inten-
sionality, To be precise, the models he and other truth theorists have
studied can be identified with those model structures for which the
set W is a singleton {w} and the relation R consists of the single pair
(w, w).28 We will call such model structures, as well as the models that
expand them, extensional.

Gupta notices that one type of situation in which quantification over
the set of sentences is harmless arises when no predicate other than the
one under scrutiny — for him the truth predicate 7, for us the belief
predicate B — is capable of making any distinctions between different
sentences. Gupta calls a predicate that lacks this capacity sentence-
neutral, In our terminology, an n-place predicate Q of L is sentence-
heutral in a model structure M iff for each w € Wy, each { such that

I<i<nandalla,...,a;_, @,y,...,a, € Dy and 5,5 € [S],,
(@i, ooy @1, S, Giyrs - en s @) €10y, iff (ay, ..., a;_y, 8,
QGsty ..., a,) € [Qly - We say that M is sentence-neutral iff every

Predicate of L other than B is sentence-neutral in M.
One of Gupta’s statements is to the effect that every (extensional)
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‘sentence-neutral model structure can be expanded to a coherent model.
'This result generalizes to non-extensional model-structures.”® Our
_proofs of this and related results follow a somewhat different method
-+ from Gupta’s; we make essential use of a normal form lemma, which we
.+ state here without proof.** This lemma relies on the following notion.
<" Let «# be a model and let ¢ and w be formulae of L whose free

-+ variables are among x,, ..., x,. We say that @ and 1 are ./#-equivalent

iff for any w € W, and for any a,, ..., a, € D@y, ...,a)]ew=
[w(ai,...,a)]4

" LEMMA 2. Let M be a sentence-neutral model structure and let M

. be a model which can be obtained by revision of some expansion M’ of

o M (ie. M = M'* for some a > 1). Then each formula ¢(¥) of L is

\ M -equivalent to a Boolean combination nf(p) of formulae of the three
. . Jollowing forms: (i) B(x) for some variable x occurring in the list ¥, (ii)
: l_?(c) for some constant c occurring in @, (i) formulae not containing B,
(V) B(c) where [cp]y = @Ax) x # x & (dx) x # x. Moreover, if

c L Yw e Wy [wR] # 0 then nf(@) can be taken to be a Boolean combina-

- tion of formulae of the forms (i), (ii) and (iii) only.

PROPOSITION 1. Let M be any sentence-neutral model structure such

‘that <, is well-founded and let M be a model expanding M. Then for
- some a, M * is coherent.

I_t is possible to extend this result further by weakening the assump-
tion of sentence neutrality. One way in which Proposition 1 can be
strengthened is the following. Define for any set A of sentences of L
a model structure M to be A-neutral just in case for any non-logical

. .n-ary predicate Q other than B, all a,, ..., a,_,, Aiy15...,a, € Dy

cand s, " €[A] ., (ay, .. a0y, 8,0,40,...,a,) €[0],, iff(a,,...,
Q-1 8 iyys e, @) € [Ql, . Gupta (1982), who considers a
number of such extensions, argues that whenever M is extensional and
= A is the set of sentences ungrounded in M according to any one of the
valuation schemes mentioned in Kripke (1975), M can be expanded to
a coherent model. To generalize this result to arbitrary model struc-
tures, however, we need an intensional equivalent of the notion of
groundedness.

To prove that a model structure M can be made into a coherent
model provided it is neutral with respect to the V-ungrounded sen-
- tences for any of the valuation schemes ¥ mentioned in Kripke (1975),

g

i
i
E
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we make use of a result in Gupta (1982) and Herzberger (1982): for
any such valuation scheme V, if ¢ is a sentence that is V-grounded in
M, then @ stabilizes in the primary model expansion of M. Using this
lemma we obtain the desired result from the following proposition.

PROPOSITION 2. Suppose (i) M is a model structure for L; (i) <,, is
well-founded; (iii) A is some set of sentences of L; (iv) M is A-neutral;
(V) # is an expansion of M; (vi) the set U of sentences of L which do
not stabilize in . is included in A. Then for some a, 4 ° is coherent.

Proposition 1 can also be strengthened in a different direction.
Gupta notes that for extensional model structures coherence is still
attainable when certain syntactic relations between sentences are expres-
sible in L. For instance, if M is a model structure in which a 2-place
predicate Neg and a 3-place predicate Con of L are interpreted as the
relations ‘x is the negation of y’ and ‘x is the conjunction of y and z’,
respectively, while all other predicates are sentence-neutral and <, is
well-founded, then it is still true that every expansion of M becomes
coherent upon repeated revision. We do not know whether this result
generalizes to all model structures. However, the following partial result
covers a substantial number of cases:

PROPOSITION 3. Let M be a model structure such that (1) <, is
well-founded; (ii) for all w € Wy[Negly, ,, is the set of all pairs (@, ¥)
of sentences of L such that ¢ is the negation of , and [Con],, ,, is the
set of all triples (@, V¥,, V,) of sentences of L such that @ is the
conjunction of vy, and ,; (iii) all predicates of L other than Neg, Con
and B are sentence-neutral in M. Moreover let .# be an expansion of
M such that (iv) the sentence

(1) @)@ Neg(x, y) & 1B(x) & 1B(y)

stabilizes in M at all w € W,,. Then there is an a such that #° is
coherent.

There are a number of different conditions on M which guarantee that
every expansion of M satisfies (iv). One of these is:

\2) For all w € W, if |[wRy]| 2 2 then there are w; and
w, € [wRy] and a B-free sentence ¢ of L such that

[[(p]lM,w, # E(p]IM,wz-
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"It is easily seen that if .# satisfies (v) then for any w & W, and
“a 2 1(1)is true in 4 * at wiff |[wR,]| > 2. (v) is entailed by the
simpler and, it seems to us, equally plausible condition of M being
* differentiated: we say that M is differentiated iff for any two distinct
* members w; and w, of Wy, there is a B-free sentence ¢ of L such that
I[q)HM,wl '_'é [‘P]‘M,wz'
- Another condition entailing (iv) is the transitivity of R,,. For any
- model & and w € W, let T, be the set of sentences true in #
“at w, {¢:[@le = 1}, and let for any subset W C W, T, , =
" N{T,,:w € W} Evidently for every .#, w € W, and ordinal
a[B]gat,, = Tgapg- It follows that (1) is true at w in 2 *F!
. Iff Tga g is an incomplete theory. So if for some a either for all
B 2 aTys.p is complete or else for all B > « T y8 wry 1s incom-
. plete, we are done. Suppose then that T 45,1wx) is complete. Then clearly
. Lgs gy is complete for all w € [wR], and T, w, = Lgs,, forall
. W, w, € [wR]. Note that this entails in particular that for w,, w, €
-~ [wRI[Q],, = [Q],, for all predicates Q of L other than B. Because R
s transitive, we have for all W' € [wR] that [w’'R] € [wR]. So we will
-have for each such w’ that [B] 4441, is a complete theory. Also for
T Wy, Wz == [WR], T"{(ﬁr[W:R] = Tuﬂﬂ,[sz] and [B]I.//(13+l,wl = |[B]|Mﬂ+t,wz' We
distinguish between two cases. (i) The sets [B] 4441, are all equal to
' the set of all sentences. This means that for each of the w € [WR],
~[W'R] = 0. It is easily seen that then for @ > 17T,., is constant
and the same for all w' € [wR]. So [B] 4« ,, is complete for all & > 2.
‘Second, suppose that the sets [B] 541, are equal to a complete
~consistent theory. Then for each w* € [wR|[w'R] # @. This implies
- that for each B Tya+p . = T,5,, where " is the model whose only
~world is w’, w" is R-related to itself, and [ ], ., =[ 14« ... However,
M’ satisfies condition (v) and so, by Proposition 3 there will be an
-ordinal y such that .#? is coherent. So forall 8 > a + y Tys v will
‘be the same, and moreover this set will be the same for all w' € [wR].
Soforall B 2 a + yTys wry Will be complete. So (1) stabilizes to
falsity in .7 at w.[J

- We know from extant work on the liar paradox that when certain
. syntactic relations become expressible, coherence is no longer attain-
‘able. In this connection it is best to return briefly to the setting which
“we abandoned at the beginning of Part II, that in which self-reference
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arises through arithmetization. Adopt a Godelization scheme G. Where
d is any syntactic object let gn(d) be the number assigned to 6 by G... .
Assume that L has predicate constants O, ', + and -,0f 1,2,3 and 3~
places, respectively, and consider model structures M which W

(a.1)  incorporate the standard model of arithmetic at each of their -
worlds; ie., D includes the set of natural numbers and at -
each w € W, [ ], assigns to O, ’, +, + their standard
interpretations. (Thus [O],,, consists of the number zero
only, [’ ], ., is the successor relation, etc.).

Assume further that

(@2) for all w € W, [S],,, is the set of all numbers gn(¢)
where @ is a sentence of L,

and

(a.3) for any expansion .# of M and ordinal a [B]%", is to be
the set of all gn(¢) such that (Vw’' € [wRy D@l e, =1

In models of this kind, Lemma 1 applies in that for any formula ()
of L there is a sentence ¢ such that ¢ < (@) is true in . at all
w e W31

As such model structures provide a general licence for self-reference,
one would expect them to be essentially incoherent. However, this is so
only if the alternativeness relation satisfies certain constraints. For
instance, if ' ‘

(Cl) Vw(wR]=0 V Vw'(w € [wR]~ [w'R]=Q))

then M can be expanded to a coherent model. The reason for this
is obvious: if w is a world such that [wR,,] = @ then in any expansion
A of M all sentences will be stable at w after one revision, and if
[WR),] # © but (Vw' € [wR])[w'R] = O then every sentence becomes
stable at w after at most two revisions. '

Although (C1) does not have much a priori plausibility as a con-
straint on relations of doxastic accessibility, we should perhaps not
exclude the possibility that K’s actual doxastic situation is reflected by a
model structure verifying (C1). K could be convinced that his beliefs
are inconsistent, even though as a matter of fact they are not. In that
case all the alternatives to the actual world would be worlds w’ such
that [w'R] = @. But even if we regard (C1) as possible, we certainly
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“would not want to imposé it as a éenefal constraint. For it should also

" be possible for K to believe that his beliefs are consistent and to be

right about this, in which case the actual world would constitute a

¢ counterexample to the universal claim that (C1) makes.

On the other hand there are many model structures satisfying (a.1)

¢ and (a.2) which are essentially incoherent. In particular, this is the case
~ % if Ry, is transitive and satisfies the following condition (C2):

(C2) (@w € Wy)([WRy] #* O & (YW € [WR,])[W Ry] # O.

- “PROPOSITION 4. Let M be a model structure satisfying (a.1), (2.2)
.. and (C2) and in which R is transitive. Then M is essentially incoherent.

For the proof of this proposition we refer the reader to that of

. Proposition 5 in Section II.1.5 below. The only additional observation
.. needed to turn that proof into a demonstration of Proposition 5 is the
- familiar fact that with the means of arithmetic we can construct a

- sentence (Vx)(y(x) ~ T1B(x)) such that at every w € W,, the only
: object satisfying ¥ in M at w is that sentence itself.

We are uncertain whether the conclusion of Proposition 4 can be

: established without the assumption that R,, is transitive. How much
- importance one wishes to attach to this problem depends in part on the
. - plausibility of transitivity as a general constraint on R. Someone who is
", convinced that any reasonable semantics for belief should verify the

. general principle according to which whatever is believed is believed to
“be believed will perceive at best a technical interest in the issue whether

-

* transitivity can be eliminated from the assumptions of Proposition 4.

-But if one feels that this principle is not part of the logic of belief,
~one is likely to see the problem as having more than a merely formal

. . significance.

We will have more to say about constraints on the alternativeness

» relation in the next section.

IL.15.

In this section we prove a few results concerning designative self-
reference. We begin by having a closer look at a particular instance of
this phenomenon, that of a sentence which says of itself that it is not
believed. While the behavior of this sentence is in certain ways tied to
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its particular meaning, it also illustrates some quite general features of
designative self-reference. Later results in this section will make clearer
what is special about the sentence and what is not.

Evidently there is a close affinity between sentences that say of
themselves that they are not believed and liar sentences, which assert
their own falsehood. In fact, within the semantics developed in this
paper the former reduce to the latter at any world w & W,, such that
[WRy] = {w}, and thus in particular in all extensional model structures.
In view of this similarity, one would expect model structures in which
this kind of self-reference is realized to be essentially incoherent. As we
noted at the end of the last section, however, this is not invariably true;
incoherence depends additionally on the properties of R. The next
three propositions cover much the same ground as the closing para- |
graphs of I1.1.4. In particular, Proposition 5 is, but for the fact that we - "
deal here with designative self-reference and the precise conditions im--
posed upon R, analogous to Proposition 4. Partly for future reference -
let (C3) be the following condition on M

(C3) [b]y = 1B(b).

From now on we will make use of the following convention. If c is
any constant of L such that in the model structure M under discussion
[c], is a sentence, then we write ¢ instead of { ¢] ;.

PROPOSITION 5. Suppose M is a model structure such that (i) Ry, is
transitive; (ii) M satisfies (C2); and (iii) M satisfies (C3). Then M is
essentially incoherent.

Proof. The proof, though simple, is instructive in that it shows in
some detail how b behaves under revision. Let .# be any model
obtained from M, and suppose that .# is coherent. (C2) tells us that
there is some world w such that ((wR,] # @ & (VW' € [wRM])[w Ryl
# ). There are two possibilities.

(@ b € [B], .. Then YW € [wR]# &, b. So since b is the
sentence T1B(b), Vw' € [wR] b & [B],, . By assumption [wR] # O.
So let w' € [wR]. Since b & [B],,, there is a w* € [w’'R] such that it
is not the case that # k.. b. So b € [B],-. Since R is transitive,
w” & [wR)], which contradicts that b € [ B],.

(b) b & [B],. Then there is a w € [wR] such that it is not the
case that .# kK, b. So b € [B],. So (YW € [WR)# =, b
[W'R] # ©;so0let w” € [wR]. Then # &, b, and so b & [B],-. So
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there is a w” € [w”R] such that it is not the case that .# &, b. But
since R is transitive, w” € [w'R]and so .4 k=~ b: contradiction. (]

;. The next proposition shows that if the self-referential sentence b of
:+ Proposition 5 is the only instance of designative self-reference in M, M
.+ 18 sentence-neutral and R, is transitive, then (C2) is a necessary (as
.+ well as a sufficient) condition for the essential incoherence of M.

.. PROPOSITION 6. Suppose M is a model structure such that (i) M
¢ Is sentence-neutral; (ii) Ry, is transitive; (iii) M satisfies (C3); and (iv)
o <y — {{b, b}}) is well-founded. Then if M is essentially incoherent, it
“t satisfies (C2).

“ Proof. The proof of Proposition 6 makes use of Lemma 2 of
Section IL.1.4. Suppose M is a sentence-neutral model structure with
. lransitive alternativeness relation, which satisfies (C3) and for which
¢ <y —{{b, b)}) is well-founded. Suppose further (C2) does not hold in
+ M. Let .# be a metastable expansion of M. We show that .# is

-coherent. We proceed by induction on the rank of a sentence relative to
.the set of constants in L distinct from b, which we define as follows: If
@ is a sentence of L, then rk(g) = 0 iff ¢ contains no constants other
than b, and if ¢ is a constant of L which denotes such a sentence,

- or denotes an element of the domain which is not a sentence, then .
. Tk(¢) = 0. If @ contains constants c,, ..., c, other than b and if c is a
- constant denoting @, then rk(¢) = rk(c) = max( {tk(c,), ..., 1k(c,)}) + 1.
To prove that every sentence of L is stable in .# at every w € Wy,
we proceed as follows. Since .# is metastable, .# = .#’¢ for some
-expansion .’ of M and for @ > 1. So Lemma 2 applies, giving
for each @ an .#-equivalent formula nf(g). Evidently, ¢ is stable at

w & Wy, iff nf(@)is.

.o First, we show that the sentence B(b) is stable in .# at all worlds of
- M. Let w be any world in W,,. From the fact that M does not satisfy
7 (C2) we infer that either [wR] = @ or Aw’ € [wR])[w’R] = Q. First,
i. suppose [WR] = @. Then for all B, B(b) is true at w in .Z#. So B(b) is
stably true at w in .. Now suppose (3w” € [wR])[w’R] = @. Since for
all B, B(b) is true at w' in .## and [b],, = —1B(b), [b],, is false in
A ? at some world that is an alternative to w. So B(b) is false in .4 # at
w. Since this holds for all § 2 1 and .# is metastable, —1B(b) is stably
truein 4 atw.
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To show that every sentence @ is stable in .# at every w € W, we
proceed by induction on the rank of @. (i) rk(¢) = 0. Then, since g isa
sentence, nf(g) is a Boolean combination of B(b) and sentences not
containing B. Each of the latter is of course stable at all w. So since
B(b) is also stable in 4 at all w € W,,, it follows that ¢ is stable in
A at all w € W,,. (ii) Now suppose that for all ¥, where rk(y) < n,
Yy is stable at all w € W,, and assume that rk(¢) = n + 1. Then nf(¢)
is a Boolean combination of sentences which are either like those
mentioned under (i) or else of the form B(c) with rk(c) < n. If
rk(c) < n, either [c], is not a sentence, or [c], is a sentence ¥
with rank < n. In the first case B(c) is stably false at all w in any
expansion of M. In the second case, 9 is stable in # atall w € W,
by the inductive hypothesis. So if w is any world in W,,, ¥ is stable in
A at all w € [wR,]. This implies that B(c) is stable at w in .. It
follows that nf(¢) is a Boolean combination of sentences that are stable
at each w and so is itself stable at each w. So ¢ is stable in .4 at all w
€ W,.0 ’

Combining Propositions 5 and 6 we obtain

PROPOSITION 7. Suppose that M is a model structure such that (i) M
is sentence-neutral, (ii) M satisfies (C3), (i) <y — ({{b, b)}) is well
founded, and (iv) R, is transitive. Then M is essentially incoherent iff it
satisfies (C2).

The truth of Proposition 7 depends on the specific properties of the
self-referential sentence 1B(b). This becomes evident when we com-
pare the model structures which satisfy the hypotheses of Proposition 7
with those discussed towards the end of Section II.1.4, which contain a
standard model of arithmetic at each of their worlds. For the latter
structures, the conclusion of Proposition 7 fails. For instance, let M’ be
a model structure such that Wy, = {{wy, wy), (W,, w;)}. M’ satisfies
(C1) but not (C2). Suppose also that (C3) holds in M’. Then in any
expansion of M’ the sentence —1B(b) is stably true in w, and stably
false in w,. But nevertheless M’ is essentially incoherent. To see this
note that by Lemma 1 there is a sentence ¢ such that ¢ < (MB(¢) &
B(M@)). ¢ is easily verified as not stabilizing in any model .# that
expands M’ .3?
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¥ We now discuss some results concerning the patterns which the
« sentence b and other paradoxical sentences follow as they drift in and
-~ out of the extensions of B. To this end we introduce a few additional
- notions. Let . be a model and w € W,. For any sentence @, we
‘. understand by the ¢@-profile in .# at w the class of ordinals IT such
- that (Va)(a € I1 < @ € [B]% ,). Similarly, for any class of ordinals
T, the @-profile in # at w on T is to be the intersection of I" and the

@-profile in . at w. When [c] , = @ we also refer to the g-profile in

o (at w) as the c-profile in # (at w). These notions can be straight-

. forwardly generalized to sets of sentences and constants: For any set

77, of sentences © of L, the ©-characteristic of w in . 1is the function
= f:© = {0, 1} such that for ¢ € O, f(p) = 1iff ¢ € [B], .. By

i the @-profile in .4 at w, we understand the function which is defined

- on the class of all ordinals and maps each ordinal a onto the O-

characteristic of w in . ¢. Similarly, if T is a class of ordinals, then the
O-profile in A at w on T is the restriction to I of the ©-profile at w

in . Finally, if C is a set of individual constants such that for each
. ¢ € Clcly is a sentence of L and © = {[c], :c € C}, then the
. C-profilein # atw (onT)is the ©-profilein .4 at w (onT).

- PROPOSITION 8. Suppose that M is a model structure such that R M S

\\\\\

transitive and [b],, = —B(b). Then for any w € W, the b-profile
at win M on w — {0} is one of the following: (i) O, (ii) the even

». positive integers, (iii) the odd positive integers, and (iv) o — {0}.

- Moreover, (iv) arises if and only if (3w’ € [wR])[w'R] = 9. .

Proof. Assume first that R is serial — i.e., (Yw)[wR] # ©. Suppose

- w € W. We distinguish the following cases.

@  (Yw, €[WR)(@Ew, € (W R])b €[B]S,.
Then b & [B],, for all w € [wR] U {w}. From this and the

" seriality of R it follows that for n > 2 and w’ € [wR]b € [B]; iff n
-1s even. So in particular the b-profile at w on w — {0} is the set of even
) positive integers.

®)  @w E[WR)(Yw, € [w,R))b & [B]L,.

Let w; be such a member of [wR]. Then for each w* € [w;R] U

{ w;}, b € [B].,. By an argument similar to that in (a), b € [B[}, iff n
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is odd. Since w; € [wR], thlS 1mphes that if n is even b GE ﬁ ﬂ To
make further progress, we divide (b) into two subcases: o

(b1)  @w, € [WR)(Yw; € [w,R])b € [BI,.

Let w; be as assumed. Then (Yw, € [w,R] U {wl})(b € [B]r - -
n is even). Again because w; € [wR], b & [B], if n is odd. By what
we have already seen under (b), this implies that the b-profile on
w—{0}at win A is @.

(b2) (Yw, € [WwR)(3w, € (W R])b & [BIS,.
This case requires yet another bifurcation.
®2i) (Aw, € [WwR))(Yw, € [W;R]))(3w; € [W,R))b € |[B]]9t,3.

Then if w; is as assumed, we conclude as under (a) that for each
w' &€ [w,R] U {w} (b € [B]y, iff n is even). This holds in particular
for w,, and as w; € [wR], we conclude that b cannot belong to [B]7,
when 7 is odd. So in this case the b-profile at w on w — {0} is again .

(b2ii) (Yw, € [WR])@w, € [w R])(Yw; € [w,R])b & [BIS,.

Then for each w; € [wR] there is a w} such that for all w* & [w]R]
U {wi} (b € [B]2- iff n is odd). Consequently, for every w, € [wR]b
& [B];, for even n, and so b € [B];, when n is odd. So the b-profile
at w on w — {0} consists of all the odd positive integers.

If we drop the assumption that R is serial on W, we must also con-
sider w such that [wR] = @ and w such that (3w" € [WR])[w'R] = O
It is easily verified, however, that these give us @ and w — {0} as
b-profiles. This completes the proof. []

It is not difficult to extend the result of Proposition 8 so that it
covers also the transfinite parts of the profiles of b. Our rule for
revision at limit ordinals A has the effect that b is never in [B]i. An
inspection of the proof of Proposition 8 shows that, in the light of this
fact, for any limit ordinal A the b-profile at win . on (A + w) — A is
one of the sets: @, (A + w) — A4, {A +2n + 1:n € w}. Indeed, we
have: ‘

PROPOSITION 9. Suppose that # is as in Proposition 8. Then for
any limit ordinal A and natural number n:
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@ fwRI=0,thenb E[BLY
. (ii) if Aw, € [WR])[w,R] =0, then b & [ B],,*" N
(i) if [WR] # @ and 73w, € [wR])[w,R] =9, then -
b €[B]),*"iff nis odd.®?
It is instructive to compare the behavior of the paradoxical sentence

E " b with the harmlessly self-referential sentence which says of itself that it
+%_is believed. Suppose that M is a model structure in which [¢];, = B(c)

L :and this is the only non-trivial instance of self-reference (ie. M is

+,.sentence-neutral and <, — {(¢, ¢)} is well-founded). Then, if Ry, is
.-transitive, any model .# obtained from M will be coherent after one
st revision. If R is not transitive, there is no guarantee that coherence will
*. be achieved that quickly; but it will be reached eventually. It should be
. noted that although ¢ is not paradoxical, neither is it V-grounded for
- any of the valuations V' considered in Kripke (1975). As noted there
v ¢’s truth value cannot be determined without reference to the initial
. extensions of B. Indeed, we find that in all but a few marginal cases, the
:model structure M does not determine the truth value of ¢: we can
zalways expand M, for each w € W,, to two different models ., and
A, so that ¢ is true at win ., while in .4, it is false at w.
- The following proposition, whose proof is somewhat long and
- tedious, presents a self-referential set consisting of two elements.* The
_profiles of this set become, like those of the simpler sets examined so
« far, cyclical on w after a finite number of revisions have filtered out the
arbitrariness of the initial assignments. More precisely,

PROPOSITION 10. Suppose M is a model structure such that (i)
(6] = 1B(c); (i) [cly, = B(b); (iii) M is sentence-neutral; (iv) <, —
{b, c}? is well-founded; (v) R, is transitive. Let .# be an expansion of
M. Then for each w € W,, the {b, c}-profile at w on w in M is
cyclical after 4 with period < 4.

- 'So far the results presented in this section are all quite easily
established. However, as the syntactic connections between the mem-
bers of self-referential sets get more involved, it becomes increasingly
difficult to establish what the profiles of these sets are like. It might

» 'seem a natural conjecture that even though the profiles of more com-

p_liéated self-referential sets follow increasingly intricate patterns, they
nevertheless share with the profiles of the sets {b} and {b, ¢} of

Propos‘lt)l_on‘siS;——'lowthe property of becoming cyclical after some finite

P e
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number of revision steps. If this were so, it would mark a contrast ©
between designative and quantificational self-reference. For it is easily
seen that the profiles which arise-through quantification can have a high
degree of complexity.*®

As it turns out, designative self-reference does not lead to periodical
profiles invariably. Only when the alternativeness relation R satisfies
certain fairly strong constraints can we be certain that every designa-
tively self-referential set has an w-profile of finite periodicity. The next
proposition establishes a result to this effect.

PROPOSITION 11. Suppose that M is a sentence-neutral model, that
C is a finite set of constants that is self-referential in M, that <, — C?*
is well-founded, that R,, is transitive and Euclidean — i.e., (Yw;, w,,
w3)((w,Rw, & w,Rw;) = w,Rw;) — and that # is an expansion
of M. Then there are natural numbers n and m such that for each
w € M,, the C-profile at w on o in M is cyclical after n with period
m; that is, if r 2 nand s = k -m + r then the C-characteristic at w in
M ¢ equals the C-characteristicat win A '.

Proof. The proof of this proposition is based on the following idea.
If M is as described, then . will, after only one revision, become
locally homogeneous, in that, for any w € W), the extensions of B will
be the same at all worlds in the set {w} U [wR]. This follows from the
simple observation that R has the specified properties iff it is an
equivalence relation on its range and links each element that belongs to
its domain but not to its range with exactly one of the equivalence
classes generated by that equivalence relation. The homogeneity, more-
over, will persist after further revisions. To show that the profile of C
becomes cyclical in these worlds after a finite number of revisions, we
argue as follows. We define, as in the proof of Proposition 6, a rank
on sentences and on the constants denoting them, but this time only
on those sentences ¢ such that for no ¢ € C and ¢’ occurring in
@ ¢ <, ¢’. An argument by induction on rank similar to the one given
in the proof of Proposition 6 shows that if the rank of ¢ is n, then ¢
stabilizes at every w € W,, after n revisions.

By Konig's Lemma, since C is finite, so is <3/ [C]. Let C' =
<it [C] — C. Cleatly, if ¢ € C’, then c¢ has a rank. Let n, be the
maximum of all the ranks of constants ¢ € C’. We now use the normal
form established in Lemma 2, Let ¢; € C. Then if @, is a normal
form of ¢; and B(c) is a constituent of ¢;,, c € C' U C U {c,},
where ¢, is as in Lemma 2. Let n, m be arbitrary numbers > n, and let
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W € {w) U [WRLIfc € C' U {c,}, then [B(c)]gm v = [B(C)Lum -
‘Similarly, if v is a B-free constituent of ¢, then {9 ],» .. = [¥]em .-

- _+So if the truth values of ¢; at w’ in .# " and .# ™ are different this must
- ;. be because of a difference in the truth values at w’ in AT and AT

- of one or more constituents B(c) of ¢, with ¢ € C. In other words,
Cil@i)gn w is, for each n > n,, determined by the C-characteristic at
“:w in 4" We have already noted that sentences of the form B(c)
= have, for n 2> 1, the same truth values in . " atall w' € {w} U [wR],
7 and thus that the C-characteristic in .# " at w’ is the same for each
2o w & {w} U [wR]. Let us refer to this C-characteristic for simplicity as
the C-characteristic at level n. Since the C-characteristic at level n
. determines for each ¢; € C the truth value of ¢; and thus also that of
i leily at each w' € {w} U [wR], it follows that the C-characteristic at

*% level n completely determines the C-characteristic at level n + 1. Since

there are only 2 distinct C-characteristics, where k is the cardinality of
7 G, it is the case for each w' € {w} U [wR], and so for w, that the C-
profile at w* in .# will be cyclical after n, with a periodicity < 2*.[]

It is straightforward to extend Proposition 11 to a similar result
-~ concerning the full profiles of C,
E We do not know if Proposition 11 can be strengthened in any
-;. Interesting way by weakening the assumptions on R. Certain con-
~** straints, however, must be retained, as is evident from the following,
;- somewhat surprising result. There are finite self-referential sets C of
_constants containing a “distinguished” constant ¢, which have the
following property: for each set E of natural numbers > 3 there is a
- model .# in which R is transitive and serial and a world w, € W,
“such that {n > 3:¢; € [B]2, w,} = E. Thus not only does the ¢;-
‘profile on w fail to be cyclical; it can be just about any set whatever.
'One example is provided by the set C = {b, ¢, d, e, f} with f as
-distinguished constant and a model .# which verifies the denotation
relations:
ey [b), = B(b) & 1B(c) & B(d)
[c]e = B(®)V B(c) V T1B(d)
ld]., = B(d)
[el, = TB(c) V B(d)
, [fle = T(B(c) & B(e) & TB(d)),
-as well as some further conditions to be detailed below.
. The construction of .4 rests on the following observation.

P
o
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LEMMA 3. Let T, be a model such that Wy is a transitive, linear - i
chain of worlds w,Rw,_Rw,_, ... Rw,RwoRw, — in other words, -
W, = {wy, ..., w,} and wRw; iff i > Jor(i=0andj=0)~— and
such that [b]; = (7B(b) & T1B(c)) and [c]l; = (B(b) V B(c)).
Moreover, assume that b & [B]; , and ¢ € [Blr ., andfor1 < i
<Snb&|[B]y, , and c €[B]; , .Thenforallk > 1andi < n,

(b &[BJ}, ., &ecE[B) N k>
In particular,(Yw € W,)(b € [B];, , & c €[B]% ) iffk > n.

ne

We can exploit this lemma to show that the set C with the denota-
tional equations (1) has the property claimed.

PROPOSITION 12. Let E be any set of natural numbers > 3. Let
D={n—2:n & E}. Let #(E) be the model which (a) satisfies the
designation relations in (1) and (b) has the following world structure:

| | |

o W
Tn.{ ; Tnz{ ! Tn,{ ;

*0 ! *0

where {n,, n,, ...} is an enumeration of D and the Wy, are pairwise
disjoint as well as disjoint from the set {Wyp, Wo, Wy, ooy Wy, -]
Moreover, assume that (c) the extensions of B in J# (E) satisfy the
Jollowing conditions:

(i) if we T, then b & [BlYy,, and ¢ & [B1%&) w l:f
I[WR“ = 1, and b & I[B]j.g‘{(E),w and ¢ & EBLO%(E),W if
[wR]| > 1
(11) d € I[B]'.E‘Z(E),w lﬁ wE UiEwWTn,-'
Then for k > 3, f & [Bl% &y, w, Ul k = n; + 2 for some n; € D. So
{k > 3 :fE EBE“'I;{(E)’ Wno} =
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:' The proofs of Lemma 3 and Proposition 12 are straightforward. It
‘may be that there are even smaller self-referential sets than C, or sets
-- whose members are connected via simpler denotation relations and

- which are also capable of generating all sets of natural numbers 2 n,
" (for some small n,, eg. 3 or 2) as the profiles on @ — n, of their
~; distinguished members. But this is something we have not bothered to
«'* look into. Another question to which we do not have an answer is

=; whether there exist conditions under which the family of sets of natural
= _numbers representable as profiles is somewhat restricted, but not to the
i  point of containing only sets that become cyclical with finite periodicity
, after a finite number of steps. The technical problems in this domain
"% appear to be quite difficult and almost all of the terrain remains to be
= explored.
- Both Proposition 11 and Proposition 12 raise the type of question
“: we have encountered earlier in this section: can these results be streng-
- thened by relaxing the assumptions they make about the relation R?
\This is a question that comes to mind with particular force in con-
+~ nection with Proposition 12. For the result established there depends
> "crumally on the world structure of the model .# (E ) described in that
_proposition. If there were some intuitively natural constraints on
- doxastic alternativeness relations which such models violate, Proposi-
“tion 12 would lose much of its interest. Similarly, the import of Pro-
.. position 11 depends in part on the plausibility of the constraints that it
‘imposes on R. Although from an intuitive perspective these constraints
might well appear too strong, we have not found any conceptually
natural but weaker conditions on R under which the conclusion of
Proposition 11 still holds.

- Whether the constraints of Proposition 11 are intuitively unaccept-
f‘able is a matter open to dispute. But it seems to us that there is a
‘certain perspective from which they are defensible. Recall that R is
transitive and Euclidean iff (i) it is an equivalence relation on its range,
‘and. (i) it relates each element of its domain to exactly one of the
equwalence classes into which it partitions its range. An accessibility
relation of this sort mirrors the informal notion of a believer who has
full knowledge of his beliefs, i.e. who, for any sentence ¢, believes that
he believes that ¢ if he does believe that ¢ and believes that he does
not believe that ¢ if he does not believe that ¢. We would be reluctant
to endorse this principle as an intrinsic part of the meaning of the term
“‘believe’. Nevertheless, it seems to us that there exists a conception of
belief, which is prevalent in every day language and thought, and which
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conforms to this principle pretty well. In other words, while the prin-
ciple does not appear valid for every one of the spectrum of notions
that go with the term there are some for which it seems valid.

Here we run into a complication which we already noted in Part L. It
appears that the word ‘believe’ and its cognates do not denote a single
concept with its fixed meaning and corresponding logic, but a family of
related notions. If by the logic of belief we want to understand that
which all members of the family share, then the principle should be
excluded. But in so far as it is possible to detach the particular common
sense notion we alluded to from the fabric of connections that hold the
family together we may accept the principle as part of the logic of that
particular notion. The task of separating out the different strands that
are woven together in the meaning of ‘believe’ is one we will not
undertake here. All the same we should not lose sight of the plurality
that lies hidden behind the apparent unity suggested by a single word.
This is especially important in connection with the logical questions
which we will consider in the remaining three sections.

11.2. Logic

2.1

The paradox Montague and Kaplan discovered was that languages
capable of expressing enough about their own syntax cannot contain
sentence predicates which satisfy all the logical principles commonly
ascribed to such concepts as knowledge or belief. As we noted in Part I,
there are two principal strategies for dealing with this problem. The first
is to opt for an analysis which prevents these concepts from being
construed, directly or indirectly, as relations to sentences. The second is
to treat them openly as such relations, while being prepared to give up
some of the principles that Kaplan, Montague, Thomason and others
have shown to be jointly inconsistent. As we made clear in Section I, we
think there are compelling reasons to pursue the second strategy. Our
semantics in Section II.1 develops that strategy into the beginnings of
an alternative to the familiar intensional theories in which belief is
treated as a property of sets of possible worlds. One aim in developing
that semantics was that it should serve as a basis for the logical
reassessment that the results of Kaplan, Montague and Thomason show
to be necessary. There are however a number of different ways in
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Wthh the model theo;y of-II.im(’:Aarrflb be used to define a consistent logic

-of belief. This is a common feature of semantic theories that deviate, in

‘one way or another, from the paradigm set by the classical model

. theory for the predicate calculus. Classical model theory offers a single,

‘f]:_;;’unequivocal explication of the concepts of logical truth and conse-

..+ quence. For most of the alternatives which for a variety of philosophical
- and linguistic reasons have been developed in recent years this is not

so. These theories offer as a rule a number of definitions for those

;¢ concepts that appear all equally plausible. Consequently, to determine
-, the logic generated by such a theory tends to be a task fraught with

~_conceptual as well as technical difficulties. In connection with the

", semantics we have developed here these difficulties appear to be

", particularly severe.

Before we investigate these problems there is a more fundamental

: question that we must clarify. What are the criteria that a good doxastic
*logic should satisfy? In Part I we have spoken at several points as if the

~ “logical task facing someone who wishes to develop a sentential or

s

_representational theory of belief were that of discovering the most
* parsimonious ways in which the incompatible combinations of general

logic, elementary syntax, and special attitudinal logics can be restored

to consistency. If this is our only goal, our model theory offers count-
less ways of pursuing it: with each model .# in which paradoxical self-
= "reference is realized — e.g. one of those discussed at the end of Section
"+ IL1.4 — and world w € W, we can associate the set of those general

principles all of whose instances are true in .# at w. Any such set of
principles is clearly consistent with classical logic and the means of self-
reference realized in .. If . is of the sort described in II.1.4 and thus
encompasses the full spectrum of self-referential possibilities, the result-
ing “logic” will be compatible with self-reference generally.

~ The systems that are obtained in this way satisfy the desideratum,
‘mentioned in Section L5, of providing safe upper limits for doxastic
logics, including those that future investigations may yet turn up. But
there is little reason to think of them as having much significance
beyond that. Formal consistency is not the only condition that a good
logic should meet. For one, a system of logic should not just be free of
internal contradiction, it should also be compatible with any compos-
sible set of sentences — i.e. any set of contingent sentences that could
be jointly true. It isn’t very clear how this constraint can be made
precise. For what is it for a set I of sentences to be compossible?
Indeed, the one analysis of this notion that comes readily to mind is

L
o wE
. BN
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that I is compossible iff it is compatible with the logic governing those
concepts of which the sentences in I' make use; but in the present
context that would lead us straight back to the original question, viz.
what the logic of belief is. Even so, this criterion provides some
informal guide; and, whatever its precise content, the sets of principles
that are verified by particular combinations of .# and w are likely to
be in violation of it.

Another, connected consideration points the search for doxastic
logics in the same general direction. For someone persuaded that a
theory of the attitudes must include an account of attitudinal relations
to sentences, the moral of the Kaplan-Montague results is not just that
some of the familiar attitudinal logics cannot be upheld in a classical
setting which allows for paradoxical self-reference. They also carry the
deeper message that the intuitions supporting the familiar logics are
themselves flawed, and in need of revision. One should not simply look
for compatible logics which preserve as much of the old intuitions as
possible; rather the search ought to be for a new conceptual foundation
on which such logics can be built. It has been with this aim in mind, no
less than that of restoring consistency, that the semantics of 1.1 was de-
veloped. .

Both these desiderata, that of formulating a logic which is compatible
with any intuitively compossible set and that of resting it on a proper
conceptual foundation, suggest that the logically valid sentences should
be those that are true for all relevant combinations of models and
worlds, and not just for one. As implied above, our semantics suggests a
number of such definitions between which it seems difficult to make a
reasoned choice. At the same time, however, it also seems to exclude
some of the avenues along which a consistent belief logic might be
constructed. So, lest we be at risk of searching in the wrong place
altogether, let us briefly consider whether, or to what extent, we are
right to ignore the options which our approach eliminates. u

All definitions which characterize validity in terms of some class of
pairs {.#, w), where . is a model in our sense and w € W, have in
common that they preserve the whole of the classical predicate calculus.
Thus by confining our quest for a consistent belief logic to an investiga-
tion of definitions of this form, we seem to have committed ourselves to
classical logic. We should recall in this connection that the incom-
patibility results which gave the initial impetus to the present study
show the joint inconsistency of three distinct components: (i) the
underlying general logic — in this case, the classical predicate calculus;
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(i) devices and postulates needed to express paradoxically self-referen-
* ' tial sentences and to establish that these have their intended meanings;
..;and (iii) the logic of the particular concept or concepts in question. To
= .restore consistency one could tamper with any one of these com-
;" ponents, or with any combination of them.*
Tampering with the underlying logic is among those options. Is it
among those we ought to explore? Perhaps we should not dismiss it out
- of hand. In fact, in the light of the disturbing evidence that will emerge
. in I1.2.3, the case for a consistent system which sacrifices some of the
- . background logic as well as of the prima facie desirable doxastic
. principles may deserve more serious attention than it appears to merit
~.. at first view. Nevertheless, we side with those who have, when they
- confronted this question in relation to the truth predicate, felt that to
- abandon classical logic is to pay so dear a price that it should be
" considered only as a last resort. Accordingly, in the next two sections,
.~ which address the problem of defining doxastic logics in some more
;++ detail, we will concentrate on the problem of finding a satisfactory logic
- _thatis compatible with classical logic.
The incompatibility results, as we have just reminded ourselves,
‘involve three components, general logic, the logic of some special
concept or concepts, and the devices responsible for self-reference.
.- Evidently changes that delimit or eliminate the self-referential devices
¢ are among the surest and simplest ways to restore consistency. But of
"1+ course to adopt any of those ways would be to abandon the very task
‘that we have set ourselves. Nevertheless we will begin the next section
by presenting a result that pertains to coherent models, i.e. to models in
which self-reference is either non-existent or harmless. We have in-
cluded that result not so much for its own intrinsic interest but rather to
~ put the difference between the logics of coherent and those of inco-
- “herent models into sharper focus.
\Nevertheless, that is an issue of secondary importance. Our principal
. interest in the next section concerns doxastic logics that are consistent
““.with a combination of classical logic and the full spectrum of self-
referential possibilities.

122,

In the last section we proposed that validity be defined as truth in all
_relevant models at all relevant worlds. But which models and which
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worlds are “relevant”? Here we seem to be facing a number of possible
choices. To simplify matters somewhat we will assume that there is no
distinction of relevance to be made between worlds; ie., if # is a
relevant model then every member of W, is a relevant world.*” This
reduces our problem to that of determining which are the relevant
models. There is one aspect to this more limited question that is
familiar from the possible worlds analysis of modality: the modal
schemata that come out valid correlate, to a very high degree, with the
properties that are assumed for the alternativeness relation R.*® This is
equally true of the semantics developed here, except that model inco-
herence somewhat complicates the picture. The similarity between the
modal approach and our own is most clearly visible when we focus on
coherent models. The first result of this section, which is concerned
with coherent models only, is meant to illustrate this. The result has an
obvious counterpart within the modal treatment of belief, and like its
modal counterpart it is one of an indefinite number of similar theorems,
which differ from each other in the varying assumptions they make
about the properties of R. We have chosen the particular theorem we
present because it deals, as closely as possible for theorems of its type,
with the familiar schemata (B1)—(B4) which we introduced in Section
L1.

It is a well-known fact of modal logic that the schemata B¢ —~ BB¢
and B(Bp - ¢), ie. the modal analogues of our (B1) and (B4)
correspond to the conditions that the alternativeness relation is transi-
tive, and reflexive on its range. Moreover, possible worlds semantics
verifies, as a matter of course, the schema B(¢ —~ y) = (Bp - By),
the equivalent of our (B3); and, finally, it conforms to the principle that
B is valid whenever ¢ is, which strengthens the modal counterpart of
(B2). (We will refer to the corresponding stronger principle for our
language L as (B2').) In modal logic this correspondence between
schemata and conditions on R can be made precise in the form of
completeness theorems, e.g. the theorem that a sentence of modal
propositional logic is true at all worlds in all possible worlds models
satisfying the mentioned conditions on R iff it is derivable from (the
modal counterparts of) the principles (B1), (B2'), (83) and (B4).
Proposition 14 establishes a similar result within our framework. It too
has the form of a completeness theorem: a sentence of L is provable
from a certain theory T iff it is true in every one of a certain class & of
models (at each world of that model).
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The class .% we want to consider consists of coherent models only.

47 We have chosen the simplest means of securing the coherence of the

- members of ., viz. by insisting that they be expansions of sentence-
- neutral model structures (that satisfy the specified conditions on R).
Since the theory T must “match” %, ie. must be strong enough to
guarantee that any sentence consistent with it is true at some world in
some member of %, T must contain the information that the predicates
of L other than B are sentence-neutral. This entails, however, that T
-, cannot express each of the schemata (B1), (B2'), (B3), (B4) as a single
.+ umversal sentence. Therefore, if it is to contain the information that the
schemata are valid, it must do so by having each one of the instances of

* those schemata as a separate axiom. That, however, is possible only if T

_ has names for all the sentences of L. Thus in order to state the
theorem, we must assume the existence of such names. So let ¢, be a
~ fixed function which maps the sentences of L one-to-one onto some

coinfinite subset of C;. As the restriction to models that conform to

this naming function involves no significant loss of generality, we
' assume for the remainder of the paper that, for every model structure
‘M and sentence ¢, [c,],, = @, and that all models are expansions of

. ‘such M.,
- Let & be the class of all coherent models .# which expand some
modql‘structure M such that (i) M is sentence-neutral and (i) Ry is
* transitive and reflexive on its range. Let T be the first order theory

 _.whose set of axioms . is defined as follows. Let S, be the set

consisting of (a) (Vx)(B(x) — Sx); () (V) (Vx, )((Sx & Sy) ~
‘;(Q(Zlv s L X it a5 ) @ Qe ey Zisg, Y, Ty, Za)) TOT
~each n-place predicate Q of L other than B and foreach i =1, .. ., n;
_(¢) 8(cy) for each sentence @ of L; (d) B(c,) = B(c,), where @ is any

sentence of L and v is the sentence B(c,); (¢) B(c,) for each theorem
@ of first order logic; (f) B(c, - ,) ~ (B(c,) = B(c,)) for all sentences
@ and y; (g) B(c,), where ¥ is the sentence B(c,) - ¢ for some
sentence @ of L. Let & be the closure of .57, under the principle (B2'):

-  if @ € #, then B(c,) € .

. We can now state:

PROPOSITION 13. Let T and % be as defined above. Then, for any
sentence @ of L, T & @ iff forevery # & B andw € W, [@lew=1

e
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Our ;;fobf of Proposition 13, which we omit, follows lines familiar from
the literature on modal logic: suppose it is not the case that T + .
Then construct a semantic tableau for —1¢. This tableau will not close
and thus supply a model in which ¢ is true at some world.*”

Proposition 13 not only brings out the similarities, as well as some of
the differences, between our approach and that of traditional modal
logic; it also provides a paradigm for analogous theorems that apply to
classes which include incoherent models. Unfortunately there exists a
serious obstacle to such results. The difficulty we run into is the
following. When .# is incoherent, then the familiar correspondences
between properties of R, and the validity of propositional schemata
tends to break down. For example, suppose that R, is transitive, and
reflexive on its range, that [p], = —1B(b) and that w is a member of
W, such that [wR] # O and (Yw' € [wR])[W'R] # O. Then the
instance of (B4) which we obtain by substituting b for @, ie. B(B(b)
=1B(b)), will fail in .# at w either at all the odd or else at all .the even
finite stages > 1. Consequently the sentence will also be false in M at
w at stage w; indeed, this will be the case at all limit stages. So. t.he
schema fails even though the “corresponding” condition on R, reflexivity
on its own range, is satisfied. Thus in incoherent models schemata can
fail for two quite distinct reasons — either because of the structure of R
or because of the nefarious effects of self-reference. A completeness
proof pertaining to model classes which contain incoherent models will
have to cope with both these factors and the ways in which they may
interact.

The fact about (B4) which we have illustrated here with the help of
b is a quite general one, as attested by the following proposition. To
simplify notation, let us abbreviate the sentence B(c,), where ¥ 1s the
sentence B(c,) ~ @, as B4(p).

PROPOSITION 14. Suppose that # is a model such that R4 is
transitive and Euclidean, and that @ is a sentence that does not stabilize
in # at any ordinal a. Then there is a w € W, such that for
arbitrarily large ordinals f [B4(®)] 45, = 0. Moreover, among these
ordinals there are successor ordinals, limit ordinals and perfect stabiliza-
tion ordinals.

Proof. Observe that if ¢ never stabilizes in .#, then there must be a
pair consisting of a sentence ¢ and a world w such that ¢ changes
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irut’hf‘x;‘alue in . at w for él'fbitrarily large a. It must be the case that
i w € Ran(R,), for if all sentences were eventually to stabilize in .# at

aII members of #Zan(R,), they would stabilize also on the remaining
- “"worlds. Observe that the switches of truth value must always occur at

"- successor ordinals. Because of the structure of R,, ¢ will have for

« sufficiently large a the same truth value at all w* € [wR] in . ®. Thus,
there will be arbitrarily large ordinals 8 such that [¢] s, = 1 for all
w' € [wR] and [@]4p+1,, = 0.S0 [@] 4o, = 0, while [B(c,)]pa =
1. Since B(c,) ~ ¢ fails at w in.#%, B4(g) fails at w in £+, To
establish the last part of the proposition, note that if y is the limit of
any unbounded sequence of ordinals a such that B4 () fails at w in
# * then B4(p) fails at w in .#?. And if @ is a perfect stabilization
;. ordinal for # then [B],., © [Blss, for all B > a. So, since
.. Bd(y)fails at win .## for some B > q, it also fails at ¢. O]

Proposition 14 makes explicit that incoherent models may provide
~ counterexamples to schemata that are validated by the Kripke frames
yvhlch these models contain. However, such counterinstances always

.involve unstable sentences. When the sentences that replace the sen-

-~ tence letters in a given schema # are all stable in .# then the resulting
. Sentence will be true in .# (at any w W,) if u is valid on the
-, corresponding Kripke frame,

We can combine this observation with Proposition 14 into a single
- . statement, to the effect that B4(g) fails at arbitrarily large a iff ¢ does
. Dot stabilize. To cast this statement in the form that best suits our
:_purpose we need to introduce two further notions. For any class # of
models and sentence ¢ we say that @ is stable throughout % iff ¢ is
“stable in all the members of #. We say that @ is valid in %, in symbols
# & @, iffforall # in # and win Woelole .= 1.

. PROPOSITION 15. Let # be the class of all metastable models M
= such that R, is transitive and Euclidean. Then, for any sentence @,
=+ & = Ba(@) iff @ is stable throughout .

- - Proposition 15 entails that whenever % is such that for some
decidable set §" of sentences of L the set of those members of $* which
 are stable throughout & is not recursively enumerable, then the set of
" sentences of L that are valid in % is not recursively axiomatizable. One
strategy for establishing the consequent of this last statement would be
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to take for §* some decidable set of arithmetical sentences. For instance
assume, as at the end of II.1.4, that 0, ’, +, - are predicate constants of
L, and let N be a 1-place predicate of L distinct from B and S. Let OV
be the conjunction of the axioms of Robinson’s system (), relativized to
N, and let AR be (QV & B(cyw)). Let S be the set of sentences of the
form AR — ¢V, where ¢ is a sentence containing no non-logical
constants other than 0, ', +, - and B. Evidently §° is decidable.
Suppose % is a member of #. Since AR is stable in all metastable
models, any sentence AR — ¢V will be stably true in .# at any
w € W, at which AR is (stably) false. When AR is true in .# at w,
then in w and in all the worlds in [WR ] the extension of N in . is a
model of Q. Thus, AR — ¢V is stably true throughout A iff ¢" is
stably true in all members of .# whose restrictions to NV are models of
Q. If & were such that all such restrictions were standard models of
arithmetic, the complexity of the class of stable ¢@" would be X}-
complete, as follows from Theorem 12.3 of Burgess (1986). However,
this is not a plausible assumption about %, and we know at present
of no way to establish the non-axiomatizability of % -validity in the
absence of this assumption.

This argument appears to rule out the possibility of giving, for a
substantial number of prima facie plausible definitions of validity,
completeness theorems modeled on that given in Proposition 14. There
is, however, a weaker type of completeness result that our most recent
observations do not rule out. We have in our informal discussions in
this section focused repeatedly on the logical validity of what we have
been referring to as “schemata”, among them in particular (B1)—(B4).
Given some particular class of models &, the question precisely which
schemata are validated by # may admit of a simple answer even if the
set of L-sentences that are valid throughout % does not admit of
recursive axiomatization. To make this precise it is convenient to
introduce a language of propositional doxastic logic in which belief is
represented as a sentential operator. So let PL be the language whose
atomic sentences are T, L and the sentence letters p1, p2, ..., and
which has besides the truth-functional connectives 7, &, V the 1-place
sentence operator B. We will refer to the formulae of PL as schemata.
By an interpretation of PL in L understand a function / which maps
each sentence letter onto a sentence of L. Every interpretation / can
be extended to all formulae of PL as follows: I(T) = (Vx)x = x;
I(L) = @nx # x5 1("w) = l(p); l(n & v) = I(n) & I(v);
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I V v) = I(u) V I(v); I(Bu) = B(cy,,). When u is a schema
containing only one sentence letter p; we will write u(¢) instead of
I(x) when I is any interpretation such that I(p;) = ¢. Where # is a

.= “class of models for L, we say that the schema u is valid in %, in

symbols & E u,iff B k= I(p) for every interpretation 1.
+~  In the next section we will prove a result to the effect that a schema
' is valid in a certain class # iff it is derivable from some specified

ES ‘theory T of propositional modal logic. The force of that result will be
. negative in so far as it establishes that for the class # to which it

.. - applies there are no non-trivial propositional schemata whatever. The
. ’model classes that are under discussion in this section, however, do not

" mnecessarily generate propositional doxastic logics that are quite that
- .weak. Some of them do validate non-trivial schemata, as is made clear
- by the next two propositions. We expect that the sets of schemata

_validated by the particular classes discussed below are in fact axiomati-

. zable within PL. However, we have no such results to offer at the

- .present time.

In the proof of Proposition 14 we saw that (B4) fails even in meta-
stable models, and at limit as well as at successor stages. For the other
schemata in our list (B1)—(B4) the situation is somewhat different.
(B1), for instance, can fail, in models with transitive alternativeness
~ relation, at successor stages but not at limit stages. This fact is con-
" . tained in Proposition 16,

.~ PROPOSITION 16. (i) Suppose .# is a model such that R, is transi-
", tive. (@) If a is any ordinal > 1, then for allw € W,, every instance of
" (B2) and (B3) is true in A at w. () If a is a limit ordinal then,
moreover, every instance of (B1) is true in M © at w.

. (i) Suppose that R, is transitive and Euclidean and that M ¢ is
’—,-_<incoherent for all a. Then there are a sentence ¢ and a world w € W,
g,f*suc]z that for arbitrarily large successor ordinals 8, B1(9) fails in A*#

Soatw.

- Proof. (i) is trivial. To prove (ib) let a be any limit ordinal A.
Suppose [B(c,)l% ., = 1. By our revision rule for limit ordinals,
ANEH(y € B < 4 = [B(c,))%,, = 1). So by our revision rule for
successor ordinals, for each § > y and each w* € [wR|, [@]4 = 1.
Suppose w’ & [wR]. Then by the transitivity of R, , for each w" &
[wR]lgl4 .. = 1. So ¢ € [B]£, and so [B(c,)l%. = 1. So,
~putting ¥ = B(c,), we have that (Yw' € [wR])[B(c,)l% . = 1 for
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each successor ordinal 3 such that y < f < 4. Let 6 be such that =
y + 9. It follows by straightforward induction on ¢ that (VB)(y <
psi- I[B(Cw)]],%,w= 1).Soin particu]ar[B(cw)M,,w= 1.

(ii) is proved in the same way as Proposition 14.0]

A fact closely related to those recorded in Proposition 14 and
Proposition 16.ii is that these are natural classes C of ordinals such that
the set of sentences true in all models at all worlds at all members of C
is not closed under Principle (B2'). The next Proposition makes this
explicit.

PROPOSITION 17. Suppose that # is a model such that R, is
transitive and Euclidean, and that for all a #*“ is incoherent. Then
there is an instance  of (B1) and a w € W, such that for arbitrarily
large ordinals B[B(c,) 45, = 0; moreover, if B is a perfect stabiliza-
tion ordinal then | B(c,)] 45, = 0 while [y ] 45, = 1.

Proof. As in the proof of Proposition 14 we can assume that there
exist a sentence @ and a world w such that w € Zan(R,) and that at
arbitrarily large ordinals a B(c,) is false at w in . ¢ while ¢ is true in
M “ atall w € [wR]. Then B(c,) is true at w in . ***. Observe that
the assumption that w € Zan(R,) entails that w € [wR]. So, if
0 = B(c,), B(c,) is false at w in .#**'. So B(c,) = B(cy) is false
at w in . *+!, So, taking v to be the sentence B(c,) — B(cy), B(cy)
is falseat win .# % *2.

As before, since this holds for arbitrarily large ordinals and the
sentence is of the form B(0) for some 4, it will fail in . ¢ at w in
particular for all perfect stabilization ordinals a. We already saw in
Proposition 16 that for such a v itselfis true in . * at w.[1

Besides the specific information these last three propositions give
about the behavior of the schemata (B1)—(B4) and a couple of close
variants, they also prove the general point that when validity is defined
as truth throughout the class of models %, the set of schemata that are
thereby singled out as valid will depend not just on the constraints that
are imposed on R but also on the types of revision stages that are
admitted in #. Indeed, summarizing what we have found above, and
adding a few further facts of the same kind:

Suppose # is the class of all model structures M such that R,, is
transitive and Euclidean, #, is the class of all expansions of model
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, ¥ structurés in &, %1 is the class of all models of the form .#¢ where
M E Byand a 2 1, B, is the class of all models of the form .# ¢

. where # € A, and « is a limit ordinal, #; is the class of all models

.+ of the form .#® where # € %, and a is a perfect stabilization
- ordinal for ., and %, is the class of all models of the form .# * where
o M E HB,and A ° is meta-stable. Let for i =0, ..., 4 Val; be the set
" of all sentences of L which are true in all members of #,; at each of
their worlds. We say that a schema from the set {(B1)—(B4)} is
. validated by %, if all its instances belong to Val,;. Then out of these
. four schemata, %, validates none; &, validates {B2, B3}; &, validates
{B1, B2, B3}; %, validates { B1, B2, B3};and &%, validates { B2, B3}.
The &#; form only a small selection from a much larger family of
. classes all of which have some prima facie plausibility as bases for a
. definition of validity. The extensive experience with possible worlds
. semantics for modal logics has demonstrated that there is in general
- no hope of finding intuitive criteria that narrow such families down

- 1o a single class which yields “the correct” definition of validity. In

.. particular, it is usually unfeasible to come up with non-circular justifica-
_ tions for the conditions on the alternativeness relation R, in terms of
- which these classes have often been defined. In relation to the present
- semantics this problem is amplified, for the prima facie plausible classes

; . may vary not only with respect to the conditions which they impose on

25 R, but also with respect to the types of model revision which they
. - admit, :
. With respect to this second dimension of variation there appear to
-, be some natural guidelines for what should be admitted and what not.
.+In 2 model where some sentences that would stabilize upon revision are
. nevertheless unstable, [ B] is an unnecessarily flawed record of what is
believed (according to the relation R and the definition of truth); it

. _seems reasonable to see this removable defect as disqualifying the

~model, and to ignore such models in definitions of validity.
. This limits the family of relevant classes to those which contain only
": metastable models. But that still leaves room for further restrictions —
- e.g. to the semistable models, or to models which represent revision
-stages of certain ordinal types, such as, say, successor stages or limit
“ stages. We have just seen that it can make a difference to validity
whether or not such further restrictions are imposed. But we do not
know of any compelling reasons that speak either for or against them.
To those who see the central task of doxastic logic as that of deter-
mining the -one “true” logic of belief, this multiplicity of possibilities

L, .
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poses a dilemma. It is a dilemma for which we have no solution. In fact,
we suspect that no solution exists. If one wants to settle for some
particular system of doxastic logic, then this will have to be, to some ex-
tent, a matter of decision. It cannot be a matter of discovery alone.

But it ought to be a matter of informed decision. In particular, the
decision should be informed by a proper perspective of the options
from which the choice is made, and such understanding can be gained
only by patiently exploring the entire field of possibilities. However, a
thorough exploration of that field would be a task of immense propor-
tions. The options we have so far considered cover no more than a
small corner of it. In the next and final section we consider a few
others. But that will still leave an unknown territory of which we cannot
even guess the true dimensions.

I1.2.3.

Gupta (1982) and Belnap (1982) note a curious consequence of
Herzberger’s rule for limit stages, which we incorporated into the
model theory developed in IL.1.2. The phenomenon to which they draw
attention manifests itself within our framework as follows. Let «# be a
model such that R, is transitive and there is at least one world w in
W, such that [wR] # @ and (YW € [wR])[w'R] # ©. Suppose
moreover that [b], = —1B(b) and [c], = T1B(c). Then we find a
curious asymmetry in the behavior of certain Boolean compounds of b
and ¢, For instance the sentences B(b) V —1B(c) and 11B(b) V B(c)
stabilize in .# at w, whereas B(b) V B(c) and ™B(b) V T1B(c) do
not. This does seem odd indeed. For it might well be that from an
intuitive point of view b and ¢ have nothing to do with each other,*
in which case it is very hard to see what could be responsible for
the stability of, say, B(b) V B(c) that would not equally apply to
B(b) V —1B(c). It is easy to verify these facts, and in doing so one
realizes that the discrepancy arises because of Herzberger’s revision
rule for limit stages. We are not sure that this is in itself sufficient
reason to reject Herzberger’s rule. But the phenomenon seems incon-
gruous enough to justify the search for an alternative.

There exists, we believe, a consensus that every revision rule for limit
stages must obey the following constraint. Suppose that .# is a model
and that .## has been defined for all § < A. Then we can, for any
w & W,,divide the sentences of L into three categories:
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" (LSi) - sentences ¢ for which there is a < 4 such that
By <B<i-9€[Bl],)
(LS.i) . sentences ¢ for which thereisa y < A such that
(VB)(y <B <1-¢@<€[BlE )
(LS.ii) those sentences @ to which neither (i) nor (ii) applies.

. From the perspective of the limit of the unbounded sequence of
. ~Tevisions {.##} ;. the sentences of the first type appear as positively
*" stable at w, those of the second type as negatively stable at w. Accord-
"Zingly any revision rule applying at stage A should assign to B an
., extension at w that contains the former sentences and excludes the
-+ latter.
" We will refer to this criterion as the local stability principle. Besides
* this principle there do not appear to be any other clear constraints that
an alternative to Herzberger’s rule should satisfy. Indeed, Belnap’s
"-(1982) approach to the treatment of limit stages is premised on the
« -.conviction that there are none. Herzberger’s rule itself can be described
,as the one which makes [B]%, , as small as the local stability principle
permits. Gupta (1982) proposes a different rule, according to which the
sentences of type (LS.iii) are put into [ B] 4w depending on whether or
not they belong to [B]Y,. This rule, which might be said to be
equipped with the memory of an elephant, has consequences that strike
- us as much more unpalatable than any of the apparent oddities asso-
"% ciated with Herzberger’s. For instance, if we define validity as truth at
all worlds in all metastable expansions of some natural class of model
structures (e.g. the class of all model structures in which R is transitive
and Euclidean) then no schema that isn’t a theorem of truth-functional
logic will come out as valid. The reason for this is that if a schema u
does not have the form of a tautology we can always interpret its
sentence letters as sentences of L that are unstable at w in some model
«# and choose [B]Y , in such a way that u is refuted in .#. It is easily
seen that in such a situation there will always be arbitrarily large limit
ordinals A from which each of the relevant sentences is locally unstable
. at w. Gupta’s rule guarantees that at each such A[B]% ,, agrees on all
- the sentences that interpret sentence letters occurring in . Conse-
.- quently p is refuted at w in .#* (The details of this argument will
"+ become explicit in the proof of Proposition 18 below.)*!
- This last observation reveals that there is yet another dimension to
‘the question which models should be considered rel.evant to the Qefim-
.’ tion of validity. This is a dimension that we ignored in our discussion of
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the question in I1.2.1; we never raised, when contemplating which
models .# ¢ should be included in the class #, the question whether
any restrictions should be placed on the “initial” intension of B, i.e. on
[B] .. We avoided the issue because at that point it would have been
difficult to explain its relevance. Now, however, we can see that under
certain conditions the initial intension of B will have a lasting effect that
no amount of revision can undo, and that consequently restrictions on
the initial intension may make a difference to the set of valid schemata
even if the class & only contains metastable models.

Someone who would wish to define validity on the basis of a
semantics in which Herzberger’s rule has been replaced by Gupta’s,
would, on pain of ending up with an essentially vacuous doxastic logic,
have to impose restrictions on initial intensions. But what could those
restrictions be? Evidently if the restrictions are to save the emerging
logic from triviality, the initial extensions must validate for any schema
that is to qualify as valid at least all interpretations that involve unstable
sentences. We do not know of many ways in which such restrictions can
be expressed in non-question begging terms. There is, as far as we can
see, only one constraint that can be stated without circularity and which
guarantees that some non-tautological schemata stand a chance of
qualifying as valid. This is the condition which demands that the initial
extensions be all empty. Herzberger calls extensional models which
satisfy this condition primary. We adopt this term also, and call a model
M primary iff Yw € W,)[Bl, ., = ©. Metastable revisions of
primary models validate certain non-tautologous schemata even when
Gupta’s rule is used instead of Herzberger's. However, this is hardly
exciting news, for in relation to primary models the two limit rules
produce exactly the same revision sequences. This entails in particular
that for models of this kind Gupta’s rule will produce the same oddities
that were noted in connection with Herzberger’s rule, so that even from
that perspective it does not constitute an improvement.*?

It may be that the local stability principle is the only intuitively
justifiable constraint on limit rules. If this is so the definition of logical
validity ought to be insensitive to which of those rules is being used.
This is the position of Belnap (1982), who proposes a revision policy
according to which we may at each limit stage choose any model that
can be obtained from the sequence of preceding stages in a way com-
patible with the local stability principle. There are several ways in which
this idea can be made precise. Here we present one.

The central notion in Belnap’s proposal is what he calls a “bootstrap-
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: pihg polibj)”f We will use the term “revision scheme” instead. By an inter-
" polation function on a set A we understand any function f from #(A)?
“Uinto #(A) such that whenever 4;, A, € A and A; N A, = @ then
. f(A1, Ay) 2 Ay and f(A;, A;) N A, = O. By a revision scheme under-
i “'stand a function # defined on the class of all limit ordinals such that for
.= each 4 9 (4) is an interpolation function on the set S, of sentences of
“» L. Given a model .# and a revision scheme %, the revision sequence
- starting from M according to # is the sequence { ./ “ ¥}, 0,» defined
© by [B]% % = [Bl [B]g!)# is defined as in Section I.1.2; and
. [BIA? = % (1) (B, B;,), where BY = lo:Fy < HEB(y <B <4
o @ Bl and By ={g:Ay <A)(VH(y <P <i-g€&
o+ | B]%2)}. With respect to any sequence {M*=*]) e on We can distin-
~ guish between those sentences that stabilize at w and those that do not,
_4» and similarly for the various other notions relating to stability that were
-« introduced earlier. We can in particular distinguish between those
/™7 in which every sentence that stabilizes at any world is stable at
. ¢ that world, and those for which this is not so. We refer to the former
“ again as metastable models. Among the metastable .# *# there will be
- some such that [B]% = [B]2 for arbitrarily large 8. A model of this
last kind will be called recurrent. When A is a limit ordinal, w € W,
vand (dy < HY(VB)(y < B < A = [@las, = 1) we say that ¢ is
- locally stably true in M at w from the) p(erspective) off) A according
- o Z. Similarly, if Ay < )(VB)(y < B < A - [@lis,=0) pis
locally stably false in .4 at w fpo A according to #;and if

(VY <HEO < B <r&lglas,=1H&
@By S B <i&lples,=0)

we say that @ is locally unstable in # at w fpo A accordingto %.
- Once again, this revision concept yields a considerable variety of
;. _classes of models in terms of which validity might be defined. Although
-/ no clear conceptual criteria seem available for choosing from among
t% these classes, here too those consisting only of metastable models
-would appear to be among the most natural candidates. In relation to
the present revision concept, however, the choice turns out to be of
little material import. For nearly every intuitively reasonable choice
results in a logic that contains virtually no non-tautologous schemata at
all. Proposition 18, though it does not exhaust the entire spectrum of
relevant possibilities, establishes this fact for a representative family of

such classes.
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Let T be the system of modal propositional logic, formulated in the
language PL, whose axioms are the instances of all truthfunctional
tautologies and which is closed under the following three inference
rules:

M.P. Rl R2

——————

Fo,Fe -y Fo =g

= FBe + T1Beg

PROPOSITION 18. Let {¢;};e, be a denumerable coinfinite subset
of C, — C,, where C, is the range of the function c,. Let M be an
extensional model structure such that for each i € w[c;ly = T1B(c;),
and let B be the class of models consisting of all metastable expansions
M2 of M, for arbitrary revision schemes . Then for every schema p
of PL, T+ uiff # = u. _

Proof. The proof from left to right proceeds by a 'stralghtforward
induction on the length of proofs in 7. The proof frorp rlght. to left rests
on the following idea. Let I, be the interpretation which assigns to each
sentence letter p, the sentence T1B(c;). Then, whenever 4 15 a schema
that is not derivable in T, there will be a revision scheme # a}nd an
expansion «# of M such that I,(u) is false in 4 %7 for arbitrarily
large a. This is so because for any schema g that is “contingent in” T
(i.e. neither provable nor disprovable in 7)) we can construct an expan-
sion %% of M for arbitrarily large limit ordinals 4 so that u is
locally unstable in . fpo A according to #.

To prove the right-to-left direction in detail we proceed as follows.
By the degree of a formula u of PL, deg(u), we understand the
maximum of the lengths of chains of nested occurrences of B in u. For
ease of notation we will write # instead of I(u); where A is a set of
formulae of PL, A is the set of all # such that 4 € A.

With every formula ¢ of PL we associate what we call a decoration
of u, d,. d, is a function from a certain subset of the set of sub-
formulae Bv of u to the set {T, L}. This function is determined as
follows. We first consider the subformulae Bv of u such that v does
not contain any occurrences of B. For each of these subformulae we
put d,(Bv) =T if v is a tautology (of ordinary propositional logic), and
put d,(Bv) = L if v is the negation of a tautology. For the remaining
formulae Bv with B not occurring in v d, is undefined. We now look at
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- the subformulae By where ¥ contains only unnested occurrences of B.
“Let ¥ be the formula obtained from v by replacing each subformula
" BB of v for which d, is defined by d,(BB) and replacing the remaining
~ subformulae BB,, ..., BB, of v by distinct sentence letters g, . . ., 4,

“_. which do not occur in . If V' is a tautology-then we put d,(Bv) = T, if

"-.-v" is the negation of a tautology, we put d,(Bv) = L, and otherwise
.- d,(Bv) remains undefined. We then look at the subformulae Bv such
..' that v contains only subformulae BS of degree 2, repeat the same
. =" procedure, etc.

- Ttis easy to establish the following facts concerning d,:

(I)(@) ifd,(Bv)=Tthen T - By.
() ifd,(Bv)= L then T - —1By.

(2) Let I be any interpretation and let .# be a member of %.
Then, if d,(Bv) = T, [I(Bv)],, = 1, and if d,(Bv) = 1L,
L(Bv)], =0.

(3) Let I and .# be as under (2). Suppose #' is obtained from
# 1n the same way as the formulae v were obtained from
the subformulae v of 4. Suppose that ¥ is an assignment of
truth values to the sentence letters of " and that for each
Boolean constituent y of u which is not in the domain of
dlInl,=1iff Vv assigns T to the sentence letter g of u’
corresponding to y. Then [ ()], = V(i)

(1) and (2) are both proved by induction on the complexity of v. (3)is
an immediate consequence of (2).

We call a formula of PL prime if it is either T, 1L , a sentence letter
or a formula of the form Bv. Note that if a formula v of PL is prime
‘and different from T and L then v is always either of the form B(c) or
of the form —1B(c) for some constant c.

;- Let u be a formula of PL such that ™7 b u. Assume that {p,, . ..,
7Py} includes all the sentence letters that occur in y. For n < deg(u) let
. A, be the set of all prime formulae of PL of degree < # that are sub-

- formulae of g and are not in the domain of d,. We will show, by

~Induction on n, that the following is true for n < degree(u):

' - (*) There exist

. (i) a function r, defined on A, which maps each ¢ € A,
to a partial function from the class Lim of all limit

~ ordinals to {0,1},
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(11) a closed unbounded subsequence {ag} g 0n of Lim, and
(i) for each subset S of A, an unbounded subsequence I’y
of {a%lseon consisting exclusively of ordinals that are

successor ordinals in { @} 5 < 0’

such that if . is any expansion of M and % any revision
scheme that is compatible with r,,,** then

(a) for every ¢ € A, Dom(r,(9)) N {akipeon = I'sy
U...UT,, where S1,..., Svare all the subsets of A,.

(b)if S # §' then[{ N [y =0

(c) for every ordinal § and every ¢ & A, ¢ is locally
unstable in . fpo a} according to %, and

(d) Forevery y € L, [B(cp)Lanx=1iff ¢ € 845

The role of the functions r, is to impose increasingly strong con-
straints on the revision schemes % that are to be considered. The
significance of r, for % is that it tells us for those combinations of ¢
and a for which it is defined that if ¢ is locally unstable in . fpo a
according to % then [ B(cq,)]} puax =T, (@)(a) The following definition
guarantees that this is indeed the effect which compatibility with 7, has:
let f be any partial function from the set of sentences of L to partial
functions from Lim to {0, 1}, and let # be a revision scheme. Then #
is compatible with f iff for each @ and a such that f(@)(a) is defined,
and each pair B*, B~ of disjoint subsets of §; such that ¢ & B* U B,
¢ € Z(a)(B*, B)ift f(p)(a)=1.

It is easy to see that (*) gives us the desired result. For let BB, ...,
BB, be the Boolean constituents of g that begin with B. Since not
T + u, it follows from (1) that 4’ (the result of replacing the Bf; for
which d, is defined by d,(Bf;), and the remaining Bf; by new sen-
tence letters ¢;) is not a tautology. So there is an assignment V of truth
values to the sentence letters of x4’ such that V(u') = 0. Let S be a
subset of A, such that for each Boolean constituent BB of u such
f.hE.l‘t d,(Bp) is undefined, B € S iff V(Bf) = 1. Then it follows from
(*iiid) and (3) that if, for n = deg(u), #, A and I satisfy (*) and
Y € g then [ B(g)] 4» =0.

To prove (*) let .# be any expansion of M. First suppose that
n = (. A, consists just of the sentences T1B(c;) such that p; occurs in
u. So every member of A, will be locally unstable in .# from any limit
ordinal according to any revision scheme whatever. Let {a}} <0, be
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_the sequence of all limit ordinals. Assign to the subsets S1, ..., Sm of
"' A, disjoint unbounded sequences Iy, ..., Iy, of limit ordinals, and
. let ry be the function defined on A, such that for each ¢ € A, 7o(¢)
., is the function: Ts; U ... U [, = {0, 1} such that for @ € Ty
V U... U ]."Sm rﬂ(_lB(c,-))(a) = () iff a € I‘S’:. It is Lnot hard to
- see that if % is compatible with r,, then for every y € I’y and
% @ € AyB(c,)lorn» = 1iff ¢ € Si Note in this connection that

' because of the local instability of the sentences ¢, neither of the sets

e e

e {e:@y <DP(y < B <A~ ¢ € [BlLx)] and {¢:@y <
By < B < A ~ @ & [B)ha)} will contain ¢; for any limit
s+ ordinal A. So the compatibility of # with r, guarantees that the
- sentences B(c,,) have the required truth values.
Now suppose we have associated with A, _ | a function r,_1,aclosed
unbounded sequence {af "1 4e0, Of limit ordinals and unbounded
7 subsequences I's of {aj~!},c,, for all subsets S of A,_, such that
(*) is satisfied for n — 1. Let By, ..., Bv, be all the members of
% Ay — A,_,. Foreach j < p there is a B-free formula v7 of PL such
** that (i) v, is the result of substituting sentences Bf,, ..., BB, for the
‘sentence letters ¢, in v}, and (i) v; is obtained from v} by substituting
d,(Bp;) for q; whenever d,(Bf;) is defined. For ease of notation let us
. ~assume that 4 o is defined for Bﬂl, cee, Bﬁs and not for the remaining

- »1

formplae Bf,. ., ..., BB, Since Bv; is not in the domain of d,, v; is
4 contingent, and so there are valuations ¥}, and Vioon g, ..., 45
~ which make v; true and false, respectively. Let S;; be a subset of A, _;
such that for i = 1,..., s y, € 8, iff V,(¢;) =1 and let S, be a
subset of A,_; that is similarly related to Vi,. By assumption there
are. unbounded sequences I';; and I';,, each consisting of successor
ordinals in the sequence {af ™ g0y sO that for all y € I';; and
YEA _ (W =1ify Sj1, and likewise for T';, and S,.

. In this way we can associate with each of the sentences @,(J=1,...,P)
i~ a pair of ordinal sequences I';;, I';,. Using these we can construct for
.. -any ordinal 0 an w-sequence {y;}; <, of ordinals > ¢ all of which are
“members of Dom(r,_,(¢)) N {a}~'}4co, such that {y;};, has an
infinite intersection with each of the sets ', forj = 1,..., p;u =1,

2. Let.y be the limit of {y;}; . It is easily verified from the induction
hypothesis that if % is a revision scheme compatible with r, _; then for
J=1,..., p v; will be locally unstable in .# according to # fpo the
limit of {¥;};e,- Since for every ordinal d we can construct such a
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,-'Ew consisting entirely of ordinals > 9, we can select an '
unbounded subsequence {aj'} s on Of {a}™ "} peon SO that each o' is
the limit of such a sequence {¥;}; < »- It is easy to see that

sequence {y;} |

4) if # is compatible with 7, _,, then v, ..., v, are all locally
unstable in .# according to % fpo every aj".

Whenever a sentence @ is unstable in .# according to % fpo all
members of a sequence of ordinals that is cofinal with a limit ordinal
A then ¢ is also unstable in . according to % fpo A. So the closure
of {a'} s on to which we will refer as {a}}gcon, also satisfies (4).
Moreover, since {a}™ !} s o, 15 closed and laglscon S {0 pcon
(a8} peon S {ah7 1) s on- We now choose for all the subsets S1,..., S0
of A, disjoint unbounded subsequences I, ..., 'y, of ordinals that
are successors in {a}} g 0, and define a function 7" on A, suc}{ that for
each ¢ € A, r'(¢): g, U ... U Ty = {0, 1} is that function such
thatforalli=1,...,v,a €Ty, ¢ € A, r'()(a)=1Iiff @ = S.z.
Let r, = U r,_,. Evidently if # is compatible with 7, thep it is
compatible with 7, _,. So it follows from the induction hypothesis that
all members of A, are locally unstable in .# according to A fpo each
ordinal a}. This establishes (*iii.c). (*ii.d) then follows in view of the
definition of # and (3). (iii.a) and (*iii.b) are direct consequences of
the choice of the T'; and the definition of 7,. ]

An immediate corollary of the last proposition is

PROPOSITION 19. Suppose that &' is a class of models which
includes the class B of Proposition 18. Then the schemata that are
valid in &' are included among the theorems of T.

Proposition 19 pinpoints the predicament into which our search for a
well-motivated and yet non-trivial doxastic logic seems to have landed
us. The problematic status of particular revision rules for limit stages
led us to try and eliminate the element of arbitrariness that they appear
to introduce into the analysis of validity we have offered. The remedy
we tried, first suggested by Belnap in relation to truth, was to include in
the classes of models in terms of which validity is defined the results of
using any one of the intuitively possible revision schemes (i.e. any of
those schemes that obey the local stability principle.) But as a result we
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 find "ourselves left with virtually no doxastic logic to speak of. The
- natural reaction to this is to wonder if there are perhaps not after all

: other admissibility criteria besides'the local stability principle which

k53

.- - narrow the class of revision' schemes down, so’that more schemata
..., come out valid than are derivable within 7.

* As a matter of fact, Proposition 18 implies — and a careful look at

. its proof will confirm this — that some revision schemes are rather odd.
- Suppose that x4 < u’ is a tautology of truthfunctional logic and that

~ I(u) and I{u") are both locally unstable in . at all w € [WR ] from
- the limit ordinal 4 (according to, say, any % whatever). Then there will
¢+ be revision schemes % which put I(u) into [ B] %% while leaving (")

out. One might well want to object to this, on the grounds that the

7 equivalence between u and u’ is so fundamental that any revision

- policy ought to treat them alike. Thus, a good revision scheme %

* should obey a second admissibility criterion, viz. that whenever @@

* » Instantiates a theorem of classical sentential logic, then for all A, BT,

.- B~ Z(A)(B*, B) contains either both of ¢, ¢’ or neither. Let us call

- this the (sentential) equivalence criterion. If this criterion is adopted

. and conditions are otherwise as stated in Proposition 18, then the set of

-valid schemata is somewhat larger; it coincides with the set of theorems

. of the PL-theory T’, which we obtain from T by adding for every
... tautology < ' the formula By < Bu’ as an axiom.

It is tempting to strengthen the sentential equivalence criterion in

jf‘f various ways. For instance, we could modify it so that it covers not only

equivalences of sentential logic, but also those of quantification theory.
This will further strengthen the set of valid sentences of L, although
no difference arises at the level of propositional schemata. Another

‘modification would be to demand for every schema u that all its

instances I(u) and I(u") are to be treated in the same way if x4 < u’ is

-valid. It is not so obvious, however, how we can state this requirement

without getting entangled in the circularity that is involved in the

formulation we have just given. (Recall that the notion of validity itself
~+.depends on the constraints that we impose on %) One way, to be sure,
in-which we can avoid this particular circularity is by stipulating that the

revision schemes must all be such that any model obtained by means
of them must satisfy all instances of theorems of the theory 7", where
T” is the theory we obtain by adding to 7 the rule F¢ < ¢" =
Bg < Bg’.But if our goal is to arrive at a logic that is licensed by



SELF-REFERENCE, ATTITUDES AND PARADOX 145

independent semantic motivations then this will of course not do. An
axiomatic characterization of the valid schemata should be derivable
from the definition of validity (including the specification of the admis-
sibility criteria for revision schemes); it should not be stipulated. By
formulating the criterion in this way we merely replace one kind of
circularity by another.

Another direction in which we might seek escape from the predica-
ment Propositions 18 and 19 seem to present is by reasoning along
the following lines. We argued that the motivation for the revision
approach does not tell us much about what should be done at lim.it
stages; it was this that suggested the Belnap treatment of those stages 1n
lieu of the Herzberger rule. But this, one might say, is tantamount to
admitting that limit stages should not really be regarded as “proper”
stages. In particular, they should be excluded from a s.emantlc 'charac-
terization of validity. Suppose that, in the spirit of this reflection, we
define validity in terms of classes of metastable models of the form
M B+1, More formally, for any class & of models say that a schema 4
is valid,(#) iff every instance of g is true at every world in every
model in % that is of the form .##+1# for some .#, # and f. For
validity, matters look a little better. In particular, schema B3 will now
be valid, and if, as in Proposition 18, we restrict attention to extensional
models the much stronger schema

(E) By < \BTg

is valid as well. We note that, on the other hand, (E) is not valid in the
class of models that are of the form . %!, where 4 is a limit ordinal
and H is the Herzberger revision rule.

The thought behind this modification of our earlier definitions of
validity (which included limit stages among the relevant models) may be
pushed even farther. From the present perspective limit stages should
be ignored since they permit exceedingly perverse choices for the
extensions of B. This latitude does not prevent them from contributing
to the purpose for which they were originally included, that of per-
mitting the stabilization of sentences that need more than @ revisions to
achieve stability. But it does entail that limit stages can, when the
revision scheme is crazy enough, be distressingly untidy. Unfortunately,
however, that untidiness is not limited to the limit stages themselves,
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- ;Fbrﬂ“ir{‘sltzinée, if .# is extensional and @ and Y are tautologically

. - equivalent sentences such that ¢ € [B] 1 and ¢ & [B] 4, then for all

. natural numbers n B"¢p € [B] i+, and B"y & [B] 41+, Thus it
¢ .+ looks as if the refuse of the limit stages spills arbitrarily far along the
. w-sequences of successor stages which they initiate. This suggests an

. %7 even stronger constraint on the models we want to consider, but one

¥ that is dependent on the particular sentence under consideration: say

~that u is validy(#) iff for each instance g of u there is a natural

" number n such that g is true at every world in every model in & that

e we might have expected. For instance, in a model of the form .#**1,
. wwhere 4 is a limit ordinal, (E) and (B3) will both be valid; but the
: “zv‘schemata which we obtain when we apply rule R, to them,

- is of the form .#**™ ¥ for some model .#, revision scheme .%, limit
- . ordinal 4 and natural number m > n. In other words, for u to be

valid, (with respect to %) all that is required is that each of its

- instances stabilize to truth on every w-sequence of revisions (that
;. belong to #).

Validity, and validity, do indeed differ from each other in the way

B(Bp <+ -iB—1¢) and
B((Be A B(g ~ y) ~ By),

~are not. This means in particular that R, is not valid,. On the other

; s";:"‘:_lland itis easily verified that R, is valid,.

The ability which validity, has for neutralizing the chaotic effects that
the ‘Belnap approach has on the extensions of B at limit stages is
reflected by the fact that the set of valid, schemata does not change
when we restrict the class # of models, with respect to which validity is
being defined, to those metastable stages that are obtained with the
Herzberger rule. The next Proposition 21 makes this explicit, and its

_..proof indicates how the difference between the Herzberger and Belnap
. approaches loses its impact on validity if limit stages are excluded in the

manner of validity,.

PROPOSITION 20. Let T, be the theory obtained through adding to T
the schemata (B3) and (E) as axioms. Let & be the class defined in
the statement of Proposition 18. Then the set of schemata that are
valid,(#) coincides with the set of theorems of T,. Moreover, if &' is
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the class of all extensional models that are metastable according to the
definition of 111 (i.e. using the Herzberger rule for limit stages) then the
set of schemata that are validy)(#") also coincides with the set of T,
theorems.

Proof. It is straightforward to show that all theorems of T, are valid
in the two senses Proposition 20 refers to.

To show that only the theorems of T, are valid in the relevant
senses, we argue as follows. The presence of schema (E) in T, enables
us to rewrite any schema g as a Boolean combination of sentence
letters and formulae of the form B”p;.*” For further ease of notation we
will write ‘B%p,” for ‘p,”. Suppose that u is a schema written in this form
and that T, #* u.We will find an instance g of u such that

(1) for some model .# in #’ [u] ., =0 for arbitrarily large
n.

Since the set of schemata that are valid,(#’) includes each of the
other three classes mentioned in Proposition 20, this will establish the
proposition.

Assume that the sentence letters occurring in u are all among py, . ..,
P, and that deg(u) = m. Then the Boolean constituents of u are all

among B°p,, ..., B"p,, B°py, ... s B"Dy ..+ B, ... B”’pg.
Replacing these constituents by distinct sentence letters P, .. s pr, P2
PP ..., pY, ..., pr, we obtain a B-free formula u'. Since u 1

not a theorem of 7,, there is an assignment A of truth values to the
sentence letters of 4’ such that A(u’) = 0. Our task thus reduces to
finding sentences ¢, ..., @, of L such that interpreting the sentence
letters p,, . .., p, by means of the ¢, ..., ¢, gives an instance & of u
for which (1) holds. To this end we make use of an observation in
Herzberger (1982). Let . be an extensional model such that, for m
given constants ¢y, ..., Cp 1¢)le = B(c;p)fori =0,...,m—1,
and [c,,], = —1B(c,). Moreover, we assume that these constants are
not involved in any other self-referential links in .#; i.e. if we restrict
<« to the set {c:(Fi < m)c <, ¢;} and then subtract the pairs
{¢;y €; 1), fori=0,...,m—1,and {c,, c,) from this set, then the
resulting relation is well-founded. Under revision the truth values of the
¢, in A4 go through the following cyclic pattern of periodicity
2 - (m + 1), of which we display the segment beginning with stage w:
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A‘Stage o

CO Cl . .. Cm -2 Cm -1 Cm

w F F F F T

w+1 . F F F T T

w+m r T T T T

w+m+1 T T T T F

w+m+2 T T T F F

w+2m+1 F F F F F

J w+2m+2 F F F F T
.. Forr=0,..., mlet ¢" be the conjunction e & ... & al,, where
~forj =0,..., m a] = cj if the intersection of the j-th column and the
- r-th row of the above array contains a T, and a} = —ic; if the inter-
_sect:on contains an F. Let for i = , k, rpt = V,cr@’, where

R={r:0 <r<mé&Ap"- ’)) = 1} Since all the ¢; are locally
_:>unstable fpo w,forall i € k ¢; & [B] 4. It is easy to verify that for
: i =1 k r_O [Brgoz]l.l(w"""""_ﬂ(pz]}«/(w‘*m ’“’?‘_A(p)
", So if y xs the result of substltutmg the ¢@; for the p;, in u, then
[,u ].#w+ma = 0. Because of the cyclical character of the ¢; we can infer
that [#] 4 0+20m+ 1.2 = 0 forarbitrarily large h. ]

~ When we also admit non-extensional models within the class we use
to define validity then schema (E) will clearly no longer count as val_id.
However, if we restrict attention to successor stages, validity remains
for the schema (B3).In fact, we can prove the following:

VPROPOSITION 21. Let B" be the class of all metastable models
resultmg from the expansion of any model structure M using the Belnap
‘approach for revision at limit stages. Let T, be the theory obtained by
‘removing from the theory T of Proposition 18 the rule R,, and adding
" “the schemata (B3) and B(p & @) ~ By as axioms. Then the set of
all schemata that are valzdz(ﬁ’ ) coincides with the set of theorems of
the theoryT
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Like Proposition 20, Proposition 21 is not affected when we restrict
attention to the Herzberger revision scheme. Moreover, imposing -
restrictions on the alternativeness relation &# has comparatively little
effect. If we restrict attention to models in which % is seral then the
axiom B(¢ A T1¢) — By must be strengthened to T1B(¢ A T1¢).
But otherwise such restrictions seem to add no new validities. For
instance, even if we restrict attention to models .# in which %2,
is the universal relation, the change from B(¢ A —¢) = By to
=1B(@ A —1¢)is the only one needed in 7.

We already noted that validity, invalidates (R,). It also invalidates
(R,), as is evident from the fact that, given (E), (R,) and (R,) are inter-
derivable. This, it seems to us, shows that validity, is not a particularly
natural notion, not at any rate in the context of extensional models. For
we regard it as counterintuitive that a certain sentence form, such as
that identified by (E), should qualify as valid, and yet that sentences
asserting that sentences of that form are true should not count as valid.
This unfortunate property validity, shares with a hierarchy of similar
notions, of which it forms the bottom rung. Define a schema to be
valid" iff all its instances are true in all models of the form .#*** with
A a limit ordinal and k 2> n. (So validity, coincides with validity'!)
While the set of valid” schemata strictly increases with increasing #, all
the validity concepts in this progression suffer from the same draw-
backs as validity,; moreover, no motivated choice between them seems
at all possible.

The illustrations we gave of the difference between validity, and
validity, also show a difference between validity, and what looks a
priori like an intermediate notion between validity, and validity,, that
according to which a schema u is valid respect to # iff there is a
number 7 such that for every instance # of # and every model .Z**¥,
with A a limit ordinal and k a natural number > n, g is true in #Z2*%,
In fact, the proof of Proposition 20 shows that for the extensional case
this new concept gives the same set of schemata as validity,. This
appears to remain true when we consider validity in relation to non-
extensional model structures.

When reflecting on the importance of Propositions 18, 19, 20 and
21 we should not forget that theorems of the type they exemplify
characterize validity in what may be considered a rather crude way.
There are substantial families of sentences of L which verify many
more schemata than are valid universally. To be precise, if # is a class
of models and & any set of sentences, say that the schema u is verified
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_jfby 7 in & iff for every mterpretatlon I(,u) of u such that Ran(I YE &,
‘model # € & and every w € W, [1(#)] ¢, ., = 1. Then, in partic-

'ular if St(#) is the set of all sentences stable throughout &, the set of

~schemata of our propositional language PL venfled by St(#) in # will

- include the set of all those that are valid (in the sense of modal logic)
-, on the set & of frames represented in # — i.e. the set of all possible

ﬂworlds structures ( W,,, R, ) with «# € . This suggests that in those

g g

.2'cases where it is impossible to axiomatize the set of valid sentences of

L, it might be possible to obtain results of a type intermediate between

's)’ythose exemplified by Proposition 13 on the one hand and Proposition
-+ 18 on the other, results which specify for one or more families of

“-sentences the sets of schemata verified by those families. Such results

+ would give a much better impression of how much doxastic logic
'~ survives in the definitions considered in this paper than all-or-nothing
 results in the style of Propositions 18 and 19. Whether such a more
<~ refined approach is really going to bring us substantially more, is a
- matter that still needs investigation It may well be that the only two
-~ sentence sets that are relevant in this context are (i) the set of all
..sentences, and (ii) the set of sentences that stabilize throughout the
» -class of models used to define validity. So far we have not found an

:mterestlng example of a set intermediate between these two and which
. validates a set of schemata which lies properly between the schemata

. sets validated by the sets (i) and (ii).

The alternatives we have explored in this section remain fairly close

"""to the semantics we introduced in II.1.2. But there are a number of

other possibilities some of which depart much more radically from the

(framework we have used. One of these, which still remains quite close

to the orlgmal is a somewhat different elaboration of Belnap’s idea.
This version circumvents the notion of a revision scheme. Instead
revisions at limit stages produce sets of models. In particular at stage @
we associate with any starting model .# the set of all models that could
be obtained from the sequence {#"},c, by any choice of [B] that
agrees ‘with the local stability principle. From this point onwards the
revision process has to deal with sets of models rather than single
models at both successor and limit stages. The precise definition of this
process requires some care, but we omit the details.

- We mention this option not so much for its own interest, but because
it naturally leads to others that constitute more significant departures
from our original semantics. For instance, we could, instead of adopting
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the revision process just indicated, use the set . “ of models obtained
at stage w as the basis of a supervaluation on the original model .#. .
This is tantamount to adopting at that stage a Kripke model, in which
the extension and anti-extension of B in w contain only those ¢ which
belong to all or none of the models, respectively, in the set .# “. In this
way we are led to a theory which is a hybrid between that of Kripke
(1975) and those of Herzberger (1982) and Gupta (1982). The proper
setting for a study of the various options that arise if we proceed in this
direction would, we expect, be some intensional version of the “Unified
Theory” sketched in Herzberger (1982),

While there are substantial differences between the various pos-
sibilities we have so far mentioned, they are nonetheless all variations
on the general theme of a theory which combines the inductive and
semi-inductive procedures of Kripke and others with the possible
worlds account of intensionality. A much wider range of options opens
up when we abandon the theme itself, for instance by embracing a
different analysis of the intensional. In Part I of this paper, we criticized
possible worlds semantics for its inability to provide a satisfactory
explication of many attitudinal notions. Some of our criticisms had
nothing to do with self-reference and apply no. less to the semantics
presented in this paper than they do to possible worlds semantics in its
more familiar forms. Indeed, we expressed our doubts about the frame-
work employed in this study, and made a commitment to search for one
that meets those criticisms. Whether such a theory will shed new light
on attitudinal logic is at this point a matter of speculation. But whether
it does or not, it will be needed in any case.

NOTES

! See Montague (1963).
> Usually S, and S5 are given as systems that include an inference rule (the rule of
necessitation, which allows passage from H ¢ to —DO¢). However, it is possible to
reformulate these systems as sets of axioms, e.g. by adopting as axioms all sentences
obtained by prefixing O to an instance of one of the axiom-schemata that are included
in the familiar formulations of these systems.
* The system has the property that belief in certain intuitively self-evident statements,
such as eg. the single axiom of Robinson’s (, entails belief in any statement what-
soever, including transparent contradictions.

It has been put to us that the principle (B4) lacks the intuitive plausibility that
attaches to the principles (B1)~(B3). So it may be appropriate to say a few words in
its defense. One argument in favor of (B4) runs like this: As G. E. Moore was the
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- first to observe, one cannot coherently believe that one believes that ¢ and yet that ¢
- is false. Thus, the conjunction B(®) & ¢ is doxastically impossible. In other words
- we have T(MB)(B(@) & @), in view of the fact that (7B ) expresses doxastic
" possibility. This last formula, however, is equivalent to B(B(®) — @), given (B1)—
(B3).

A second defense rests on a different principle, according to which a believer has
complete access to what he believes. This means that for each @ the believer knows,
and thus believes, that B(@), or else knows, and thus believes, that —1.B(@). Moreover,
he will believe B(g) (if and) only if he believes that ¢. So we have either B(B(9)) &
B(@) or else B(1B(@)). Given (B1)—(B3) each of these two disjuncts entails B(B(®)
~ @)

When reflecting on the plausibility of (B4) it is important to remain attentive to the
difference between the claim that all instances of (B4) are valid — which is the claim at
issue here — and the principle B(Vx)(B(¢) ~ @), which given (B1)—(B3) properly
entails (B4). This last principle does not seem to be plausible to us. In fact, to believe

(Vo)(B(®) = @) is a form of hubris that some of us may succumb to; but it is surely
not part of doxastic logic,

It should also be noted in this connection that (B 1)—(B4) is not the only incom-
patible set of doxastic principles that yields incompatibility results. Other incompatible
sets (taken from Rob Koons’, 1987) are for instance: (J1) J(mJ(@)) ~ —J(P); (J2)
J(@) where ¢ is an axiom of first order logic; (J3) J(@ ~ ) —~ (J(@) = J(¥)); (J4)
J(a), where a is the conjunction of the axioms of Robinson’s arithmetic; and (45) J(B),

- where § is an instance of one of (J 1)—(J4); and the closure under the rule ¢ =
~I(9) of the principles (1) I(p ~ ¥) ~ (I(@) ~ K¥)); (12) I(p) ~ I((@)); and
. (13) ML),
.4 The approach is based on Discourse Representation Theory. See Asher (1986);
Kamp (1985).
3 Seefootnote 2.
-~ ¢ Here we assume that particular predicates of L(T) have been designated to represent
E the arithmetical notions of successor, + and .

. For a more detailed description of Kripke models, see Section II.1 below. We say
- that (W, R, [ ]) is a model of the theory T iff there exists w & W such that each
sentence of Tis truein{ W, R,[ ]) at w.
- ® See Montague (1968), Montague (1970). We will sometimes refer to Montague’s
- Intensional Logic as ‘IL’.

. ? Perhaps attitudes to the effect that a certain sentence expresses a certain content are
. pot quite properly called beliefs. It appears for instance that we say ‘a realized/did not
.- realize that such and such is expressed by sentence 5, rather than ‘a believed that such

- +and such is expressed by sentence §’. But in any case the attitudes in question are

“ similar enough to belief for this not to affect the argument.

10 Note that the route by which this person may find himself entangled in doxastic or

' epistemic paradox is not much different from that which will lead him into trouble with

- the liar paradox. Note also in this connection that from the internal perspective the
" logic of belief is arguably much stronger than that defined by (B1)—(B4) and in fact
‘not all that different from the logic of truth, as given by Schema 7. We will return to

this point in Sections 11.2.2 and I11.2.3.

L
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!l Kaplan and Montague (1962) and Montague (1963). Of course, in the present case
the language would be a “language of thought” and potentially quite different from the
languages in which propositional attitudes are expressed publicly. The motivation for
the work of Kaplan and Montague relates rather to public language.

'2 When we noted the inexpressibility of the expression relation in the predecessor of
this paper, Asher and Kamp (1986), we failed to realize that precisely the same point
had been made more than a decade ago by Parsons (see Parsons (1974)). We apologize
for the oversight.

The impossibility of representing in IL the expression relation between propositions
and the Godel numbers of the sentences expressing them has, we have just seen,
nothing to do with the presence or absence of attitudinal predicates but arises
independently, by virtue of the fact that IL contains the sentence forming operator ~
But in slightly different systems, which lack >, but instead contain, say, a belief
predicate B satisfying (B1)—(B4), addition of E, with the axioms we just gave for it,
would also be impossible. In such systems E could be used to define an attitudinal
predicate of numbers B’, such that (B'(r) = (3p)(E(n, p) & B(p)). Under suitable
conditions it is possible to show that the principles governing B also hold for B’. The
contradiction then follows as in Montague (1963) or Thomason (1980). _ .
3 Strictly speaking it is the combination of attitudinal (e.g. epistemic or doxastic) logic
and the underlying general logic that leads to paradox. So it would seem in Prmcnple
conceivable that consistency could be secured by limiting the underlying logic ra.ltl.ler
than the logics of the particular attitudinal notions involved; or, alternatively, by giving
up a little of both. We do not know if these options have any practical value. We will
ignore them for most of the paper, but will return to them briefly in Section 11.2.3.

'*" See Gupta (1982) and Herzberger (1982).

!> See Quine (1953). _

'® “Reject” admittedly is rather vague, and might be said to beg precise}y the question
at issue, viz. whether (1) is false or just incapable of being known. But it can be made
more precise in the following way. Certain declarative speech acts, among them judges’
decrees, carry the implication that they constitute knowledge for those to whom they
are addressed; their truth is warranted by the authority of the person or institution from
which they issue. It is possible to construe this component of the meaning of such
utterances as involving some sort of self-reference. The statement appears to be saying,
among other things, that it itself is known to its addressees. On the face of it this is
“self-reference” of a pragmatic, rather than a syntactic or semantic, sort. But we can,
without producing too much distortion, make it formally explicit by construing the de-
cree as overtly self-referential, viz. by representing it as:

@) (M & 2@ < t,)K,M) V (T & 23t < 1)K, T) & K, (2),

where ¢, denotes the time at which the decree is issued. (We have ignored the distine-
tion between knowledge and belief here, but this does not affect the point. Note that
although (2) is explicitly self-referential, it is quite different from the self-referential
versions of the decree that can be found in two earlier treatments of the paradox, which
emphasize its self-referential character, viz. Kaplan and Montague (1962) and Shaw
(1958)).
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"I the decree is interpreted as (2), then K’s inference that it must be false is above
suspicion. * 7

.17 An actual person in K’s predicament would presumably stop chasing his own tail
" pretty soon, and wait for things to come in a state of bemused apprehension.

18 See e.g. Doyle and McDermott (1980); Moore (1983), McDermott (1986).

19 In K’s case it is not a matter of the sentence being falsified by the state of affairs, but
~ rather of its being possible in the light of it; but that is an irrelevant discrepancy for the
point we are concerned to make.

20 See in particular Asher (1986), Asher (1987).

! Some such logics can be found in Asher (1986) and Asher (1987). We intend to
study these and others in forthcoming work.

?2 In our framework it is not possible to eliminate global self-reference entirely, for the
quantifiers range over sets that include the sentences of the language. Thus any
sentence that contains a quantifier will contain quantification over a domain to which it
itself belongs. This kind of impredicativity can be rendered harmless in several ways,
for instance by ensuring that the atomic formulae in which the bound variable occurs
are true of some quantifier-free sentence. For details see Section I1.1.4.

3 The assumption that every individual in the domain is named by a constant is made
strictly for reasons of convenience. It obviates the need to fuss with assignment func-
tions in stating the truth conditions of quantified sentences. Strictly speaking, our
procedure is not entirely sound; for instance, it excludes models whose domain has a
cardinality exceeding that of the set of constants of L. Such problems are easily
overcome by allowing the set of constants to be expanded when necessary. The issue is
gimlh?r from standard modet theory and needs, we trust, no further elaboration.

This perspective on the adjustment procedure defined above for [ B] , ,, is motivated
by the observations made in Section 1.5 about the role revision plays in the hangman
paradox. It is not evident, however, that the revision procedure we adopt in our formal
analysis correctly captures the kind of belief revision we identified in 1.5. We argued
o there that, as an effect of the subject’s reflections on a paradoxical sentence, his beliefs

. actually change. If the totality of his beliefs is changing and that totality is reflected in
.+ the set of doxastic alternatives, then that set ought to change also. In the present
- formalization of belief revision, however, the relation R remains constant. The only
" changes that can happen to the set of alternatives for w concern the extensions of B in
the members of this fixed set of alternatives. But if these extensions do no more than
~ record what is determined already in some other way, then a change of extension

- * cannot, it would seem, be regarded as a change from one possible world into another.

For this reason the relevance of our formal treatment to the phenomenon of belief
. change remains in the last analysis problematic. A satisfactory resolution of this
problem is, we believe, possible only within a more explicitly representational account.

- #2% We will consider some alternatives to Herzberger’s rule in 11.2.3,
28 Note that since L has identity, designative self-reference can always be mimicked by

pf
. E

" quantificational self-reference. For instance suppose that [b],, is the sentence —1B(b).
.- Then, since T1B(b) is logically equivalent to (Yx)(x = b — —1B(x)), this last sentence

~ says that some sentence logically equivalent to itself is not believed. Since in the
semantics presented here belief is preserved by logical equivalence, the sentence will be
true if and only if it is not believed. Similarly, if [b],, = —1B(c) and [c]y, = B(b), then
-, . the'sentences ° -
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(1) (Vx)(x =c — T1B(x))
and
) (VX)(x=b ~ B(x))

can be interpreted as making assertions about each other in M, (1) that (2) is not
believed and (2) that (1) is believed. And so on.

27 We have not pursued the question whether the results of this section can also be
established for model structures M in which <,, is loop-free but not well-founded.
From our present perspective this question seems of little importance.

2 In any such model ., ¢ € [B]a*' iff [p]2 = 1 and if .# is coherent then
@ €[B], iff[¢], = 1. Thus, B behaves like a truth predicate. '

% As Gupta is concerned with truth, his proof applies directly only to extens;onal
model structures. However, it can easily be modified to apply to non-extensional
structures as well.

30 In response to a request of the editors of the present volume to reduce Fhf: length of
the original manuscript, we have cut the present section to the bare minimum that
remains here. We chose to make the cuts in this part, as most of its propositions are
fairly straightforward generalizations of results found in Gupta (1982) althoqgh the
method we have used to prove our propositions differs substantially from %115. The
interested reader may consult the unabridged version in a technical report published by
the Center for Cognitive Science at the University of Texas. '

3 1t would be possible to relax the constraints on M somewhat and to require only,
say, that at each w the interpretations of O, ’, +, - provide a model of Robinson’s Q.
But little would be gained from such a generalization for our present purpose.

2 We do not know whether there exists a single natural condition on R which is both
necessary and sufficient for the essential incoherence of any model structure M
verifying the denotation relation (C3). Arguably this is problem of little conceptual
importance as the condition would have to be tailored to the particular case of self-
reference at hand. Moreover, the following consideration indicates that the solution
could not be very simple. A necessary condition for essential incoherence that is
relevant to model structures in which R is not transitive as well as to structures in
which it is, is that the inverse of R be not well-founded. But this condition is not
sufficient, as the following model structure M, in which R is indeed not-well-founded,
shows. Let M be sentence-neutral, satisfy (C3) and be such that Wy, = {w,, w,} and
Ry, is the relation {{wy, w;), {w|, wy)}. Let .# be the expansion of M obtained by
putting [B],,,, = {b} and [Bl,,,, = ©. Then .# will be coherent and thus M not
essentially incoherent. When one generalizes from this example, one realizes that a
condition on R which is both necessary and sufficient for essential incoherence would
have to be fairly complicated. To appreciate this, consider a similar model structure
with worlds and an alternativeness relation R,, which consists of a set of disjoint loops:
if R,, contains a loop with an odd number of elements then M is essentially incoherent;
on the other hand, if R,, consists only of loops with even number of elements then M is
not essentially incoherent.

3 When R is not transitive, the b-profiles cannot be described in nearly such simple
terms.
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"".34 This set appears in several papers on the liar paradox. Herzberger (1982), for
~"instance, discusses some of its formal properties. Of course, the discussions in these
_papers are restricted to the case where B behaves as a truth predicate.

"3 For instance in any model structure of the kind considered in Proposition 5 we can
. define, by means of some formula B(x, y) of L, the relation which holds between n

vand m iff both n and m are natural numbers and m is the Gédel number of the sen-

57 tence B"(Ax)x = x & —1B"*!(3x)x = x, where for any sentence ¢ B'¢ = B(¢) and
o B'*l'e@ = B(B'®). Suppose that [wR] # © for all w € W,, and that .# is an
expansion of M such that {B],, = @ for all w € W,,. Then for any w n + 1 will be
the only natural number & such that (B"(3x)x = x & —1B"*'(@x)x = x) € [Bl4 ..
. Now let 3(x)} be any arithmetical formula of L whose only free variable is x and let
» - 8(y) be the formula (Vx)(y(x) & B(x, y). Then the sentence (3y)(6(y) & B(y)) belongs
o to[B]%. iff Kk — 2 is a member of the set of natural numbers defined by 3 in M. So
- since for every arithmetically definable set E the set {k + 2: k € E } is also arith-
. metically definable, every arithmetically definable set is the @-profile at some world in
~ some expansion of M for some sentence . Note, moreover, that the assumption we
have made about R is quite weak. In particular, it is satisfied by all extensional model
structures,
* Some of the extant solutions to the liar paradox differ in the components to which
< they propose revisions. Thus Kripke’s semantics leads naturally (though not neces-
' sarily!) to a weakening of the underlying logic as well as of the principles of the “logic of
* truth” (ie. the ipstances of schema T). The Tarskian solution, involving a hierarchy of
I ;r;etalanguages, 1s tantamount to eliminating the devices for self-reference.
"' To the question: which are the relevant worlds of «#, there seem to us to be only
“two plausible answers: either all worlds in W, count as relevant, or else only the “real”
worlds of .# do. Let us explain what we mean by the second of these answers. The

% possible worlds semantics for belief tries to capture the content of the subject’s beliefs

~* through the set of all worlds compatible with his beliefs. In the model theory we have

- .adopted here these belief worlds are treated on a par with the world in which the

" subject is situated and has his beliefs. But intuitively the two kinds of worlds have a
“different status, If a valid sentence that speaks of the subject’s beliefs is to be one that is
‘true no matter what the beliefs are that the subject either does or might hold, then the
_definition of validity ought to be restricted to those worlds which represent such
-possible states of affairs. The (actual and/or possible) belief worlds need not be among
" those. The distinction between “real” worlds and belief worlds may have some formal
.repercussions, but the matter seems to us of too marginal an interest to the present
-discussion to merit closer attention.
3 See Van Benthem (1983).
% When written out the proof is quite long while revealing next to nothing that is new.
. The need to ensure that the constructed countermodel has a constant domain and that
" at each world the extension of § consists of precisely the sentences of L complicates
;- matters somewhat, and seems to require a judicious application of the Omitting Types
" Theorem (see Chang and Keisler (1973)). One can avoid these complications if one is
“prepared to alter the notion of a model as defined in 11.1.2 by (i) dropping the require-
ment that D is constant and (ii) changing the condition on [§] into the weaker require-
ment that { §],, include the sentences of L.
40 For example, suppose that on a given evening one of the two authors of this paper
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concludes the draft of a section with the dispirited words: ‘Anyway, my coauthor won’t
believe a single one of all the statements I am making in this draft.” Suppose also that
the second author is finishing that same evening a draft of a different section in a
similarly despondent mood, and concludes it with the words: ‘I don’t believe a single
one of the things I have said in this draft.” Suppose, moreover, that the second auithor
does in fact neither believe any one of the statements of the first author’s draft, with the
possible exception of its last statement, nor any of the statements in his own draft, again
with the possible exception of its last statement. Then once the second author has read
the first author’s draft, the last statements of each of the two drafts are paradoxical. But
it is hard to see, at least without additional information about the case, any reason why
the disjunction of the two statements should be incapable of achieving the stability that
is within the reach of the disjunction of one and the negation of the other.

* In an addendum to his paper as it appears in Martin (1984), Gupta himself
expresses dissatisfaction with this revision rule for limit ordinals. We do not know
whether his reasons relate to the complaint voiced here.

42 Another rule to deal with limit stages is the “maximizing rule”, which makes [B], ,
as large as is compatible with the local stability principle. This rule seems quite odd
from a conceptual viewpoint; it apparently embodies the principle that one should
adopt as beliefs all that hasn’t been permanently disqualified as such in the course of
the unbounded sequence of revisions that the new intension is to sum up. One should
be wary of a logic built on such a foundation. In fact, the logics that can be defined with
the help of this rule appear to be quite curious. In particular, if # is a class that
includes .#*, where .# is metastable and A is a limit ordinal, then (B3) will typically
not be valid in &. On the other hand, if # consists exclusively of metastable .#* with
A a limit ordinal, where moreover R, is transitive and reflexive on its range, then (B1),
(B2) and (B4) will be among the valid schemata in #. We have not investigated
precisely what logics can be obtained with the help of this rule.

“ Since W,, consists of the single world w;, we will leave out all references to worlds
for the remainder of the proof. The implicit reference will always be to wy.

* We define compatibility below.

* Inspection of the proof reveals that there is no need to consider all the ordinals. In
fact for given u we can carry out what is essentially the construction described here on
the ordinal wdest),

% For natural numbers n B is defined as follows: B* @ is ¢; B"* ' @ is B(Cgn,)-

7 See footnote 46.
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