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 Abstract This paper presents a sound and complete proof system for the first order fragment of
 Discourse Representation Theory. Since the inferences that human language users draw from the
 verbal input they receive for the most transcend the capacities of such a system, it can be no more
 than a basis on which more powerful systems, which are capable of producing those inferences,
 may then be built. Nevertheless, even within the general setting of first order logic the structure
 of the "formulas" of DRS-languages, i.e. of the Discourse Representation Structures suggest for
 the components of such a system inference rules that differ somewhat from those usually found in
 proof systems for the first order predicate calculus and which are, we believe, more in keeping with
 inference patterns that are actually employed in common sense reasoning.

 This is why we have decided to publish the present exercise, in spite of the fact that it is not
 one for which a great deal of originality could be claimed. In fact, it could be argued that the
 problem addressed in this paper was solved when Godel first established the completeness of the
 system of Principia Mathematica for first order logic. For the DRS-languages we consider here are
 straightforwardly intertranslatable with standard formulations of the predicate calculus; in fact the
 translations are so straightforward that any sound and complete proof system for first order logic can
 be used as a sound and complete proof system for DRSs: simply translate the DRSs into formulas of
 predicate logic and then proceed as usual. As a matter of fact, this is how one has chosen to proceed
 in some implementations of DRT, which involve inferencing as well as semantic representation; an
 example is the Lex system developed jointly by IBM and the University of Tubingen (see in particular
 (Guenthner et al. 1986)).

 In the light of the close and simple connections between DRT and standard predicate logic,
 publication of what will be presented in this paper can be justified only in terms of the special mash
 we have tried to achieve between the general form and the particular rules of our proof system on
 the one hand and on the other the distinctive architecture of DRS-like semantic representation. Some
 additional justification is necessary, however, as there exist a number of other proof systems for
 first order DRT, some of which have pursued more or less the same aims that have motivated the
 system presented here. We are explicitly aware of those developed by (Koons 1988), (Saurer 1990),
 (Sedogbo and Eytan 1987), (Reinhart 1989), (Gabbay and Reyle 1994); perhaps there are others.
 (Sedogbo and Eytan 1987) is a tableau system, and (Reinhart 1989) and (Gabbay and Reyle 1994) are
 resolution based, goal directed. These systems may promise particular advantages when it comes to
 implementing inference engines operating on DRS-like premises. But they do not aim to conform to
 certain canons of actual inferencing by human interpreters of natural language; and indeed the proof
 procedures they propose depart quite drastically from what one could plausibly assume to go in the
 head of such an interpreter. Only (Koons 1988) and (Saurer 1990) are, like our system, inspired by the
 methods of natural deduction. But there are some differences in the choice of basic rules. In particular
 both (Koons 1988) and (Saurer 1990) have among their primitive rules the Rule of Reiteration, which
 permits the copying of a DRS condition from a DRS to any of its sub-DRSs. In our system this is a
 derived rule (see Section 4 below).

 We will develop our system in several stages. The necessary intuitions and the formal background
 are provided in Sections 1 and 2. (The formal definitions can be found also in the first two chapters

This content downloaded from 128.83.63.20 on Thu, 09 Jun 2016 02:26:45 UTC
All use subject to http://about.jstor.org/terms



 298 H. KAMP AND U. REYLE

 of (Kamp and Reyle 1993). The first system we present is for a sublanguage of the one defined in
 Section 2, which differs from the full language in that it lacks identity and disjunction. The core
 of the paper consists of Section 3, where the proof system for this sublanguage is presented, and
 Section 5, which extends the system for the full language, including disjunctions (Section 5.1) and
 identity (Section 5.2) and then establishes soundness and completeness for the full system. Section 4
 deals with certain derived inference principles.

 1. Introduction

 Discourse Representation Theory is a theory of the semantic content of linguistic
 expressions - in particular, of natural language sentences, discourses and texts,
 as well as, more recently, of the content and structure of thought. As a theory of
 the content of sentences and texts DRT has the following basic structure. Each
 text T consisting of sentences Si, . . . , Sn determines a semantic representation
 K(T) (Such representations are called "Discourse Representation Structures", or
 "DRSs"). K(T) is constructed stepwise, by a procedure - the so-called "DRS-
 construction algorithm" - which processes the sentences Si one by one, in the
 order in which they occur in the text. The algorithm incorporates the content of S»
 into the DRS Ki_i , which it has already constructed for the sentences S\ , . . . , Si_i .
 The process of incorporating St into Ki_i makes use on the one hand of the syntactic
 structure of S» and on the other of the form of K*_i , and results in a new DRS which

 represents the integral content of the sentences. The process is designed to identify
 and encode the semantic connections between the successive sentences of the text

 - such as, for instance, those produced by pronouns whose anaphoric antecedents
 occur in earlier sentences - which are largely responsible for the cohesion that
 distinguishes genuine texts from mere successions of (unconnected) sentences. As
 a result, the final DRS K(T) represents the semantic content of the text as a whole,
 and does not just act as a compendium of the separate contents of the sentences Si,
 ...,sn.

 According to what we have just said, DRSs emerge through application of
 the DRS-construction algorithm to texts belonging to the given natural language,
 and so the class of DRSs could be defined as consisting of just those structures
 which can be constructed in this way from an independently specified class of
 natural language inputs. It is also possible, however, to define the class of "well-
 formed" DRSs directly, in the manner familiar from mathematical logic. Such a
 definition, which we will give below, presents DRSs as formulas belonging to some
 formal language - the "DRS language" - for which we can then specify a suitable
 semantics, logic and proof theory. This is the perspective we adopt here.

 To understand the motivation behind the particular way in which we set up the
 concept of logical consequence between DRSs - for which we will then develop a
 sound and complete inference system - it is nevertheless useful to keep the linguistic
 motivations of DRT in mind. When questions of logical consequence arise within
 natural language, it is often the case that the (putative) conclusion receives its
 intended interpretation only with reference to the given premises, viz. by being
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 linked to them by the kind of intersentential connections to which we alluded
 above. Consider, for instance, the following variation on a wellworn example from
 Russell:

 A barber from Williamsburgh shaves everyone from that town who does ( 1 )
 not shave himself.

 Conclusion: The barber shaves himself.

 Here the conclusion follows logically from the premis, but only on the assumption
 that the phrase the barber refers to the barber mentioned in the premis. A similar
 situation, but one that is if anything more common, arises in the context of questions.

 When I tell you

 Bill met a woman last week with whom he has fallen head over heel in (2)
 love.

 and you ask:

 Have they met since then? (3)

 it is only by relating your question (in particular, the pronoun they and the adverbial
 phrase since then which it contains) to my own utterance that I can interpret it as
 you intend (that is, as: "Have Bill and the woman you mentioned met since that time
 last week when he fell in love with her?"). It has been pointed out repeatedly in the
 literature on automated question answering that to answer a yes-no question Q one
 must prove, from premises contained in one's knowledge base, either the queried
 proposition Q', in which case the answer is "yes", or its negation not-Q', with the
 answer "no". But how precisely is Q; related to Q? Roughly speaking it is the
 proposition expressed by the sentence which we get when replacing Q's question
 mode by the declarative mode - in the case of (3) this would be the sentence (4).

 They have met since then. (4)

 However, what proposition is expressed by (4) can only be understood in the
 context of (2). A systematic method for representing the content of such queried
 propositions must therefore make use of just those principles for encoding cross-
 sentential connections which DRT is designed to capture. The natural way to
 proceed in a case such as this one is therefore to form (i) the DRS K for (2); (ii)

 the result Kq of incorporating (4) into K; (iii) the result K-,q of incorporating the
 negation of (4) into K; and then prove either Kq or K-,q from K.

 This is the form in which we will define the concept of logical consequence. The
 relation of logical consequence is one which in first instance obtains between a DRS
 K and some extension K' of K. This does not mean that we prevent ourselves from
 considering questions of inference and logical consequence in all other situations,
 where the conclusion is not an extension of the premise DRS. But these we reduce
 to the basic case, by stipulating that K; is a consequence of K just in case the result
 KK' of incorporating K' into K is a consequence of K.
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 2. The DRS Language

 As we said in the introduction, we will treat DRSs as formulas of some formal
 language £. The vocabulary of C consists of

 1 . an infinite set R of discourse referents, and

 2. for each number n an infinite set Pn of n-place predicates; let V = \J^\

 3. the identity symbol '='.

 A DRS is a pair consisting of

 (i) a set of discourse referents (the universe of the DRS), and

 (ii) a set of DRS-conditions.

 As DRS-conditions may contain DRSs as constituents DRSs and DRS-conditions
 must be defined by simultaneous recursion. For the purpose of the present paper
 we will restrict ourselves to finite DRSs, i.e. DRSs built up with finite universes
 and finite condition sets. The definition is as follows.

 DEFINITION 1

 (i) A finite DRS K confined to V and R is a pair, consisting of a finite subset Uk
 (possibly empty) of R and a finite set Conic of finite DRS-conditions confined
 to V and R;

 (ii) A finite DRS-condition confined to V and R is an expression of one of the
 following forms:

 (a) x = y, where x and y belong to R

 (b) P(xi ,. . . ,xn), where xi , . . . , xn belong to R and P to Pn

 (c) -«K, where K is a finite DRS confined to V and R

 (d) Ki => K2, where Ki and K2 are finite DRSs confined to V and R.

 (e) Ki V . . . V Kn, where for some n > 2, Ki , . . . , Kn are finite DRSs confined
 to V and R.

 Since there is no danger of confusion in this paper we will often omit the qualifica-
 tion "finite" and simply talk of DRSs. It is useful to abbreviate a DRS ({}, {->K})
 as-K.

 It has become common practice to represent DRSs graphically as boxes; com-
 plex conditions then lead to nesting of boxes. For instance the two-sentence text

 Fred owns a donkey. Every person who feeds it is either a relative of his (5)
 or doesn't own a donkey himself.

 can be represented by a DRS which in box notation looks as follows:
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 x y

 Pred(x)
 donkey (y)
 x owns y

 Z U ,

 / x , V I
 person (z) / x

 u = y =* v = x V-, donkey(w)
 z feeds u z is a relative of v z owns w

 K4

 K2

 K

 We assume familiarity with this notation and will use it throughout.
 Where K is a DRS we write Uk for the universe of K and Conic for the set of

 conditions of K. K7 is called an immediate sub-DRS of K if

 (i) -«K' G ConK, or
 (ii) there is a DRS K" such that one of K' =» K", K" =* K; belongs to ConK, or
 (iii) there are DRSs Kj , . . . , Kn such that for some i with 0 < i < n

 Ki V K2 V . . . V Ki_i VK'V Ki+i V ... V Kn € ConK.
 The relation "K7 is a sub-DRS o/K" is the reflexive and transitive closure of "K; is
 an immediate sub-DRS of K". Thus in (6) K, Ki , . . . , K5 are all sub-DRSs of K; Ki
 and K2 are the immediate sub-DRSs of K; K3 and K4 the immediate sub-DRSs of
 K2; and K5 is the immediate sub-DRS of K4. "K; is a sub-DRS of K" is abbreviated
 as "K' < K".

 DEFINITION 2 Let K be a DRS, x a discourse referent and 7 a DRS-condition.
 We say that x is accessible from 7 in K if x belongs to Ukj , where

 (i) Ki < K, and

 (ii) for some K2, 7 occurs in Conjcj, and either
 (a)K2<Ki;or
 (b) there is a DRS K3 such that for some K4 < K Ki => K3 is in Con^

 and K2 < K3.
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 Just as for predicate logic, the meaning of DRSs and DRS-conditions can be
 characterized model-theoretically. We take the models for £ to be precisely the
 models for the language of predicate logic whose non-logical vocabulary consists

 of the predicates of £. Thus, a model is any pair (U^PredM) where (i) U^ is a
 non-empty set and (ii) Pred^/j maps each n-place predicate of £ onto an n-place
 relation over U^. A DRS K is correct with respect to a model M if it is possible
 to embed Uk truthfully into U^, i.e. if there is a function f:Uic -» U^ which
 verifies in M each of the conditions in Conic- For atomic conditions F^Xi , . . . , xn)
 verification simply means that the individuals which f correlates with the discourse
 referents in Uk stand in the relation Pred^(Pn). For complex conditions verification
 is defined via correct embeddings of their constituent DRSs, so that, again, the
 notions of condition verification and of correct DRS embedding must be defined
 by simultaneous recursion. For the sake of uniformity we use the term verification in
 relation to DRSs as well as DRS-conditions. So we simultaneously define "function
 f verifies the DRS K in M" and "function f verifies the DRS-condition 7 in M".

 DEFINITION 3 Let K be a DRS confined to V and R, 7 a DRS-condition, and let f
 be an embedding from some subset of V into M, i.e. a function whose domain
 is included in R and whose range is included in U^j .

 (i) f verifies the DRS K in M iff f verifies each of the conditions belonging to
 ConK in M.

 (ii) f verifies the condition 7 in M iff
 (a) 7 is of the form x = y and f is defined on x and y and maps them onto

 the same element of U^ .
 (b) 7 is of the form P(xi, . . . , xn), f is defined on {xi, . . . , xn} and (f(xO,

 ...,f(xn))ePredM(P).
 (c) 7 is of the form -«K' and there is no embedding g from R into M such

 that g extends f, Dom(g) = Dom(f) U UK' and g verifies K7 in M.
 (d) 7 is of the form Ki => K2 and for every extension g of f such that

 Dom(g) = Dom(f) U Uk, which verifies Kj in M there is an extension h
 of g such that Dom(h) = Dom(g) U Uk2 and h verifies K2 in M.

 (e) 7 is of the form Ki VK2 V . . . V Kn and for some i (i = 1,. . . ,n)f verifies
 Ki in M.

 We often write 'M J=f K' (or 'M ^=f 7') for 'f verifies K (or 7) in M\
 In the sequel we will have to make use of a number of syntactic notions connected
 with DRSs and DRS-conditions. First, we must specify for each DRS or DRS-
 condition the set of its declared discourse referents, the set of its free discourse
 referents, and set of its discourse referents simpliciter (the last set is the union of
 the two previous sets). The declared discourse referents of K (or 7) are those which
 occur in the universe of K or in that of some sub-DRS. Thus we can define the

 set of declared discourse referents of* given DRS K - in symbols U(K) - or of a
 DRS-condition 7 - in symbols U(7) - as follows.
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 DEFINITION 4

 (i) if 7 is an atomic condition, then U(7) = {}.
 (ii) if 7 is of the form ^K, then U(7) = U(K).
 (iii) if 7 is of the form K] =► K2, then Ufr) = U(Ki) U U(K2).

 (iv) if 7 is of the form Ki V . . . V Kn, then U(7) = U(Ki) U . . . U U(Kn).

 (v)U(K) = UKUU7GconKU(7).

 The free discourse referents of K are those which occur in K without being declared
 in K (similarly for 7):

 DEFINITION 5

 (i) If 7 is a condition of the form P(xj , . . . , xn),

 thenFr(7) = {xi,...,xn}.
 (ii) If 7 is a condition of the form x = y, then Fr(7) = {x, y}.

 (iii) If 7 is a condition of the form -»K, then Fr(7) = Fr(K).
 (iv) If 7 is a condition of the form Ki =*► K2, then

 Fr(7) = Fr(K1)U(Fr(K2)\UK1).
 (v) If 7 is a condition of the form Ki V . . . V Kn, then

 Fr(7) = Fr(K,)U...UFr(Kn).

 (vi)Fr(K) = (U7GconKFr(7))\UK

 The set of discourse referents of K, dr(K), consists, as we said, of the declared and
 the free discourse referents together: dr(K) = U(K) U Fr(K) (similarly dr(7) = U(7)
 U Fr(7) for any DRS-condition 7). A DRS K is called proper iff Fr(K) = </>.

 Inspection of the definition of verification reveals that when a discourse referent
 x occurs both in the universe Uk of some DRS K and also in Uk' , where K' is
 a proper sub-DRS of K, then the "declaration" of x in Uk' is otiose: Its presence
 there does not affect verification in any way, and so it can be eliminated without
 any semantic effect. To put it more graphically, a DRS of the form (7)

 x. . .

 x... (7)

 1 7(x) 1

 and the result (8)
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 X. . .

 (8)

 1 7(x) 1

 of eliminating x from Uk' are equivalent. For technical reasons configurations
 like the one in (7), where the same discourse referent occurs in two distinct DRS
 universes, one subordinate to the other, turn out to be a nuisance, and so we will
 set them aside. We will, that is, restrict our attention to pure DRSs; these are DRSs
 in which otiose declarations do not occur.

 DEFINITION 6 A DRS K is pure if for every two distinct DRSs Kj and K2 such
 that Kj is a sub-DRS of K2 and K2 a sub-DRS of K UK, H UK2 = </>.

 We are now ready to define what it is for a DRS to be true in a model M and what
 it means for one DRS to be a logical consequence of another DRS.

 The first notion, that of truth, is confined to proper DRSs.

 DEFINITION 7 Let K be a proper DRS, M a model. K is true in M (in symbols
 M \= K) iff there exists a function frUic - > U^ which verifies K in M.

 The second notion, that of one DRS K7 being a logical consequence of another DRS
 K, will be defined for improper as well as proper DRSs. We recall the remarks made
 in the introduction that the typical situation in which questions of valid inference
 (and thus also of logical consequence) arise is that where the premise DRS K
 is included in K'. However, our definition will apply equally to situations where
 K£K'.

 Intuitively K7 is a logical consequence of K if whenever we have M and f such
 that M |=f K then this should give a way of verifying K' in M as well. If we are to
 capture this idea in the right way, however, we must be careful that f does not block
 verification of K; for irrelevant reasons, viz because it assigns the wrong values to
 discourse referents that do not occur in K but do occur in K'. Therefore we must

 restrict attention to embeddings f which are "minimal" in the relevant sense, i.e.
 are defined only for the discourse referents in Uk and those in Fr(K) U Fr(K'). (The
 reason why we also include the discourse referents from Fr(K') which are neither
 in Fr(K) nor in Uk is not obvious from what has just been said. Actually the cases
 where there are such discourse referents have no clearly perspicuous relevance to
 the intuitive concept of logical consequence as semantic validity of inference. The
 choice to include them relates to technical considerations which it would carry us
 too far to explain here.)

 In the light of this preamble Definition 8 should be clear
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 DEFINITION 8 Let K, K' be pure (but not necessarily proper) DRSs. Thus K' is
 a logical consequence of K (in symbols K (= K7) iff the following condition
 holds:

 Suppose M is a model and that f is a function from Uk U Fr(K) U Fr(K') into

 U^/j, such that M ^=f K. Then there is a function g D\jK, f such that M (=g K'.

 When K; is a logical consequence of K and K is a logical consequence of K' we
 say that K and K' are logically equivalent. Note that if K' is a logical consequence
 of K and K C K', then K and K' are logically equivalent.

 It is a familiar fact about predicate logic that when we rename all bound variables
 of a given formula in a 1-1 fashion, the resulting formula is equivalent to the original
 one. Formulas that are related to each other by such renamings are called alphabetic
 variants. Renaming of declared discourse referents similarly leads to equivalent
 DRSs. As this is an operation of which we will make heavy use, it deserves a
 formally exact definition.

 DEFINITION 9

 (a) Let f be a function from discourse referents to discourse referents. Let f+ be
 the function defined by: f+ (x) = f(x) if x € Dom(f) and f+ (x) = x if x 0 Dom(f).
 We define by recursion on DRSs K and DRS-conditions 7 the variant of K
 (or 7) according to f, f(K) (or f(7)):
 (i) If 7 is a condition of the form P(xi, . . . , xn), then f(7) = P(f+"(x0, . . . ,

 ^(Xn)).
 (ii) If 7 is a condition of the form x = y, then

 f(7)isff(x) = f+(y).
 (iii) If 7 is a condition of the form ->K, then f(7) = -if(K).
 (iv) If 7 is a condition of the form Ki =» K2, then f(7) = f(Kj) =» f(K2).
 (v) If 7 is a condition of the form Ki V . . . V Kn, then

 f(7) = f(K1)V...Vf(K»).
 (vi) f(K) = <{f+ (x)}x€Uk, {f(7)}7€ConK».

 (b) Suppose that f is a 1-1 function from U(K) into the set of discourse referents
 V such that Ran(f) n Fr(K) = <f>. Then f(K) is called the alphabetic variant of
 K according to f .

 It can be shown without too much difficulty that if K7 is an alphabetic variant of
 K according to f then, for any model M and embedding g of Ur in M, M f=g K iff
 M (=g/ K\ where g' is the function defined by: g'(y) = g(f-1(y)) for y € Uk'-

 Another notion we will need is that of one DRS K having an homomorphic copy
 that is part of another DRS K7 - or, as we will put it, of K being homomorphically
 embeddable within K7. The formal definition is as follows.

 DEFINITION 10 Let f be a function from U(K) in U(K') such that f is 1-1 on
 U(K)\UK. If f(K) C K', then f is called an embedding ofK in K;.
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 3. Deduction Rules

 3.1. Inference Rules and Direct Proof

 The general architecture of the proof system we will present is borrowed from
 Kalish and Montague.* The main distinguishing feature of this architecture is that
 each 'goal' - that is, proposition one wants to prove - and each of the lemmata one
 wants to establish as intermediate steps in that proof- is written down explicitly as
 a "show-line" Show: A, where A is the goal in question. When A has been proved
 the show-line is cancelled. Usually this is done by crossing out the word 'Show':
 Shcrtv: A. (Because of this feature the Kalish & Montague system deserves to be
 considered as the first deduction system that explicitly formalizes the strategy of
 'backward chaining', well before this concept became common currency in the
 theorem proving community.)

 We will develop our proof system in several stages. In this and the next two
 sections we will be concerned with a sub-language of the DRS language given in
 Definition 1, which differs from the fiill language in having neither disjunction nor
 identity. We will introduce disjunctions in Section 6.1 and identity in 6.2.

 The basic concept of inference, we said, applies to a premise DRS K such that
 KCK'. Nevertheless we will allow proof goals that do not contain the premise
 DRS as part, the idea being that once the show-line has been cancelled it is the
 union of premise DRS and the DRS in the show-line that is established as proved.
 Let us consider a very simple example to see what this means. Let K be the DRS (9).

 z

 |p(Xx) nQ(x,y) I (9>
 P(z)

 Let K; be the extension (10) of (9),

 z u

 |p(Xx) HQ(x,y) I (10)
 P(z)

 Q(z,u)

 and suppose we want to prove (10) from (9). Then we start by adding a show-line
 Show: K" where K" is the part of (10) that is disjoint from (9):

 * Sec (Kalish and Montague 1964); and see also (Bonevac 1986), which contains a particularly
 smooth and elegant deduction system for classical predicate logic.
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 z

 I x II =* y |
 P(x) =* Q(x,y)

 PW

 Show: I Q(z, u) |

 To prove the show-line we try to introduce, through the application of certain
 inference rules, an alphabetic variant of the show-line DRS. In the present instance
 the rule to be applied is that of Detachment (DET), which permits us to add a copy
 of the right hand side K2 of an implicative condition Ki =^ K2 (belonging to a
 DRS Ko) to Ko, provided that the left hand side Ki can be 'matched' with a part of

 Ko. In the example p,\ can be matched by 'unifying' x with z; because of this

 a corresponding copy of n,y v - one in which z takes the place of x and some

 new discourse referent v that of y - may be added to the DRS (9). This transforms
 (11) into (12):

 z v

 |p(Xx) |^|Q(x,y)|

 P(z)

 Sh0W:|Q(z,u)|
 Q(z,v)

 At this point the DRS of the show-line is embedded in the DRS outside the show-
 line (and a fortiori, has a copy that is included in that DRS), which entitles us to
 cancel the show-line:

 z u

 I x Ll y I
 |P(X) p|Q(x,y) I

 P(z) (13)

 Q(z,u)
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 Formally DET can be characterized as follows.

 DET(achment), or G(eneralized) M(odus) P(onens):

 Suppose Ki => K2 € Conic and suppose there is an embedding f of Ki in K.
 Let g be an extension of f to Uk2, such that g\f is 1-1 and such that g maps Uk2
 to a set of discourse referents that are new to the (extended0) DRS K. Then we
 may add g(K2> to K.

 a An extended DRS is a DRS with show-lines. For a rigorous definition see Def. 1 1 below.

 Proofs like the one just presented, in which the goal is written down as a show-line
 and then matched by some additions that inference rules permit us to make to the
 premise DRS, but which do not involve any "sub-goals", are called direct proof s .
 They involve one rule of proof, according to which a show-line may be cancelled
 if its DRS is a copy of a part of the DRS containing the show-line. In the next
 section we will encounter other rules of proof, which will allow us to prove goals
 by establishing intermediate goals.

 R(ule of) D(irect) P(roof):

 Suppose K contains a show-line Show: K (or Show: 7), and that there is an
 alphabetic variant K;/ of K7 (7' of 7) in K, i.e. ConK" C Conic and Uk" Q Uk
 (or 7' e ConK), then the show-line may be cancelled.

 Besides the Rule of Direct Proof direct proofs require the use of inference rules. The
 rule of Detachment that we used in our example is one of these. In the remainder of
 this section we will introduce two additional inference rules, and give an impression
 of what kinds of deductions they enable us to carry out by the method of direct
 proof.

 The first of these is the rule of Double Negation Elimination, DN. In the simplest
 instances this rule amounts to the cancellation of two negation signs, as in the
 following example.

 - - PW
 1 ~

 Show: p(yy)

 DN permits us to introduce a variant of p,\ as a new condition, giving
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 z

 - i - . (15)
 Show: ^

 P(z)

 which then allows an application of the Rule of Direct Proof.
 In the general case, where the DRS to which the outer negation sign applies

 contains material besides the DRS to which the inner negation applies, DN is more
 complicated. An application of DN in its more general setting is given in the next
 example.

 x

 P(x)

 y

 P(y)

 " ri I (i6)
 1 Q(y,z) |

 Show: I Q(x, u) 1

 In (16) DN permits the addition of the DRS Q, v , , where v is a new discourse

 referent. The intuitive justification is essentially as in the case of DET: the condition
 of (16) beginning with the outer negation sign says that there cannot be an object y
 such that P(y) without it also being the case that for some z Q(y,z). Since the first
 condition says that P(x), it follows that for some v Q(x,v).

 Formally the rule of Double Negation (Elimination) can be characterized as
 follows:

 Double Negation (Elimination):

 Suppose K contains a condition of the form ->Ki such that for some K2
 -1K2 € Conic, and suppose there is an embedding f of Ki \({}, {-1K2}) into K.
 Let g be an extension of f to Uk2, such that g\f is 1-1 and such that g maps
 U(K2) to a set of discourse referents that are new to the (extended0) DRS K.
 Then we may add g(K2) to K.

 0 An extended DRS is a DRS with show-lines. For a rigorous definition see Def. 1 1 below.
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 The second and last rule of this section is the so-called Rule of Non-Empty Universe
 (NEU). This rule reflects the assumption - standardly made in mathematical logic -
 that there is of necessity at least one thing. Formally this means that we consider only

 models with non-empty universes. The proof-theoretic implication of this semantic
 assumption is that it is always permissible to introduce a discourse referent at the
 highest level of the DRS. The need for a rule which forsees the introduction of
 new discourse referents becomes apparent in the following example. Under the
 assumption that there exists at least one thing, the proposition that everything has
 the property P entails that something does:

 FLI ^ I hl~p^l I nyJ (17) ^ P(x) I nyJ

 Or, written in the form of our proof system

 u^M us)
 Show: p(yy)

 To prove (18) we must make use of NEU:

 z

 Lrli«J d9)
 Show: p(yy)

 The presence of z enables us to apply DET, which yields

 z

 * P(x)
 I

 P(z)

 Show: ^

 Formally we characterize NEU as follows.
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 N(on)-E(mpty) U(niverse):

 Any (finite) collection of new discourse referents may be added to Uk .

 We are now ready to give a formal definition of direct proofs. A proof of the
 argument K f- K7 is a sequence of syntactic objects the first of which is the
 DRS K with the added show-line Show: K' and the last of which includes (in
 the appropriate sense, to be defined below) an alphabetic variant of K'. As our
 examples show, the syntactic objects that occur in proofs are "DRSs" containing
 cancelled or uncancelled show-lines. (In the next section, where we will introduce
 additional rules of proof, the objects that make up proofs will become a great deal
 more complex yet.) In order to be precise we must first define the new extended
 notion of a DRS (in which discourse referents and conditions may occur as well as
 cancelled or uncancelled show-lines).

 DEFINITION 11

 (a) An uncancelled show-line is a pair consisting of
 (i) the sign Show: and
 (ii) either a DRS or a DRS-condition.

 (b) A cancelled show-line is a pair consisting of

 (i) the sign Shew: and
 (ii) either a DRS or a DRS-condition.

 (c) An extended DRS is a triple consisting of
 (i) a set of discourse referents,
 (ii) a set of DRS-conditions,
 (iii) a set of cancelled and uncancelled show-lines.

 Earlier we decided to restrict our attention to pure DRSs. But what exactly is a pure
 extended DRS? To apply Definition 6 (of apure DRS) we need to decide what status
 the DRSs have that occur in cancelled show-lines. The additional stipulation needed

 is this: An extended DRS (UK, ConK, {Show: Ki, . . . , Show: Km, Shcrtv: Km+i,
 . . . ,Shcrtv: Km+n, Show: 71, . . . , Show: 7r,Shcrt¥: 7r+i, . . . ,Shcfw:7r+s}) is pure
 if the DRS (UK, ConK) U Km+, U . . . U Km+n U ({}, {7r+1 }) U . . . U ({}, jfrr+a})
 is pure.*

 In the sequel we will usually refer to extended DRSs simply as DRSs. No
 confusion should arise from this. Before we can define the notion of Proof we must

 first give a formal definition of the Rule of Direct Proof.

 DFINITION 12 A Direct Proof of K h K' is a sequence of DRSs Ki, . . . , Kn such
 that

 (i) Ki is the DRS we get by adding to K the show-line which has as its
 second member the DRS K", which is an alphabetic variant of K' such
 that Ki is pure.

 * We will see the effect of this stipulation, when we discuss the rule of conditional proof below.
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 (ii) for i - 1, . . . , n-2, K*+i is obtained from K» by
 (a) application of one of the rules of inference
 (b) adding a new uncancelled show-line Show: P, where P is either a

 DRS or a DRS-condition;
 (iii) Kn results from Kn_i by an application of the Rule of Direct Proof which

 cancels the show-line Show: K" mentioned in (i).

 3.2. Rules of Proof

 Suppose we want to prove from a given premise DRS Ko a DRS-condition which
 has the form of a conditional, say Ki =» K2. The natural way to proceed would
 seem to be this: Assume K\ as an additional premise and prove K2 from the thus
 enlarged premise set. This method of proof is familiar enough from formal logic.
 It is known as the Rule of Conditional Proof.

 Consider (22), which is the first step of a proof, ((22), . . . , (27)), for (21).

 f^oVE*a n=i

 P=n h ' Q(z) ^S ' <21>
 lQ(y)r^]| '

 _Q^_^S (22)
 Show: p^ => I R(z) [

 r-

 Show: p^ =» I R(z) j

 Show: p^ =»|R(z)|

This content downloaded from 128.83.63.20 on Thu, 09 Jun 2016 02:26:45 UTC
All use subject to http://about.jstor.org/terms



 A CALCULUS FOR FIRST ORDER DISCOURSE REPRESENTATION STRUCTURES 313

 y ,± I R/v^ I cp
 I Q(y) |=»LgWj ,± I R/v^ I I

 ■

 Show: pf v =► | R(z) | Show : | R(z) |

 Show: p*zj =» | R(z) j

 I

 Q(y) *& I z I
 ^=-

 Show: [jjTLfRtt] pi ||P(z) pi

 Show: p(zz) =» | R(z) |

 [p^fow]
 I

 OL my) =^|R(y)| ' ' I ~i
 I my) 1 '

 I I I I Show : | R(z) | ^ ^
 Show: p(zz) A =>[^] Q(z)

 I1

 Show: p(zz) =»|R(z)|
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 I

 W) OM 1 ^\RW\ ' I W) OM 1 '

 |[T1 i
 Show: p(z) *\K&\ i

 U=d

 Show: p(Zz) =»[rw]

 The parts of this derivation which have to do with the principle of Conditional
 Proof are the transitions from (23) to (24) and from (26) to (27). In the transition
 from (23) to (24) we open up a new subderivation, one in which Ki is among the
 premises that may be used. This subderivation is located to the right of the vertical
 double bar in (24) (as well as in the two following diagrams (26) and (27), the
 understanding being that the premises available in this subderivation consist of the
 asserted part of the DRS to the right of the double bar together with the asserted
 part of the DRS to its left. To indicate that the subderivation is being set up for the

 sake of proving R(z) using p?v as additional premise we start the subderivation

 with the new premise p? . together with the "goal" Show: R(z).

 The Rule of Conditional Proof comes to function in the transition from (26) to

 (27). In (26) the show-line on the right of the '||' may be cancelled as it matches the
 last condition R(z) of the DRS on the right. Since cancellation of this show-line is

 the demonstration that R(z) has been derived with the additional premise p?v ,

 we may conclude - this is the Rule of Conditional Proof - that the condition
 of the show-line on the left has been proved from the remaining premises. So
 the cancellation of the show-line on the right carries with it cancellation of the
 show-line on the left.

 Once stage (27) has been reached, the subderivation has done its work and no
 longer counts in relation to the further proof steps that may still be taken. In the
 present case the stipulation that the subderivation no longer counts is immaterial;
 since an application of the rule of direct proof to stage (27) will complete the
 derivation. But the next example, in which a conditional condition is proved as a
 lemma, should make the need for such a stipulation clearer.

 Consider the following derivation problem:
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 X

 u v w (28)

 |p(u) riQ(v) i ** | s(w) |

 Show: s(lt)

 The obvious strategy for carrying through this derivation is to first show the left-
 hand side of the last conditional. In other words, we add a new show-line, as in
 (29):

 x

 I u Ll v I I w I
 |P(u) P|Q(v) 1 ^|S(w) | (29)

 Show: sft)

 Show: p(rf) ^ Q^

 To establish this last show-line we resort once more to the Rule of Conditional

 Proof, setting up a subderivation as in (30):

 x

 [pj^EJIJ]

 |p("u) PIqW I ^|s(w) I P(r)
 I I I Show: *, x

 Show:[^J I I I 1 Show: \^n *, x

 Show: ^ =► ^^
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 The additional assumption p,r , of this subderivation allows us to apply the rule

 of Detachment with respect to the first implication of the original DRS. The result
 of this application is (31):

 x

 I. i - i .1 i

 u v w p(r)

 |p(u) r|Q(v) I ls(w) I r-y-j (31)
 |

 Show: Qf x | S(t) Qf x | Q(x)

 Show: p(rr) =» Q*s)

 Now, the conclusion of this subderivation is immediate since the content of the

 show-line is matched by the part Q? * of the premise DRS . Cancellation produces

 the structure in (32).

 x

 Fw PL =»l<xx)| ' I Fw 1 '

 |. | | .I j

 u v w p(r)

 |p(u) riQ(v) i ^|s(w) I

 Show:Likj 1 q(x)
 Sho^: P(r) =» Q(s)

 The derivation now continues on the left-hand side, using the condition p!,

 =4> o?x of the cancelled show-line as part of the premise DRS. The completed

 subderivation on the right plays no further role in the remainder of the derivation.
 In general it will be possible to use the Rule of Conditional Proof also inside

 subderivations that arose through an earlier application of the rule. Because of this
 recursive aspect one has to be careful when trying to define the rule. The proper
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 way to proceed is to describe how proof structures can be transformed through
 the application of rules, both those rules which we introduced earlier and the new
 Rule of Conditional Proof. To this end we define by simultaneous recursion the
 notion of a proof stage S together with two derived notions, that of the active part
 of) a proof stage, AP(S), and of the assertions of a proof stage, K(S). While we
 are at it, we will define, as part of the same simultaneous recursion, also a fourth
 concept, that of the premise DRS of a proof stage, PR(S). This notion will be used
 in Section 6.1.

 Informally, the active part AP(S) of a stage S is that subderivation whose show-
 line one is currently trying to prove or, if no sub-goal is being pursued, the main
 derivation. The premise DRS of S, PR(S) consists of (i) the initial DRS, except for
 its show-line and (ii) all assumptions that have been introduced in the setting up
 of subderivations that are not yet completed. The assertion of S, K(S), is a DRS
 which includes the premise DRS, but which contains also all discourse referents
 and conditions which have been introduced through the application of inference
 rules and completed applications of rules of proof, and which do not belong to
 subderivations that have already been completed and closed.

 DEFINITION 13

 (i) (a) A pure DRS is a proof stage.
 (b) The union of a proof stage S and a show-line Show: K', or Show: 7, is

 a proof stage S', provided S' is pure. AP(S') = PR(S') = K(S') = S.
 (ii) Application of inference rules: If S is a proof stage, K7 can be obtained by

 applying one of the inference rules to K(S), and S' results from S by adding
 K' to AP(S), then S' is a proof stage,
 AP(S') = AP(S) U K, PR(S') = PR(S) and K(S') = K(S) U K'.

 (iii) Direct Proof
 (a) Introduction: 1 . Suppose S is a proof stage, such that AP(S) contains a

 show-line of the form Show: 7. If PR(S) U ({}, {7}) is pure, then S' is
 a proof stage, and

 AP(S') = AP(S) U <{},{Show: 7}),
 PR(S;) = PR(S) and K(S') = K(S).

 2. Similarly if S is a proof stage, such that AP(S) contains a show-line
 of the form Show: K, where K is a DRS, and if PR(S) U K is pure, then
 S' is a proof stage,

 AP(S') = AP(S) U ({},{Show: K}),
 PR(S') = PR(S) and K(S;) = K(S).

 (b) Cancellation:
 1 . If S is a proof stage, the last introduced show-line is Show: 7, an
 alphabetic variant of 7 belongs to ConK(S) and S' results from cancelling
 the Show: of this show-line, then S' is a proof stage,
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 AP(S') = AP(S), PR(S') = PR(S) and
 K(S') = K(S)U({},{7}).

 2. If S is a proof stage, the last introduced show-line is Show: K, an
 alphabetic variant of K is included in K(S) and S' results from cancelling
 the Show: of this show-line, then S' is a proof stage,

 AP(S') = AP(S), PR(S') = PR(S) and K(S') = K(S) U K.

 (iv) Conditional Proof:
 (a) Introduction:

 Suppose S is a proof stage such that AP(S) contains a show-line of the
 form Show: Ki => K2. And S; results from S by adding immediately to
 the right of AP(S) a structure of the form*

 CP

 Ki
 Show : K2

 Then AP(S') is the structure

 CP

 Show : K^

 PR(S') = PR(S) U Kx and K(S') = K(S) U K,
 (b) Cancellation:

 Suppose that S is a proof stage, that AP(S) has the form

 CP

 K'

 Show1: K!2 ,

 containing the show-line Show: K2, and that Show: Ki =4> K2 is the
 show-line that justified the introduction of Show: K2, through an appli-
 cation of (iv.a). We obtain a proof stage S; by cancelling this show-line.
 Let S" be the first stage containing the show-line Show: Ki =$► K2. Thus
 AP(S') = AP(S"), PR(S') = PR(S") and K(S') = K(S") U ({}, Kj => K2) .

 Clause (iv.a) describes in detail how the proof structures resulting from appli-
 cations of the Rule of Conditional Proof are set up; and clause (iv.b) how the
 show-lines which give rise to such structures may be cancelled.

 Even now that we have the Rule of Conditional Proof on board, there are still

 certain valid inferences that we cannot derive. A simple example is

 * As PR(S) UKi U K2 is pure in virtue of (i) there is not need to introduce alphabetic variants, K\
 and Ki here.
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 |

 Show: -[qm] H^^l

 Since what we need to prove has the form of a conditional it seems reasonable to
 try the Rule of Conditional Proof and transform (33) into (34):

 1 I I CP

 pw *\M I ;

 ShOW: -[(|y)] ^h^l Show:U[PQ0]|

 But this does not see us through. Nevertheless it is intuitively clear that ->P(y)
 must hold. For if not, i.e. if we had P(y), then we would get Q(y) with the help

 of p,\ => | Q(x) | , which would directly contradict the condition -» Q(y)| below

 'CP\ showing the impossibility of the assumption that P(y).
 This form of reasoning - A, for if not A then we would get an explicit contradic-

 tion - is known as reasoning by Reductio adAbsurdum. In many inference systems
 the method of R(eductio) A(d) A(bsurdum) has been formalized as a separate Rule
 of Proof. We will do the same.

 To get an idea of the form that the Rule of RAA takes in the present proof
 system let us complete the derivation of the problem we were discussing. As with
 Conditional Proof, using the rule means setting up a new subderivation. Again we
 start this subderivation immediately to the right of the current active part of the

 proof. Thus the next step (after having added the show-line -i P(y) , which invokes

 the single condition of the DRS of the right-hand side show-line in (34)), leads to
 the following proof stage:

 cp

 I x Lr^TTi I I

 I P(x) pLgWJ i[Q(y)] I p(y)
 i

 »™ i

 The next step is to apply Detachment using p,\ =*► | Q(x) | , y and P(y) on the

 right. This leads to the addition of Q(y):
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 CP

 | I ~Z I I

 |p(Xx) \*\§m] ^[qw] I P(y)

 ShowJr^Up^i Li^ZJ ' *- -LJI ^[fl Sh0Wi:^)]| Q[y1 Li^ZJ ' ' *- -LJI ,
 I

 I Q(y) I
 Since .

 show- ine. Therewith we have also shown the impossibility of the assumption P(y),

 thus that -• P(y) holds. In other words, we may cancel the show-line Show: -i P(y)

 as well. In the present case this then triggers also the cancellation of the show-line

 Show: -> P(y) (since its DRS is now included in the premise DRS) and with that

 - this is part of the Rule of Conditional Proof - also the show-line on the extreme
 left. So we end up with:

 CP

 I x I . \ I I

 I pw x |=»[ow] . ^[qw] I p(y)
 1 y 1 I ,

 I

 Note that for the success of the method of RAA it is immaterial what contradiction

 we derive. It is enough that it be some contradiction, which can be formally
 I Q(y) I

 recognized as such - in the sense in which i

 ^l Q(y)

 involves two conditions, one of which is the negation of the other. More generally,
 we can define the notion of an explicitly contradictory DRS as follows.

 DEFINITION 14 A DRS K is called contradictory iff there are /i C UK, T C ConK,
 and K' such that K7 is an alphabetic variant of (/i,F) and -«K' € Conic-

 We will adopt the policy that in order to prove a DRS or DRS-condition by means
 of RAA it suffices to derive from its contrary some DRS that is contradictory in
 the sense of this definition. In practice it is often not so easy to predict in advance
 which particular contradictory DRS it will be possible to derive. It will of course
 always be possible to see how the proof goes and then fill in the contradictory DRS
 in the show-line that RAA introduces once one can see which one it should be. But

 in practice it is more convenient to have a notational device that basically means
 "some contradictory DRS or other". We will use the symbol 'V for this purpose.
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 Thus 'Show: y means that one has to prove some contradictory DRS. This task
 has been completed, and the show-line may be cancelled as soon as the premise
 DRS includes some contradictory DRS. Using this device stage (35) of the proof
 we have just gone through will look like this:

 CP

 P(x) =HQ(x)l -i|Q(y)| RAA
 ,

 Show: c. y

 Show: c. -[QCyT] y

 Cancellation happens in the transition from (36) to (37) just as before: Show: i
 may be cancelled because the premise DRS contains a contradictory DRS (viz.

 Q(y) L
 H Q(y) 1 h

 It is sufficient to formulate RAA only with respect to show-lines of the form
 Show: K. For suppose we had a proof stage S with a show-line Show: 7 for some
 DRS-condition 7 in AP(S), which we could only prove by a subproof of the form

 [I RAA

 (such as e.g. in the example above). Then we can also achieve this by introducing

 a new show-line Show: pyl into AP(S) to which we may then apply this restricted
 version of RAA. Notice tHat the two AP(S)s have exactly the same form. So if they

 succeed we may cancel Show: pyl which leads to an addition of 7 to K(S). But this
 immediately allows us to canceTShow: 7 by the Rule of Direct Proof.

 It should be intuitively clear from the example we have discussed how the
 two parts of the Rule of RAA - its introduction and its cancellation - work
 in general. The rule's description in the box below should be clear enough for
 practical purposes. Nevertheless we extend Definition 13 with a pair of clauses
 corresponding to the introduction and cancellation step of the Rule of RAA.

 DEFINITION 13 (continued)

 (v) RAA
 (a) Introduction:

 Suppose S is a proof stage such that AP(S) contains a show-line of the
 form Show: K. And S; results from S by adding immediately to the right
 of AP(S) a structure of the form
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 RAA

 Show: H

 Then AP(S') is the structure

 RAA

 -K I,
 Show: H

 PR(S') = PR(S) U -K and K(S') = K(S) U -K
 (b) Cancellation: Suppose that S is a proof stage, that AP(S) has the form

 RAA

 Show: H i

 containing the show-line Show: H, and that Show: K is the show-line
 that justified the introduction of Show: ^, through an application of
 (v.a). We obtain a proof stage S' by cancelling this show-line. Let S"
 be the first stage containing the show-line Show: K. Thus AP(S') =
 AP(S"), PR(S') = PR(S;/) and K(S') = K(S") U K.

 We conclude with concise statements of the rules of CP and RAA, which lack

 the explicitness achieved by the relevant clauses of Definition 13, but which are
 easier to memorize.

 Conditional Proof:

 If Conic contains the show-line Show: Ki => K2, then we may introduce the
 structure

 CP

 I
 Show: K2

 immediately to the right. When the show-line of this structure is cancelled, the
 show-line Show: Ki => K2 may be cancelled as well.
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 Reductio Ad Absurdum:

 Suppose Conic contains the show-line Show: Ki, then we may introduce intro-
 duce immediately to the right the structure

 RAA

 I -JTi I
 Show: H

 when the show-line of this structure is cancelled, the show-line Show: Ki may

 be cancelled as well.

 3.3. Keeping Score

 Many of the existing proof systems for predicate logic include notational devices to
 record which rule each of the steps in a proof employs and the exploited premises
 by this rule. This is so in particular for the natural deduction system of (Kalish
 and Montague 1964) and (Bonevac 1986) that have been the principal inspiration
 for the system developed here. For the present system, where the applications of
 certain rules are sometimes quite difficult to recognize for what they are because
 of the multiple term substitutions they involve, the need for such a device seems
 especially urgent, so we now proceed to introduce one.

 First, we number all the DRS-conditions (including show-lines) as they appear
 in the proof beginning with those of the premise DRS in the order in which they are
 listed. We do this by writing the number of each condition in parentheses to its left.
 On the right hand side of those conditions which are obtained by application of an
 inference rule we indicate which rule this is, as well as the condition to which the

 rule has been applied. This same information - name of the rule plus number of the
 condition used as premise - is also attached to each of the discourse referents (if
 any) which the rule application introduces. To identify applications of the rules of
 proof we have been using a notational device already, that of writing the name of
 the rule - 'CP' or 'RAA* - at the top of the new column which is introduced when
 the proof structure required for the rule is set up. The following example should
 make clear how all this works.

 (0 x(y)

 (ii) 0(Xx) =»l^(x,y)|

 I I w
 (iii) Show: , ? \ =*► x(w)

 I 0(Z) , 1 1 ^(z, w) I
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 (•) x(y)

 (ii) ^(xx) =»|tMx,y)| cp
 ZCP,(iv)

 I, (iii) Show: * 1 => x(w) I
 I VW I ^(z,w) (vi) Show: *(w)
 I

 I * I w (iv) Show: * =» x(w)
 LirU | V>(z,w) |

 0) x(y)

 I x I |

 (") j.(x\ =*• V»(x,y) I

 ■

 I I w w

 (iii) Show: ,., =>■ x(w) (vi) Show: x(w)
 |_^!LI | ^i,w) 1 | V>(z, w) |

 (iv) Show: , ? * =*■ x(w)
 I *W , * I I rfjz, ,w) I

 (i) X(y)

 (ii) «x) =»|iKx.y)| I -
 I I w w

 (iii) Show: , . v =» x(w) (vi) Show: x(w)
 LZlfLI I V-(z,w) I | V>(z,w) |

 I (iv) Show: * =► x(w)
 I ^(Z) I I rfjz, ,w) I

 While the conventions introduced in this section have the merit of making fully
 explicit which rule applications a proof consists of, the extra notation has a tendency
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 to clutter up derivations that would be perfectly transparent without it. Therefore
 one should in practice make a judicious rather than an exhaustive use of the new
 devices. In the remainder of this essay we will keep score only in this pragmatic
 manner.

 4. Extended Inference Rules

 As we have stated them, all the inference rules of our system other than 'non-
 empty universe* (thus: DET and DN) operate only at the level of the 'main'
 DRS K(S). Sometimes, however, it would be convenient to apply such a rule at
 some subordinate level, as for instance in the proof of the following argument

 s

 M(s)

 |

 1 Q(0 1

 We can prove this very easily provided we are entitled to apply DET inside the
 sub-DRS Ki , thereby adding Q(x) to the conditions of Ki . Once this has been done
 only one further application of DET will complete the derivation. If, on the other
 hand, we do not apply DET within Ki , the proof is much more involved.

 Intuitively application of an inference rule at a subordinate level should be all
 right. For suppose that a DRS K2 is obtained from a DRS Ki by an application
 of an inference rule (in the old sense, i.e. at the 'top' level). Then Ki and K2 are
 logically equivalent. So if we replace Ki by K2 in some larger DRS K then the
 resulting DRS K7 ought to be logically equivalent to K and thus the passage from
 K to K; is valid.

 Let us understand by an extended application of a given inference rule an
 application of that rule either at the level of the main DRS or at that of one of its
 sub-DRSs. And let us call the extended proof system that system in which extended
 applications of the basic inference rules are permitted (but which is like our old
 system in having the same inference rules and the same rules of proof). Then
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 THEOREM 1 : Every argument that is provable in the extended system is provable
 in the old system.

 The theorem rests on two lemmas, one to the effect that exchange of provably
 equivalent DRSs within some larger DRS preserves provable equivalence; and one
 to the effect that application of an inference rule at top level transforms a DRS into
 a provably equivalent one. To state these lemmas we have to extend the concept of
 a proof to include cases Ki h K2 where Ki U K2 is an improper DRS. But this is
 straightforward. Where Ki and K2 are (possibly improper) DRSs, we define Ki h K2
 as holding just in case K\ h K2, where K', = (UKl U Fr(Ki) U Fr(K2), ConK,).

 LEMMA 1 : Suppose that Ki and K2 are (possibly improper) DRSs, that Ki Hh K2,
 that Ki is a sub-DRS of the DRS K, that K' results from replacing Ki by K2
 in K and that both K and K; are pure. Then K Hh K'.

 Proof: We proceed by induction on the depth of embedding of Ki within K.

 Suppose that Ki, K2, K and K' are as stated in the lemma. If the depth of
 embedding is 0, i.e. if Ki = K, then K' = K2 and there is nothing to prove.
 Suppose that Ki is embedded in K at depth n > 1 . Then Ki is part of a complex
 condition 7, where 7 E Conic3 and K3 is a sub-DRS of K (in the special case
 where n = 1, K3 will coincide with K). 7 will have one of the following three
 forms:

 (i) -.Ki

 (ii) Ki => Ko (where Ko is some other DRS)
 (iii) Ko => K,

 Let K4 be the result of replacing Ki by K2 in K3. Then we must show, for each
 of the cases (iH»0. that K3 Hh K4. This proves the lemma. For we may argue
 as follows. Suppose that the lemma has been established for embeddings of
 depth n and that Ki is embedded in K at depth n + 1 . Then, since K3 Hh K4,
 K3 is embedded in K at depth n and K; is obtained from K by replacing K3 by
 K4, we may conclude K Hh K7.

 Case (i): Ki occurs as part of a condition -1 Kj . Then K3 has the form

 X1...X*

 B,

 Bm

 To show K3 h K4 it is enough to observe that we can construct a proof
 from K3 as follows:
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 I - ;

 Xj...Xfc i

 Bj -i | ->K2 I
 : Show: K'{ U -Kj

 -•Ki

 Show:-.K2 Skrfsr.K', V P,
 Show: |-iK2| :

 Here Pi is a proof of a variant K\ of Ki from the variant K2 of K2. Such
 a proof exists in view of the fact that K2 h Ki .

 The proof of K3 from K4 is analogous.

 Case (ii): 7 is Ki => Ko. In this case K3 has the form

 X] . . .Xn

 B,

 Bm
 K, =»Ko

 To show that K3 h K4 it suffices to complete a derivation beginning with:

 Xj . . .Xn

 Bl cp

 Bm Show2: Ki
 K, =^Ko I

 Show: K;2 =^ K^

 As in case (i) we can copy a proof of K\ from K2 on the right hand side.
 Then we can apply DET using K| and Ki => Ko, so as to obtain (an alpha-
 betic variant of) Kq. This concludes the proof. Again the demonstration
 of K4 h K3 is symmetrical.

 Case (iii): This case is wholly analogous to case (ii).

 This concludes the proof of Lemma 1.

 LEMMA 2: Suppose that the DRS K' results from K through one application of
 DET, NEU or DN. Then K Hh K'.

 Proof: The proof is trivial. On the one hand K'hK since K C K;. On the other
 K I- K', because by assumption K' results through an application of a valid
 proof rule to K.

This content downloaded from 128.83.63.20 on Thu, 09 Jun 2016 02:26:45 UTC
All use subject to http://about.jstor.org/terms



 328 H. KAMP AND U. REYLE

 This concludes the proof of Theorem 1.

 Both the example and the theorem we have just proved concern only the case
 where all premises for the application of an inference rule in a subordinate DRS
 belong to this DRS. But this is unnecessarily restricted. When applying a rule to a
 sub-DRS Ki of K it is legitimate to use not only premises that belong to Conic, , one
 might also use conditions and discourse referents that occur in any DRS K2 which
 contains Ki as a sub-DRS. To make this formally precise we define the closure of
 K, in K as follows: CL(Kj , K) = (U, Con), where

 U = UK,<K2<KUK2;Con = UK,<K2<KConK2

 (where '<' stands for the relation 'sub-DRS of)

 THEOREM 2:

 (a) Suppose Ki is a sub-DRS of K, that K2 results from adding to Ki the
 result of applying an inference rule to CL(Ki , K), and let K' be the result
 of replacing Ki in K by K2. Then K Hh K'.

 (b) Suppose that K contains a condition of the form

 XlB-x"| |y....y*

 C D'

 Suppose that we add an alphabetic variant B' of B to the consequent box
 of this condition:

 xi...xn yi-.-y*
 B Dj

 Ci =* :
 : D/

 Cm I I B'
 Let K' be the result of this change. Then once again K Hh K'.

 Theorem 2 follows from the following:

 LEMMA 3: Suppose K is some DRS such that Conic contains (i) a condition B
 and (ii) a complex condition 7 which has one of the following forms: -1 Ki,
 Ki => Ko, Ko => Ki . Let K2 result from adding some alphabetic variant B' of B

 to Con^ and let K' result from replacing Ki in K by K2. Then K Hh K'.

 Proof: Assume that 7 is of the form -1 Ki . We prove only the interesting direction,
 which in this case is: K' h K.
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 Suppose K is of the form

 B

 C,

 and Ki is of the form

 yi -y*

 D,

 Then K2 is of the form

 yi •••y*
 D,

 Dt
 B'

 So K7 has the form

 X] . . .Xn
 B

 C,

 Cm

 I yi - -yjb I
 D,

 - 1 !

 D,
 B'

 It suffices to complete the proof stage
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 X] . . . Xn
 B

 C,

 i-^*

 ^ IV D' B' IV D'
 I

 ly'.-.y't I

 Show: -i

 D't

 Note that this proof is already essentially complete, since

 y'l-.y'*
 d;

 B

 is an alphabetic variant of

 yi.-.y*
 D,

 D/
 B

 Case (ii): K has the form
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 Xi . . . Xn
 B

 C,

 I yi - y* I
 D,

 and K' the form

 xi . . . xn

 B

 C,

 I yi - - - yib I
 Di

 D,
 B;

 Again we show K'hK and leave K h K' to the reader.

 We must be able to complete the proof starting with

 xi . . .xn
 B

 C,

 i

 PI i : =>Ko .

 B' D'
 I

 |yi-Yj
 Show: . =► KJ
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 Note that by using DET we can get to some Kq from the displayed complex
 condition of K' the new premise on the right and the condition B of K7.

 The proof of the case where 7 is of the form Ko=*Ki is left as an exercise.

 Lemma 3 asserts that we may 'enrich' a given DRS K by carrying down any
 condition B into the constituent DRSs of complex conditions that occur in the
 same condition set as B. By repeating this procedure, we can "push" conditions
 arbitrarily far down into subordinate DRSs, so that they will be available as premises
 to extended applications of the inference rules in the sense of Theorem 1 . This shows
 that any such premise may be used directly in extended applications.

 5. Disjunction and Identity

 5.1. Disjunction

 Suppose we have a premise DRS K containing a disjunctive condition and that
 we need to make use of this condition to prove some DRS K7. Intuitively one
 would proceed by cases: A disjunction is true iff at least one of its disjuncts is
 true. So in order to establish that K7 follows from the disjunction (together with
 the remainder of K) it suffices to show that it follows from each of the disjuncts
 (together with the remainder of K). This method of proving things from disjunctive
 premises is known as the Method of Proof by Cases. Many proof systems for
 predicate logic contain a corresponding rule of proof. However, we have opted to
 follow (Bonevac 1986) in going a slightly different route, and to introduce instead
 a rule of inference, called M(odus) T(ollendo) P(onens). (This will have the effect

 of keeping the number of rules of proof down, something that turns out to be of
 some advantage when one wants to demonstrate soundness and completeness of
 the system, as we will do in Section 7.) The rule of MTP allows us to infer from a
 given disjunction Ki V ... V Ki_i VKjV Ki+i V . . . V Kn and the negation of one
 of the disjuncts, Kj, the shorter disjunction Ki V . . . V Ki_i V Ki+] V ... V Kn. In
 the case where the disjunction consists of only two disjuncts, the effect is that just
 the other disjunct remains. Then from Ki V K2 and -^K\ MTP enables us to infer
 K2. We will concentrate on this special case to argue (informally) that MTP allows
 us to deduce whatever can be deduced with the Method of Proof by Cases.

 Suppose we want to deduce a DRS K' from a premise DRS K which contains
 the disjunctive condition Ki V K2. Proof by Cases allows us to carry out this
 deduction by deriving K' first from K0UK1 and then from Ko U K2, where Ko
 is the remainder of K (the part of K which remains when Ki V K2 is taken out).
 Suppose that we have a proof Pi of Ko U Ki h K' and a proof P2 of Ko U K2 I- K'.
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 To obtain a proof of K' from K which uses MTP instead of Proof by Cases, we
 proceed by RAA. That is, starting from the proof stage

 RAA

 r-(
 K I : I ^ I Show: *
 \ K, V K2 Show: h K \
 Sh0W:K/ 1 1 Show: ^K, 1 Shotf:K'' P,

 where K" is an alphabetic variant of K'.
 At this stage we have reached an explicit contradiction, involving the DRS K'

 of the cancelled show-line on the right and the condition -»K; in the middle. This
 enables us to cancel the show-line Show: H on the right and, with that, the show-line

 Show: -iKi in the middle. MTP then permits us to infer K2 (from the DRS of this
 last cancelled show-line and the disjunctive condition Ki V K2). Inserting the proof
 P2 then gives K\ which forms another explicit contradiction with the condition
 ->K;. This permits cancellation of the middle show-line Show: ^, which completes
 the proof:

 **±

 K(kiVK2 Sht*v:-K, (iii) S*"** («)
 K2 ^ Ki ]

 Sho\v:K' (vi) -I ^^^ v, > L Pi (1) rA I

 (The roman numerals indicate the order in which the show-lines get cancelled.)
 The box below contains an explicit statement of MTP.

 M(odus) T(ollendo) P(onens):

 Suppose K contains a condition of the form Ki V . . . V Kn together with a
 condition of the form ->K\ , where K\ is an alphabetic variant of Ki . Then we
 may add K2 V . . . V Kn to K.

 Besides MTP, which enables us to exploit disjunctions as premises, we also need
 a principle that allows for the deduction of disjunctive conditions. A particularly
 simple principle that does this is the one according to which a disjunction can be
 inferred from any one of its disjuncts. The corresponding inference rule, the rule
 of Disjunction Introduction (DI), can be stated as follows:
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 D(isjunction) I(ntroduction):

 Let K] V . . . V Kn be a disjunctive condition and suppose that one of its
 disjunctions K* is included in K. Then we may add K\ V ... V Kn to the
 condition set of K.

 The immediate inferences which Disjunction Introduction allows us to draw are
 trivial to a degree which would make one suspect that additional principles for
 inferring disjunctions are needed. However, as we will see in Section 7, this is not
 so: MTP and DI are all we need in addition to the rules of Sections 3 and 4 to

 derive all valid arguments within the DRS language which contains disjunction as
 well as the constructions with which we dealt before Section 6.

 Note that MTP is formulated with respect to the first disjunct only. We close
 this section with a sample proof, which shows that this formulation of MTP entails
 the more general version (which permits extraction of a disjunct whose negation
 is also present from other positions in a disjunction). The argument we give for
 disjuncts of length 3. We leave it to the reader to generalize this to disjuncts of
 arbitrary length.

 RAA!

 - 1 1 - i jCi I

 RAA

 I y KlVK2VK3 wy wy KlVK2VK3 y wy wy 1 I
 3 Shotf:* | Ki V K2 DI

 S*k*v:K, V K2 S*k*v:-iKi RAA, RAA2

 ShoVvil K, V K2 1 Shotf:-.K2 RAA2 H"1^!
 I

 K3 MTP Shotf:*
 1

 Ki V K2 DI

 5.2. Identity

 The condition x = y is verified by an embedding f iff f(x) = f(y). This means
 that if 7 is any DRS-condition, neither x nor y is among the declared discourse
 referents of 7 and Y results from replacing zero or more occurrences of x by y in
 7, then f verifies 7' iff it verifies 7. This principle constitutes one of the two rules
 pertaining to identity which must be added to our proof system to cover the cases
 of validity which depend on =. We adopt it in the form of an inference rule, the rule
 of Substitution of Identicals, which we state as follows:
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 Substitution of Identicals:

 Suppose K contains conditions x = y and 7 such that x, y ^ U(7). Then we
 may add 7' to K, where V results from 7 by replacing one occurrence of x by

 y.

 The second principle we use rests on the fact that a condition of the form x = x is
 verified by any embedding whatever (for f(x) is always equal to f(x)!). This means
 that such conditions may always be added to the active part of a proof stage without
 running the risk that verifiability is thereby lost. We adopt this principle as a kind
 of degenerate inference rule, of the form

 Selfidentity:

 For any x G Uk we may add x = x to K.

 (This rule is degenerate in that it does not involve any premises. Such degenerate
 rules are often called axioms.)

 It is easily verified that the following arguments are derivable with the help of
 these new principles.

 (i) xX=y h|y = x|

 x y z

 (ii) x = y h I x = z I
 y = z

 x\ , . . . , x^, . . . , xn y

 (iii) *i = y t- |P(xi,...,y,...,xn)|
 P(x1,...,xi,...,xn)

 This completes the proof system for the full DRS-language defined in Definition 1 .
 In the next section we show that this system proves all and only those arguments
 that are valid.

 5.3. Derived Rules and Redundancies

 Every argument KhK' that is derivable within our proof system can be interpreted
 as a derived inference rule. For suppose that the predicates occurring in K and
 K7 are P"1 , . . . ,P£fc where n* gives the number of arguments of the predicate P?< .
 Furthermore let for i = 1 , . . . , fc 7* be a DRS-condition with Fr(7») = { vni ,. . . ,vni },
 where vi, V2, . . . is a fixed enumeration of some denumerable subset of V, and let
 Ks and K's be the result of replacing every atomic condition P"*(ui,. . . ,un.) by
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 7i[ui,. . . ,un.] (where 7i[ui,. . . ,unj is the result of replacing in 7, vi by uj, v2 by
 112 etc.). Then Ks h K's - in fact, the given derivation of K h K' can be converted
 into a derivation of Ks h K/S by carrying out the same substitutions of 7's for P's
 throughout. Thus the argument KhK' can be understood as a schema for inferring
 DRSs of the form ofYi! (i.e. DRSs which can be obtained from K; through series of
 substitutions of the kind just described) from DRSs which include corresponding
 substitution instances of K.

 In practice it will often be useful to store arguments one has already proved
 (in the head or in the memory of a computer) so that they can serve as additional
 inference rules to be used in further derivations.

 From a theoretical point of view the resulting proof systems which have been
 expanded through the addition of derived rules are unattractive: there is theoretical
 virtue - at the very least the virtue of parsimony - in systems that posit no more
 rules than they strictly need. The term for systems lacking this virtue - they are
 standardly referred to as redundant- succeeds quite well in convoying the negative
 connotation such systems carry for the typical mathematician or logician.

 In fact, considerable efforts have been made in the course of the modern history
 of logic to show that given proof systems were free of redundancy or, if not, to
 reduce them to systems that are.

 When a system is redundant it is not always possible to distinguish which rules
 are to be considered its derived rules and which its non-derived ones. For instance,

 there are systems which turn out to be redundant in that they have two rules, Ri
 and R2, such that Ri is a derived rule of the system S-{Ri} and R2 is a derived
 rule of S- {R2}. How S is to be reduced to a redundancy free system - whether
 by eliminating Ri or by eliminating R2 - is often not clear and must be decided by
 additional considerations, if these can be found.

 The system we have presented in Sections 3 and 4 is redundant too; in fact, we
 already admitted as much in Section 3, when we announced that the rule of Double
 Negation would become redundant once the rule of RAA would be added. To see
 that this is so, we argue as follows. Suppose that Conic contains the condition

 xi . . .xn

 B,(x)

 - I

 c,(*,y)
 - 1

 1 C,(x,y) I

 and that there is a function f defined on {\\ , . . . , xn} which converts the conditions
 Bi into conditions B^ in Conic- DN says that we may then add new discourse
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 referents zj, . . . , z™ to Uk and to Coni< the conditions Cj(g(x),g(y)), where
 g(Xi ) = f(Xi ) and g(y^ ) = Zj .

 We can obtain this same inference without an appeal to DN by. using RAA:

 f(x,)...f(Xn)
 Bi(f»)

 Br(f(x))

 Xj . . .Xn

 B>(*) RAA

 : Zl • • • Zm
 ^W C,(/(x),z)
 yi • • ■ ym "" ;
 c'(x.y) c.(f(x),z)

 - i m I

 - A -\ I Show: *
 I C,(x,y) - -\ I I

 zi . . . zm

 Q(f(x),z)
 Show:

 1 Cg(f(x),z) I

 It is clear that the right hand show-line may be cancelled (and with it the one on
 the left), since the union of

 Zi ...Zm f(Xi)...f(xn)
 C,f(*),z) B,(f(Z))

 ~« . and

 Cg(f()Q,g) 1 1 Br(f(x))

 explicitly contradicts the premise (38) of DN within Conic.
 The notion of a derived rule can also be applied to rules of proof. Formally the

 criterion for derivability of the rule is the same as it is in the case of inference rules:

 Every proof in the system S\ which we get by adding the rule to S (if it is not part
 of S already) can be replaced by a proof of the same argument in which the rule
 is not used. An example of a derived rule of proof is the rule of Proof By Cases,
 which we discussed in Section 7.1.
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 6. Soundness and Completeness

 6.1. Soundness

 A good proof system is one that (i) proves nothing that it should not prove, and
 (ii) proves everything that it should.

 The first property is called soundness. A proof system VS is sound if it proves
 every valid argument - in our notation: VS is sound iff whenever VS proves K h K;
 it is the case for every model M and embedding f that if M ^=f K then for some
 extension g of f M ^=g K7. The second property, completeness, is the converse of
 the first: VS is complete iff K h K' for every K, K' such that if M |=f K then for

 somegDfM(=gK;.

 We first show that our proof system is sound. We will make use of the following
 abbreviation: if f is an embedding and g extends f to a set of discourse referents X,
 i.e. dom(g) = dom(f) U X, we write f C^ g.

 The states of being explicitly and implicitly contradictory are subsumed under
 a single concept, that of inconsistency:

 DEFINITION 15 A DRS K is inconsistent iff for some DRS Kj K h Kj U ^K',,
 where Kj is an alphabetic variant of Ki .

 A DRS which is not inconsistent is called consistent.

 We proceed by induction on the length of proofs. That is, we prove by induction
 for each of the successive proof stages of the given proof that the premises at S
 semantically entail K(S).

 LEMMA 1 : If Sn is any stage of a proof from some DRS K, M is any model and f

 any embedding of UPR(Sn+1) into M such that M f=f PR(Sn+O, then there is a
 g D f such that M |=g K(Sn+i).

 Proof
 1 . Stage "zero". Then PR(K) = K(K) = K.

 Since KhK there is nothing to be proved.
 2. Sn+i results through application of an inference rule. Here we have to look at

 each of the inference rules separately.

 (a) DET

 Suppose that Sn+i results from Sn through an application of DET. So K(Sn)
 contains parts

 xi...xn yi...ym z, ...z/

 B, B', C,
 : and : => \

 B, I BV I I Q
 Ki K2
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 while Sn+i results from Sn through adding a DRS K3 of the form

 Ct

 More precisely, there will be a function F: {yi, . . . , ym} - ► {xi, . . . , xn}y
 such that F(B() = B» (t = 1 , . . . , r), z\ , . . . , z{ are new discourse referents and

 Cj = G(Cj) where G is the function on {yi, . . . , ym, zi, . . . v z/} such that
 G(yi) = F(yi)andG(zj) = z/j.
 Let M be a model and f an embedding from UPR(Sn+1) into M such that
 M f=f PR(Sn+i). So, since PR(Sn+i) = PR(Sn), M f=f PR(Sn). By induction
 hypothesis there is a g I) f with Dom(g) D Uk(Sh) suc^ ^at M Ng K(Sn). In
 this case K(Sn+i) = K(Sn) U K3, so it suffices to show that g can be extended
 to a function h with Dom(h) = Dom(g) U {zj , . . . , zj} such that M (=h K3.
 The existence of such an h can be shown as follows. Since M ^=g K(Sn),
 M (=g Ki =>K2. So for any e DuKl g such *at M ^=c Ki there is a d DuK2 e suctl
 that M (=d K2. Now let eo be that extension of g such that eo(yt) = g(F(yj)), and

 let do 2uk2 to such that M 1=^ K2. Let h D^z/ >#.mZ'} g be that function such that

 h(z() = dote) for i = 1, . . . , I. Then M [=h C' iff M f=do Cj. So, since M f=do Cj,

 M (=hCj. As this holds for; = 1, . . . , *, M"f=h K3.

 (b) NEU

 Obvious: Map extra discourse referent into some element of U^/j (since by
 assumption U^ ^ {}, this will always be possible).

 (c)MTP

 Suppose that Sn+i results from Sn through an application of MTP. So K(Sn)
 contains parts (p < r,n<m)

 x, ...xn I yi...ym
 Bi b;
 : and : V K2 V . . . V Kn

 Bp I I B;r
 Ko Ki

 while Sn+i results from Sn through adding K2 V . . . V Kn.
 It is easily seen that M \= K(Sn+i): Since M \= -«Ko and because Ko is embed-
 dable into Ki M \= Ki V . . . V Kn can only hold on the basis of K2 V . . . V Kn.

 The cases of DI, SI and SUI are obvious. This concludes 2.

 3. The next case to be considered concerns the introduction of show-lines. Strictly
 speaking we must distinguish three cases here, depending on whether the
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 introduction involves direct proof, conditional proof or RAA. All cases are
 essentially trivial, however. The reason is that in each of them the change from
 K(Sn) to K(Sn+i) is identical to that from PR(Sn) to PR(Sn+i). In the case of
 direct proof we have K(Sn+i) = K(Sn) and PR(Sn+i) = PR(Sn) whereas in the
 other two K(Sn+i ) = K(Sn) U K; and PR(Sn+ x ) = PR(Sn) U K\ where K; is the
 new assumption that heads the new subderivation. In each case the inductive

 hypothesis - if M \=f PR(Sn) then there is g2uKl f such *at M |=gPR(Sn)
 carries over directly to Sn+i .

 4. Sn+i results from Sn through the cancellation of a show-line by the method of
 direct proof. Then K(Sn+i) = K(Sn) U K', where K' is the DRS in the cancelled
 show line. But if the line is cancelled by the method of direct proof, then K(Sn)
 includes an alphabetic variant K" of K7.
 Suppose Mf=fPR(Sn+i). Since PR(Sn+i) = PR(Sn), we infer by induction
 hypothesis that for some g 2K(sn) f» M Ng K(Sn). Since K" C K(Sn), M f=g K".
 Moreover, for some function a K" is the alphabetic variant of K' under a.

 Since UK' n UK(Sn) = {}, g' = g U {(a"1 (y)fg(y)>: y G UK"} is a function, and
 in particular it is an embedding of K(Sn)U K' into M. Since M f=g K" and
 K" is alphabetic variant of K' under a, M (=g K' by the remark on page 305
 concerning equivalence of alphabetic variants. So since K(Sn+ 1 ) = K(Sn) U K',

 3g' 2 K(sn) f such that M Ng' K(Sn+i).
 5. Cancellation of show line on the strength of completed CP:

 Shcw:K! =► K2 | Show:K2

 PR(Sn+i) = PR(Sr) where Sr is the last stage before the subderivation with Kj
 as extra assumption started. So PR(Sn) = PR(Sr) U Ki =PR(Sn+i)U Ki.
 Suppose M |=f PR(Sn+i). We must show M f=f Ki => K2. Suppose g DjjK{ f
 such that M [=g Ki. Then M (=g PR(Sn). So by induction hypothesis there is
 an h such that M f=hK(Sn). So in particular M (=hK2. Since this holds for
 arbitrary g 2uK £ ^ follows that M f=f K\ => K2.

 6. Cancellation on the strength of a completed RAA:

 Sh<^:Ki I Show:K2 U ({ }, {-K^})

 In this case PR(Sn) = PR(Sn+lfK) U <{}, {-.K, }).
 Suppose M (=f PR(Sn4.i). We must show that there exists a g^u^ f such
 that M |=g Ki . Suppose there is no such g. Then by definition of verification
 M |=f -«Ki . So M f=f PR(Sn). So by induction hypothesis there is h D f such
 that M (=h K(Sn). But K(Sn) contains the alphabetic variants of the parts K2
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 and -"Kj. But no embedding can simultaneously verify both of these. So for
 no function h M (=h K(Sn). So it can not be true that M |=f -»Ki . So there is a
 gDuK f such that M(=gKi.

 6.2. Completeness

 We now proceed to show that our proof system allows us to prove all valid argu-
 ments. Together with the already proved soundness result this will establish that the
 system permits us to derive exactly those arguments which intuitively it should.*

 We have to show that (39) holds for any Ki, K2 such that (Ki U K2) is pure:

 if K! |= K2, then Ki h K2. (39)

 To prove this we show (following an insight originally due to Godel) the converse,
 viz. that if Ki \f K2, then K! ^ K2, or

 if Ki 1/ K2, then there is a model M and an embedding f of Uk, into U^ , (40)
 such that M (=fKi and for no g 2uK f M |=gK2.

 (40) can be transformed further into

 if K is consistent, then there is a model M and an embedding f from Uk (41)

 into Um such that M f=f K.

 That (40) and (41) are equivalent can be seen as follows. First, assume (40), and

 suppose that K is consistent. Let Ki U ^K\ be some explicit contradiction (with

 K| an alphabetic variant of Ki). Then, since K is consistent, K \/K\ U -^K\. So

 by (40) there are M and f such that M |=f K and for no g DUk2 f M Hg Ki u ^Ki •
 So in particular M f=f K. Conversely, assume (41) and suppose that Ki I/K2. Then

 Ki U -^2 is consistent. For suppose not. Then there is a proof beginning with a
 stage of the form

 -K2

 Show: K3 U ^

 But then the proof beginning with

 {RAA : I ^
 | Show: K2 1 lSh0w:K^K3

 * Throughout this section we use the term DRS to denote non-extended DRSs - in other words,
 DRSs in the sense of Definition 1 .
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 o

 can also be completed, establishing Ki h K2. Since Ki U -1K2 is consistent, there

 are by (41) M and f such that M (=f Ki U ^K2. So M (=f Ki and for no g DUK2f
 Mf=gK2.

 To show (41) we proceed as follows. Starting with a given consistent DRS K
 we expand K to a gigantic DRS K^ in which, roughly speaking, every finite DRS

 K is "decided", i.e. for every DRS K' either K" C K^, or else ^K" C K^, where
 K" is some alphabetic variant of K'. Ka, can be used to define a model M and
 embedding f such that M (=g K^. Since K C K^, M (=g K.

 To construct K^ we proceed in a denumerably infinite number of stages. At each
 stage we "decide" one of the infinitely many possible DRSs, in that we either add (an
 alphabetic variant of) the DRS in question, call it Kj, to the DRS under construction,

 or else add some alphabetic variant of ^K*. However, to make things work out just
 right we have to make a few special provisions. First, it will be convenient to
 assume that the total set of discourse referents R in which our DRS language is
 based and the sets Pn of n-place predicates are all denumerable. (Inspection of the
 proof will show that this restriction is inessential.) For any particular pair of finite
 DRSs K, K7 will contain only finitely many discourse referents and predicates. So
 even if R or some of the sets Pn were non-denumerable, the proof we will give
 can be used to show (21) for the given K and K7, by applying it to a collection of
 denumerable subsets of R and the P* which include all the discourse referents and
 predicates of K and K'.

 Second, given that R is denumerable we may assume that its members are given
 by a particular enumeration {111,112,...}. We divide this enumeration into two
 infinite halves (say, by putting the even-indexed discourse referents ii2n into the first
 half, and the odd-indexed ones, u2n+i, into the second). For mnemonic purposes
 we will refer to the discourse referents of the first group, C, as ci, . . . , Cn, . . . (i.e.

 Cn =dej U2n) as they will play the role of names or constants, and to those in the
 second group, V, as vi, . . . , vn, . . . (i.e. vn =def ^2n-\) since they will be used
 essentially like the usual variables of standard predicate logic.

 We want to decide each (improper) DRS K with the special property that
 Fr(K) C C and U(K) C V. Since both C and V are denumerable and our DRS
 language also has only denumerably many predicates, it is possible to arrange all
 such DRSs in a sequence, Ei, E2, . . . , En, . . . (so that for each DRS K there is an
 n such that K is the DRS En!).

 Let K be any pure, proper and consistent DRS. Let K' be a pure alphabetic
 variant of K such that UK' C C and U(K')\UK' C V. Clearly such a K' exists, and
 it is also clear that if there are M, f such that M f=f K', then this is also the case
 for K. So it suffices to show that

 for some M, f:UK' -» UM it is the case that M \=f K'. (42)

 We do this by extending K' to a DRS K^ with the following properties:
 (i) Ur, C C
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 (ii) ud^Au^ c v
 (iii) For every finite, non-extended K' such that Fi^K') C C either (a) or (b):

 (a) for some 1-1 function d from Uk' into C d(K')' C K^ where d(K')' is an
 alphabetic variant of d(K'), (for d(K') see Definition 9)

 (b) -K" C K^ for some alphabetic variant K" of K'.

 (iv) For every K; of the form ({}, {Ki =>K2}) such that ^K' C K^ there is a
 1-1 function d from UKl into C such that d(KO' C K^ and ^d(K2)' C Ktj9
 where d(Kj)' is an alphabetic variant of d(K») (i = 1 , 2).

 (v) For every K' of the form ({}, {Ki V ... VKn}) such that K'CK, there
 are conditions -*K\, . . . , -"K^ in K^, where K^ is an alphabetic variant of K»
 (t = l,...,n).

 (vi) K^ is consistent
 (vii) K^ is pure and proper
 To obtain K^ we proceed in the following way. We construct an infinite sequence
 Ko, Ki, K2, . . . of increasing DRSs (i.e. Ko C Ki C K2 C . . . ), and let K^ be the
 union of these: Kw = \JieuKi. The sequence Ko, Ki, K2, ... is defined as follows:
 (i) Ko = K'
 (ii) Kn+i: Let E^+1 be some alphabetic variant of En+\ such that Kn L)Ejj+1 is

 pure. Then

 (a) Suppose Kn U E^+1 U (Fr(E^+1), {}) is consistent. Let d be a 1-1 map
 from UE> into C such that the discourse referents in Ran(d) occur

 neither in Kn nor in E^+1 .* Put

 Kn+1 = Kn U d(E;+1) U (Fr(E;+1), {}>**

 (b) Kn U Ejj+1 U (Fr(Ej,+)), {}) is inconsistent and En+i is neither of the
 form ({}, {Ki =► K2}) nor of the form ({}, { Ki V . . . V Kn}); then

 Kb+1=KbuX+iU(Fi(E;+i),{}>
 (c) Kn U E^+1 U (Fr(E^+1), {}) is inconsistent and En+i is of the form

 ({}, {Ki => K2}). Let d be a 1-1 map from UK, into C such that the
 discourse referents in Ran(d) occur neither in Kn nor in Ejj+1 ; then

 Kn+1 = Kn U X+i U d(KO' U -d(K2); U (Fr(E^+1) U Ran(d), {}),
 where d(K;)' is an alphabetic variant of d(Kj) such that Kn+i is pure
 « = 1,2).

 (d) Kn U E^+1 U (Fr(E^+1), {}) is inconsistent and E^ is of the form
 ({}, {Ki V . . . V Kn}). Let d be a 1-1 map from UienUKi into C such
 that the discourse referents in Ran(d) occur neither in Kn nor in E^+1;
 then

 * N.B. the particular choice of the alphabetic variant E'n+1 and of the function d do not matter;
 they could be made fully precise, e.g. by taking the "first" variant of En+i and the first such function
 d in the sense of our enumeration of V, C and the enumeration {E^}; but we won*t bother to do this.

 ** The last member of this union, Fr(Ejj+1), is there to insure that all discourse referents occurring
 free in En+i will become part of the universe of Kn+i , so that Kn+i is a proper DRS.
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 Kn+1 = Kn U X+i u Ad(Ki)' u • • • u Ad(Kn)' U
 (Fr(E'n+1)URan(d),{}),

 where d(Kj)' is an alphabetic variant of d(Ki) such that Kn+i is pure
 (t = l,...,n).

 Before we proceed further we state five simple lemmas. All relevant DRSs are
 assumed to be pure but not necessarily proper.

 LEMMA 2: K U Ki inconsistent iff K h ^Ki .

 LEMMA 3: <{}, {Ki => K2}) Hh ({}, {-.(K, U ({}, {- K2}))}>.

 LEMMA 4: ({}, {K, V . . . V Kn}) Hh "<{}, {^K,, . . . , -Kn})

 LEMMA 5: If K h K' and K' h K" then K h K".

 LEMMA 6: Suppose K/; is an alphabetic variant of K; and both K U K' and K U ^»K"
 are inconsistent. Then K is inconsistent.

 The proofs of these are left to the reader.
 We next prove

 LEMMA 7: For each n K^ is consistent.

 Proof: By induction on n.

 Kq: Obvious, since Ko = K' and K' consistent by assumption.

 Suppose now that Kn is consistent. We want to show that Kn+i is consistent
 as well. We must distinguish four cases.

 (i) Kn U En+1 U (Fr(En+1), {}) is consistent. Then, since discourse referents
 in the range of d do not belong to either Kn or E'n+1, Kn U d(E'n+1)
 U (FrCE^), {}) also is consistent.

 (ii) Kn U En+1 U (Fr(En+1), {}) is inconsistent and En+i is neither of the
 form ({}, {Ki => K2}) nor of the form ({}, {Ki V . . . V Kn}>. In that case

 Kn+i = Kn U ^En+1 U (Fr(E'n+1), {}). Suppose Kn+i inconsistent. Then
 by Lemma 2 Kn U (Fr(En+1), {}> h En+1. Since Kn h Kn U Fr(E'n+1),
 by the non-empty universe rule, also Kn h E^+1 by Lemma 5. But Kn U
 En+1 is by assumption (and Lemmas 2 & 5) inconsistent. Hence Kn is
 inconsistent, contrary to the induction hypothesis. So Kn+i is consistent,

 (iii) Kn U E^+j U(Fr(Ejl+1), {}> is inconsistent and En+i is of the form

 <{},{K, =» K2}>. Then Kn+1 = Kn U -E'n+i U d(KO; U -d(K2); U
 (Fr(En+1), {}), where d(K0' and d(K2)7 are as in (c) of the definition of
 Kn-fl-
 Suppose Kn+i is inconsistent. Then by Lemma 2

 KnU-En+1h-(d(K1)/U-d(K2)')
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 and by Lemma 3

 KnU -E'^ h ({}, {(KKtf =► d(K2)'}>
 So Kn U ^E^+1 h EJ(+1 U ^E^+1, where E^+1 is an alphabetic variant of

 E^+1. So Kn U ~»E^+1 is inconsistent. By Lemma 6 Kn is inconsistent,
 (iv) Kn U E^+1 U (FrCE^j), {}) is inconsistent and En+i is of the form

 <{}, {Ki V ... V Kn}). Then Kn+1 = Kn U ^+1 U -dOd)' U . . . U
 -d(Kn)' U (Fr(E;+1), {}), where d(K,); . . . d(Kn)' are as in (d) of the
 definition of KnH_i.

 Suppose Kn+i is inconsistent. Then by Lemma 2

 KnU-E'n+1hA({}, {nK,

 and by Lemma 4

 KnuXi^(Ki)'V...Vd(Kn)'
 Therefore Kn must be inconsistent.

 Corrollary 8: K^ is consistent.

 Proof: Suppose not. Then there will be a proof of some contradiction from K^.
 This proof will use only a finite portion of K^,. This portion will be wholly
 included in Kn for some n. So Kn inconsistent, contrary to what has just been
 shown.

 This establishes the sixth of the seven properties of K^ listed on page 343. All the
 other properties can be verified directly from the construction.

 K^ determines a model M which verifies all and only those DRSs E such that
 some variant of E is included in K^. The idea behind the definition of M is a very
 simple one. Its universe U^| is to consist of the discourse referents of K^ which we
 referred to as constants. Moreover, for any predicate Pn the extension of Pn in M is
 to be the set of all n-tuples (ci , . . . , Cn> such that P(ci , . . . , Cn) € Con^ . A fairly
 straightforward induction on the complexity of DRSs and conditions thus shows
 that the DRSs and conditions contained in K^ are all verified in M by embeddings
 that map the constants c* onto themselves. This is almost right but not quite. The
 reason why it is not quite right has to do with identity. Suppose Con^ contains
 the condition c* = Cj with i ^ j . Then the embedding f which maps c* onto C; and
 Cj onto Cj will not verify c; = Cj. For the values associated by f with c* and Cj, i.e.
 ^ and Cj themselves, are not identical. In order that the conditions will be verified
 by f, f must map c^ and c; onto the same element of U^/j .

 To achieve this we group constants Cj, Cj such that c» = Cj is a condition of
 Ko, into groups and then make these groups the members of Uk^ and the f- values
 of the constants they contain. The deduction properties of *=' guarantee that this
 construction works the way it is meant to.

 We define the relation between the constants in C as follows:

 ^ ~ Cj iff the condition c^ = Cj belongs to Conicw .
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 It is easy to show, using the results mentioned on page 335,

 1 . ' ~ f is an equivalence relation on Uic : i.e. for all c G Uic c ~ c, for all c, c' G
 Ko, if c ~ c;, then c' ~ c and for all c, c', c" G Uic if c ~ c' and c' ~ c" then
 c - c".

 2. if Ci ~ Cp . . . , cn ~ cn then the condition Vn(c\f . . . , Cn) belongs to Conic .
 For any c G Uic let [c] be the equivalence class, relative to '~\ generated by c:
 [c] ■ {c': c ■ c' G Conic }. M and the relevant embedding £Uk - > U^ are defined
 by:

 (i)UM-{[c]:cGUKu,}
 (ii) For each n-place predicate P

 PredMCP) - {([d].- • •> [en]) : ci. • • • -en € C and P(ci, . . ., cj G Con^}
 (iii) f(c) - [c] for each c G C
 Note that (ii) does not depend on the choice of the representative of [c]. To
 show this we have to verify that if c^-cj G Con^ for some i G n, then
 P(ci

 directly by SUI.

 We finally prove for arbitrary DRS-conditions 7 such that Fr(7) C C and LK7)
 CV:

 M (=f 7 iff y G Con^ f°r some alphabetic variant Y of 7. (43)

 The proof is by induction on the complexity of 7.
 (i) When 7 is an atomic condition, then (43) follows directly from the definitions

 ofPredM(P)andf.
 <ii)7--«i

 Suppose M f=f 7. Then for no g DuK, f M f=g Ki . By the induction hypothesis
 for no d: U^ -> C d(Ki )' C K^ (For if there were such a d, then M \=& S for
 each of the conditions S of Ki , and so M ^=f ud Ki , contrary to assumption.).
 The DRS Ki will occur somewhere in our enumeration Ei , . . . , En, . . . say as
 En+ 1 . Suppose that in the formation of Kn+ 1 some alphabetic variant of En+ 1 ,

 En+1 , had been added (rather than its negation). Then we would have had
 Kn+, - Kn U d(En+1) U (Fr(En+1), {}).
 But then M \=f d(E;n+1), since d(En+1) C K^. So M (=fud d(E'n+1). And
 since En+1 is an alphabetic variant of Ki, M f=f U(i Ki; but we saw that this
 contradicts the assumption.

 Now suppose y G Con^ for some alphabetic variant 7' of 7. Thus -1K1 G
 Con^ where K' is an alphabetic variant of Ki. Suppose for some d: Uk!
 -> C M [=fUd Ki. Then M \=f d(Ki). So for each S G Con^) M (=f 6.
 So by induction hypothesis S G Conic . ^ut ^itn d(Ki) C K^. Since also
 -"•Kj G Conic » K*> would be inconsistent, contrary to what we have shown. So
 for no d: UKl-^CM |=fud Ki. So M |=f -1K1.

 (iii)7-Ki=»K2
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 Assume M |=f 7. Let ({}, {Ki => K2}) be the DRS En+i. If in the formation
 of Kn+i E^+1 has been added, then we are done. Suppose not. Then

 Kn+1 = Kn U -E^+1 U d(K0' U -d(K2)' U (FrCE^,) U Ran(d), {}).
 Since d(Ki /CK^ for some alphabetic variant of d(Ki ) we get by the induction

 hypothesis, that M J=f d(Ki). In the same way we infer M[=f^d(K2). So

 M ^=f ud Kj and for no h DUlC2 f U d M (=h K2. But this means that M ^=f Kj =>

 K2, contrary to assumption. So it cannot have been the case that -JE^+j was
 added to Kn. So E^+1 has been added. Consequently 7' G Con^ for some
 alphabetic variant 7' of 7.

 Conversely, suppose 7' G Conicw for some variant 7' of 7. Evidently 7' is of

 the form K', => K'2. Let g be any function such that g2uK, f and M |=gKi.
 By induction hypothesis ConK» C Con^ for some alphabetic variant K" of

 K] . Suppose for no h Z>uK2 g M f=h K2. Then M f=g ^K2. Then by induction
 hypothesis and the same reasoning as under (ii) iKj £ Con^ for some variant
 Kj of K2. But then K^ inconsistent, contrary to Corollary 8. So there must be

 an h 2uk2 g such that M (=h K2. Since this holds for arbitrary g, M (=f Ki => K2.
 (iv)7 = K1V...VKn

 Assume M f=f 7. Let ({}, {Kj V ...V Kn}) be the DRS En+i. If in the
 formation of Kn+i E'^ has been added, then we are done. Suppose not. Then

 Kn+1 = Kn U -E^+1 U -dCKO' U . . . U -d(Kn)' U (Fr(Efn^) U Ran(d), {}>.

 Since -»d(Kiy G Con^ for some alphabetic variant of d(Kj) we get by the

 induction hypothesis, that M ^=f -^d(Ki) (for all t = 1 , . . . , n). But this means
 that M ^f Ki V ... V Kn, contrary to assumption.

 Conversely, suppose 7' G Con^ for some variant 7' of 7. Evidently 7' is of
 the form K', V...V K^. Suppose for no i = 1, . . . , n there is a g D\jK. f
 such that M (=gKi then for each i there is no g DuKi f such that M (=gKj and so

 M \=f -«Ki. By induction hypothesis and the same reasoning as under (ii) we
 get for all i = 1 , . . . , n -«KJ' G Con^ for some variant K^' of Kj. But then
 K<^ inconsistent, contrary to Corollary 8.
 This completes the proof of (24).
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