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Abstract

What did I show? What do we know now, that we did not
know before?

Multi-agent reininforcement learning language game
optimization

learn when to speak, whom to address and what to say and
when to remain silent or perform a non-verbal action. Fur-
ther we used to rule-based agents to train a language learner,
who observed the effects of the actions of his fellow players
and after understanding these effects, would use language to
express his own desires. He also uses the trained function to
understand the expressed desires of other agents.

Introduction

Verbal communication has a purpose. Language, the means
of verbal communication, is used to fulfill a variety of de-
sires - from the most simple and straight-forward (attention,
food) to more complex (socializing, find somebody to love,
get a good job). This is possible, because utterances have an
effect!, that goes beyond the transmission of its literal con-
tent (Wittgenstein, 1953; Austin, 1961). This is especially
important when it comes to language acquisition, because
children can experience these effects, and thereby learn to
employ utterances to fulfill their own desires. This observa-
tion gives them the motivation to speak and to leam. The
more precisely a child is able to express its desires, e.g. to
relates the utterances to the relevant properties of the world,
the more effective its utterances will be.

To increase the effectivity of language (with respect to
the goal of bringing about desired states of the world) can
be regard as an optimization process ...

...which explains, why children can learn language with-
out a teacher. While many parts of the problem of learn-
ing to produce and understand meaningful language, can
be learned unsupervised (such as associating syllable se-
quences to concepts (Klein and Billard, 2001) or forming
concept in the cerebral cortex (Klein and Kamp, 2002))...

! These effects are sometimes very direct and obvious and some-
times very indirect and subtle

so far this kind of goal-oriented optimization has not been
taken into account.

In this paper we present an approach of how this can be
achieved. We include a prelinguistic level of desires (em-
bedded in a desire-hierarchy).

Explain more ...

As speaking is not always the best way for a human to ful-
fill those desires (sometimes other actions are more appro-
priate, or sometime desires cannot be fulfilled) our approach
takes this into account and includes non-linguistic actions as
well. The key idea of our work presented in this abstract is,
that the agents learns the language by observing other agents
using it. Through observation they learn the effects, which
certain expressions have in particular contexts. After learn-
ing the (context dependent) effects of expressions, the agents
can use them to fulfill their own desires (as far as this is pos-
sible). With the same cognitive function they understand
what another agent wants to achieve by his expression.

In this study we build a computational model of lan-
guage acquisition, in which two agents with a rule-based
language module train one language learner. Using super-
vised learing, the learner trains a forward model which pre-
dicts the (context dependend) effects of utterances. To train
this model the learner observes the communication of the
other agents. He can then use this model (i) to find the right
utterance to express his own desires, and also (ii) to under-
stand other agents by mapping speakers’ utterances on the
state they desire.

To test whether the proposed mechanisms can accomplish
these goals, we designed a simulated game environment. We
used a game environment, because it allows the agents to
form their own desires. Having their own desires, they can
learn to use language to achieve their goals. An agent learns
a value function that can assign a value to every states telling
the agent how desirable it is. Along with a rule-based for-
ward model this function is used to select actions.

Theory

To make an agent express desires, we need to have desires in
the first place. This raises the question of how to represent



desires. The solution we chose, was to represent desires as
valued states of the world. For every state of the world, the
agent has a positive or negative numerical value expressing
how much it desires this state. A function mapping every
state on such a value can be called a value - function.

Such a value-function estimates how good it is for an
agent to be in a given state. The notion of how good is de-
fined in terms of future rewards that can be expected, or,
to be precise in terms of the expected return (Sutton and
Bartho, 1998). The expected return is the sum of discounted
rewards, which can be expected in and after a certain state
(equation 1) The y-parameter is the discount factor, which
determines the value of future rewards. Given this defini-

-tion of the expected return, the value function is defined in
equation 2.
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Reinforcement learning is a suitable method of generating
such a function during interaction with the environment.

These methods allow us to determine the desired state of
every agent in every state: It is the state with the highest
value. But not every state can be reached from a particular
other state. Therefore, we need a desire hierarchy with more
desired and less desired states. It is obvious, that the value
function gives us exactly what we need.

The theory of meaning we are generating our hypothe-
ses from, can be characterized by the following five central
points.

(i) An agent experiences utterances used by others speakers
to have effects on the observeable world. These effects of
utterances are dependent on the context.

(i1) These effects on the observable world are indirect and
are achieved by a more direct effect on unobservable
states, such as the mental states of the addressees.

(iii) Linguistics events, i.e. experienced context-depended
effects of utterances are used to train a function mapping
context configurations and utterances to effects.

Such a function, which predicts a sensation x(n) based on
the state x(n — 1) (context) and the action u(n — 1) (utter-
ance) has been be called a forward model (Jordan and Rum-
melhart, 1992) or predictor (Wolpert et al., 2003).

x(n) =X(x(n—1),u(n—1)) 3)

(iv) A specaker uses a certain expression, because he de-
sires the effects he expect the expression to produce in the
present context (according to his experience). He choses
the action which will lead to the state of the world, which
he desires most.

This output function (or utterance function) maps the ob-
served state and the desired observation into an utterance

u(n—1)=U(d(n—1),x(n—1)) 4)

This function has been called an inverse model (Jor-
dan and Rummelhart, 1992) or a controller (Wolpert et al.,
2003).

(v) An addressee understands an expression of language,
because he has represented the same relation of expres-
sion, contexts, and effects. The utterance in the context
triggers the representation of an effect, which is likely to
be the desire of the agent.

An agent understands an utterance, by understanding the
intention of the agent. By using a predictor, a function from
context x(n — 1) and utterance u(n — 1) to effects x(n), the
agent can know what the other agent is trying to achieve.

The Game

We test our ideas about language acquisition and communi-
cation in a multi-agent simulation. In this simulation, food
grows in certain intervals in frees. In the present work we
use three trees growing three types of food. Every tree can
hold maximally 5 pieces of food, and 3 pieces of food grow
simultaniously, once the amount of food in the game is be-
low a certain threshold.

There are three agents in the game. Every agent can store
5 pieces of each food type. Always after a certain time inter-
val one piece of food gets digested, i.e. it simply disapears.
This is to garantee, that the agents need to act and cannot
rest, after they have gained a sufficient amount of food items.
However, they do not starve if they have no food for a num-
ber of time steps, but they get a low reward.

Agents can perform one of the following actions:

harvest tree (take down all the food)
e give one piece of food to another agent

e ask another agent for a type of food

do nothing (important!)

Generally, the agents take turns. However, when an agent
asks another agents for a type of food, the normal order
pauses for one time step, as then it is the turn of the ad-
dressee to give (or not to give) the desired object to the
speaker.

The goal of the agents in the games is to have one piece
of each food types at every time step. Therefore, the reward



Figure 1: This shows the intitial game state. The long yel-
low standing rectangles are the trees, each holding 3 pieces
of food. The grey squares are the agents. They have the ca-
pacity of storing 5 picces of each food type. The bar on the
right displays scores and utterances. The green bars show,
which agents cooperated with which other agents in their
last move.

function was designed in the following way: Each agents
gets a reward at every time step. If an agent has at least one
item of every food type, it gets a reward of +3, otherwise it
gets —1 for every food type which is missing completly in
his store at the time step.

The agents in the game are simulated independently. Ev-
ery agent observes the relevant features of the environment
at every time step. Further, every agent has its own memory
devices: a short term memory memorizes the complete ob-
servable game state (including all utterances) for a constant
number m of time steps. The agents interact with the world
only by their perception and actions and with each other by
perception, actions and utterances.

An utterance of an agent is defined by its content (i.e.
which word is used), its speaker (the agent) and the ad-
dressee. Who the agent talks to and what he it says is up
to him. The possible content is defined by the vocabulary of
the agents in the game. In the present study it consists of the
three words triangle, square, and diamond. The content of
an utterance can only be one word. An agent can use only
one utterance at every time step.

With respect to their linguistic capabilites, agnts can ei-
ther be a reacher or a learner. Teacher-agent do not teach
language, but they used a rule-based dialogue system to pro-
duce and understand utterances.

To chose their actions (or utterances), the agents pre-
dicts the outcome of the action in the present context with
a forward-model. The forward model is rule-based for no
action, harvesting trees, donating objects, and for the verbal
actions of the teacher-agents.

These outcomes are evaluated with the value function and
the action (verbal or non-verbal) which will bring about the
state with the highest value is chosen.

Figure 2: This shows an arbitrary state during the early
stages of training. The last action of agent 1 was to ask
agent 2 for the square. Obviously this is not the best move.
A better move would be to harvest the square - tree, as with
this action, the agent would get 3 square instead of one.

If a verbal action is selected, and the addressed agent is a
teacher, then the addressed agent will give the desired object
to the speaker. If the addressed agent is a language learner,
this agents applies its forward model to the utterance and
the game state. With this model he can estimate what kind
of change the speaker desires, i.e. he computes the inten-
tion from the utterances and the context. In other words, the
language learner understand the utterance, because it won-
ders what effect, according to its own experience, such an
utterance has in the present context. Using the present state
of the game and the estimation of the desired state of the
speaker, the addressee then uses a rule-based algorithm to
computed which action would bring this desired state of the
game about.

Learning Algorithms

The value function maps states of the game to real numbers.
A state is given by three 5-dimensional binary vectors (one
for each tree) and three 3 x 5 binary matrices (one for agent).

The value function is implemented as a neural network
with one neuron for every binary value of the vectors and
the matrices. The output of the network is the linear com-
bination of the weighted binary inputs. To train the value
function use TD(0) reinforcement learning (Sutton, 1988)
as described in equation 5. The term given in 6 is the so-
called TD-error, giving distance and direction to the correct
prediction and determing the weight changes.

V(st) = V(st) +rre1 +V (s041) — V(s1)] ®)
Pl FYV (s41) = V(s) (6)



Figure 3: This shows the game state imidiatly after agent 2’s
reaction to the request of agent 1 in figure 2. We can see, that
the square has changed its position from the store of agent 1
to the store of agent 2.

Due to the huge number of possible states, we used a neu-
ral network function approximation of the value function.
As exploration mechanism we used a softmax - method.

In linguistics capabilites of the language learner in the
game are represented by a forward model. This model learns
the context-dependend consequences of utterances. The
context of each utterance is the full game-state, as described
above. The forward-model is implemented by a single-layer
perceptron, mapping utterancs and game states into game
states. We used supervised learning to train this forward
model (equations 7, 8, and 9).
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Note that the same forward model can be trained by ob-
serving the effects of other agent’s utterance as well as the
effect of the agents own utterances (i.e. in our approach
these two types of predictions are not distinguished, which
of course is a considerable simplification).

Results

Concerning the training of the value function, where agents
learned, which states are desirable, and whether in certain
situation it is better to harvest, donate, speak, or simply do
nothing, agents performed extremly well (approximatly at
the level of a human player or even better).

At the very early stages of the training, agents selected no-
action or nonsensical actions very often (such as donating
objects to other players without being asked). Sensical, but
suboptimal action, as described in figure 2 and 3, did occur
in the intermediate stage of training. After training, no more
suboptimal action could be detected. Agents used language

Figure 4: This is the development of the TD-error over 5 *
107 time steps.

Figure 5: This shows an episode during the language learn-
ing. The language learner (agent 2) asks agent 1 for the
square although agent 1 does not have one. This is an exam-
ple of the language learner not able to understand the normal
effects this kind of utterance.

if appropiate, harvest trees whenever possible and optimal,
stoped chosing no action, as usually some action or request
would improve the state of agent. The value function, as
far as observed, gave the appropriate desire-hierarchy. Al-
though the TD-error decrease very slowly, as can be seen
in figure 4, optimal performance could already be observed
after about a million time steps.

The prediction error decreased very fast to a level close to
100 % with declining occational in the simulation, where
only the utterance effects of the two other speakers were
used (see figure 6).

Discussion

In this study, we were able to show (i) that general frame-
work of introduced works for the relation between intentions



Figure 6: The prediction error of language learning changes
over time. This graph showns its development through 5 *
10° learning episodes

and utterances can be learned by such a model and that, in a
simulated environment, it can be used to communicate well
with respect to a task.

The speed of learning

object permance

no causal connection

lacking of generalzing feautures

‘no higher level of representation.

Although in this study, we used the words triangle,
square, and diamond, the reader should not be mistaken,
that the meanings these words have in the game are not the
meanings they have in the real world.

Cannot learn that certain words are used to refer to certain
objects as in the work of Luc Steels (Steels, 1996; Steels,
2001).

This kind of generalization is needed to make learning
faster and more efficient

While our present approach is restricted to single-word
request, the framework is designed to handle multi-word ut-
terances and different kinds of speech acts, such as ques-
tions and answers. In such a multi-utterance, multi-speech
act game, the framework could show its full potential.
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