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Syllabus Semantics II 
 
  
General outline 
 
Part I:   Intensionality  
 

a. Modal, Temporal and Intensional Logic 
b. Intensionality in Montague Grammar 

 
Part  II:   Dynamic Semantics (Discourse Representation Theory) 
 
  Themes:  (i) Anaphora  
    (ii) Conditionals and Quantification 

(iii) Tense and Aspect 
(iv) Lexical Semantics 

 
 
Brief Description of Issues and Problems 
 
I. Intensionality. 
 
Classical logic - the First Order Predicate Calculus, Higher Order 
Predicate Logic and the Typed Lambda Calculus - provides us with the 
formal means to adequately describe extensional aspects of natural 
language meaning: reference, predication, boolean operations and 
quantification. But often the semantic contributions that the 
constituents of natural language sentences make to the meanings of 
those sentences are non-extensional and these classical logic is not 
designed to describe; to the extent that it can be made to describe them 
at all, it can do so only in an indirect, round-about way. 
 
This difficulty was already known to Gottlob Frege (1848-1925), one of 
the two architects of classical predicate logic.1  In fact, the problem 
preoccupied Frege for more or less his entire scientific career.  The 

                                     
1  The other ‚inventor’ of the predicate calculus was the American mathematician 
and philosopher Charles Sanders Peirce (1839-1914).  Peirce’s results in formal logic 
were, like much of his other work, not easily accessible during his lifetime, and 
historically his influence on the development of logic during its decisive period 
(roughly, the last quarter of the 19-th and the first third of the 20-th century) has 
been almost negligeable.  A crucial difference was that Frege’s work was continued in 
Russell and Whitehead’s Principia Mathematica, the monumental work in which the 
authors develop a variant of Frege’s formal system and apply it to the formalisation of 
a large part of mathematics. 
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most famous of all his attempts to come to grips with it is his essay 
Über Sinn und Bedeutung (1892). As Frege explains there, each 
expression of a natural language L has a sense (Sinn, as he calls it) as 
well as a denotation (or Bedeutung, in his terms).  The formal logic that 
he had developed2 – a system of higher order logic of which the core 
has survived as first order predicate logic as we know it today – could 
deal directly only with Bedeutungen – with “extensional constructions”, 
as we would say today. It is suited for describing how the Bedeutungen 
of complex expressions depend on the Bedeutungen of their 
grammatical constituents. But natural languages, Frege was aware, are 
rife with sentences in which the Bedeutung of the whole does not 
depend on the Bedeutungen of its parts, but on their Sinn, and to deal 
with that kind of dependencies the logic of Frege’s Begriffsschrift is not 
the right instrument.  Frege appears to have made certain efforts 
towards the development of a formal “Logic of Sense and Denotation”, 
but as far as we know he never really succeeded with this to his own 
satisfaction. Several proposals for such a logic were worked out in the 
course of the 20-th century, but none of them was wholly successful on 
all fronts.  
 
However, among these systems there is one that has proved particularly 
useful for purposes of natural language semantics. This is the system of 
Higher Order Intensional Logic (HOIL) developed by Richard Montague 
(1928- 1971) in the mid-sixties. Montague’s HOIL combines valmost 
unlimited expressive power with comparative notational simplicity. It is 
these virtues, as well as the effective use that Montague himself made of 
HOIL in the systematic descriptions that he gave of the semantics and 
logic of substantial fragments of English, that have made HOIL and 
systems closely related to it into the standard tools for doing semantics 
that they still are now. 
 
Since non-extensionality - or intensionality, as we will henceforth also 
call it - is so wide-spread in natural language, and a semantics of 
natural language that cannot deal with it isn’t worth its mettle, it is 
essential that we acquaint ourselves with the tools that HOIL and 
related logical systems provide.  To do this, however, it is natural to 
begin by studying the logic which provided the inspiration for HOIL 
and which can still be considered its foundation. This is Modal Logic, as 
it had been shaped in the late fifties and early sixties, especially 
through the work of Saul Kripke. Since the standard systems of Modal 
Logic are a good deal simpler than HOIL, we will begin by studying 
them. And we will use the opportunity to also briefly explore systems of 

                                     
2  Mainly in his Begriffsschrift of 1879 
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Temporal Logic (also known as Tense Logics) which are formally quite 
similar to the standard systems of Modal Logics, and which have come 
to play their own role in the history of the Formal Semantics of Natural 
Language. 
 
      ## 
 
In the last sentence of the previous paragraph I advisedly spoke of the 
history of “Formal Semantics of Natural Language”.  That history isn’t 
very old; by the reckoning of many it dates from the second half of the 
sixties, when Montague did his path breaking work. But the subject of 
Semantics is much, much older than that. The earliest suggestions why 
certain words have the meanings they do have go back to antiquity. But 
then, and from then on for nearly the entire period that stretches up to 
the quite recent developments mentioned above, Semantics was 
confined almost entirely to the meanings of words. How word meanings 
get integrated into sentence meanings – how sentences “derive” their 
meanings from the meanings of the words from which they are built – 
wasn’t perceived as a problem that needed investigation or explanation. 
In fact, it needed the development of formal logic, and not just of its 
syntax, but also of its model-theoretic semantics, to open our eyes to 
the true nature of the full range of problems that any theory of 
meaning in natural language will have to address.  
 
We recall here that the syntax and semantics of predicate logic are 
perfectly attuned to each other. The syntax of the predicate calculus is 
given by a recursive definition of “well-formed term” and a similarly 
recursive definition of “well-formed formula”. The model-theoretic 
semantics for this calculus then makes use of precisely these 
definitions: given a model M, it (i) specifies the values in M for all 
atomic terms, then (ii) defines the values in M for complex terms 
following the recursive definition of terms, (iii) then defines the truth 
values in M for atomic formulas and finally (iv) defines the truth values 
in M of complex formulas following the recursive definition of 
formulas. These model-theoretic definitions show that the syntax of a 
predicate logic term or formula gives a faithful representation of its 
meaning: the syntax structure tells us, as it were, directly how the 
meaning of the complex expression is obtained by stepwise integration 
form its ultimate constituents (the symbols of predicate logic).  It is in 
this way that the denotations in any model M of the infinitely many 
terms and the truth values in M of the infinitely different formulas of 
predicate-logical systems are fixed by the interpretations that M assigns 
to the non-logical constants of the predicate calculus. 
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Doesn’t something like this also apply to natural language? For many 
years since the time when the syntax and semantics of formal languages 
like the first order predicate calculus and the intimate relationship 
between them were first well understood, there were serious doubts 
that that would be possible. Natural languages, it was believed, were far 
too unsystematic, far too much infected by the accidents of historical 
developments and the whims of those whose “creative” use of language 
keep rocking their syntactic and semantic stability, to permit semantic 
analyses along such neat and stringent logical lines.  We see this 
judgement reflected in the spirit in which the formal systems of 
mathematical logic were developed in the late 19-th and early 20-th 
century. These systems were intended to replace natural language, 
where it really mattered: in mathematics, science and philosophy, 
where the need for precise formulations, in an unambiguous and 
logically transparent vernacular, had become an urgent, and in some 
cases a vital, necessity.3 Natural languages, it was felt, were all right so 
long as what you said, or how you said it, doesn’t matter too much. 
That they are ultimately subject to the same kinds of general principles 
that govern the relationship between meaning and syntactic form in the 
languages of formal logic was a thought that none of the great logicians 
of the late nineteenth and the first half of the 20-th century (with the 
exception perhaps of Frege) seems to have seriously entertained. 
 
For a linguist, however, the natural question that needs asking points in 
the exact opposite direction: How could a natural language NOT be 
governed by such general principles? How could we ever learn a 
language if it wasn’t governed by such principles? And how could we 
ever use it, once we had learned it, in the way we do use the languages 
we speak. if that weren’t the case? When someone learns a language, he 
learns its vocabulary – the words and their meanings – and its grammar 
– the rules that enable him to produce grammatical sentences which 
express what he wants to say, and to interpret the sentences that reach 
him from others. It is by applying the rules to the words that speakers 
can arrive at the sentences that correctly express their thoughts and 
interpreters recover the thoughts those sentences express; and this is 
surely the only way in which we can produce and understand sentences 
that we have never seen or heard before.  

                                     
3  This was so especially in mathematics, where in the course of the second half of 
the 19-th century paradoxes had been discovered that not only provoked a crisis in 
the foundations of mathematics itself but shook confidence in the trustworthiness of 
analytical method in all realms of thought. The imprecisions and ambiguities of 
natural language, as it was used in mathematics and science, were held at least in part 
responsible for this crisis, and it was hoped that formal languages would provide the 
badly needed sanitation. 
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These considerations are by now so obvious and familiar that it is 
difficult to imagine a situation in which the weren’t obvious to 
everyone. But that was the situation at the time when Montague 
initiated the discipline which we now know as the “Formal Semantics of 
Natural Language”. (The more specific form in which he pursued the 
aims of formal semantics is also known as “Montague Grammar”.)  The 
reason why Montague’s work is so exceptionally important is that it 
went against the prejudices of his time and that it was done so well that 
many who thought that natural languages could not be analysed in 
rigorous terms became persuaded that they could. 
 
Montague was convinced that the meanings of English sentences could 
be computed from the meanings of their words on the basis of syntactic 
composition rules that were close to those that had been assumed by 
traditional grammar. And while it is true that some of the syntactic 
rules he adopted were motivated by the need to make the semantics 
work smoothly, he managed by and large to stick to this guiding 
principle. But most importantly, the syntactico-semantic treatments of 
fragments of English he formulated conform to the Principle of Strict 
Compositionality – the principle that for each syntactic rule that can be 
used to form complex expressions out of smaller constituents there is a 
corresponding semantic composition rule, which forms the meaning of 
the complex expression out of the meanings of those constituents. The 
Principle of Strict Compositionality is one of the central methodological  
assumptions in Montague Grammar. As we will briefly see below, and 
much more extensively in the second part of this Syllabus, the Principle 
has to be modified in certain ways if certain phenomena are to be 
covered that Montague Grammar is not able to handle. But even if the 
approach we will study in Part II, which is designed to deal with those 
phenomena, does not adhere to the Principle in its strictest form, the 
Principle continues to function, there and elsewhere within Formal 
Semantics, as a kind of informal standard or ideal.)  
 
One important ingredient to the success that Montague’s work had in 
persuading the community that a systematic formal semantics of 
natural language is possible after all, was his treatment of non-
extensional constructions. In particular, he offered treatments of those 
constructions that had had much (if mostly negative) attention from 
logicians and philosophers at the time, those involving propositional 
attitude verbs - verbs like believe, want, intend and the like – and verbs 
like seek, be looking for or imagine, whose direct objects often describe 
the kinds of things that the subject is said to seek, look for or imagine. 
Here are a couple of illustrations: 
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(1) a. Fred believes that Mary is in Paris. 
 b. Fred believes that your cousin is in Paris. 
 c. Fred believes that Eva is in Berlin. 
 
(2) a. Mary is looking for a secretary. 
 b. Mary is looking for her secretary. 
 c. Mary is looking for your cousin. 
 d. There is a secretary Mary is looking for. 
 
The first point of the examples in (1) is that the second argument of an 
attitude verb like believe – which in (1.a) is given by the that-clause 
that Mary is in Paris - is something like a sentence – an expression that, 
in the extensional semantics that has come down to us from Frege, is 
treated as “denoting a truth value”, where the truth values are “True” 
and “False” (or, as we will assume following the usual convention, 1 and 
0, for “True” and “False”, respectively).  However, it cannot be that the 
that-clauses in (1.a-c) do no more than contribute their Fregean 
denotations (i.e. their truth values) to the denotations (i.e. truth values) 
of the sentences (1.a-c) which contain them as constituents. For 
suppose that Mary is your cousin, that she is in Paris and the Eva is in 
Berlin. Then all three that-clauses are true. If the truth values of the 
sentences (1.a-c) were determined just by the denotations of their 
constituents, then we could conclude from this that they too must all 
have the same truth value. (For apart from their that-clauses the 
constituents of those sentences – the name Fred and the verb believe – 
are identical. So these constituents will contribute to the truth values of 
the sentences (1.a-c) in precisely the same way.) But this conclusion is 
clearly absurd. Even if the that-clauses of (1.a-c) are all true, the truth 
values of the sentences themselves may obviously vary. Fred may 
believe that Mary is in Paris, yet refuse to accept the that-clause of (1.b) 
because he doesn’t know that Mary is your cousin, and has no opinion 
of any kind about the whereabouts of your cousin, who he assumes he 
doesn’t know. And he may refuse to believe that Eva is in Berlin, 
because he has no opinion about Eva’s whereabouts either, even though 
that is just as true as that Mary is in Paris.  
 
What this somewhat tiresome argument shows is something we all 
know: what determines the truth value of a sentence like those in (1) is 
not the truth value of its that-clause but what that that-clause says. It is 
the content of the that-clause that matters to belief, and not whether 
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that content happens to be actually true or false.4 This implies, 
however, that an adequate semantics for sentences with the verb 
believe must have a way of dealing with propositional content. And that 
is something that classical logic doesn’t do and for which we need an 
intensional logic like HOIL.  
 
The sentences in (2) are non-extensional in a slightly different way than 
those in (1). In (2) it is the NP governed by the preposition for that 
contributes (or at least can contribute) more than its ordinary 
denotation. In extensional semantics the denotation of an NP is the 
object that the NP refers to (if the NP is a referential NP, e.g. a name or 
a definite description), and the value(s) of the bound variable 
corresponding to the NP, in case the NP is quantificational. Thus the NP 
her secretary in (2.b) denotes the person who is Mary’s secretary and 
the NP your cousin in (2.c) denotes your cousin. And the denotation of 
the indefinite NP a secretary in (2.d) is a value for the variable, ranging 
over secretaries, that is introduced by this existentially quantifying NP. 
 
If we look just at (2.b-d), we could get the impression that look for 
semantically behaves just like an ordinary transitive verb, which 
expresses a 2-place relation between individuals. In (2.b) and (2.c) it 
expresses a relation between Mary on the one hand and her secretary, 
or your cousin, on the other; and the natural reading of (2.d) is that 
there is some secretary x such that Mary stands in the look-for-relation 
to x. But when we turn to (2.a) we see that such an analysis cannot be 
right in general. What (2.a) is most naturally taken to express is that 
Mary is looking for someone who fulfils her criteria for a (good) 
secretary. Presumably she doesn’t have any one particular person in 
mind from the start, she is just looking of suitable candidates. On this 
reading of (2.a) the object NP a secretary contributes to the truth value 
of the sentence something like the concept of being a secretary, and not 
some particular individual that instantiates the concept. 
 
To deal with such “concept-oriented” interpretations of look for we 
again need to go beyond classical logic; and here too HOIL provides a 
framework that can provide a far better analysis of the non-
extensionality involved than is possible with the inadequate means that 
are provided by extensional logics.  
 
Note by the way that non-extensional aspects not only affect (2.a), but 
also sentences like (2.b) and (2.c). This time, let us assume that your 
                                     
4  Instead of the content of a sentence or clause one also speaks of its 
propositional content or of the proposition expressed; we will use these terms 
interchangeably. 
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cousin is as a matter of fact the same person as Mary’s secretary, so that 
the NPs her secretary and your cousin have the same denotation. Even 
so the sentences (2.b,c) may differ in truth value. (Or more accurately, 
they allow readings on which their truth values may be different.) Mary 
may be looking for your cousin, because you, who do not know any 
more than she does that your cousin is her secretary, have told her that 
she should meet your cousin, since the two of them would (you said) 
get on famously with each other.  In that case (2.c) would be true and 
(2.b) false. The converse possibilty – (2.b) true and (2.c) false – could 
easily arise as well.5 
 
We will return at length to the examples in (1) and (2) in the second 
half of Part I, in which we will present a couple of explicit syntactico-
semantic treatments of fragments of German that will be close in spirit 
to the work of Montague and that will serve as illustrations of the 
methods of Montague Grammar.  
 
 
     Part II. 
 
The spirit of Montague’s work has been the main guiding force in 
Formal Semantics of Natural Language from his days to our own. But 
nevertheless it became increasingly clear as time went on that natural 
languages cannot be analysed in quite the way he had proposed.  There 
are, formal semanticists came to realise more and more, bigger 
differences between natural languages and the languages of formal 
logic than Montague had allowed for. (So, as far as these discrepancies 
are is concerned, the sceptics from Montague´s own days have been 
proved right to a certain extent, but only in the sense that formal 
semantics of natural language is different from and more complicated 
than what Montague’s own work suggests, not in the sense that formal 
semantics is fundamentally impossible.) Perhaps the most dramatic 
departure from the architecture of Montague Grammar to date is found 
in what has come to be known as Dynamic Semantics  (a term cast in 
the late eighties by the Dutch philosopher-logicians Jeroen Groenendijk 
and Martin Stokhof (Groenendijk & Stokhof, 1989?)n (Groenendijk & 
Stokhof, 1990?)). 
 
The main difference between Dynamic Semantics and classical 
Montague Grammar is that in Dynamic semantics the principal “unit of 
semantic analysis” is not the sentence but the discourse (which 
typically will consist of more than one sentence). Connected with that is 

                                     
5  Exercise 1: Think of a natural scenario in which (2.b) is true and (2.c) false. 
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that the meaning of a sentence is no longer treated as that which 
determines its truth value, but rather as that which enables the 
sentence to make a meaningful contribution to the discourse in which it 
occurs: Sentence meanings are “update potentials” - functions from 
given information packages (given by the antecedent part of the 
discourse) to new, extended information packages, in which the 
contribution of the given sentence has been incorporated. 
 
The version of Dynamic Semantics we will present here is Discourse 
Representation Theory (or “DRT” for short; see (Kamp,1981), (Kamp & 
Reyle, 1993)). There are two connected reasons for doing so.  First, DRT 
is more detailed when it comes to the actual “logical forms” (or 
“semantic representations” of natural language sentences and 
discourses and texts. Second, - and this is a more local and pragmatic 
reason – much of the research in semantics that is going on at the IMS 
of the University of Stuttgart, for which this Syllabus is written, uses 
DRT as general framework (not only in dealing with multi-sentence 
discourse, but also with individual sentences and with the semantics of 
words). Participants in the course in which the Syllabus is used should 
acquire some familiarity with the basic ideas and methods of DRT so 
that it is easier for them to become part of the local research 
community.  
 
Here we give just two examples of the kind of phenomena that have 
motivated the move to Dynamic Semantics. First consider the two 
sentence “discourse” in (3). This discourse is made into a semantic 
whole by the pronoun it in the second sentence, which cn only be 
understood as referring back to the indefinite NP a donkey in the first 
sentence. Because of this anaphoric connection it is only the two 
sentences together that can be described a clear interpretation. 
Together they mean something like “Pedro owns a donkey that is 
unhappy”. We will argue in Part II that there is no real hope of 
analysing a discourse like (3) as the conjunction of two independent 
propositions, one expressed by the first sentence and the other by the 
second sentence. (The argument is not straightforward. But it is 
important and we will devote the attention to it that it needs and 
deserves.)  
 
(3) Pedro has a donkey. It is not happy. 
 
(4) If Pedro has a donkey, it won’t be happy. 
 
That the two sentences of (3) form a single, indivisible semantic unit is 
an example of an extremely general and essential feature of natural 
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language. To account for this feature one must explain how each new 
sentence of a discourse gets interpreted in the context presented by the 
preceding sentences. Such an account must incremental: it must first 
assign an interpretation/meaning to the first sentence of a discourse or 
text, then use this interpretation as context for the interpretation of the 
second sentence. That interpretation must take the form of integrating 
the contribution made by the second sentence into the context 
presented by the first, thus providing a context for the third sentence 
(or the final discourse interpretation, if the second sentence is were the 
discourse ends); and so on.  
 
The phenomenon illustrated in (3) has its repercussions within single 
sentences like, for instance, (4). The difficulty represented by the 
anaphoric connection between the pronoun it in the consequent of the 
conditional (4) and the indefinite NP a donkey in the antecedent of the 
conditional that is the only NP we can construe as it ‘s anaphoric 
antecedent is not quite the same as that presented by the anaphoric 
connection in (3). This time the problem is not that the anaphoric 
relationship forges two sentences into a single semantic whole, but 
rather that the usual canon for translating natural language sentences 
into logical forms breaks down unexpectedly. One of the fist rules for 
translating natural language into predicate logic is that indefinite NPs 
should be translated as existential quantifiers. When we apply this rule 
to (4) the version that suggests itself most strongly is that in which the 
existential quantifier introduced by a donkey is given narrow scope, 
restricted to the antecedent of the conditional, as in (5.i). But of course 
this won’t do, as the occurrence of x in the consequent of this formula t 
bound. (It can’t be bound by the quantifier (∃x), since its scope is 
restricted to the conditional’s antecedent.) Perhaps, it might be 
suggested in response to this, this is a case where the quantifier should 
be given wide scope, as a way to accommodate the need for the last 
occurrence of y to be bound as well. This would lead to the logical form 
on (5.ii). Now all occurrences of x are bound, but the truth conditions 
that (5.ii) assigns to (4) ar all wrong. (Note that (5.ii) is true as long as 
there is any thing that isn’t both a donkey and owned by Pedro. Even 
Pedro himself presumable satisfies this condition.) 
 
There is a predicate logical formula that does capture the truth 
conditions correctly (or close enough to correctly to satisfy us on this 
score.) This is (5.iii), in which a donkey has given rise to a universal 
quantifier with wide scope. The problem with this logical form is that it 
is hard to see how it could be generated from (4) by principles that 
aren’t completely ad hoc.  
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(5) i. (∃x)(donkey(x) & own(p,x)) → ¬happy(x) 
 ii. (∃x)(donkey(x) & own(p,x) → ¬happy(x)) 
 iii. (∀x)(donkey(x) & own(p,x) → ¬happy(x)) 
 
  
In Part II we will look closely the incremental dimension of meaning 
and interpretation and the ways in which DRT deals with it. This will, 
we will see, also give us a natural way of explaining the semantics of 
(4). 
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Part I: Intensionality in Formal Semantics. 
 

 
I.1  Modal Logic, Tense logic and Intensional Logic. 

 
As noted in the introduction, the tool we will need for the analysis of 
intensional constructions of natural language that we will present in the 
second half of Part I is Montague’s Higher order Intensional Logic. But 
as we also noted there, the central idea behind the treatment of 
intensionality in HOIL is one that comes from Modal Logic. Modal Logic 
is also of importance for Semantics in its own right. And moreover, it 
plays an important role in other parts of computational linguistics and 
of computer science more generally. This, and also the fact that Modal 
Logic is also simpler than HOIL are reasons for presenting it separately, 
partly as a preliminary to HOIL, but also for its own sake.  
 
 

I.1.1  Modal Logic. 
 
The central subject matter of Modal Logic are the notions of necessity 
and possibility.  To study the logic of these notions we must look at the 
ways in which they interact with other logical notions. In this respect 
the modal notions are no different from those of quantification theory. 
There are some aspects of the logic of quantifiers that can be 
discovered by studying just them. But by and large, the logical 
properties of quantifiers reveal themselves only in their interactions 
with other logical notions, in particular the familiar sentence 
connectives not, and, or and if ... then. It is these interactions that are 
studied in predicate logic as we know it today. It shouldn’t be taken for 
granted that these interactions – between the quantifiers and the 
sentence connectives are all that there is to say about the quantifiers; 
interactions with other notions might be important as well. But on the 
whole these interactions have proved to be especially important, and 
the immense usefulness of the predicate calculus as we have it today, 
which makes these interactions explicit, is a testimony to that.  
 
The simplest systems of modal logic that have been used to study the 
logic of necessity and possibility embody the same choice as standard 
quantification theory: Look first at the interactions between these 
notions and the truth-functional connectives. Such a system is obtained 
by taking classical propositional logic and adding necessity and 
possibility to it in the form of two 1-place sentence connectives, 
(functioning syntactically just like the negation operator ¬). The most 
commonly used symbols for these connectives are  for “it is necessary 
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that” and ◊ for “it is possible that”. These are the ones we will use too. 
Such a system is specified in Def. 1. 
 
Def. 1  (Syntax of Standard Propositional Modal Logic)   
 
 1. Vocabulary:  
 
  i. Propositional constants: q1, q2, q3, ... 
  ii. Connectives: ¬, &, v, →, ↔ 
  iii. Modal operators: , ◊. 
  iv. Parentheses:  (, ) 
 
We define the formulas of Propositional Modal Logic in Backus-Naur 
form: 
 
 2. Formulas 
 
  Form ::=   qi | ¬ Form | (Form & Form) | (Form v Form) |  
         (Form → Form) | (Form ↔ Form) |  Form | ◊ Form 
 
Modal Propositional Logic allows us to study the logical properties of 
possibility and necessity along the same lines as that is done in formal 
logic generally: The logic of  and ◊, in their interaction with the truth 
functional connectives ¬, &, v, →, ↔, is revealed by logical validity and 
logical consequence, i.e. by which formulas of the system are logically 
valid and which formulas follow logically from which others.  
 
Nowadays the central method for investigating these questions is that 
of model-theoretic semantics: One defines a class of models for the 
given formal system and then defines: 
 
(i) the logically valid formulas as those formulas that are true in all 
 models;  and  
 
(ii) the relation of logical consequence as the semantic relation which  
 holds between a premise set Γ  and a putative conclusion A iff A is  
 true in every model in which all the formulas of Γ are true.  
 
The model-theoretic method, however, is a comparativels recent 
development in formal logic.  This is also true for non-modal logic, both 
propositional logic and, especially, predicate logic. For instance, Frege, 
in his Begriffsschrift from 1879, characterised logical validity and 
logical consequence for predicate logic in the form of inference rules. 
Ot wasn’t until 1929, when Gödel gave a precise semantic 
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characterisation of validity and logical consequence for first order 
predicate logic. And it was only through the work of Tarski (1903-
1982?) after the World War II that validity and logical consequence 
were given the model-theoretic definitions that have since become the 
standard.   
 
On this respect the history of Modal Logic resembles that of 
Quantification Theory. Modal Logic (which, by the way, has, like non-
modal logic, its roots in the work of Aristotle and his contemporaries), 
was cast in a formally precise form in the second decade of the 20-th 
century. maimly through the work of C.I. Lewis (1883-1964).  Lewis 
studied systems of modal propositional logic in much the same way 
that systems of non-modal logic had been studied for several decades 
previously, defining the syntax of systems of modal logic essentially as 
we just did in Def. 1. He then set about to characterise logical validity of 
formulas and arguments by the method which was the only one that 
was known at the time: Lay down a number of intuitively valid axioms 
and/or inference rules and then define validity as follows.  
 
(i)   an argument < Γ,A>, with premise set Γ and conclusion A, is valid  
 iff there is a proof of A from Γ using the given axioms and rules;  
and  
 
(ii)   a formila A iss valied if there is a proof of A from the empty  
 premise set ∅. 
 
 
In the case of modal logic, however, this approach proved to be much 
more problematic than it is for non-modal logic (propositional or 
quantificational). Even in the case of non-modal logic the method isn’t 
without pitfalls. For instance, some of Frege’s inference principles were 
challenged at the time and later, and some debates over what is to 
count as valid continue to this day.6 But the disputes surrounding 
proof-theoretic characterisations of validity in non-modal propositional 
and predicate logic are nothing when compared to those that have 
surrounded Lewis’ axiomatic characterisations of the logical properties 
of necessity and possibility. This is indicated by the quite bewildering 
variety of different axiomatisations that Lewis himself came up with. 
Most of these axiomatisations impose different logics on these notions; 
they single out different sets of formulas and different arguments  

                                     
6  For instance, there are those who advocate a constructive conception of valid 
proof in mathematics and who have challenged the principles in his system that are 
responsible for the general validity of formulas of the form A v ¬A. 
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<Γ,A> as “valid”.  But neither Lewis himself nor his comtemporaries 
were able to decide which of those axiomatisations captures the logic of 
necessity and possibility correctly.  
 
There could be two reasons for this quandary that Lewis found himself 
in: either (i) there are different notions of possibility and necessity that 
play a role in our use of these notions and our intuitions of what is 
valid and what is not waver between these alternatives; or (ii) our 
understanding of modal notions is simply not precise enough to enable 
us to choose between the options Lewis offers. We will see below that it 
is not easy to determine whether it is (i) or (ii) that is responsible for 
the difficulty that people have in choosing between Lewis’s options, and 
that presumably both play a role.  But before we can address the matter 
we should present at least a small selection from the axiomatic 
characterisations that Lewis proposed. The choice we have made is 
motivated on the one hand by the model theory for the system of Def, 1 
that we will present following our presentation of these Lewis 
axiomatisations, and on the other by the prominence that these systems 
have gained in current work on Modal Logic.  
  
Def. 2  (Some Axiom Systems for Standard Propositional Modal Logic)
  
 1.  The system K: 
 
 i.  A complete axiomatization of classical propositional logic with  
     Modus Ponens as only inference rule.   
 
  Modus Ponens:  A,  A → B 
        _____________   (M.P.) 
            B 
 
 (N.B. the axioms specified by these two schemata include all  
 substitutions involving formulas of modal logic for schematic  
 letters in the chosen axiom schemata.  For instance, if one of the  
 axioms is A → (B →  A), then among its instantiations are not only,  
 say, ¬q1 → ((q1 → ¬q2) →  ¬q1), but also formulas like  
 ¬ q1 → (◊(q1 → ¬q2) →  ¬ q1. This remark also applies to the  
 schemata mentioned below.) 
 
 ii.  The axiom schemata:  
 
     (A → B) →  (A → B)   (Distr.) 
     ◊ A  ↔ ¬ ¬ A     (Dual) 
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 iii.  The inference rule of Necessitation: 
 
          |-  A 
    ___________     (Nec) 
          |-   A 
 
 
 2.  The system T: 
 
 The system K, together with the axiom schema: 
 
       A → A        (T) 
 
 3.  The system S4: 
 
 The system T, together with the axiom schema: 
 
        A →   A       (S4) 
 
 4.  The system S5: 
 
 The system S4, together with the axiom schema: 
 
     ¬  A →   ¬  A      (S5) 
 
 
For each of these axiom systems a proof of a formula A from a premise 
set Γ is any finite sequence C1, ... Cn, such that Cn = A and each Ci (i= 1, 
.. n) is either (a) a member of Γ, (b) an instance of one of the axiom 
schemata of the system in question, (c) follows from two earlier lines in 
the proof by M.P. or (d) follows from one earlier line in the proof by the 
rule of Necessitation. 
 
 
Which of these axiom systems correctly captures the logic of necessity 
and possibility?  Or is that logic captured by none of them and do we 
need some other system?  As mentioned above, it is difficult to answer 
this question.  In fact, it is difficult for two different reasons. First, it is 
hard to see just by inspecting any axiom system if it generates proofs 
for all formulas and arguments that we would intuitively consider valid, 
and also that it doesn't generate too much. To find out whether a 
formula can be proved in such a system, or can be proved from some 
given set of premises, is in principle a matter of trial and error. (For 
some axiomatic systems proof search can be formulated as an 
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algorithm, which answers each question “Is A provable from Γ?” after a 
finite number of steps with either a “yes” or a “no”. But establishing 
such algorithmic proof search methods can be quite difficult, and is 
often is.  And even when this has been established and a proof search 
algorithm has been defined, applying the algorithm to particular 
questions of the form “Is A provable from Γ?” can still be quite 
elaborate and time consuming.)  
 
The second reason is the specific difficulty with modal logic that we 
alluded to above. Our intuitions about what the logical properties of 
necessity and possibility really are seem to be so fuzzy that we don't 
even know how to decide for particular formulas of the system of Def. 1 
whether to count them as logically valid (or as following logically from 
certain others), and this even for formulas that are quite simple. So we 
can’t even tell whether we would want them to be provable (or 
provable from given other formulas), quite apart from the question 
whether they can be proved within a given axiomatic system. 
 
The range of axiomatic systems which Lewis bequeathed upon us - 
there are many, many more than the four displayed here – thus 
presents us with a true embarras du choix:  We simply cannot tell which 
one should be selected. Perhaps there are different notions of necessity 
and/or possibility that surreptiously compete in our judgements and 
thus confuse them. In that case there wouldn’t be just one correct 
system of modal logic, but several, each capturing one of those 
competing notions.  But that too is something that we cannot say for 
sure on the basis of Lewis’ proof-theoretic method alone.  
 
In order to make progress with these questions it is natural to try to be 
more articulate about our pretheoretic conceptions of what these terms 
mean, or can mean, and only then to relate this our improved 
understanding to the problem of validity for formulas and arguments 
of the system of Def. 1. It is here that the model-theoretic method 
proves helpful, just as it has helped to sharpen our understanding of 
validity in non-modal logic. It wasn’t until the second half of the 
nineteen fiftes that this approach to modal logic got properly under 
way. It found its first culmination in the work of Saul Kripke (1940 - ), 
(who at the time of his decisive break through was still in high school)7. 
The leading idea behind the model-theoretic approach to modal logic 
on which Kripke and others fastened was a refinement of an idea that 
goes back to Leibniz (1646-1716). According to Leibniz being 
                                     
7  Other important contributors to these early developments of the model theory 
for modal logic were Jaakko Hintikka (1929 -), Stig Kanger (1924-1988) and Richard 
Montague. 
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necessary, or being necessarily true, amounts to being true in all 
possible worlds.  Leibniz believed that the actual world is only one 
among many possible worlds - worlds that could have been if God had 
decided to create them instead of the actual world in which we exist. in 
creating the world that is ours God simply chose one among the set of 
possible worlds and actualised that one.8 
 
We can turn Leibniz' proposal for the meaning of (it is) necessary 
that/necessarily into a formal semantics for the formal system of Def. 1 
by defining the models for that system as follows.   
 
Def. 3   A model for the modal propositional logic of Def. 1 is a  
  pair M = <W, F>, where W is a non-empty set (the set of  
  "possible worlds" of M) and F is an interpretation function. 
  F assigns each propositional constant qi a truth value at 
  each world w from W.  (Thus Fw(qi) is either 0 or 1 for all qi  
  and all w ∈ W.)   
 
For the models M of Def. 3 we can define the truthvalue of a formula A 
of our modal logic in M at any world w, [A]M,w, by the following 
clauses: 
 
Def. 4   (i) [qi]M,w = Fw(qi) 
 
  (ii) [¬A]M,w = 1 iff [A]M,w = 0 
 
  (iii) [A & B]M,w = 1 iff [A]M,w = 1 and [B]M,w = 1, 
   and similarly for the other truthfunctional   
   connectives 
 
  (iv) [A]M,w = 1 iff for all w' ε W, [A]M,w' = 1 
 
  (v) [◊A]M,w = 1 iff for some w' ε W, [A]M,w' = 1 
 
 

                                     
8  Leibniz also thought that God, being supremely rational, supremely 
knowledgeable and supremely good, chose the world that, all things considered, is the 
best possible one. If it does not always look like that to us, this is just because of our 
shortsightedness. (cf. the parody of this idea in Voltaire’s Candide.) This notion, of 
our world being the best of all possible worlds, plays no part in contemporary modal 
logic.  
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One of the basic formal results in modal logic is that the logic generated 
by this "Leibnizian" model theory is captured by the axiomatic system 
S5. That is: for any formula A of the sytem of Def. 1 and any set of 
formulas Γ we have:   
 
 (i) A is true in every model M at every world w of M iff A is  
  provable in S5.   
 
 (ii)  A is true in every model M at every world w of M such that  
  all members of Γ are true in M at w iff A is provable from Γ  
  in S5.9 
 
The formal result that S5 captures the logic of the Leibnizian semantics  
might be regarded as speaking in favour of that system. But how 
conclusive is Leibniz’ idea as an analysis of the concepts of necessity 
and possibility as we use them? Are there perhaps other ways of 
understanding possibility or necessity, which determine other logics 
than S5 and are reflected in other model theories than the one of Def. 
3? In particular, could it be the case that there are other axiomatic 
systems within the multiplicity that Lewis defined and explored that 
capture such alternative conceptions of necessity and possibility? 
 
One way in which we can look for alternatives to the model theory of 
Def. 3 is by asking whether the truth of “It is necessary that A” should 
always involve all possible worlds. Couldn’t it be that at least on some 
occasions where we use “It is necessary that A” (or praphrases thereof) 
it is not all worlds that are envisaged, but only some subset – for 
instance the set of those worlds that are plausible alternatives to the 
actual world from some particular point of view? It is in this direction 
that the logicians of the late fifties and early sixties who were 
concerned with the semantics of modal logic, refines the Leibnizian 
analysis of necessity and possibility that is represented by the model 
theory of Definitions 3 and 4.  
 
There are various ways in which the idea that not all possible worlds 
are always relevant to the evaluation of a necessity or possibility claim, 
and that the question which worlds are relevant may depend on context 
or point of view, can be made more precise. The way chosen by Kripke 
and others in the fifties and sixties is still fairly non-committal, at least 

                                     
9  Neither this result nor the other formal results about modal logic we mention 
below will be proved here.  Proofs of these results can be found in many introductory 
textbooks to modal logic. Useful and reliable for such questions is  G. Hughes and M. 
Cresswell:  A New Introduction to Modal Logic. Routledge, 1996 
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for a start.  It simply assumes a relation R of accessibility between 
possible worlds – wRw’ means that w’ is among the worlds relevant 
(from the point of view represented by w) for the evaluation of modal 
statements at w. This leads to the following modification of the 
Leibnizian model theory of Definitions 3 and 4. Models are now triples  
of the form <W, R, F>, where W and F are as in Def. 3 and R is the 
acccessibility relation. And the clauses (iv) and (v) of Def. 4 are now 
replaced by clauses that make the truth values of formulas  A and ◊ A 
dependent on R.  
 
Def. 5  1. (Models for the system of Def. 1) 
 
  A model for the system of Def. 1 is a triple M = <W, R, F>,  
  where W and F are as in Def. 3 and R, the so-called  
  accessibility relation, is a binary relation between worlds in  
  W (i.e. R ⊆ W ⊗ W).   
 
  (N.B. models of this form are now generally referred to as  
  Kripke models.)  
 
 2.  (Truth definition for the modal system of Def. 3 for Kripke  
      models) 
 
 Clauses (i)- (iii) of Def. 4 together with: 
 
 (iv')  [A]M,w = 1 iff for all w' ε W such that wRw', [A]M,w' = 1. 
 (v')   [◊A]M,w = 1 iff for some w' ε W such that wRw', [A]M,w' = 1. 
 
 
But what logic is generated by this semantics?  That depends on what 
properties that we attribute to the relation R? And to determone what 
those proerties should be proves to be quite hard – often, one feels, it is 
just as hard as making up whether a given formula should be regarded 
as valid. The following discussion should make this difficulty visible. 
We start with a comparatively uncontroversial property, viz. reflexivity. 
If we assume that, as a matter if general principle, R is reflexive, i.e. that 
(6) holds, then all instances of the schema in (7) will come out as valid. 
 
(6) for all models M = <W,R,F> and all worlds w ∈ WM, wRw. 
 
(7)   A → A  
 
In fact, the following stronger result can be proved: 
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(8) (i)  A formula A of the system defined in Def. 3 is provable  
  (from the empty set of premises) in the axiomatic system T  
  defined above iff [A]M,w = 1 for all models satisfying (6)  
  and all w ∈ WM.  
 
 (ii)  A formula A of the system defined in Def. 3 is provable  
  from the set of premises Γ in T iff [A]M,w = 1 for all models  
  M satisfying (6) and all w ∈ WM such that [C]M,w = 1 for all  
  C ∈ Γ. 
 
(N.B. Clearly (ii) includes (i) as the special case in which Γ = ∅. 
Conversely, for each statement about validity of the kind exemplified in 
(i) there is a generalisation about derivability from some arbitrary 
given premise set Γ. Below I will only mention statements about validity 
that are like (i); but in all these cases the corresponding generalisation 
in the sense of (ii) will hold as well.) 
 
Should we adopt the general principle that the alternative relation R is 
reflexive? The assumption seems compelling: Surely the world w in 
which a statement of the form A is claimed and/or evaluated as true 
or false should itself be among those that count among the possible 
worlds that are relevant to the question whether A is true in w. If A 
isn’t even true in the world in which this question is asked, how could it 
be necessarily true? Necessary truth surely entails, or presupposes, 
actual truth.  
 
This sounds quite persuasive. If we are persuaded by it and adopt the 
reflexicity of R as a matter if general principle, then, as (8) tells us, the 
schema  A → A is adopted as a logically valid statement form.  But do 
we really need the route via the new model theory, involving the 
accessibility relation R and its structural properties, to arrive at this 
conclusion? Can’t we argue for the logical validity of  A → A simply by 
observing that necessary truth must entail actual truth? It very much 
looks like that, for the two considerations are virtually identical.  
 
So much for the reflexivity of R and the validity of the distinctive axiom 
schema of T. But how do things stand with the axiom schemata that are 
characteristic for the other two Lewis systems we mentioned above, S4 
and S5?  
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Let us, before addressing the conceptual issues that these schemata 
involve, first state the formal results about S4 and S5 that parallel 
result (8) for the schema  A → A.10 
 
(9) A formula A of the system defined in Def. 3 is provable (from the  
 empty set of premises) in the axiomatic system S4 iff [A]M,w = 1  
 for all models M in which R is a transitive relation and all w ∈  
 WM.  
 
(10) A formula A of the system defined in Def. 3 is provable (from the  
 empty set of premises) in the axiomatic system S5 iff [A]M,w = 1  
 for all models M in which R is an equivalence relation and all w ∈  
 WM.  
 
Exercise 2:  1. Show that all instances of  A →   A are true in all  
   transitive models at all worlds of those models. 
 
  2. Show that all instances of  A → A,  A →   A and  
   ¬ A →  ¬ A are true at all worlds of all models  
   <W,R,F> in which R is an equivalence relation. 
    
(9) tells us - among other things - that the characteristic schema of S4,  
 A →   A, is valid if it is assumed as a matter of general principle 
that R is transitive.  But what reasons could we have for adopting either 
the transitivity principle or the validity of  A →   A?  
 
Can we argue that R must have the property of transitivity?  
 
Here is an attempt to argue for the transitivity of R: What worlds are relevant 
for the evaluation of a given modal statement C at a world w may vary with 
the kind of statement C is, and perhaps also with other aspects of the context 
in which the statement is made. But once these factors have been taken into 
account, the set of worlds that are relevant to the evaluation has thereby been 
fixed: these are the worlds that are the relevant alternatives to w for the given 
evaluation of C and thus the ones that stand, in the model determined by the 
given parameters, in the relation R to w. Since it is just these worlds that are 
relevant, all evaluations of modal parts of C, which are required as part of the 
evaluation of C, are to be evaluated with respect to that set of worlds. This 
means in particular that if a subformula B of C has to be evaluated, as part of 
the evaluation of C, at some other world w’ to which earlier steps in the 
evaluation of C have led, then it should still be the same set of worlds that 

                                     
10  As noted above, both (9) and (10) can be generalised in the same way that (8.i) 
can be generalised to (8.ii). (8), (9) and (10) are among the formal results that were 
proved by Kripke in the late fifties. 
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should be taken into account. Put differently, if a world w’’ is relevant (under 
the given conditions) to the evaluation of B at some world w’ in this set, then 
it is again part of the given set of relevant worlds and thus accessible from w: 
a world w’’ that is accessible from a world w’ that is accessible from w must be 
itself accessible from w. Conclusion: R is transitive. 
 
We can also try to argue directly for the validity of  A →   A. Suppose that 
some instance of  A →   A were not true. Then its antecedent  A would be 
true, while its consequent   A would be false. If   A is to be false, then 
there must be the possibility for the statement in the scope of the outer   of  
  A, i.e. for  A, to be false. This is the possibiltiy of there being a possibility 
for A to be false. But isn’t that just saying that there exists a possibility that A 
might be false? And that is just what the truth of the antecedent of  
 A →   A – that is, the truth of  A, would seem to exclude. Conclusion: the 
antecedent of  A →   A cannot be true without its consequent being true as 
well. So  A →   A must be true.  
 
Both of these arguments may seem plausible, but neither need be seen as 
conclusive. The first rests on certain assumptions about the way in which the 
set if relevant worlds is determined by the setting and form of a given 
statement – but why couldn’t it be the case that one part of a given statement 
requires different possibile worlds for its evaluation than some other part? 
And the second argument assumes that what counts as a possibility from some 
possible perspective thereby counts as a possibility from the actual 
perspective from which we must understand the statement as a whole; but 
why, really, should that be so? Assuming that it must be so seems, when we 
think about it, pretty much like begging the very question that is posed by the 
validity of  A →   A.  
 
The first argument involves also an additional difficulty. It argues for more 
than we asked for. For it argues not only for the validity of  
 A →   A, but also for the validity of the characteristic schema of S5, ¬  A 
→  ¬  A. That this is so can be seen as follows. Suppose that w’ is a world 
that is relevant to the evaluation of C at w and that w’’ is a world relevant to 
the evaluation of parts of C at w’, i.e. that w’Rw’’.  Then, according to our 
argument above, w’’ also belongs to the set of worlds relevant to the 
evaluation of C and its parts. So evaluations of parts of C at w’’ will once again 
involve just those worlds that belong to original set of worlds accessible from 
R. Thus w’, which belongs to that set, will be relevant to evaluations at w’’ and 
thus be accessible from  w’’, i.e. w’’Rw’. This shows that T is not only transitive 
but also symmetric and thus, given the already estalbished assumption that R 
is reflexive, that it is an equivalence relation. So in the light of (10) above 
(and also in the light of Exercise 2) it would follow from the argument that the 
system we should adopt isn’t S4, but at the very least S5.  
 
The arguments that have been sketched above are just two among 
many attempts that have been made since the time when Kripke models 
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were first proposed to determine what would be the “true” modal logic 
(or the different true modal logics). They illustrate the difficulties that 
these arguments tend to run into if they start from some pretheoretic 
notions of modality; and that this remains to be so when we have 
semantic as well as the syntactic intuitions that we can draw from. Seen 
in this light the model theory for modal logic we have presented 
doesn’t seem to help all that much.  
 
Nevertheless it is only the development of its model-theoretic semantics 
that has allowed modal logic to become the extraordinarily useful tool 
that it is today. There are two reasons for this, neither of which is 
visible from what we said so far. First, there are many applications of 
modal logic in which the properties of the relation R can be determined 
much more clearly and precisely than seems possible for its original 
application, as the logic of necessity and possibility. Second, the 
analysis of modal notions themselves, such as subjunctive and 
counterfactual conditionals11, has led to other relations between 
possible worlds than the accessibility relation R. This has led to a much 
richer spectrum of semantic analyses of modal notions than the models 
with a single relation R that we have considered so far.  We will see 
examples of both these aspects of modal logic below during our brief 
foray into tense logic. 
 
First, however, something that we need more directly on our way to 
HOIL. So far we have looked at the modal operators only in the context 
of propositional logic, which permits us to study their interactions with 
the truth functional connectives. But what we will need is a logic that 
enables us to analyse modal notions as they apply to actual 
preidcations, involving predicates and terms denoting individuals, and 
in their interaction with operators that bind individual variables, most 
of all the quantifiers. As a first step in this direction we now proceed to 
forumulate a system of modal predicate logic.  
 

                                     
11  Counterfactual conditionals are conditionals that imply the faslity of their 
antecdents. An example is: “ if he hadn’t come, the party wouldn’t have been fun.” 
Subjunctive conditionls leave open whether their antecedent is true with perhaps a 
tendency towards falsehood. Example: “If he would come, it would certainly be more 
fun”. 
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I.1.2  Modal Predicate Logic. 

 
The syntax of the system of modal predicate logic we will consider is 
obtained in the same way as the system of modal propositional logic 
specified in Def. 3. This time we start from a standard system for 
predicate logic and add the modal operators  and ◊ to that. The syntax 
of a system of modal predocate logic of this sort is given in Def. 6.  
 
Def. 6  (Syntax of Standard Modal Predicate Logic)   
 
 1. Vocabulary:  
 
  i. Individual Variables: v1, v2, v3, ... 
  ii. n-place Predicates: Pni, for all n,i ε ω 
  iii. Individual Constants: c1, c2, c3, ... 
  iv. Connectives: ¬, &, v, →, ↔ 
  v. Quantifiers:  ∀, ∃  
  vi. Indentity:   = 
  vii. Modal operators: , ◊ 
  viii. Existence predicate:  E 

ix. Parentheses:  (, ) 
 
 2. Terms 
 
  Term ::=   vi | ci 
 
 3. Formulas 
 
  Form ::= Pni (Term1, ..,Termn) | Term1 =Term2| ¬ Form |  
   (Form & Form) | (Form v Form) | (Form →Form) |  
   (Form ↔ Form) |(∀vi)Form | (∃vi)Form |  Form |     
    ◊ Form  
 
 
There are problems connected with systems of modal predicate logic 
like that defined in Def. 6, which do not arise for systems for modal 
propostional logic. They become evident as soon as we turn to the 
semantics of modal predicate logic. Our models for the propositional 
language of Def. 3 were structures of the form <W,R,F>, with W a set of 
possible worlds, R a relation on W and F a function which assigns a 
truth value to each combination (w, qi), with w ∈ W and a qi 
propositional constant. We can think of the third component of such a 
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model as a function F which associates with each w ∈ W an assignment 
Fw which gives a truth value for each propositional constant.  Such an 
assignment is nothing but an extensional model for propositional logic. 
Thus a model <W,R,F> for modal propositional logic can be seen as 
providing an extensional model Fw for classical propositional logic for 
each w ∈ W. The natural analogue of this notion of a model for the case 
of modal predicate logic would be models of the form <W,R,M> in 
which M is a function that associates with each w ∈ W an extensional 
model Mw for classical predicate logic. With respect to such models we 
can give a truth definition of essentially the same form as that given in 
Def. 5 for modal propositional logic, in which once again the modal 
operators are the only devices for building larger formulas out of 
smaller ones that lead from evluations at one world to evaluations at 
other worlds.  
 
Models of this form were adopted by Kripke and others in the late 
fifties, when a model theory for modal logic was developed, and they 
are the ones that we still use today. This is so in spite of the fact that 
they are infected with the problem alluded to above, and that they are 
still in use is a reflection of the fact that the dificulty is intrinsic to the 
interaction between modality and quantification and arises for any 
plausible model theory for a system like that oif Def. 6.  difficulty 
connected with the that we do neither find with the models for 
propositional modal logic of Def. 3 nor with those of Def. 5.  In 
connection with models <W,R,F> the difficulty manifests itself in the 
relations between the universes of the models Mw. An extensional 
model for predicate logic has the form <U,F>, where U is the universe of 
of the model and F a function that assigns suitable extensions, relative 
to U, to the non-logical constants of the predicate-logical language in 
question: elements of U to individual constants, subsets of U to 1-place 
predicate constants and so on. It seems intuitively plausible that the 
universes Uw of the different extensional models Mw that are involved 
in a given model M = <W,R,M> will in general not be the same. I, for 
example, exist in the actual world, but surely there are countless other 
possible worlds in which I do not exist; and there seems no reason why 
worlds in which I do exist and worlds in which I don’t should’t occur as 
members of the world set W of a single model M. 
 
However, if we allow for this possibility – that different extensional 
models Mw belonging to the same model M may have distinct universes 
Uw – then trouble brews. The problem that comes with different 
universes for different possible worlds is known in the philosophical 
literature as the problem of "quantifying in".  It confronts us when a 
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modal operator is applied to a formula which contains free occurrences 
of variables which are then subsequently bound outside the scope of 
the operator. Consider for instance the formula 
 
(11) (∃x)(Q(x,c) &  ◊¬Q(x,c)) & (¬(∃x)Q(x,c) → P(c)) 
 
(11) says (a) that there exists an object u that stands in the relation Q 
to the individual c but of which it is possible that it would not have 
stood in that relation to c; and (b) that it is necessarily the case that if 
there hadn't been anything/one standing in the relation Q to c, then c 
would have had the property P.  (For concreteness, suppose that c is a 
dachshund, that Q is the relation that holds between two persons or 
animals if they are playmates and P is the property of being bored.  
Then (11) says that c has a playmate but that the two might not have 
been playmates, and, further, that necessarily, if c didn't have any 
playmates, she would be bored.)  The question that this and similar 
formulas provoke is: Which possible worlds are brought into play by 
the modal operators that the formula contains?   
 
Suppose we want to evaliuate (11) in a given model M = <W,R,M> at 
some world w in W. How does this evaluation work? In order for (11) to 
be true in M at w both its conjuncts must be true in M at w, so in 
particular its first conjunct.  That is the case provided there is some 
individual x, presumably belonging to the universe Uw, so that u 
satisfies the formula Q(x,c) &  ◊ ¬Q(x,c) in M at w.  This means (i) that  
u and the denotation of c stand in the relation Q in M at w - this is 
decided by the model Mw in the usual manner – and (ii) that ◊¬Q(x,c) is 
satisfied by u in M at w.  It is this second requirement that is potentially 
problematic. The difficulty is that there may be many worlds in W in 
which either u or c or both do not exist. And we can have no a priori 
grounds for assuming that not some such worlds w’ are accessiblre from 
w, i.e. that wRw’. According to the semantics for ◊ that we have adopted 
in our discussion of modal propositional logic ◊¬Q(x,c) is true in M at w 
(with u as value for x) iff there is some world w’ such that wRw’ and 
¬Q(x,c) is true M at w’ (with u as value for x). But what if w’ is a world 
in which u doesn’t exist (i.e. u is not a member of Uw)? Presumably in 
such a world the relation Q doesn’t hold between u and c – if u doesn’t 
even exist in w’, how could it be a playmate of c in w’ (even assuming 
that c does exist in w’) Surely you can’t have non-existent individuals 
for playmates!  
 
Such a world w’ would, you might say, verify ◊¬Q(x,c) at w on the 
cheap. It would be a world in which  ¬Q(x,c) is true, but intuitively it is 
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not the kind of world we want for the verification of ◊¬Q(x,c) at w.  
What we want for a proper verification is an accessible world w’ from w 
in which u and c do both exist,  but in which they nevertheless are not 
playmates. 
 
Much the same point can be made in connection with the second 
conjunct of (11), (¬(∃x)Q(x,c) → P(c)).  For this conjunct to be true in 
M at w it must be the case at all worlds w’ that are accessible from w 
that if ¬(∃x)Q(x,c) is true in M at w’ then so is P(c). This time the 
problematic worlds are accessible worlds w’ in which c does not exist. 
By the same reasoning as above, we may assume that there is no 
playmate of c in such a world w’. For how could anything – be it man or 
beast - be the playmate of something non-existent? So ¬(∃x)Q(x,c) 
should be true in M at such a w’. On the other hand P(c) would 
presumably be false at w’. For how can you be bored if you don’t even 
exist.12 An accessible world w’ in which c doesn’t exist would thus 
falsify the claim (¬(∃x)Q(x,c) → P(c)) at w. But in this case it would 
seem thatthe claim is falsified for the wrong reason. What 
 (¬(∃x)Q(x,c) → P(c)) seems to claim intuitively is that our dachshund 
c is bored in all relevant possible worlds in which c exists and is 
nevertheless without playmates. 
 
The general moral is thus that when we evaluate modal claims about 
existing inviduals we should look only at possible worlds in which these 
individuals also exist.13 But how can we guarantee that only such worlds 
are brought into play for the evaluation of a modal formula at some 
world w? Note that it cannot be right to restrict R to the point that the 
problem of accessible worlds with problematic existence failures doesn’t 
arise any more. For instance, it might be that among the worlds that are 
intuitively accessible from the world w there are some in which the 
individual denoted by c exists but that denoted by some other constant 
c’ does not. Such worlds should be relevant to evaluation at w of a 
claim like ◊P(c), while not relevant to evaluation at w of, say, ◊P(c’); on 
the other hand there might be intuitively accessible worlds where c’ 
exists but c does not. Those worlds could be relevant to the evaluation 
of ◊P(c’), but would not be relevant to the evaluation of ◊P(c). If we 
restrict R in such a way that we exclude worlds of both these kinds, 

                                     
12  Non-existence may seem rather boring to us; but that doesn’t justify the 
assumption that it would be boring to the non-existent. That assumption just doesn’t 
make sense. 
13  If there are any modal claims for which this is not so, then they must be of a 
rather “philisophical”, speculative sort. We will leave such claims, if any there be, to 
the metaphysicians. 
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then we might throw away both the worlds we need for an intuitvely 
correct evaluation of ◊P(c) and the ones we need for a correct 
evaluation of ◊P(c’). 
 
One way out of this difficulty is to make use of an existence predicate E, 
whose extension in each model Mw of a model M is the set of things 
existing in w, and to “restrict” both quantifiers and modal operators to 
E by adding atomic formulas involving E in the scopes of quantifiers 
and operators. This procedure will for instance turn (11), the formula 
we used as formalisation of our modal claim about the dachshund c, 
into the formula in (12).  
 
(12) (∃x)(E(x) & Q(x,c) &  ◊(E(x) & E(c) & ¬Q(x,c))) &  

 ((E(c) & ¬(∃x)(E(x) & Q(x,c))) → P(c)) 
 
With (12) the problems we ran into in connection with (11) no longer 
arise; all evaluations of predications at w or worlds accessible from w 
that arise in the evaluation of (12) at w now take place in worlds in 
which the arguments of the predications exist (in the sense of satisfying 
E); and that, we saw above, is just the way that things should be.    
 
It might be objected that this solution is not optimal in that it still 
leaves many formulas of the system of modal predicate logic of Def. 7 
with evaluations that are often counterintuitive in that they involve 
predications of non-existants. For instance nothing has changed as  
regards (11). That of course is true. But that need not be too much of a 
problem so long as we restrict our use of the formalism to formulas like 
(12), in which the E-predications make sure that no ecaluations of other 
predications will ever involve non-existent arguments.  
 
If it is only the “E-protected” formulas whose semantics is of direct 
interest to us, we need not be too concerned about what our model 
theory does to the others.  In particular, there is less now that hangs on 
how we define the ranges of the quantifiers ∃ and ∀: So long as the 
range of a quantifier evaluated at w includes the things existing at w, 
the evaluation of any E-protected formula (∃x)A or (∀x)A at w will come 
out the same irrespective of what else may be included in its range. So 
we have a certain freedom here. 
 
One of the options that are compatible with the requirement that the 
range of a quantifier at w include all entities that exist at w is to take 
the range to exist just of the things existing at w. A second option, 
which is common in the literature and which we will again encounter 
below when we get to HOIL, is as follows. One assumes that each model 
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M comes with a fixed set U of “possible individuals” or “possibilia”, and 
treats the quantifiers as ranging over this same set at each world. 
However, in each world w normally only some of the possibilia in U will 
exist. These are the elements of U that belong to the extension of E at w.  
 
The simplest way to formalise this idea is to make the set U into the 
universe of each model Mw of M and let E carve out at each world w the 
set of entities existing at w as its extension at w. This is the solution we 
adopt here. It leads us to the following notion of a model for modal 
predcate logic. Our models are quadruples M = <W, R, U, F>, where W 
and R are as before, U is the set of possibilia of M and F is a function 
which assigns at every w ∈ W an interpretation, relative to U, to each 
non-logical constant from the vocabulary in Def. 6. These models are 
given in Def. 7. All that we need by way of motivation for them has 
been said, but there remains one point that should perhaps be stressed. 
In classical logic we assume that all models have non-empty universes. 
That assumption isn’t strictly forced upon us, but it makes the logic 
simpler – it gives us classical logic as we know it – and for that reason it 
has by now become the standard. We want to maintain this convention 
here too, so that the non-modal formulas of our modal predicate logic 
retain the classical logic that also results from the standard extensional 
model theory for predicate logic in which universes are always non-
empty. For our models for modal predicate logic this amounts to the 
assumption that at every world w of any model M the set of entities 
existing at w is non-empty. 
 
At last we can proceed to the formal definition of the class of models 
for modal predicate logic. 
 
Def. 7   A model for modal predicate logic is a quadruple  

M = <W, R, U, F>, where  
 
  (i)    W is a non-empty set (the set of "possible worlds" of 
   M);    
  (ii)    R is a 2-place relation on W;  
  (iii)   U is a non-empty set (the set of possibilia of M);   
  (iv)   F is an interpretation function, which assigns to  
   each w ε W suitable extensions at w for all the non- 

logical constants; that is, for each individual  
   constant ci Fw(ci) ∈ U and for each n-place  
   predicate Pni, Fw(Pni) ⊆ Un.  
   The extensions of the special 1-place predicate E  
   are never empty: For all w ε W, Fw(E) ≠ ∅. 
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  If M = <W, R, U, F>, is a model for modal prediate logic, then  

for any w ∈ W we denote as “Mw” the model < U,Fw> for  
classical predicate logic that M specifies for the world w. 

 
In order to define the truth values of formulas of modal predicate logic 
in these models, one need - as always when quantifiers are involved –
assignments of entities to variables. In the case of modal predicate logic 
it isn’t immediately clear how assignments should be defined, and – 
somewhat surprisingly perhaps – much hangs on the precise in which 
we define them. To get a sense of the options between which we have to 
choose, consider first the way in which the models of Def. 7 treat 
individual constants. Def. 7 allows individual constants to vary their 
denotations from world to world; it is possible that Fw(ci) ≠ Fw’(ci). 
From a conceptual point of view this possibility seems reasonable, as we 
find something similar with certain definite descriptions in natural 
language, such as e.g. the president:  As a rule the person who actually 
is the president need not have been the president; i.e. in another 
possible world someone else would have been elected in which case that 
person would be the denotation of the president in that world. If we 
want to use individual constants to represent such descriptions, then 
individual constants too should be allowed to vary their denotations 
between worlds.   
 
But what about assignments to variables?  Should the values they assign 
also be allowed to vary between worlds? In the fifties and sixties this 
question was the subject of intensive debate.  The decision which 
emerged from that debate, and that was to be one of the important 
features of Montague’s HOIL, is now more or less the standard. 
According to this decision assignments to variables do not vary: An 
assignment in a model M assigns each variable a single value (an 
element from the set U of M’s possibilia) which will then count as the  
value of that variable at all the worlds of M. 
 
To appreciate the merits of this decision let us consider once more the 
first conjunct of formula (11): 
 
 (13) (∃x)(Q(x,c) &  ◊ ¬Q(x,c)) 
 
As we saw, the intuitive content of this formula can be informally 
expressed as:  “There is something that stands to c in the relation Q but 
which could very well not have stood to c in this relation”.  The second 
part of this paraphrase apparently says that the very thing which 
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stands to c in the relation Q in the actual world might not have stood in 
that relation to c, i. e. that there is some possible world accessible from 
the actual world in which that very same thing does not stand to c in 
the relation Q.  A notion of assignment which allows assignments to 
specify different values for the same variable at different worlds could 
not do justice to this interpretation of (13).  For it would then be 
possible for the assignment used to evaluate the existential quantifier 
(∃x) in (13) to assign one value to the variable x in the actual world and 
another values to x in some possible world in which Q(x,c) is false. Such 
an evaluation would determine (13) as true, but it would do that for the 
wrong reason, since the individual that fails to satisfy Q(x,c) in the 
possible world wouldn’t be the same as the one that does satisfy Q(x,c) 
in the actual world.14 
 
The notion of assignment for which we have argued is given in Def. 8. 
The notion is used in the truth defintion Def. 9. 
 
Def. 8   Let M = <W, R, U, F> be a model for modal predicate logic.   
  An assignment in M is a function from the set of variables to 
  elements of U. 
 
Def. 9   Let M = <W, R, U, F> be a model for modal predicate logic  

And let a be an assignment in M.  The value of an expression  
A in M at w under a, [A]M,w,a, is defined as follows: 

 
  A. Terms 
 
  i. [vi]M,w,a = a(vi) 
  ii. [ci]M,w,a = F(w)(ci) 
 

                                     
14  Note that when we focussing on (11) in arguing for the models of Def. 7, we 
assumed implicitly that the constant c in (11) denoted the same individual in the 
different possible worlds we considered. As we have just seen, the models of Def. 7 do 
not guanrantee that individual constants behave this way. We could, however, 
designate certain individual constants for this special role – we could treat them as 
rigid designators, in  the terminology of modal logic: An individual constant c behaves 
as a rigid designator in a model M if Fw(c) = Fw’(c)  for all w, w’ ∈ W. 
There are additional reasons for wanting non-varying variable assignments; but as far 
as I can see, they all turn in some way on the point that is central to this example. The 
full range of reasons for wanting to define assignments the way we do here is quite 
complex and will not be discussed.  Other solutions to the assignment issue in modal 
predicate logic (and more generally to the treatment of variables in modal and 
intensional logic, can be found in David Kaplan’s Doctoral Dissertation Foundations of 
Intensional Logic and in Church’s Logic of Sense and Denotation (Church. ??) 
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  B.  Formulas 
 
  i. [Pni(t1, ..., tn)]M,w,a = 1 iff  

<[t1]M,w,a,..,[tn]M,w,a> ∈ Fw(Pni) 
  ii. [t1 = t2]M,w,a = 1 iff [t1]M,w,a = [t2]M,w,a    
  iii. [¬A]M,w,a = 1 iff [A]M,w,a = 0 
  iv. [A & B]M,w,a = 1 iff [A]M,w,a = 1 and [B]M,w,a = 1 
   and similarly for the other truthfunctional   
   connectives 
  v. [(∀vi)A]M,w,a = 1 iff for all u ε U, [A]M,w,a[u/vi] = 1 

   (and similarly for $) 
vi. [A]M,w,a = 1 iff for all w' ε W such that wRw',  

[A]M,w',a = 1 
  vii. [◊A]M,w,a = 1 iff for some w' ε W such that wRw',  
          [A]M,w',a = 1 
 
As usual, the truth values of sentences, or closed formulas (= formulas 
without free variable occurrences) do not depend on the choice of 
assignment. So for a sentence A we can simply speak of its truth value 
in a model M at a world w, suppressing reference to assignments. Often 
“Sentence A is true in M at w” is denoted as “M,w |= A”. 
 
Validity is defined as for modal propositional logic.  This time we give 
the definition explicitly: 
 
Def. 10   Let A be a sentence of modal predicate logic and Γ a set of  
  such sentences.  Then: 
  
  A follows logically from Γ - in symbols Γ |= A - iff for every  
  model M and every world w from M: 
 
   if for all C ε Γ, M,w |= C, then M,w |= A.   
 
  A is logically valid iff ∅ |= A. 
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Exercises 
 
1. Universal Instantiation in Modal Predicate Logic 
 
One curiosity of the logic generated by the semantics of modal 
predicate logic that is given by Definitions 7 – 10 is that the rule of 
Universal Instantiation (UI) is no longer valid.  (The rule UI says (among 
other things) that for any universal formula (∀x)A and any closed term 
t A[t/x] can be derived from (∀x)A.)  An example where UI fails is the 
inference of (15) from (14): (15) does not follow logically from (14). 
 
(14) (∀x)P(x) →  P(x)) 
(15) P(c) →  P(c) 
 
Construct a model M with a world w such that  
M,w |= (∀x)P(x) →  P(x)), but not M,w |= P(c) →  P(c). 
 
Hint: UI fails because assignments are “rigid”, while individual 
constants are in general not rigid.  
 
For an intuitive counterexample, suppose (contrary to modern 
conviction, medical knowledge and surgical expertise) that the property 
of being male is an essential property of people: that whoever has this 
property has it necessarily.  This claim is expressed by (14) if P is 
interpreted as denoting the property “male”.  So according to our 
assumption (14) is true.  If on the other hand the constant c stands for 
"the president", then the "instance" (15) of (14) need not be true.  It 
won't be true if the president happens to be a man, since the president 
could very well have been a woman. One way to obtain a formal 
counterexample is to define an M and w which reflect this intuition. 
 
2. The Barcan Formulas. 
 
Many of the disputes over the treatment of quantification in modal 
logic during the fifities and sixties focussed on the validity or invalidity 
of the so-called Barcan formulas, which turn on the interaction between 
quantifiers and modal operators.15 There are two Barcan formulas, 
given below in (16) and (17) 
 
(16)   (∀x)  P(x) →   (∀x)P(x) 
(17)   (∀x)P(x) → (∀x)  P(x) 
                                     
15  After the American philosopher Ruth Barcan-Marcus, who was the first to draw 
attention to the importance to these formulas. 
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Show: (i)  On the semantics of Def’s 7 – 10 both (16) and (17) are  
  logically valid. 
 
 (ii) The “E-protected” versions (18) and (19) of (16) and (17)  
  are not logically valid. 
 
(18)  (∀x)(E(x) →  (E(x) → P(x))) →   (∀x)( E(x) → P(x)) 
(19)   (∀x)(E(x) → P(x)) → (∀x)(E(x) →  (E(x) → P(x))) 
 
 (iii) If we drop the assumption from Def. 7 that for all models  

Mw, Mw’ involved in a model M Fw = Fw’, then (16) and (17) 
are not logically valid. 

 
 
3. Protecting E-predications 
 
In the text we looked at one example of how a formula can be 
“protected” from the need to evaluate predications with non-existent 
arguments by adding predications involving the existence predicate E. 
In our example the unprotected formula was (11) and the result of 
introducing the protections was (12). We repeat the two formulas. 
 
(11) (∃x)(Q(x,c) &  ◊¬Q(x,c)) & (¬(∃x)Q(x,c) → P(c)) 
 
(12) (∃x)(E(x) & Q(x,c) &  ◊(E(x) & E(c) & ¬Q(x,c))) &  

 ((E(c) & ¬(∃x)(E(x) & Q(x,c))) → P(c)) 
 

 
From this one example it is not completely clear how protecting E-
predications should be introduced in general; and in fact, it is not 
obvious that there is just one recipe for introducing them that is 
optimal in all cases where we use formulas to represent given 
propositions or sentences from some natural language. But here is one 
recipe, which seems to do what we want for many such applications. It 
can be described as follows: 
 
By the scope of a quantifier of modal operator understand the  formula 
to which the quantifier or operator is applied. For instance, A is the 
scope of the outer universal quantifier (∀x) in the formula (∀x)A and B 
is the scope of  in the formula  B. 
 
The recipe for introducing protecting E-predications is now: 
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Let A be the formula that is to be protected, let B be any subformula of 
A beginning with a quantifier or modal operator (B is either a proper 
subformula of A or A itself) and let C be the scope of the outer 
quantifier or operator of B. Let α1, ... αk be a list of all the individual 
constants occurring in C and all the variables that have free 
occurrences in C. Form the conjunction E(α1) & ... & E(αk). (We refer to 
this conjunction below as “E(α1.. αk)”.) In case B begins with either ∀ or 
, replace C by (E(α1.. αk) → C) and in case B begins with either ∃ or ◊, 
replace C by (E(α1.. αk) & C). 
 
It can be seen that (12) does not strictly conform to this recipe, since 
the conjunct E(c) is missing from the scope of either occurence of the 
quantifier (∃x). A strict application of the recipe to (11) produces the 
formula (20). 
 
(20) (∃x)(E(x) & E(c) & Q(x,c) &  ◊(E(x) & E(c) & ¬Q(x,c))) &  

 ((E(c) & ¬(∃x)(E(x) & E(c) & Q(x,c))) → P(c))  
 
It is easy to verify that the conjunct E(c) in the scope of the second 
occurrence of in (20) is redundant: (20) is logically equivalent to the 
formula we get when we omit this conjunct. (Task: show this!) But this 
is not so for the first new conjunct E(c) in (20). We did not bother to 
invlude this conjunct when discussing (12) since we assumed implicitly 
that c denotes an existing entity in the “acstual” world in which we 
assumed (11) and (12) were being evaluated. but at worlds where the 
denotation of c does not exist the  presence of E(c) as a conjunct in the 
scope of the first quantifier (∃x) clearly makes a difference.  
 
Task:  Apply the recipe described above to introduce E-protections in 
the follolwing formulas: 
 
(i) ◊P(c) & ◊¬P(c))  
(ii)  (P(c) v ¬P(c)) & ◊P(c) & ◊¬P(c)) 
(iii) (∃x)(∃y)(Q(x,y) &  ((∃z)Q(x,z) → (∃z)Q(z,y)) 
(iv)  P(c) →   P(c) 
(v) P(c) →  ◊ P(c) 
 



 37 

 
I.1.3  Tense Logic. 

 
Our discussions of modal propositional logic in Section I.1.1 led us to 
the conclusion that it is very difficult to determine which system gives 
us the “right” modal logic. And that problem, we found, arises not only 
for attempts to characterise validity in proof-theoretic terms along the 
lines pursued by Lewis, but also for semantic characterisations in terms 
of a model theory à la Kripke. When we proceed model-theoretically, 
what logic we get depends on what general properties we are prepared 
to attribute to the accesibility relation R. But what properties we should 
attribute to it seems hard to decide on the basis of our nebulous 
intuitions about necessity and possibility. Hoever, as we remarked 
already, this has not prevented the Kripke Semantics for modal logic 
from becoming immensely useful in a wide and still growing spectrum 
of applications. 
 
The reason for this success is that the applications of modal logic are 
almost without exception outside the domain of the possible and 
necessary as such, and typically enable us to make assumptions about 
the properties of R that are much more solidly grounded than is 
possible on the basis of our poor pretheoretic intuitions about necessity 
and possibility. The one example of such an application outside the 
realm of modality proper we will discuss here is Tense Logic. Just as the 
modal systems we discussed in I.1.1 were developed in order to study 
the properties of the operators  and ◊ which enable us to speak not 
just of what is actually the case but also about what could or would 
have been, so systems of Tense Logic were designed to study temporal 
operators - operators which enable us to speak not just of what is the 
case roght now, but also of what was the case or happened in the past 
and of what be the case, or will happen, in the future.  
 
A further feature that the first systems of Tense Logic we willl look at 
share with the systems of modal logic of the preceding sections is that 
in both cases the concepts at issue are treated as (1-place) propositional 
operators. And in both cases this choice was motivated by the ways in 
which we tend to express these concepts in language.  The modalities 
are typically expressed as sentence adverbs – “possibly”, “necessarily” – 
or as phrases like “It is necessary” or “It is necessarily the case”, which 
require that-complements to become complete sentences, and all of 
these seem to function semantically as operators that turn propositions 
into other propositions. Likewise, it was thought by those who 
developed these systems that the tenses of the verb can be seen as 
operators that turn propositions into others, and that therefore 
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sentence operators were the natural way to formalise them. For 
instance, the past tense can be seen as an operator which turns the 
proposition expressed by a present tense sentence into the proposition 
expressed by the corresponding past tense sentence. For example, it will 
turn the proposition that it is raining into the proposition that it was 
raining.  Analogously the future tense will turn the proposition that it is 
raining into the proposition that it will be raining.   
 
We note already at this point that there are many ways to study the 
“logic of time”, or even to understand what the “logic of time” means 
and that even among the logic-based approaches towards the study of 
time, operator-based tense logics represent just one of several 
possibilities. In fact, it was realised fairly soon that they are not 
particularly useful in the study of time as it is expressed in natural 
languages. We will discuss a number of reasons for this in Part II, in 
which we will adopt a quite different approach. (Some of these systems, 
however, have proved to be of great value in certain areas of computer 
science, in particular for program verfication and the testing needed in 
chip design, but that is of no concern to us here. See also the remarks 
on this in I.1.3.3.) 
 
The simplest of the systems of tense logic we will consider here contain 
1-place “tense operators” P and F, correspondoing to the simple past 
and the simple future tense, respectively. These two operators stand in 
a very different relation to each other, however, than the operators 
 and ◊ of our systems of modal logic.  and ◊ are duals in the same way 
that ∀ and ∃ are duals. This is shown by the “modal law” ◊A ↔ ¬¬A 
(see the axiom system T in Def. 2), which is the exact formal analogue 
of the duality law (∃x)A ↔ ¬(∀x)¬A of classical quantification theory. 
(The similarity of ◊ to the existential and of  to the universal quantifier 
are of course also directly visible in the clauses for ◊ and  in the truth 
definitions for modal logic, e.g. Def. 4.) P and F are not duals in this 
sense. In fact, they can both be seen as being like ◊, as oppopsed to . 
Take P. If q stands for the proposition that it is raining, then Pq will 
stand for the proposition that it was, or has been raining – a 
proposition that is true provided q was true at some time in the past. 
Thus P is like ◊ in that the relation between Pq and q involves, like that 
between ◊q and q, an existential quantifier: Pq is true if there exists 
some time t in the past such that q was true at t just as  ◊q is true if 
there exists an accessible world where q is true. F resembles ◊ in the 
same way that P does.  
 
Connected with this difference is that, unlike ◊ and   P and F cannot be 
defined in terms of each other. The “duality law” ◊A ↔ ¬¬A entails 
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that we could dispense with ◊ without actual loss in expressive power, 
since each occurrence of ◊ can be replaced by the combination ¬¬, 
with as result a formula that is logically equivalent to the original one. 
Moreover, K (the weakest of our modal systems) also verifies the 
reverse duality law A ↔ ¬◊¬A. This means that we could also eliminate 
 while retaining ◊, using the combination ¬◊¬ instead of . But in a 
system with P and F neither can be defined (or “simulated”) with the 
help of the other. There is a close relationship between them – P and F 
can be seen as temporal “mirror images” of each other – but that does 
not enable us to define one from the other. 
 
In fact, systems of tense logic are often equipped with duals to P and F 
(in the sense in which  is the dual of ◊ in modal logic). There are even 
standard names for these dual operators, just as P and F have become 
the standard designations for the operators they represent. For the 
operator that is “dually” related to P we use “H”, and  for the operator 
that is dual to F we use “G”. Thus systems of tense logic all verify the 
duality laws PA ↔ ¬H¬A, HA ↔ ¬P¬A, FA ↔ ¬G¬A and GA ↔ ¬F¬A. 
From these relationships it is easy to see that HA can be paraphrased as 
“It has always been the case that A” and GA as “It will always be the 
case that A”. 
 
The first tense logical systems we present have the four tense operators 
P, F, H and G. They are due to the father of Tense Logic, Arthur Prior 
(1914 -1969). Their syntax is virtually identical with that of the modal 
propositional logic of Def. 1. (Just replace ◊ and  by P, F, H and G.) The 
full definition is given in Def. 11. 
 
Def. 11  (Syntax of Standard Priorean Tense Logic)   
 
 1. Vocabulary:  
 
  i. Propositional constants: q1, q2, q3, ... 
  ii. Connectives: ¬, &, v, →, ↔ 
  iii. Modal operators: P, F, H, G . 
  iv. Parentheses:  (, ) 
 
 2. Formulas 
 
  Form ::=   qi | ¬ Form | (Form & Form) | (Form v Form) |  
         (Form → Form) | (Form ↔ Form) | P Form | F Form|  
          H Form | G Form 
 
 



 40 

We also adopt essentially the same model theory for this formalism. 
Models will once again be triples <W,R,F>, but the difference lies in the 
intuitive meaning of their components.  The first set, W, is now not the 
set of possible worlds, but the set of instants of time. And R is now the 
“earlier-later” relation between temporal instants. Formally F does still 
the same thing as it does in the  models for modal logic – it assigns a 
truth value to each constant qi at each element of W; but of course,  in 
view of the new interpretation of W the meaning of these assignments 
also changes. 
 
Because our models now represent instants of time rather than possible 
worlds, we will use “T” instead of “W”. Also we will use “<” to denote 
the earlier-later relation, and thus talk about models as triples <T,<,F>. 
 
Def. 12 gives the truth definition for the system of Def. 11. 
 
Def. 12   Assume that M = <T,<,F> is a model for Priorean Tense  
  Logic and that t is an element of T. 
 
  (i) [qi]M,t = Ft(qi) 
 
  (ii) [¬A]M,t = 1 iff [A]M,t = 0 
 
  (iii) [A & B]M,t = 1 iff [A]M,t = 1 and [B]M,t = 1, 
   and similarly for the other truthfunctional   
   connectives 
 
  (iv) [HA]M,t = 1 iff for all t' ε T such that t’ < t, [A]M,t’ = 1 
 
  (v) [PA]M,t = 1 iff for some t' ε T such that t’ < t, [A]M,t’ = 1 
 
  (vi) [GA]M,t = 1 iff for all t' ε T such that t < t’, [A]M,t’ = 1 
 
  (vii) [FA]M,t = 1 iff for some t' ε T such that t < t’, [A]M,t’ = 1 
 
Note that the clauses for H and P make a different use of the relation < 
than the clauses for G and F. The clauses for G and F directly 
correspond to those for  and ◊ in modal logic. (E.g. the clause for G 
turns literally into the clause for  of Def. 4 when we replace G by , < 
by R and t and t’ by w and w’. respectively.) We can also turn the 
clauses for H and P into exact copies of the clauses for  and ◊ if we 
replace the formulas “t’ < t” in them by the formulas  “t > t’ ”, using 
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now as counterpart of the modal accessibility relation R not the earlier-
later relation <, but its converse, the “later-earlier” relation >. Trivial 
though this point may seem, it is important to draw attention to it. The 
real point is that when compared to the semantics of I.1.1 for the 
formalism of Def. 1 the present model theory makes use of two 
different accesibility relations, < and >, with two sets of modal 
operators ({G,F} and {H,P}) whose semantics is specified in terms of 
those respective relations.  
 
This makes our system of Tense Logic into what is called a system of 
multi-modal logic. Systems of multi-modal logic are systems whose 
models involve two or more acccessibility relations and which have 
operators whose semantics is given with the help of these different 
relations. Often there exist systematic relations between the different 
accessibility relations, which can, and usually will, manifest themselves 
in the form of logical relations between the corresponding operators 
(i.e. in the validity of formulas in which operators corresponding to 
different accesssibility relations occur together). The tense logic of Def. 
11 and Def. 12 is a particularly simple example of a multi-modal logic: 
Its semantics involves just two accessibility relations, < and >, each with 
a pair of operators corresponding to it, in the way that  and ◊  
correspond to the single accessibility relation R of Def. 7. Moreover, the 
relations < and > stand in a very simple relation to each other in that 
they are each other’s converse. This relation is reflected by the validity 
in the schemata A → GPA and A → HFA, among others. 
 
The validity of these schemata brings us to the general question what 
formulas and arguments of the formalism of Def. 11 are valid. This is 
the same question that confronted us in connection with modal logic, 
but the situation is now quite different, for our conception of the 
structure of time are much more articulate than our ideas about the 
structure of the “space” of possible worlds.   At the very least, the 
earlier-later relation is asymmetric and transitive, and there are good 
reasons for thinking also that it is linear. (Linearity has been disputed, 
a point that will be briefly discussed in Section I.1.3.3below.) Usually, it 
is assumed that it is part of our conception of time that it has these 
properties, and thus that in all models M = <T,<,F> for the formalism of 
Def. 11 < must be a strict linear order of T.16 Often this assumption - 

                                     
16  We recall that a relation R on a set X is a strict linear order of X iff R has the 
following properties: 
 
(i) (∀x ∈ X)(∀y ∈ X)(x < y → ¬ y < x)     (asymmetry) 
(ii) (∀x ∈ X)(∀y ∈ X)(∀z ∈ X)( (x < y & y < z → x < z)  (transitivity) 
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and the same goes for other such assumptions, in tense logic but also in 
other applications of modal logic – is stated in terms of frames. A frame 
in modal logic is simply that part of a model that consists of its “world” 
set and the accessibility relation (or relations) on that set. Frames <T,<>  
can be turned into models M = <T,<,F> by adding an interpretation 
function F to them. A single frame can be turned into different - and 
usually into many different - models by combining it with different F’s. 
We say that the model <T,<,F> is based on the frame <T,<>. 
 
The structural properties of accessibility relations can obviously be 
described as the properties of frames. This is true for the case of tense 
logic as it is in modal logic generally. In the case of tense logic the 
frames are time structures T = <T,<>. The claim we made above that 
being lineraly ordered is part of the conception of time is thus the 
claim that the frames T = <T,<> of models for tense logic are linearly 
ordered structures, or linear orderings for short. 
 
Def. 13 gives an axiomatisation of the sets of formulas and arguments 
of the formalism of Def. 11 that are valid on the assumption that the 
model frames for this formalism are all linear orderings and that any 
linear ordering can serve as frame. 
 
Def. 13 (Axiomatisation of validity for Priorean Tense Logic on the  

assumption that time is linear) 
 
  (i)  A complete axiomatisation of classical propositional  
   logic with M.P. as inference rule 
 
  (ii) The axiom schemata:17 
 
   (a)  H(A → B) → (HA → HB) 
    G(A → B) → (GA → GB) 
   
   (b) PA ↔ ¬H¬A 
    FA ↔ ¬G¬A 
 
   (c) A → HFA 
    A → GPA 

                                                                                                                 
(iii) (∀x ∈ X)(∀y ∈ X)(x < y v x = y v y < x)   (linearity) 
17  As specified the axioms contain some redundancies (schemata that can be 
derived from the others. Thus one of the schemata in (c) and one of those in (d) can 
be omitted. We have given the axiom system in this redundant form because it brings 
out the symmetries between past and future more strongly. 
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   (d) HA → HHA 
    GA → GGA 
 
   (e) PFA → (PA v A v FA) 
    FPA → (PA v A v FA) 
 
  (iii) The following two inference rules 
 
        |- A  |- A 
   ________      ________ 
        |- HA  |- GA 
 
 
That this system gives us precisely the formulas and arguments that are 
valid when time is assumed to be a linear order was proved in the mid-
sixties, not long after Prior had formulated the present system and 
conjectured the completeness of these axioms. But, as in the case of 
modal logic, to the conceptual question which tense-logical formulas 
and arguments should be considered valid this isn’t a conclusive 
answer. That the earlier-later relation s a strict partial order – that it is 
asymmetric and transitive – is probably uncontroversial.  But that time 
is linear is less obvious and is something that has been contested from 
the days of Aristotle to the present. (For more see Section I.1.3.3.) On 
the other hand, there are a number of further properties of which one 
could argue that time has them as a matter of conceptual necessity – 
properties of which it seems reasonable to ask: “Is this property part of 
our conception of time?”. 
 
Here is a list of the most salient of these properties: 
 
(21)  
 
(i) (DEN(sity))   
 
 <T,<> is a dense ordering iff 
 (∀t ∈ T)(∀t’ ∈ T)(t < t' → (∃t’’ ∈ T)( t < t'' & t’’ < t')) 
 
(ii) (DIS(creteness))  
 
 <T,<> is a discrete ordering iff  
 (a)  (∀t ∈ T)(∃t’ ∈ T)( t < t' & ¬(∃t’’ ∈ T)( t < t'' & t’’ < t'))   and 
 (b) (∀t ∈ T)(∃t’ ∈ T)( t’ < t & ¬(∃t’’ ∈ T)( t’ < t'' & t’’ < t)) 
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(iii) (BEG(inning))   
 
 <T,<> is an ordering with a first point iff  
 (∃t ∈ T)(∀t’ ∈ T)(t’ ≠ t → t < t') 
 
(iv) (END)   
 
 <T,<> is an ordering with a last point iff  
 (∃t ∈ T)(∀t’ ∈ T)(t’ ≠ t → t’ < t)  
 
(v) (NOBEG(inning))   
 
 <T,<> is an ordering without a first point iff  
 (∀t ∈ T)(∃t’ ∈ T) t’ < t 
 
(v) (NOEND)   
 
 <T,<> is an ordering without a last point iff  
 (∀t ∈ T)(∃t’ ∈ T) t < t’ 
 
(vi)  (O(rder) C(omplete))   
 
 <T,<> is order complete   iff   
 (∀X ⊆ T)(∀Y ⊆ T)(X ≠ ∅  & Y ≠ ∅ & X < Y → (∃t ∈ T)(X ≤ t & t ≤ Y)) 
 
 Here:  “X < Y” is short for:  (∀t ∈ X)(∀t’ ∈ Y)t < t’,  
   “X ≤ t” is short for:  (∀t’ ∈ X)( t’ < t v t’ = t), 
   “t ≤ Y” is short for: (∀t’ ∈ Y)( t < t’ v t’ = t) 
 
Each of these properties makes a difference to validity. Below we give 
for each of them one or two formula schemata that is/are characteristic 
for the propety in that it is/they are valid iff the property is assumed to 
hold for all models. 
 
(22) 
 
DEN:  PA  →  PPA, FA  →  FFA 
 
DIS:  ((A & HA & F(A v ¬A)) → FHA) &  

((A & GA & P(A v ¬A))  → PGA) 
 
BEG:   ¬P(A v¬A) v P¬P(A v¬A) 
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END:   ¬F(A v¬A) v F¬F(A v¬A) 
 
NOBEG:  P(A v¬A) 
 
NOEND: F(A v¬A)    
 
OC:  (FA & FG¬A) → F(G¬A & ¬PG¬A) & 
  (PA & PH¬A) → P(H¬A & ¬FH¬A) 
 
 
Exercise: Show that the schemata in (22) are characteristic for the 
properties of  the relation < that are cited to their left.   
More prescisely, show: 
 

If P is one of these properties and S is the schema (or one of the  
schemata) appearing to its right, then: 

 
 (i)  If T = <T,<> is a linear frame which has P, then for every  

model M = <T,<,F> based on T, every t ∈ T, and every  
formula B which instantiates S, [B]M,t = 1; 
 

 (ii) If T = <T,<> is a linear frame which does not have P, then  
there exists a model M = <T,<,F> based on T, some t ∈ T, 
and some formula B instantiating S such that [B]M,t = 0. 

 
N.B. In all these cases adding the characteristic formula (or one of the 
characteristic formulas) for one of the properties listed under (21) to 
the axiom system of Def. 13 results in an axiom system that is complete 
for the class of models whose frames have that property (or, to be 
pedantic, whose frames are linear orderings with that property). This is 
also true for any conjunction of properties in (21) and their 
characteristic formulas.18 
 
 
 

                                     
18  These facts, whch again will not be proved here, have been known since the 
late sixties. Proofs can be found in various publications.  See in particular the 
contribution of J. Burgess to Vol II of the (old) Handbook of Philosophical Logic (ed. D. 
Gabbay & F. Guenthner; Reidel, 1984) and Vol. VII of the revised edition of the 
Handbook of Philosophical Logic (ed. D. Gabbay, Kluwer, 2002), as well as: D. Gabbay, 
I. Hodkinson & M. Reynolds (eds.) Temporal Logic, Vol. I (Oxford, The Clarendon 
Press, 1994). 
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What properties does time really have? 
 
What can we say about the properties listed in (21)? Can our intuitions 
about time tell us something about these properties?  
 
Time is a prime concern to pretty much all of us. It is almost 
perpetually present to us, whether we are planning for what lays ahead 
or reflecting on what has been. Moreover, it has been a central concept 
in branches of science as far apart as physics and psychology. Those 
different sciences have developed very different ways of thinking about 
time, and these have led to quite different, and sometimes 
contradictory, assumptions about properties like those in  (21).  The 
most dramatic example of this are the different views that have been 
expressed about the conflicting properties of density and discreteness. 
Psychology has stressed the essentially discrete nature of time as it 
manifests itself in our experiences, whereas in physics the dominating 
view has been, at least since the days of Galileo, that time is a 
continuous, and therefore densely ordered, medium.  
 
Within philosophy the conception of time as discretely ordered is 
usually associated with Kant (1724-1804). For Kant the concept of time 
aqnd the concept of counting (and with that our understanding of 
arithmetic) were intimately connected. Our ability to count, adding one 
unit after another indefinitely, and our ability to experience time as the 
passing of successive events, were, as he saw it, manifestations of the 
one and the same fundamental feature of our mind. This idea - that 
time is given to us as the “ticking” of a succession of separate events – 
has often been seen as entailing that the order of time is discrete. it is a 
conception of time that still has its advocates today, especially among 
philosophers with idealist or phenominological leanings.  
 
Kant’s observations of time touch upon what seems to be an essential 
feature of the way we experience time: it is only by registering 
successive events as successive, in the sense that the one is already past 
when the other starts, that time exists in our awareness. But it is not 
clear why this should lead to the conclusion that the structure of time 
itself is discrete. After all, nobody would assume that the events of 
which he becomes aware and that make him aware of the passage of 
time, are the only events there are; what is noticed by anyone of us is 
only a minute fraction of all that happens around us, let alone of all 
that happens in all those places to which we have no direct access. In 
the gaps between successive events that imprint themselves upon me 
there may be countless others that escape my notice.  
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It does not follow from this consideration that time must be dense 
rather than discrete. But what it does imply is that, even if discreteness 
is an essential feature of our own experience of time, that doesn’t entail 
discreteness of time as the temporal order of everything that happens. 
 
It is true of course that modern physics tells us that we live in a finite 
universe. And if that is so, then presumably there are between any two 
events only finitely many others, even if their number may be 
“atronomical”. If that is so, then, strictly speaking, time might be 
discrete after all. But of course that conclusion is valid only if we 
assume that time depends on what happens – that it is the product of 
the succession of events. This is an assumption we have been making 
implicitly in the last few paragraphs. It seems a quite natural 
assumption, and it is often made, in various forms and for various 
reasons (e.g. Leibniz in the Correspondence with Clarke), (Russell, in his 
Lectures on logical Atomism). But it has not gone unchallenged. One of 
its main critics in the history of western thought was Isaac Newton, who 
saw time and space as forming a fixed, immutable structure in which 
the events of our world unfold. On this conception of time there can be 
time without change. And it might well be that among the accidental 
properties of the actual physical world that is ours there are periods of 
time when, as it happens, nothing happens.  
 
How can we know anything about the structure of a time that is so 
loosely connected with the events we can observe? If our conception of 
time is this abstract, then arguments that certain properties are 
intrinsic properties of time will have to be far more indirect than they 
can be when time is seen as generated by real or mental events. There 
is no direct relying here on our own experience or understanding of 
time, nor on our observations of physical events. Rather, the only thing 
we can rely on are reflections on what is needed in order to describe 
the laws that govern the physical world and the preconditions for 
stating and applying those laws. It is the calculus, the theory and 
practice of integration and differentiation, that shows us what structure 
time and space must have in order that physical objects can move in 
and through them according to the laws of Newtonian Mechanics, which 
require the calculus for their formulation.  
 
It was only in the nineteenth century, through the work of 
mathematicians like Cantor, Dedekind, Weierstrass and others, that the 
structural implications of this calculus-based perspective became fully 
explicit. In particular, it was only then that the difference between 
(merely) dense orders and continuous orders – orders that are both 
dense and order-complete –was clearly articulated. (It was only then 
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that the difference between the rational numbers, which are densely 
but not continuously ordered, and the real numbers, whose order is 
continuous as well as dense, was made fully transparent and explicit).19 
With the hindsight of those later developments we can now say with 
some confidence that the Newtonian conception of time was that of a 
linear order that is isomorphic to the reals. For a formalism like the 
tense logic of this section that would mean validity of the both the two 

                                     
19  One of the most remarkable features of the real numbers is the relation it 
embodies between points and intervals (or, when we think of the real numbers as 
time, between instants and periods): That it takes a non-denumerably infinity of 
points to get an interval of any non-zero length is something that boggles the mind of 
anyone who is confronted with this property of the reals for the first time. That the 
reals have this property has to do with the fact that they come not only with an order 
but also with a metric. (When we think of the rela numbers as instants of time, then 
the metric manifests itself in the lengths – or “temporal durations” – of the interevals 
by which two intervals are separated.) It is because of the way in which order and 
metric are connected that the assumption that time (as well as space) has the 
structure of the reals provides an solution to the paradoxes of Zeno. Recall Zeno’s 
best-known paradox, that of Achilles and the tortoise. Achilles, a notoriously fast 
runner is to run against the tortoise, who is generally known as slow and plodding. To 
give the tortoise a fair chance Achilles generously offers it a head start (of, say, a 
couple of hundred yards, though as the story will show, the amount is immaterial). 
The race begins and Achilles has soon covered the distance between the point where 
he started and the strarting point of the tortoise. But when he gets to the point where 
the tortoise started the tortoise has moved a little too, even if it isn’t very much. So, in 
order to overtake her, Achilles will have to also cover this bit that the tortoise has just 
covered. But by the time he gets to the point where the tortoise was when he reached 
the tortoise’s starting point, the tortoise will have moved again. So Achilles will have 
to cover that bit as well; and so on.In thi way we can argue that before Achilles can 
overtake the tortoise, he will have to do, one after another, an infinite number of 
things, and those will involve an infinite number of times. Thus, Zeno concludes, 
Achilles would need an infimite amount of time to overtake the tortoise. Zeno’s final 
conclusion is that, contrary to what Achilles himself and those watching the race 
might have expected from the start, and thought they saw as they were watching, he 
and we might have thought, Achilles never did vertake the tortoise. 
 I have put the phrase which is repsonsible for this story getting off the rails in 
Italics. An infinite amount of time is not the same thing as an infinite number of 
times. That there is a difference, and what that diference is, is the profound 
philosophical achievement of the theory of the real number continuum, with the 
subtle analysis it makes possible of the concept of a limit.   
 In the light of this success it might seem curious hat even today Zeno’s 
paradoxes are often cited as a neat dmonstration that there is more to the concept of 
time than mathematics and physics can explain. The common denominator to the 
thoughts of those who are involved in this seems to be the intuition that fundamental 
to our experience of time - and, therefore, it is implied, also to our conception of time 
-  is an element of discrete, step-wise progression, which the identification of time 
with the real number continuum fails to capture. For some Kant’s conception of time 
is still very much alive. 
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schemata that are caharatreristic for DEN and the one that is 
characteristic for OC. 
 
It might be felt that there is something incongruous about appealing to 
a system as complex and powerful as the calculus and its application to 
the theory of physical motion in order to determine the logic of a 
formalism that is as simple as the propositional tense logic of this 
section. There seems to be an immense gap between the expressive 
power of the language of mathematical analysis and that of the 
language of propositional tense logic that has been the subject of this 
section. In fact, one might be incined to ask, are there really any useful 
applications for such a limited system at all? For us this question is 
important primarily in relation to the semantics of natural language.  
That is of course a very diffferent enterprise from the integral and 
differential calculus. But almost as soon as the H,G,P,F-system was given 
its definitive formulation, one realised that it falls well short of what is 
needed to represent the temporal information found in sentences of 
natural language.  Presently this led to more expressive tense logics, in 
which more temporal relations between propositions can be 
represented than in the system of Def. 11. We will look at one such 
system in Section I.1.3.2. 
 
 

I.1.3.1  Tense Predicate Logic. 
 
Just as we can define a system for modal predicate logic by adding  
and ◊ to a sytem of classical predicate logic (see Def. 6), so we can 
define a system of tense predicate logic by adding to classical predicate 
logic the operators P, F, H and G. Since the syntax of the system that 
results from this substitution is obvious, we will spare ourselves the 
explicit definition of it and refer to the reader to Def. 6. He will be able 
to make the necessary substitutions himself.  
 
Much the same goes for the models for tense predicate logic. Here too it 
is natural to follow the semantcs for modal predicate logic formulated 
in I.1.2. For our system of tense predicate logic this means that models 
are now quadruples <T,<,U,F>, where  <T,<> is a temporal frame, U is a 
non-empty set of “possibilia” and F assigns for each t ∈ T suitable 
interpretations, relative to U, to the system’s non-logical constants.  
 
After what has been said about the semantics of modal predicate logic 
there is not much that we need to add about this similarly structured 
semantics for Tense Predcate Logic. But there is one new consideration 
that deserves comment. The set U is now to be understood as a set 
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which includes all individuals that exist at at least one t ∈ T; but once 
again we can rely on the predicate E to select from these possibilia for 
each time t the set Et of entities existing at t. This enables us to express 
quantification at t over just the entities existing at t, just as E enables us 
to express the effect of quantifying at a world w just over the entities 
existing in w.  
 
But there is a difference between the behaviour of entities through time 
and their behaviour “across” possible worlds. It has to do with what 
might be termed the “reality of history”. Historiography, the discipline 
which studies history, deals with things past and past events. And many 
of the things it deals with are truly past in that they exist no longer. It 
is a fundamental, unquestioned assumption that historians share with 
pretty much everybody else that even if most the facts about the past 
are lost, they are nevertheless facts. The past must have been one way 
or the other; and it is among the basic tasks of historiography to 
establish as well one can, which way it actually was. Often the answer to 
the question: “Did such and such a thing happen?” or to the question: 
“Did a thing with such and such properties exist?” may be irretrievably 
lost, but even in such cases we are firmly convinced that there is a true 
answer, and see it as our loss that it is beyond us to find out what that 
answer is.  
 
There are two ways in which we talk about past things in which this 
conviction – that the past is fully definite, although only partially 
known to us – shows up. First, there are cases where an entity has 
disappeared but has left us its name.  In such cases we feel no 
compunction about using the name, and we happily in statements that 
explicitly or implicitly assert that the name’s bearer is no more: - 
statements like: “Carthage once existed, but exists no longer.”, or 
“Caesar was killed on the ides of March of 44 B.C.” We are convinced 
that by using these names we refer to the bearers of those names – a 
former city and a citizen of ancient Rome – and that what we say about 
them are literal, facual truths.  
 
But it is not just in the way we talk about things that we still know by 
their names, or even about things of whose past existence we have clear 
proof such as dynosaurs of which we have discovered the fossile 
remains) in which we manifest our conviction that our past is definite 
and unique. We assume unhesitatingly that been myriads of things that 
existed in the past which have since disappeared without a trace. And 
with that assumption goes the conviction that questions like: “Did such 
and such an entity exist once?” or “Did such and such an entity exist at 
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such and such a time?” have a definite answer one way or the other, 
although in most cases the answer is irretrievably lost. 
 
Our attitude towards future existents seems quite different. First, how 
could we make claims to the effect that some particular entity will exist, 
but does not exist yet? In referring to the entity by name? But where 
would the name  come from, or how would it get its reference? If the 
entity that we want to speak of exists only in the future, how could we 
have attached the name to it already, so that we can now use the name 
to refer to the entity? Sure, there are some cases when something like 
this is possible. The capital of Brazil was known as “Brasilia” before it 
was built, even before all the plans were drawn up or its exact location 
fixed. But such cases, where a future entity has a name before it comes 
into existence for real, are comparatively rare, and they confirm the 
general principle: a future entity can have a name now only if there is a 
well-defined plan for it (or, aternatively, a clear conception of it, 
combined with an expectation that an entity fitting that conception will 
come about). 
 
It is not just the wider availability of names that distinguishes past 
entities from future ones. The real difference goes deeper.  We are 
convinced that the past was just the way it was. But our conception of 
the future is different. We see the future as something that could turn 
out this way or that; if it will unfold one way, then entities with such 
and such properties will come into being, but if it unfolds the other 
way, then that won’t be so. From this perspective, many future entities 
– presumably the vast majority – are merely possible, and there is thus 
an important difference in status between them and the entities of our 
past. This difference is sometimes described as that between entities 
that subsist – the past entities (as well as, perhaps, a small number of 
future entities that are already “in the making”) - and the merely 
possible ones. It is convenient to think of subsistence as a kind of 
“weak” existence, so that true existents also count as subsisting, but are 
distinguished from the merely subsisting by being full-fledged existents 
on top of that. This leads us, for each time t in the course of history, to 
a pair of two-way distinctions:  
 
(i)  the difference between (a) subsisting entities - those presently 
existing at t, those which existed at some time preceding t as well as, 
perhaps, a small number of future entities in the planning or making 
stage at t – and (b) the merely possible entities that may become 
existent at some time in the future of t; and  
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(ii)  the difference between (a) the entities that merely subsist at t – 
the past entities and those in the planning or making stage - and (b) 
those that currently exist at t. 
 
To capture these distinctions between the merely possible, the merely 
subsistent and the genuinely existent we adopt besides the predicate E 
a second 1-place predicate S (for “subsistence”) which singles out the 
subsistent entities from the totality of possibilia. 
 
Given the way we have defined subsistence, the store of subsisting 
entities steadily grows as time goes on: New entities come into 
existence, while others go out of existence. But those which go out of 
existence still remain as subsistent entities, while those that come into 
being reinforce the ranks of the existent, and therewith of the 
subsistent entities. For the models M of our system of tense predicate 
logic this means that in each model the extension of S can only grow as 
time progresses: FM,t(S) ⊆ FM,t’(S), if t < t’. This doesn’t fully determine 
what we should say about the universes of the models Mt that a model 
should provide. But now that we have introduced S as well as E, we are 
free to resort to the same convenient solution that we also adopted for 
the case of modal predicate logic in section I.1.2: We assume a single 
fixed universe of possible entities and let S and E select from U at each 
time t the set of entities subsisting at t and the set of things existing at 
t.20  
 
These considerations and choices lead to the following notion of a 
model for tense predicate logic: 
 
 
Def. 14 A model for tense predicate logic is a 4-tuple <T,<,U,F>, such 
  that  
 
  (i)  <T,<> is a linear frame 
  (ii)  U is a non-empty set  
  (iii)  F is a function which assigns for each t ∈ T a suitable  
   interpretation at t, relative to U, to each non-logical  
   constant  
  (iv)  for all t ∈ T, Ft(E) ≠ ∅ 

(v) for all t ∈ T, ∪ Ft’(E) ⊆ Ft(S)  
            t’≤t 

 
 
                                     
20  We will have more to say about future existents in Section I.1.3.4 below. 
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As in the case of modal logic we do not go into the question which 
formulas and arguments are valid according to the model theory whose 
models are those given in Def. 14. As in the case of propositional tense 
logic, the question depends in large part on the strucutural properties 
that we are prepared to ascribe to time.  But in addition there are also 
formulas and arguments whose validity depends on the interaction 
between time and quantification. This matter isn’t particularly 
complicated, but given our ultimate aims there would be little point in 
pursuing it here.21 
 
 

I.1.3.2  More Powerful Tense Logics. 
 
We concluded Section I.1.3 with the remark that the need for more 
powerful tense logics was felt not long after the P,F,H,G-system had 
been given its definitive formulation. One way to appreciate the 
expressive limitations of that system is to compare the following 
examples. 
 
(22) (i) After Fred visited us, he sent us a postcard. 
 (ii) Since Fred visited us, he hasn’t given a sign of life.   
 
Abbreviating “Fred visits us” as q and “Fred sends us a postcard” as r, 
we can symbolise (22.i) in the P,F,H,G-system as (23). 
 
(32)  P(r & Pq) 
 
                                     
21  We note in passing that our semantics renders the following formula valid. 
 
(i) (∀x)((E(x) v PE(x)) → S(x))  
 
An alternative to Def. 14 would be to restrict the entities subsisting at t to those 
exisiting at or before t: Ft(S)  = ∪ Ft’(E)  

     t’≤t 
  
This alternative semantics verifies not only (i) but also (ii) (which logically entails (i)) 
and (iii). (ii) just says that to subsist is to exist now or else to have existed at some 
previous time. (iii) says that once something subsists it will continue to subsist 
forever.  
 
(ii) (∀x)( S(x) ↔(E(x) v PE(x)))  
(iii) (∀x)(S(x) → GS(x)) 
 
Exercise:  Show that (i) is valid on the semantics described in Def. 14 and that (ii) 
and (iii) are valid on the modified definition just described in this footnote.  



 54 

But it is not clear how we could symbolise (22.ii). You will find that out 
when you try to find a symbolisation yourself. You won’t find the right 
formula no matter how hard you try. And that won’t be because you 
aren’t clever enough; it can be proved rigourously that no formula of 
the P,F,H,G-system captures the truth conditions of this sentence. The 
problem is that what (22.ii) says is that there is a time in the past when 
Fred visited us and that between that time and now there was no time 
at which he gave a sign of life (or, put slightly differently, at all times 
between that time and now the proposition “Fred gives a sign of life” is 
false). This is a temporal relation between two propositions – the 
proposiiton that Fred visits us and the proposition that he is giving a 
sign of life – which the tense operators P and F are unable to express. In 
fact, something much stronger holds: no combination of 1-place tense 
operators is able to express this relation. Adding further 1-place 
operators to the formalism of Def. 11 is therefore not going to help with 
this problem; what we need is a tense operator of more than one place.  
 
The simplest solution to the expressibility problem that (22.ii) poses is 
to add a new 2-place operator whose semantics is given by the very 
propositional relation that (22.ii) expresses. The operator we introduce 
to this end is suitably referred to as “Since” and represented by the 
letter “S”. Syntactically S behaves like a 2-place sentence connective; in 
other words, its syntax is the same as thst of the 2-place truth 
functional connectives &, v,→ and ↔. But its semantics is more like that 
of the tense operators P and F. The clause that defines its truth 
conditions is given in (24.i). It is easily verified from this clause that if 
we abbreviate “Fred visits us” as q and “Fred gives a sign of life” as s, 
then (22.ii) can be correctly represented by the formula S(q,¬s). 
 
(24) (i) [S(A,B)]M,t = 1 iff for some t' ε T such that t’ < t, [A]M,t’ = 1  
  and for all t'’ ε T such that t’ < t’’ < t, [B]M,t’ = 1 
 (ii) [U(A,B)]M,t = 1 iff for some t' ε T such that t < t’, [A]M,t’ = 1  
  and for all t'’ ε T such that t < t’’ < t’, [B]M,t’ = 1 
 
Just as P has a future counterpart in the operator F, S has a future 
counterpart in the 2-place operator U ( “Until”) whose semantics is 
given in (24.ii). 
 
The system of propositional tense logic whose tense operators are S and 
U proves to be very powerful.  In fact, as propositional tense logics go, 
it is almost as powerful as such a system could be. And if we assume 
that time is order-complete (e.g. that it is like the integers or the reals), 
then it is literally as powerful as any such system could be.  For a start 
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we can express the operators P and F with the help of S and U. For PA is 
logically equivalent to S(A, Av¬A) and FA to U(A, Av¬A). But that is just 
the beginning. When time is order-complete, any operator that you can 
think of and whose truth conditions can be defined along the lines of 
the truth condition clauses for P, F, S and U can be expressed by means 
of S and U (in the sense in which we have just expressed P and F by 
means of S and U).22 
 
We can add S and U, with the truth clauses for them that are given in 
(24) either to the tense propositional logic of Section I.1.3 or to the 
tense predicate logic of Section I.1.1.2. In either case we get a system 
that is (on the assumption that time is order-complete) functionally 
complete in the sense that all tense operators that can be defined in 
terms of temporal order can be expressed in it. At the same time the 
propositonal system with S and U shares some of the attractive 
properties of weaker systems like the system with P and F. For instance, 
the sets of valid formulas and arguments for the different notions of 
time considered in Section I.1.1.3 are axiomatisable and also decidable. 
This is one of the reasons why the S,U system has become an important 
tool in computer science, where it is used to describe certain properties 
of program executions; in these applications the “instants” of time are 
identified with the periods between two successive “ticks” of the 
internal clock of the computer (which is assumed to have the 
traditional Von Neumann architecture)  on which the program is being 

                                     
22  The S,U-system arose out of a puzzle that Prior presented in a seminar he gave 
at UCLA in the fall of 1965. As it stands the P,F,H,G-system is strictly “topological”: the 
operators P, F, H and G are sensitive to the order of time, but not to its metric. For 
instance, PA says that A was true at some time in the past, but it says nothing about 
how far in the past it was true. Can we, Prior asked, use the P,F system nevertheless as 
the basis for introducing some kind of temporal metric? A possible first step in that 
direction might be this: assume that there are particular “clocktime” propositions, 
such as “It is midnight”, or “The sun is just appearing above the horizon”, which are 
true at regular intervals; or better: which are true at certain instants of time, which we 
see as separated by intervals of (roughly) the same duration during which they are 
not true. (It is not an unreasonable assumption that this idea - that propositions or 
events can be temporally located with respect to other propositions or events that we 
come to see as demarcating equal portions of time - is at the root of our conception of 
time as having a metric as well as an order.) Let p be such a clock time proposition 
and suppose I want to say that q was the case since the last time it was the case that p. 
How do we express that in the P,F.H,G-system? It turns out that this can’t be done, and 
the proof that this is so was the main impetus towards the design of the S,U-system, in 
which such statements can be expressed. (Exercise: How can we express the given 
proposition in the S,U-system?) The system, together with its functional completeness 
(on the assumption that time is order-complete) was in place by the end of 1966. See 
J.A.W. Kamp, Tense Logic and the theory of Linear Order, Ph.D Dissertation, UCLA, 
1968 
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run; and the propositions are properties of the internal states that the 
computer is in at such “instants” (i.e. between two successive ticks).  
 
In spite of the remarkable expressive power of the S,U-system, it has 
proved to be not what we want for dealing with the semantics of time in 
natural language. That is a matter which, as I noted before, will be 
taken up at length in Part II. For now let me mention just one reason 
why the system isn’t really suitable as a tool for dealing with the 
temporal aspects of meaning in natural language. While the expressive 
power of the S,U-system leaves nothing to be desired as such, the way 
in which it represents temporal relations is often very different from 
the way these are expressed in natural language. So formulas from the 
S,U-system that correctly capture the truth conditions of certain natural 
language sentences do so at the price of throwing most of the structure 
of the symbolised sentences overboard and replacinf it by the baroque 
and seemingly unrelated structure of representing S,U-formula. The 
S,U-system makes for very odd logical forms. General principles that 
translate sentences of natural language into such “logical forms” are 
very difficult to state; and to the extent that they can be stated, they do 
not seem to give us any insight into how temporal reference in natural 
languages really works.  
 
As an example of this consider the sentence in (25.i). Using the 
abbreviations given in (25.iii) this sentence can be represented with S 
and U as in (25.ii). But note how far the form of (25.ii) has strayed from 
that of (25.i). From the perspective of (25.i), (25.ii) seems quite 
convoluted. And its convolutedness isn’t just an accidental feature of 
this particular attempt to get the truth conditions of (25.i) right. To get 
a sense that this is an intrinsic problem with the S,U-system, just try if 
you can find a more congenial, less convoluted formalisation of (25.i). 
 
(25) (i) Since the last time Fred visited us he has called us just once. 
 
 (ii) S(p & ¬q & S(q,¬q), ¬p & ¬q) 
 
 (iii) Abbreviations:   
 
  q:= Fred visits us;   

p:= Fred calls us 
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Exercise:  Give symbolisations in the S,U-system of the sentences and 
sentence sequences below, using the given abbreviation schemes.  
 
Remark 1. In natural language temporal relations between propositions 
are often expressed “across sentence boundaries”; i.e. one of the related 
propositions is found in one sentence and the other proposition in the 
next sentence. The temporal relation is then often conveyed by the 
choice of tenses in the two sentences, sometimes in combination with 
adverbs like then, afterwards and the like. Since this way of expressing 
temporal relations in natural language is so extremely common, some 
examples involving cross-sentential temporal relations have been added 
here. A special reason for adding such examples is that they give us a 
first taste of what we will be the central focus in Part II, where we will 
be primarily concerned with the meaning of multi-sentence discourse. 
 
Note well: within the S,U-system the cross-sentential temporal relations 
can be captured only by choosing a single formula of that system to 
represent the content of the entire sentence sequence of natural 
language that is to be represented 
 
Remark 2. What you are asked to do in this exercise is very old-
fashioned: You are asked to make use of your understanding of English 
to grasp the truth conditions of the given English sentences and 
discourse and then to find a formula of the S,U-system with the same 
truth conditions. To ascertain that the formula you come up with  has 
the truth conditions of the sentence or discourse bit for whch it is 
intended as symbolisation, you have t rely on the one hand on the 
intuitive undestanding of English already mentioned and on the other 
on the truth definition for the S,U-system, which assigns each formula 
of the system (and thus in particular the formula you have chosen) 
definite truth conditions (in that it specifies for each model M and each 
t ∈ TM the truth value of the formula in M at t).  
 
This is the traditional way in which formal logic has been used to 
clarify certain aspects of meaning in natural language. It is still 
practiced in most introductory texts and classes to formal logic for 
philosophers and other non-mathematicians. It might be called the 
“pre-Montague” way of using logic in the study of natural language 
meaning. This is not how we want to do semantics here. (It is a way of 
doing semantics that is not very useful for Computational Linguistics, 
for you can’t expect a program or computer to have the intuitive 
understanding of English( or whatever other natural language that is 
being studied or to which the given semantic theory is to be applied). 
The point of a theory of natural language semantics useful to CL is 
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precisely that it should help us to teach the program or computer the 
kind of semantic competence that the present exercise presupposes: the 
competence to compute the interpretations of sentences or sentence 
sequences from their syntactic structure and the known meanings of 
the words (often in combination with further contextual information).  
We will leave the “prehistorical” method practiced in this exercise 
behind us when we get to Montague Grammar in the second part of Part 
I. 
 
(1) He has been here since he arrived and will be here until he leaves. 
 
 Scheme of abbreviations: 
 
 q:=  he is here 
 r:=  he arrives 
 s:=  he leaves 
 
(2) Since Mary’s friend has been staying until breakfast, when she  

takes him home with her, her father has been morose. 
 
 Scheme of abbreviations: 
 
 q:=  Mary takes her friend home with her 
 r:= Mary’s friend stays 
 s:=  breakfast is happening 
 t:=  Mary’s father is morose 
 
(3) First Fred arrived. Then Charles arrived. And since then nobody 

else arrived. 
 
 Scheme of abbreviations: 
 
 q:=  Fred arrives 
 r:=  Charles arrives 
 s:=  someone arrives 
 
(4) Since Charles and Fred have met, Fred always brings Fred along. 

And that will continue to be so until they split. 
 
 Scheme of abbreviations: 
 
 q:=  Charles sand Fred meet 
 r:=  Fred brings Charles along 
 s:=  Charles and Fred split 
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(5) Mary will come, when Charles has his brithday. We will meet at 

least twice before she comes again. 
. 
 Scheme of abbreviations: 
 
 q:=  Maria comes 
 r:=  Charles has his birthday 
 s:=  we meet 
 
 

I.1.3.4  The Open Future: Branching Time or Branching 
Worlds? 

 
When discussing the semantics for Tense Predicate Logic I mentioned 
the deep sense we have that past and future differ from each other in 
that the future is “open”, while the past is “closed”: when we go back in 
time there is only one immutable past that we could encounter; but if 
we move forward, we could find ourselves in any one of a great many 
different futures, all of which are still possible given what thngs have 
been like and are like now. In Section I.1.3.2 this issue was raised in 
connection with the difference in status between what exists no longer 
and what exists not yet. This is a difference that could also be put in a 
somwhat different way: statements about future existents have a 
different status from statements about past existents. The typical 
statement that there will be things or people with certain properties –a 
building more than half a mile high or a clone of George W. Bush – 
have, most of us feel, an element of indeterminism about them; they 
might be false, but they might also be true; which will be the case 
depends on how things will shape up. Not so for statements about the 
past existence of people or things; such statements are simply true or 
false. For there is only one past, and it is about that past that the 
statement makes a claim. We may not be able to tell whether the 
statement is true or false, because there isn’t enough of the past left for 
us to see. But that doesn’t alter our conviction that burried in that past 
there is a definite answer to the question: true or false? - even if the 
answer is irrecoverably lost to us.  
 
The idea that many statements about the future are neither definitely 
true nor definitely false goes back to Aristotle. In Aristotle’s De 
Interpretatione there is a discussion of the statement in (26): 
 
(26) There will be a sea battle tomorrow. 
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One possibility, Aristotle notes, is that at the point when (26) is uttered, 
the question whether there will be a sea battle has been decided one 
way or the other. Either the wheels which lead inexorably to the battle 
taking have already been set in motion; or steps have already been 
taken by one or both sides of the conflic that have made the occurrence 
of a battle tomorrow already impossible (e.g. the ships have been 
pulled back so far that the two sides couldn’t join in battle tomorrow, 
even if they )changed their minds). Under such conditions (26) will 
have a definite truth value at the time when it is uttered – it is true in 
the first case and false in the second. But if no things have yet taken 
place that force or prevent the occurrence of tomorrow’s battle, then 
the statement is neither true nor false.  
 
The intuition that Aristotle expresses in this discussion has a good deal 
of initial plausibility. But various problems arise when we try to make 
that intuition more precise, and especially when we try to determine 
what its consequences are for the concept of truth, and for logic in 
general. One of these problems has to do with the notion of “definite 
truth”. In the last paragraph I once used the words “definitely 
true/false” and shortly after  that I spoke simply of “true” and “false”. 
How, you may have wondered, is that to be understood? Are these just 
stylistic variants, different ways of referring to the same concept? Or 
are the phrases to be understood as referring to distinct concepts, with 
“definite truth” a special variety of truth, like “necessary truth”?  
 
 
Both these possibilities – (i) there is just one concept of truth and alsity 
and that is definite truth/falsity and (ii) there are two notions, “plain” 
truth and falsity and definite truth and falsity - have been explored and 
formalised.  In fact, there is hardly any way one could think of dealing 
with the Sea Battle problem that hasn’t been investigated and, if 
coherent at all, also formalised, something that isn’t really surprising, 
given that the solution we adopt is to have consequences for a host of 
central philosophical concepts and concerns, from truth and logical 
validity themselves to determinism, responsibility and freedom of the 
will. 
 
This is not the place to engage in a comprehensive review of the various 
solutions that have been proposed. In particular, we will pass by those 
solutions that come closest to what seems to have been Aristotle’s own 
position, viz. that most statements about the future are without a truth 
value at the time when they are made. A direct formalisation of this 
idea involves either admitting “truth value gaps” – a truth value gap 
arises whenever a statement lacks a truth value, i.e. is neither true nor 
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false – or, what comes to much the same thing, though not quite -  
admitting one or more additional truth values besides the two standard 
values “true” and “false”. Multi-valued logics (logics with more than 
two truth values) and partial logics (logics admitting truth value gaps) 
present many problems of their own, and to address those would 
involve a good part of this course. Since these questions are not 
germane to the central goals of this course, we let this matter rest. We 
will stick throughout to the classical paradigm in which every well-
formed statement always has one of the two truth values “true” and 
“false”.  
 
But even this restriction leaves us with a number of options for 
capturing something of Aristotle’s distinction between future-directed 
statements that are (definitely) true and those that are not. The first is 
to stick to the principle that only definite truth is truth and that 
everything that isn’t true in this sense is thereby false. For Aristotle’s 
sea battle example this means that so long as nothing has been done to 
rule out one of the possible outcomes, both (26) and its apparent 
negation (27) will be false: 
 
(27) There won’t be a sea battle tomorrow.  
 
A second option is to distinguish between “mere” truth and “definite” 
truth (also called “determinate truth). Once the things have happened 
that make tomorrow’s battle either inevitable or impossible, (26) 
acquires the status of definite/determinate truth or definite/ 
determinate falsity. But that doesn’t mean that it didn’t have a truth 
value until then. Eventually things will turn out one way or another, 
whether they were bound to come about the way they eventually do 
already at the time when the statement was made, or came about that 
way because of what happened later, or by mere chance. By the end of 
tomorrow there either will have been a sea battle or there won’t have 
been. By that time the truth value of the statement which I make when I 
utter (26) today will have been decided; and if we just wait until 
tomorrow night, then we will also know what that truth value is. 
Moreover, since there is only one way that things will turn out in the 
future that, by chance or necessity, will become our actual future, what 
grounds could there be for denying that that truth value is already the 
truth value of my assertion of (26) now, at the time when I am making 
it?23 The statement won’t be deteminately true in the sense that nothing 
                                     
23  This is, it seems to me, the most natural way to understand claims that we 
make about the future as part of placing bets. I say to you “Liverpool will beat Chelsea 
tomorrow. I bet you 10 £.” In such a situation I am simply making a statement about 
how things will turn out. It is that, and nothing more or less, that I am putting my 
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could still happen to make it come out false. But it will be true in virtue 
of what will actually happen, in virtue of our actual future, it still 
qualifies as “plainly” (or non-determinately) true.  
 
The distinction between plain and detereminate truth/falsity 
presupposes that among all the possible contiunations of the world as it 
is now there is one that will reveal itself as the actual continuation. This 
question – whether there is among all the possible future continuations 
of the world as we have it now one that is singled out as the future that 
will actually be ours – constitutes another important division between 
formalisations of the open future. And it is bound up with another, 
somewhat more technical issue. We can think of the open future as a 
branching tree: the world as it is right now is a node of this tree with as 
many branches sprouting from that node as there are possible ways for 
the world to go on from now; likewise the later points along any of 
these possible continuations are branching points too; the same also 
goes for stages in the unfolding of our world that are already behind 
us.  
 
But how is this branching structure to be represented? One option is to 
represent it as the branching of time itself: Time is not a linear order 
but a certain kind of partial order, viz. a “tree” in the mathematical 
sense of the term. In such a tree-like time structure <T,<> the elements 
t of T are to be thought of as “worlds as existing at a given time”, and 
for any such t the t’ ∈ T such that t < t’ are the ways in which it is 
possible for the “world stage” t to continue. When the open future is 
modelled in this way it is still possible in principle to assume that one 
branch of the tree <T,<> (i.e. one maximal linearly ordered subset of T) 
represents the actual world as it develops through time. If such a 
branch B is singled out, then it is possible to define at least for the 
points lying on this branch B what it is for a statement of the form FA 
to be “actually true at any of its points: FA is true at t ∈ B iff there is a t’ 
∈ B such that t < t’ and A is true at t’. But as a matter of fact, open 
futures modelled as tree-like time structures <T,<> are normally not 
enriched by identifying some branch of <T,<> with the actual world, so 
that there is no way of captuzring the notion of actual truth as distinct 
from definite or inevitable truth on the one hand and merely possible 
truth on the other.  
 
One disadvantage of the account indicated in the last paragraph is that 
it conflates the notions of times and worlds in a way that becomes an 

                                                                                                                 
money on. doing that I stick my neck out, insofar as that which I am affirming and 
putting my money on.  
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impediment especially in applications to semantics. This difficulty is 
absent from the following way in which the open future can be 
modelled, and this is the one we will look at a little more closely.   
This way is based on the idea that each possible world extends through 
time from its earliest past to its most distant future. (Roughly eac h 
such worlds corresponds to a model M = <T,<,F>, with <T,<> a linear 
ordering, that we have been defined as part of the semantics for 
systems of propositional tense logic.) However, two such worlds may 
remain indistinguishable from each other up to some point in time, at 
which they unfold in different directions. Suppose that a bundle W of 
such worlds is given. Let w be one of them and let t be an instant from 
the time structure of T. Consider all the worlds w’ ∈ W which coincide 
with w up to t. These worlds represent, together with w itself, all the 
possible ways in which w might continue after t, given how w is at t and 
has been before t.  
 
Formalising actual truth in this setting is straightforward: That only has 
to do with what happens at various times in the world in which the 
given statement is being evaluated. In particular, the truth of FA in w at 
t depends on what is the case at times later than t in w. But we do not 
just want to be able to account for actual truth of future tense 
statements, but also for what it means for such statements to be 
inevitably true. Given the present set-up it is quite natural to think of 
inevitability as a form of modality, which can be formalised with the 
help of a modal operator: Just as we have analysed A’s being 
necessarily true as the truth of A, so it seems reasonable here to 
analyse A’s being inevitably true as the truth of DA, where D is the 
operator representing “inevitably”. (The letter “D” which is used to 
represent this operator is derived from “determinately”, where 
“determinately” is to be understood in the sense of in which we have 
been using it, viz. that of “determinately in view of the present and 
past”.) A formula DA is then true in w at t iff A is true at t in all worlds 
w’ which coincide with w up to t. So the determinate truth of a 
proposition of the form “it will be the case that q” will be represented 
as DFq, a formula that is true in w at t iff for each w’ that coincides with 
w up to t there is a t’ > t such that q is true in w’ at t’.  
 
In this way we are led to a multi-modal system in which the tense 
operators H, G, P and F are combined with the modal operator D. This 
system is not only important because it provides a logical basis for 
dealing with the central philosophical concepts that were mentioned 
earlier (concepts like determinism, knowledge, free will, moral 
responsibility), but also because the open future plays an essential part 
in the analysis of meaning in natural language. The main reason for 
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this is that so much of what people talk about are their plans and 
actions. Our understanding of what is involved in the design and 
execution of plans presupposes a conception of ourselves as agents, 
who by their actions can shape the future to greater or lesser extent, 
ruling out certain possible continuations and thus making their 
contribution towards the future that will actually emerge. 
 
The system we present here provides no more than a quite basic formal 
skeleton for formalisations of the many important notions that require 
as foundation. But even though it is quite simple, it has a number of 
interesting properties as it stands. Moreover, at the present stage of our 
explorations in these notes the system is also of interest for the new 
twists it provides to some logical patterns that we have already 
encountered when looking into earlier systems.  
 
The syntax of the system hardly needs comment. We obtain it by 
adding D either to the P,F,H,G-system of propositional tense logic that 
we defined in Section I.1.3 or to the corresponding sytem of tense 
predcate logic of Section I.1.3.2. (We could of course also combine D 
with S and U, but we won’t bother to do that.) As far as the semantics is 
concerned, most of what is needed has already been said too, but there 
remain a few points to be settled. First, there is a question of 
uniformity. Our models, we said, are to take the form of bundles of 
worlds, where each world has its own history through time. There is no 
a priori reason that the time structures of different worlds should be 
the same. In fact, if we think of the time of a world as generated by the 
events that happen in that world, then we should expect that there can 
be worlds within the same bundle whose time structures do not 
coincide. (Recall in this connection the discussion at the end of Section 
I.1.3). On the other hand, the assumption that the worlds that make up 
a given model do not differ in their time structures has a certain 
appeal, since models become easier to handle, when they satisfy this 
condition. The situation is thus somewhat comparable to the one we 
encountered in connection with the semantics for modal and tense 
predicate logic. There we observed that there was no reason to assume 
that the universes of the different worlds in a model are the same, but 
adopted a construction which nevertheless enabled us to get by with 
that assumption. Here the problem is less dramatic: the technical 
inconveniences that come with assuming that time may vary from 
world to world aren’t as big as they are in connection with 
quantification, while on the other hand adopting a single time structure 
per model doesn’t seem to lead to much of a conceptual distortion. (Not 
at least in connection with applications to the analysis of meaning, 
which are our primary concern here.) We will assume therefore that 



 65 

each of our models M comes with a single time structure T and that 
every world of M represents the unfolding of a complete history 
through T. 
 
The second point we need to clear has to do with the notion of two 
worlds coinciding up to a certain time. We will treat this notion as a 
primitive and represent it as a 3-place relation, between two worlds and 
a time. We denote this relation as “≡”, writing “w ≡t w’” to say that the 
relation holds between w, w’ and t, and pronouncing this relation as: 
“worlds w and w’ coincide (at least) up to time t”. For given t, ≡ t is an 
equivalence relation between worlds (as the paraphrase: “coincides” 
implies) and this relation becomes stricter as time goes on: when w and 
w’ coincide up to t and t’ < t, then they also coincide up to t’.  
 
There is one further issue connected with coincidence. Coincidence 
between w and w’ up to t means, we said, that at t happen and obtain in 
w (and conversely). We can see this as carrying certain implications for 
the interpretation function F of the model. Let us restrict attention just 
to the propositional case. (We won’t give a formal definition of the 
model theory for a predicate logical version of the present system, 
although this wouldn’t involve much additional effort.)  One position 
that would seem natural to adopt is that atomic expressions never 
pertain to the past or future but only to the present. More specifically, 
the atomic expressions of a propositional system, the propositional 
constants qi, should be seen as making claims about what is currently 
the case, and not about what was the case or what will be the case. On 
this assumption the interpretation function should assign each qi the 
same value at any time t’ ≤ t in two worlds w and w’ which coincide up 
to t.  
 
I have incorporated this extra assumption about the interpretations of 
atomic sentences in coinciding worlds as condition (v) into Def, 15 
below, which specifies the models for the P,F.H,G,D-system. But there is 
no need to insist on this: Whoever prefers this, can drop condition (v) 
from the definition without problematic side-effects.  
 
Def. 15 A model for the propositional system with the operators H,  
  G, P, F and D is a 4-tuple <W,<T,<>,≡,F>, such that  
 
  (i)  <T,<> is a linear frame 
  (ii)  W is a non-empty set  
  (iii)  ≡ is a 3-place relation between worlds, worlds and  
   times (≡ ⊆ W⊗W⊗T);  
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   for each t ∈ T, ≡t is an equivalence relation on W;  
   for all t, t’ ∈ T, if t < t’, then ≡t’ ⊆ ≡t. 
  (iv) F is a function which assigns, for each w ∈ W, each  
   t ∈ T and each propositional constant qi, a truth value  
   Fw,t(qi) in w at t  

(v)  for all w, w’ ∈ W, t ∈ T and propositonal constant qi, if  
 w ≡t w’, then Fw,t(qi) = Fw’,t(qi). 

 
The truth definition for the (H,G,P,F,D)-system is what the reader 
presumably expects, given all that has already been said on this score 
in the remarks leading up to Def. 15. The truth value of a formula now 
depends on both w and t. As always the truth functional connectives 
are interpreted “locally”; here that means that the truth value of, say, 
¬A in w at t depends only on the truth value of A in w at t, and so on. 
Formulas whose outer operator is a tense operator depend for their 
truth value in w at t only on the truthvalues of the argument formula at 
other times in the same world w; and finally, formulas of the form DA 
will be true in w at t iff A is true in w’ at t for all worlds w’ which 
coincide with w at t. We just give the clauses of the truth definition for 
these three cases, trusting that the reader will be able to write down the 
remaining clauses himself. 
 
Def. 16    (Fragments of the truth definition for the (H,G,P,F,D)-system) 
 
 (i) [¬A]M,w,t = 1 iff [A]M,w,t = 0 
 (ii) [PA]M,w,t = 1 iff for some t' ε T such that t’ < t, [A]M,w,t’ = 1 
 (iii) [DA]M,w,t = 1 iff for all w’ ε W such that w ≡t w’, [A]M,w’,t = 1 
 
 
One point of interest connected with the (H,G,P,F,D)-system is that here 
we have a multi-modal system, with temporal operators pointing in two 
different directions and in addition a modal operator D, whose models 
do not seem to have the form that might have been expected for such a 
system, given what we have said about multi-modal systems in I.1.3. 
The models described there are structures with a single “index set” I 
and accessibility relations on I for each of the system’s operators. 
(Recall that truth values in such models are dependent on the “indices” 
in the set I.) It is not difficult, however, to recast the models of Def. 15 
as models of such a form. Let M be a model in the sense of Def. 15 and 
let M’ be a structure derived from M as follows:  
 
 (i) We choose as index set I of M’ the cross product W⊗T; 
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(ii) The accessibility relation RF for the operators G and F is that  
  relation on I defined by:   
 
   <w,t> RF <w’,t’> iff w = w’ and t < t’;  
 
  similarly the accessibility relation RP for the operators H and  
  P is the relation defined by:  
 
   <w,t> RP <w’,t’> iff w = w’ and t > t’; 
 
 (iii) The accessibility relation RD for the operator D is the  
  relation on I defined by:   
 
   <w,t> RD <w’,t’> iff t = t’ and w ≡t w’;  
 
It is easily verified that the truth clauses for formulas of the forms GA, 
HA and DA can then be given the same form as the clause for A in our 
formulation of Kripkean semantics for modal logic in Section I.1.1. 
(Likewise, the clauses for P and F can, as we saw before, be given in the 
same form as the clause for ◊). It is also easy to see that these truth 
clauses assign to any formula A the same truth value in M’ at <w.t> that 
it gets in M in w at t.  
 
The point illustrated by the models for the (H,G,P,F,D)-system that are 
specified in Def. 15 is that it is often desirable to give the semantics for 
multi-modal systems by defining models from which accessibility 
relations for the different operators of the system can be reconstructed, 
but which at the same time impose certain constraints on those 
relations that are difficult or less natural to state when the accessibility 
relations are specified directly. One indication of the connections 
between the accessibility relations for H and D that are built into the 
models defined in Def. 15 is that formulas of the form HDA → DHA are 
valid on our semantics, while formulas of the form DHA → HDA are not. 
(Exercise: show this) 
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I.1.4  2-place Operators outside Tense Logic 
 
One of the earliest applications of modal logic outside the conceptual 
domain  of necessity and possibility was that to Deontic Logic (Von 
Wright, Hintikka, Anderson, Hansson, Aquist and others). Deontic logic 
is the logic of “ought”: of what ought to be the case, from either a moral 
or legal point of view, and also of what may be the case, in the sense of 
being permissible and of what ought not to be the case, in the sense of 
being morally wrong, or forbidden by law.  
 
Applying modal logic in this direction seems natural because the 
deontic notions just mentioned have a distinct flavour of necessity or 
possibility: what ought to be the case for moral or legal reasons is, one 
could also say, what is necessitated by moral or legal principles; and 
what is permissible can be seen as what is possible as far as such 
principles are concerned. In fact, given these suggestive parallels, it 
might be thought that all we need in order to apply the modal systems 
of sections I.1.1 and I.1.2 to these deontic notions is a special 
interpretation of the necessity and possibility operators  and ◊. We 
will follow tradition in using the symbol “O” for the deontic necessity 
operator. (“O” stands for “ought”. Sometimes “P” is used for the deontic 
possibility operator, but we won’t do this here because of the potential 
confusion with the use of P as past tense operator.)  
 
The main task that the application presents us with is the semantics for 
O. One obvious difference with necessity in the sense of Sections I.1.1 
and I.1.2 is that what ought to be the case isn’t thereby true, i.e. the 
schema OA → A should not come out as valid. (“You cannot derive “is” 
from “ought”, as the Humean slogan has it.24) This means that if we 
interpret O via an accessibility relation RO, then RO should in general 
not be reflexive. The simplest characterisation of RO – and as far as I 
know also the first to be proposed – satisfies this requirement. It rests 
on the following idea: what ought to be is what is true in those worlds 
in which everything is as it ought to be – in those worlds that are 
morally or legally perfect in that everything in them is in accordance 
with the relevant moral or legal principles. More formally, a model for 
deontic logic should now not just provide a set W of possible worlds, 
but also a subset MP of W, consisting of all those worlds in which 
everything that ought to be the case is the case. (“MP” stands for 
“morally perfect”.) MP gives us an accessibility relation RO via the 
obvious and simple definition: 
 
                                     
24  See David Hume (1711-1776), A Treatise of Human Nature.  
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(28)  for all w,w’ ∈ W, w RO w’ iff w’ ∈ MP 
 
It is easily verified from this definition that provided MP is a proper 
subset of W, RO is not reflexive on W. But otherwise the structure of RO 
is very simple: on its own co-domain (that is, on the set of those worlds 
w such that for some w’, w’ RO w) RO is the universal relation, and so a 
fortiori an equivalence relation.25 
 
Unfirtunately this semantics is too simple. Problems with deontic logic 
in this form were realised more or less instantly, and in fact go back to 
discussions that antedate the attempt to develop a logic of “ought” 
along the lines of modal logic. They arise as soon as one tries to use the 
system just described to formalise general principles, such as “Someone 
who has committed a serious crime should be punished”, or “If 
someone is in trouble, you should help him”. Let us focus on two 
instantiations of these principles, given in (29). 
 
(29) i. If Fred has committed a murder, he ought to go to jail. 
 ii. If Fred has a tumor, his tumor ought to be removed. 
  
How should such sentences, which involve both an “ought” and a 
conditional, be formalised in our system? The central issue here, it 
might be thought, is that of scope: Should “ought” be treated as having 
scope over the entire conditional or should its scope be restricted to the 
main clause (i.e. to the consequent of the conditional)? From what is 
known about the interaction between auxiliaries and if-clauses neither 
possibility can be excluded a priori, so both schemata in (30) are 
potential candidates: 
 
(30) i. O(A → B) 
 ii. A → OB 
  
But neither of these candidates stands up to scrutiny. The inadequacy 
of (30.i) is easiest to demonstrate. Consider (29.ii). The if-clause of 
(29.i) is something that itself ought not to have been the case. That is, if 
we abbreviate “Fred has committed a murder” as p1, then O ¬p1 should 
be considered true. However, it is easy to verify from the semantics of O 
that if A logically entails B, then OA logically entails OB. Note, however 
that because of the truth-functional properties of →, ¬p1 logically 

                                     
25  This means that if S is any valid schema of S5, then OS is a valid schema of 
Deontic Logic with the given MP-based semantics; and conversely. (Exercise: Show this, 
using the fact that the valid schemata of S5 are those which are valid in all models in 
which the accessibility relation R is an equivalence relation) 
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entails p1 → B for any B whatever. So O ¬p1 entails O(p1 → B) for any B 
whatever. Suppose now that we abbreviate the main clause of (29.i) 
without “ought”, i.e. “Fred goes to jail”, as q1 and  formalise (29.i) as an 
instance of (30.i), i.e. as O(p1 → q1). This clearly doesn’t catch what 
(29.i) wants to express. For given that O ¬p1, the formula O(p1 → ¬ q1), 
which says that if Fred has committed a murder, he should not go to 
jail, will be just as true as O(p1 → q1). Obviously this is not what we 
want. 
 
In the light of this argument we may conclude that (30.i) is in general 
too weak to capture correctly what is expressed by conditionals like 
those in (29). With (30.ii) we have a different problem – in a certain 
sense it is too strong. We can see what this problem is by having a 
closer look at (29.ii). In (29.ii) the proposition q2 that is expressed by 
the main clause without “ought” (i.e. the proposition that Fred’s tumor 
is removed) entails the proposition p2 expressed by the if-clause (i.e. 
the proposition that Fred has a tumor): you can only remove a tumor 
from someone if he has one.  Note that it folllows straightforwardly 
from the semantics we have chosen for O that for arbitrary A and B, if A 
entails B, then OA entails OB.26 So we can conclude that Op2 entails Oq2. 
But that means that if we adopt the instance p2 → Oq2 of (30.ii) as 
formalisation of (29.ii), then we also get p2 → Op2, which says that if 
Fred has a tumor, then he ought to have a tumor. This statement seems 
to express some sort of moral fatalism: everything that happens is 
morally right, because otherwise it wouldn’t have happened. (For 
instance, because otherwise God, who knows everything and decides 
everything, would not have allowed it to happen). This position may 
not be exactly inconsistent – there appear to be people who hold such 
beliefs about right and wrong – but it certainly isn’t something that 
should be imposed upon us by mere logic. 
 
We have only looked at the two most obvious candidates for the 
formalisation of conditionals like those in (29). So, just showing both of 
these to be unsatisfactory is no proof that the present system of deontic 
logic is altogether incapable of providing adequate formalisations for 
such conditionals. But in fact, the difficulties we have discovered in 
                                     
26  Recall that in the weakest of the modal systems that were listed in Section I.1, 
viz. the system K, the following schema is valid: (i)  (A → B) → ( A →  B): 
moreover, from the validity of A → B we can infer in K the validity of  (A → B). And 
finally, it follows from the fact that A entails B that A → B is valid. But, obviously, 
everything that holds in K also holds for our present semantics for O, since the valid 
principles of K are entirely neutral with regard to the structure of the accessibilty 
relation R. 
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discussing these two options point us to the real source of the trouble. 
Morality and the law aren’t only about the distinction between the 
worlds that are morally or legally perfect and all the other, more or less 
imperfect worlds; they are also, and crucially, about what can and 
should be done in worlds that are corrupted by earlier transgressions of 
moral or legal principles, but which we should nevertheless endeavour 
to make or keep as good as circumstances permit. In particular, we 
want a semantics that allows for the comparison – from a moral or a 
legal point of view - of worlds w and w’ both of which are tainted with 
things forbidden or reprehensible. For even for two such worlds it is 
often intuitively clear which one is the morally or legally better one. In 
a nutshell, two sins are worse than one. The semantics for O should be 
sensitive to such distinctions. 
 
One way in which we can formulate such a more sensitive semantics for 
O makes use of the model theory for the multi-modal system of the last 
section. Note that both conditionals in (29) talk about what should be 
done once something else has occurred. That something else may be 
deplorable, but it cannot be undone - it is, in the terminology of the last 
section, “determinate”. But that doesn’t make the question how the 
world should be made to continue now, at the time t that that 
something else has become a fact, any less urgent. And as a rule there is 
some answer to that question: Some continuations of the world after t 
are morally or legally preferable to certain others.  
 
One way to model this distinction between good and bad continuations 
of a given world from a certain time t onwards is to enrich the models 
of Def. 15 with a function PREF, which maps each pair consisting of a 
world w and time t onto some subset PREF (w,t) of the set PC(w,t) =  
{w’: w ≡t w’} of all possible continutations of w after t. (PREF should of 
course be invariant with respect to the relation ≡t; that is, we have in 
general: if w ≡t w’, then PREF (w,t) = PREF (w’,t).) We can then define the 
semantics of O by means of the clause (31): 
 
(31)  [OA]M,w,t = 1 iff for all w’ ε PREF(w,t), [A]M,w’,t = 1 
 
In this system the conditionals in (29) can be formalised as in (32): 
 
(32)  i. Dp1 → OFq1 
  ii. Dp2 → OFq2 
 
In plain words (32.ii) says that if p1 is determinately true in w at t, then 
the morally/legally right continuations of w after t are those in which 
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q1 is true at some time t’ > t. For instance, if the murder has been 
committed at t, then it is morally/legally necessary for the murderer to 
go to jail at some time t’ after t. Likewise for (29,i).27 
 
The embedding of the “ought” operator O within the multi-modal 
(P,F,H,G,D)-system requires us to be specific about the temporal aspects 
of the ought-sentences which we want to represent. To some this might 
seem an unnecessary complication. But the temporal dimension is 
crucial to our understanding of many deontic and other conditionals. 
Therefore, being forced to represent this aspect of conditionals 
explicitly often helps us to understand better what they really mean, 
and what seemed to be a mere nuisance at first proves to be a blessing 
in disguise in the end. 
 
Although this approach, in which deontic operators are added to the 
multi-modal system of the last section, appears to be very natural, we 
will not pursue this possibility any further here. 
 

                                     
27   
General principles, such as that murderers must go to jail and tumors must be 
removed can then be represented by formulas in which the schema of (32)  is 
embedded within the scope of an operator saying “it is always the case that”. To 
formulate general principles like “If someone commits a murder he should go to jail.” 
we need more than just a system of propositional multi-modal logic, however. For 
such principles typically involve not only universal quantification over times (which 
we can express with the help of tense operators) but also over entities of other sorts. 
For instance, the general principle just mentioned intuitively involves universal 
quantification over whoever committed a murder and should be sent to jail. (That 
universal quantification can be expressed with the help of someone in such sentences 
is an intriguing fact of natural languages like English, to which we drew attention in 
the introduction and which we will consider in detail in Part II. Here we will just 
assume that someone acts as a universal qunatifier with scope over the entire 
conditional which binds he as a kind of bound variable.) So we would need a 
predicate logic version of the propositional system with P,F,H,G,D and O defined in 
the last section. Given what has been said in earlier sections about the “upscaling” of 
propositional modal systems to systems of predicate logic, defining such a version 
would at this point not pose any particular problems. We won’t go into the details of 
this, however, and simply assume that a predicate logic version of the (P,F,H,G,D,O)-
system is in place.  
In such a ssytem we can represent the general principle mentioned above as: 
 
 A(∀x)(D(P(x) →OFQ(x)), 
 
where P(x) stands for “x has committed a murder”, Q(x) for “x goes to jail” and for 
any B “AB” is an abbreviation for “HB & B & GB”. Thus “AB” can be read as “It is, 
always has been and always will be the case that B”. 
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Those involved in the early development of deontic logic had a 
different reaction to the problems connected with the 1-place operator 
O that we have just drawn attention to. It is this reaction that motivates 
including this discussion of deontic logic in these notes.  
 
The reaction can be summarised as follows: The problem with using the 
1-place operator O in representing deontic conditionals like those in 
(29) is that it presupposes that the deontic dimension and the 
conditional aspect of such sentences can be separated. But that is not 
so. Sentences like those im (29) express connections between if-clause 
proposition and main clause proposition in which the conditional and 
the modal aspect form a single, indivisible semantic whole. To do 
justice to this it is necessary to represent these two meaning aspects 
with the help of a single 2-place operator - a “deontic conditional 
connective” - whose semantics captures the way in which conditionality 
and deontic modality are bound together. (The graphics of the symbol 
“O⇒” that is commonly used to represent this operator are designed to 
bring out the inseparability of these two aspects.)  
 
Using the operator O⇒, the sentences in (29) can be represented as  
p1 O⇒ q1 and p2 O⇒ q2, respectively. But what should we take these 
formulas to mean? The answer is contained in the following semantic 
intuition:  
 
 A O⇒ B should count as true provided among the worlds in which  
 A is true, those in which B is true are on the whole preferable to  
 those in which B is false.   
 
But this is still quite informal an vague. Puzzling may seem in particular 
what could be meant by the phrase “on the whole preferable” – why 
add this qualification “on the whole””?. 

 
The reason for adding the qualification is the following. It would be 
nice if we could state the truth consitions of A O⇒ B in as simple a form 
as that in (33). 
 
(33) A O⇒ B is true iff any A-world (i.e. world in which A is true) that  
 is also a B-world is preferable to any A-world which is a ¬B-world.  

 
But it is easy to see that (33) cannot be right. A holocaust world in 
which our murderer Fred is sent to jail is surely not to be preferred to a 
world where Fred doesn’t go to jail and where there is no holocaust.  
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One way to deal with this complication is to assume that it is possible to 
compare worlds according to their moral or legal soundness over all. 
Suppose that we have a relation ≥ which does this – i.e. w ≥ w’ means 
that w is (morally, or legally) preferable to w’ over-all.  We can then 
define A O⇒ B as true if, roughly, for every A world that is a ¬B-world 
there is an A world that is a B-world and that is preferable to it. There 
can still be some argument over the exact formulation of this last 
condition. But a widely used form is that in (34), which articulates the 
truth conditions for A O⇒ B in the model-theoretic formal that we have 
been using throughout. 
 
(34) [A O⇒ B]M,w = 1 iff (i) (∀w’ ∈ W)(([A]M,w’ = 1 & [B]M,w’ = 0) →  

(∃w’’)(w’’ ≥ w’ & [A]M,w’ = 1 & [B]M,w’ = 1)) 
     & 
 

       (ii) (∃w’’ ∈ W)([A]M,w’ = 1 & [B]M,w’ = 1 &   
                ¬(∃w’’)(w’ ≥ w’’ & [A]M,w’ = 1 & [B]M,w’ = 0))  

 
(In words: A O⇒ B is true in M at w iff (i) for every A-world that is not a 
B-world there is an A-world that is a B-world and that is at least as good 
as the first, and (ii) there are A-worlds that are B-worlds and that are 
better than any A-world that is not a B-world.) 
 
Where, you may ask, does the relation ≥ come from? Is there any way in which it can 
be defined or explained in terms of notions more immediately connected with 
morality or the law? This is a difficult question to which a fully satisfactory answer is 
still outstanding. Consider over-all legal preferability. If w is preferable to w’ in this 
sense then this should have to do with there being fewer violations of the law in w 
than there are in w’. But it cannot be just the number of violations, the gravity of the 
individual transgressions must count for something too. Even a hundred parking 
violations cannot outweigh a single case of causing death through reckless driving. 
And other factors may play a part in the comparison too. How is one to compare a 
world in which there is one brief explove spell of violations of the law with one with a 
modest but steady trickle of violations? And should the distribution of violations over 
the population at large also count for something? The more you think of it, the more 
difficult it seems to come up with some kind of formula for relating over-all 
preferability to the way in and degree to which the law is being observed.  
 
The notion of moral over-all preferability is even more problematic, for here there is 
an additional problem with the notion of a fixed well-defined set of moral rules. That 
moral perfection consists merely in “never doing anything wrong” is one conception 
of morality, but for many of us it is neither very plausible nor very “likable”. The 
history of ehtics is marked by a remarkable variety of quite different conceptions of 
what constitutes morality. One that is very different from the rule-based conception, 
according to which moral behaviour is just a matter of staing within a well-defined 
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moral code, is Benthamist Utilitarianism.28 According to this conception a course of 
action is moral provided it produces the greatest amount of happiness and least 
amount of pain over-all (“the greatest happiness for the largest number”). Bentham 
thought of ethics as a kind of calculus which would enable us to compute the 
happiness resulting for each of us from a given course of action, and actions could 
then be compared according to how much happiness (and how little pain) they would 
cause. To the extent that such calculations are possible at all, one could imagine it to 
then also be possible to calculate the aggregate happiness of an entire world.´, and 
them compare worlds in terms of their over-all happiuness values. But, of course, 
except for some applications in the domain of public policy (some of which were of 
the first importance in his own day), Bentham’s idea of putting numbers on states or 
feelings of happiness are really quite cookie, and it has been a long time since anyone 
took it seriously.  
 
But then, what measure should be applied in comparing the over-all moral goodness 
of two worlds? Nobody really knows. However, in spite of this deontic logicians have 
been ready to assume that relations ≥ do exist, in terms of which the truth conditions 
for A O⇒ B can be given along the lines of a condition like (34). 
 
(34) is one way to spell out the semantics of O⇒. But it is only one of 
several variations that can be found in the literature. (Different 
variations typically give rise to somewhat different logics for O⇒, but 
that need not be our concern here.)  Moreover, the literature contains 
many other examples of 2-place modal operators (not necessarily 
deontic), whose semantics is roughly comparable to that of O⇒. Among 
those to whom we owe much of our knowledge and understanding of 
such operators should be mentioned in particular David K. Lewis 
(Lewis, 1973) and Angelika Kratzer (Kratzer, 1978,1979,1981).  Kratzer 
developed in her doctoral dissertation a general account of the 
semantic relations which in languages like English and her native 
German (on which her early work is strongly focused) are expressed by 
combinations of modal auxiliaries and if-clauses (as in the sentences in 
(29)). Different auxiliaries, as well as different interpretations for one 
and the same auxiliary, give rise to different operators.  
 
Kratzer’s semantics for such operators involves two separate 
components: 
 
(i)  the modal base. This is the set of possible worlds that are 
consistent with all that is taken for granted in the context in which a 
given conditional is being used; worlds not belonging to this set are 
worlds that are simply not considered in the given context. (Examples 
of worlds that are excluded from most contexts would be “outlandish” 

                                     
28  Jeremy Bentham (17??, 18??) English philosopher and the father of so-called 
Utilitarianism in ethics, in which the moral optimum bonum is equated with “the 
greatest amount of happiness for the largest number”. 
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worlds in which, say, the laws of nature fail, or fairy tale worlds in 
which there are talking cats or gigantic caterpillars, or worlds in which 
Paris is situated in the English Midlands, or (pointing ahead to the next 
section) in which Bamberg is part of Saxony. But often the context will 
exclude many more worlds, so that the modal base may be quite 
restricted.) 
 
(ii)  the ordering source. The ordering source determines which 
worlds count as preferable to which others for the evaluation of the 
particular operator in question. This means that the ordering source 
varies as a function of the kind of modality that is involved, even within 
one and the same speech context. For example, legal “ought” and moral 
“ought” correspond to different ordering sources. (The first, as we saw, 
compares worlds according to their moral soundness, while the second 
compares them in terms of number and seriousness of violations of the 
law.)  But Kratzer’s theory is designed to cover not only moral and legal 
modalities, but also modalities of altogether different types, such as for 
instance epistemic modalities, illustrated by a sentence like the 
following: 
 
(35) “If Fred invested heavily in London real estate in the nineties, he  
 ought to have made a lot of money.” 
 
In (35) “ought” doesn’t have an ethical or legal connotation, but serves 
merely to indicate that the consequent may be inferred from the 
antecedent on the basis of general knowledge the speaker presupposes - 
here: knowledge about the development of the real estate market in 
London since the nineties. (Issues related to the epistemic use of modal 
auxiliaries will be discussed in the next section.)  
 
Modal base and ordering source can be used to state the truth 
conditions for the different modalised conditional operators, using 
definitions of the form (34) (or some variant of it). In (34) the modal 
base was not mentioned explicitly, but we can think of it as present 
implicitly, viz. as the field of the relation ≥.29 However, as Kratzer has 
argued convincingly, there are good reasons for keeping modal base 
and ordering source apart. For instance, speakers often use deontic and 
epistemic conditionals in the same context; in such situations the two 
conditionals will typically involve the same modal base, but different 
ordering sources (a deontic and an epistemic ordering source, 
respectively). 
                                     
29  The field of a 2-place relation R is the set of all those entities which occur 
either as first or as second terms of R: field(R) = {u: (∃u’)(uRu’ v u’Ru)}. So the field of 
≥ is the set field(≥) = {w ∈ W: (∃w’ ∈ W)(w ≥ w’ v w’ ≥ w)}. 
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I.1.4.1  Alethic Conditionals 
 
In this final section of our survey of structure and applications of 
modal logic we return to its original application domain, that of the 
notions of necessity and possibility, in the more specific sense of what 
is necessarily or possibly true. In other words, the concepts at issue are 
once more those that occupied us in Sections I.1.1 and I.1.2. 
 
The sytems of modal logic we looked at in Sections I.1.1 and I.1.2 had 1-
place operators,  for “necessarily” and ◊ for “possibly”. In Section I.1.3 
we moved to a different application domain for modal logic systems, in 
which times play the part that was previously played by possible 
worlds. Instead of the modal operators of the first two sections the 
operators we were now dealing with and the logical systems of which 
those operators were the distinctive constituents were suitably called 
“tense operators “ and “tense logics”. We noted that the sytems of tense 
logic which could be obtained in this way cannot express many 
temporal relations between propositions that one would want to be 
within the scope of such a system, and that - we simply stated but did 
not prove this - no addition of further 1-place operators can close this 
gap. This led us to the introduction of the 2-place tense operators S and 
U. In the last section we then reported on the use of 2-place operators 
in another application domain than that of tense logic, that of the 
deontic modalities.   
 
In this section we will be looking at some of the arguments that suggest 
that 2-place operators are needed also in the domain of the alethic 
modalities, i.e. the modalities of being possibly and necessarily true. In 
fact we will be doing more than that. In introductions to formal logic it 
is not uncommon for students to be brow-beaten into accepting that the 
if.., then..-sentences of natural language can, without serious loss or 
danger, be treated as material conditionals. We will begin by looking at 
some of the pros and cons of this claim. After concluding that the 
“material conditional” analysis of natural language conditionals isn’t 
tenable after all, we will then move on to an argument that the 
conditionals of natural languages cannot be analysed either as strict 
conditionals (i.e. as having the logical form (A → B)), but that their 
logical form requires a 2-place modal operator, which we will represent 
as ⇒. 
 
There is a long-standing debate, going back to antiquity, whether 
natural language conditionals – and prominently among them those 
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epxressed by if.., then..-sentences - are truth-functional, i.e. whether 
their truth conditions are those of the material conditional, stated once 
more explicitly in (36)  
 
(36) an if.., then..-sentence is false when its antecedent is true and its 
 consequent is false, and it is true in all other cases; and that is all 
 there is to its truth conditions.  
 
On the face of it (36) seems very implausible. Consider for instance the 
conditionals in (37). 
 
(37) i. If Mary is in Bamberg, then she is in Bavaria. 
 ii. If Mary is in Bamberg, then she is in Saxony. 
 iii. If Mary is in Bamberg, then Liverpool just won against   
  Chelsea. 
 
(37.i) seems plainly true. Bamberg is part of Bavaria, So if anyone is in 
Bamberg, she is ipso facto in Bavaria, she can’t possibly fail to be in 
Bavaria. And this consideration is independent of whether Mary is 
actually in Bamberg or not. It only excludes the possibility that she 
would be Bamberg without being in Bavaria. By much the same token 
(37.ii) seems false. Bamberg is not in Saxony, so by being in Bamberg 
Mary would not be in Saxony. If as it happens, Mary is not in Bamberg, 
that, we feel, doesn’t make (37.ii) any better. It still seems just as false, 
even though as a material conditional it ought to be true in this case, 
given that its antecedent is false.  
 
(37.iii) illustrates the same point from a slightly different angle. If you 
hear me say this sentence out of the blue, you may wonder what I am 
talking about. You may be groping for a story that could account for my 
making such a statement: Perhaps Mary belongs to a German fan club 
of Liverpool FC which has made it a habit to congregate in Bamberg for 
a joint celebration each time their club has scored an important win. 
Not frightfully plausible perhaps, but when you hear something like 
(37.iii) you feel some pressure to look for sómething that enables you 
to make sense of it. Or perhaps you won’t come up with anything 
plausible and you suspend judgement, hoping that some explanation 
will be forthcoming.  
 
Suppose now that the day after my statement of (37.iii), when the facts 
are in – Mary wasn’t in Bamberg the day before, and Liverpool lost – 
you ask me what I really had in mind when I made my statement the 
previous day and suppose I reply by saying: “Well, I wanted to tell you 
something that was true and that you didn’t know. And, indeed, that is 
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what I did. I did tell you something that you didn’t know at the time 
and what I said wás true, wasn’t it. For Mary wasn’t in Bamberg 
yesterday.” That wouldn’t be a very satisfactory answer, and you could 
rightly accuse me of avoiding the issue. 
 
Such considerations seem to suggest strongly that the content of 
conditionals like those in (37) is not that of the material conditional. 
However, the matter is not quite as straightforward as that.  That it isn’t 
was pointed out in the nineteen fifties by Paul Grice (), in one of his 
first attempts at what developed gradually into his Theory of 
Conversation (the name under which Grice’s theory is now generally 
known). The argumentation strategy of Grice’s Theory of Conversation 
can be applied to a broad spectrum of issues in the theory of meaning. 
But here we will only be concerned with the possibility of applying it to 
the semantics of conditionals.  
 
The argument begins by conceding that, typically, when a speaker 
makes a statement of the form “if A, then B”, she does so because she 
perceives a certain systematic connection between the truth conditions 
of A and those of B. That connection excludes the possibility that A 
would be true without B being true as well. The connection should be 
one that is independent of the actual truth values of A and B; it should 
not only exclude the possibility that A is true and B false for the actual 
world, but for a whole range of alternative possible worlds. Moreover, it 
is not just that the speaker herself will perceive such a connection, by 
stating “if A, then B”, she will convey that there is such a connection 
also to her audience.  
 
This much is in agreement with the observations we made in relation to 
our conditionals in (37). But now comes Grice’s point. We can explain 
all this, he argues, on the simple assumption that the truth conditions 
of “if A, then B” are those of the material conditional A → B, provided 
we also take into account certain “principles of conversation”– 
principles that govern the proper use of language in communication, or 
“conversation”. Suppose that in a given conversational situation a 
speaker knows the truth value of either A or B, and that this truth value 
is compatible with the material conditional A → B; that is, the speaker 
knows that A is false or she knows that B is true, or perhaps she knows 
even more – that A and B are both false, or that A and B are both true, 
or that B is true while A is false. In each of these situations the speaker 
could have made a stronger statement by just asserting what is the case 
concerning A and/or B – e.g. by saying “not-A”, or by saying “B”, and so 
on – than she would have been making had she uttered the conditional 
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“if A, then B”. (At least this is so on the assumption that the truth 
conditions of “if A, then B” are the same as those of  
A → B.) So, according to one of the principles of conversation, 
according to which a speaker who makes an assertion should be as 
informative as she can be, the speaker should have made a direct 
statement about the truth value of either A or B (or both), rather than 
using the less informative conditional.  
 
That leaves as the only occasions on which the conditional can be 
properly used those in which the speaker doesn’t know of either A or B 
whether or not it is actually true. But on such an occasion the only 
grounds she can possibly have for assuming the conditional to be true, 
is that there is some systematic connection between A and B, which 
excludes the possibility that the second is false while the first is true. 
Only when all these conditions – no knowledge of the actual truth 
values of A and B combined with knowledge of some systematic 
connection between their possible truth values - are fulfilled, the 
argument concludes, will the speaker be entitled to assert the 
conditional.30 This explains on the one hand why those who assert 
conditionals must assume there to be some systematic connection 
between antecedent and consequent. And it also explains why the 
recipient of a statement of the form “if A, then B” will typically infer 
that there must be a systematic connection between A and B. For 
normally recipients assume that speakers abide by the principles of 
proper conversation. And if the speaker who stated “if A, then B” has 
done that, then it follows that (at least as far as the speaker can see) 
such a connection exists. 
 
The general upshot of this argument is methodological: Even on the 
simple assumption that if.., then..-statements have the content of 
material conditionals, the same observations about the implications 
carried by such statements can be accounted for. But then it is 
preferable to stick to this simple hypothesis about the meaning of “if A, 

                                     
30  One implication of this is that when a speaker makes a legitimate utterance of a 
conditional, she will typically say less than she could say so long as she doesn’t make 
the systematic connection she perceives between A and B explicit. But that is a quite 
general feature of verbal communication: We make an additional verbal effort to 
convey additional information only when we think that that additional information is 
relevant to what we are saying, or useful to the recipient, and we have reason to think 
that the recipient wouldn’t be able to infer that information from what we have said 
already. Note that this observation does not conradict the Gricean principle invoked 
in the text. There the issue is between the assertion of the weaker and at the same 
time longer and syntactically more complex conditional “if A, then B” on the one hand 
and the simpler and logically stronger “not-A” (or “B”, as the case may be) on the 
other. 
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then B”.  A particularly attractive feature of this hypothesis, moreover, 
is that it narrows the gap between natural language and classical 
logic.31 
 
Grice’s strategy is ingenious and appealing (especially to those who 
believe that there is an important place for formal logic in the analysis 
of meaning), and in the course of the fifty years that have passed since 
his first proposals along these lines, it has become an essential tool in 
the theorising about meaning in natural language and in particular 
about the relation between semantics and pragmatics. But, alas, its 
application to the semantics of if.., then..-statements is one that does 
not stand up to closer scrutiny - not at least when is taken as a general 
account of such statements. Among the cases that tell most strongly 
against the “material conditional” analysis of if.., then..-statements are 
so-called counterfactual conditionals – conditional sentences like those 
in (38), whose if-clause is in the past perfect and main clause in the 
future perfect of the past (the form would have + past participle). 
 
 (38) i. If Maria had been in Bamberg, she would have been in  
  Bavaria. 
 ii. If Maria had been in Bamberg, she would have been in  
  Saxony. 
 iii. If Fred had taken a train after two o’ clock, he wouldn’t have  
  been in time for the meeting. 
 
Such conditionals are called “counterfactuals” because they imply that 
their antecedent and consequent are both false: You are not supposed 
to use this form unless you know this to be so.32  Moreover, in many 

                                     
31  Grice’s Theory of Conversation, of which this application to the semantics and 
pragmatics of conditionals was one of the first manifestations, arose within a 
philosophical climate (that of Oxford University in the nineteen fifties and sixties) 
which was on the whole quite hostile to formal logic as a tool of philosophical analysis 
and skeptical about its usefulnesss as a tool in the analysis of meaning. Grice’s theory 
aimed at debunking some of the arguments that were put forward to show that 
meaning in natural language is organised along lines that are different from those 
that govern the semantics of formal languages like the predicate calculus. One of the 
arguments was that conditionals in natural language function in an entirely different 
way from the material conditional in classical logic. 
32  There are some variants of this sentence pattern which only entail falsity of the 
antecedent. An example is the sentence: “Even if Fred had taken a train between one 
and two, he wouldn’t have been on time.”, which could be said by someone who 
knows that Fred wasn’t on time in actual fact. The “even” of this sentence turns the 
implication concerning the main clause around: The sentence implies that it is being 
used in a context in which it is assumed that the main clause is true under conditions 
which differ from those that are described by the sentence’s if-clause. (These may be 



 82 

situations in which a counterfactual is used, the speaker not only knows 
about the falsity of antecedent and consequent herself, but also knows 
or assumes that this information is available to the addressee. Given 
that this is so, the “Gricean” argument we have run through cannot be 
right. For if it were, then counterfactual conditionals of the form “if it 
had been the case that A, then it would have been the case that B” 
could never be used correctly. As we have just seen, their correct use 
requires the speaker to be aware that A and B are false. But then, 
according to the Gricean argument, the speaker would have been in a 
position to make the “stronger” assertion “not A and not B” (or simply 
“not A”), and so she should have made that statement - rather than the 
conditional, which according to the Gricean assumption expresses the 
weaker proposition “not A or B” (i.e. the one expressed by the material 
conditional). In fact, in those cases where the speaker also assumes that 
the addressee knows that A and B are false, the use of the 
counterfactual would be even more absurd: If all the counterfactual 
meant was that not A or B and if the addressee already knows that not 
A, then the statement of the counterfactual conditional would not 
provide him with any new infromation at all, and so would have been 
pointless. 
 
To summarise: on the Gricean account of conditonals sketched out 
above there could be no occasions for the poper use of counterfactual 
conditionals. But that is of course nonsense.  People do use 
counterfactuals and normally our uses of them seem perfectly 
legitimate and above board. Moreover, when we reflect on the typical 
uses of counterfactuals the impression that they do express some 
systematic connections between antecedent and consequent becomes 
compelling.  
 
Perhaps the most prominent use for conditionals like those in (38) is 
that where we look back in time to a point t when a certain decision was 
still to be made that could have been made differently, or where 
something was about to happen which might also not have happened, 
and where we contemplate what would have followed in case things had 
been different in a certain way from that time onwards. In such a 
situation it is not just that we must, in order to be in a position to make 
the counterfactual claim “if it had been the case that A, then it would 
have been the case that B”, know something about the power of A to 
carry with it the truth of B (given what had been the case in the given 
world w up to time t); the claim we make can only be understood as a 

                                                                                                                 
either the actual conditions, or else conditions that were just mentioned by another 
speaker, as when the present sentence is uttered in reaction to (38.iii).)  
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claim about worlds other than w; for it is on those non-actual worlds 
that our attention is focussed and about which the counterfactual claim 
is meant to make a statement.  
 
Once we have become persuaded that counterfactual conditionals 
cannot be analysed as material conditionals, the Gricean story looks 
more suspect also in relation to non-counterfactual conditionals, such 
as the indicative conditionals in (37) or subjunctive conditionals like 
those in (39).33 
 
(39) i. If Mary were in Bamberg, then she would be in Bavaria. 
 ii. If Mary were in Bamberg, then she would be in Saxony. 
 iii. If Fred were to take a train after two o’ clock, he wouldn’t 
  be in time for the meeting. 
 
Arguing that such conditionals must also be understood as claims that 
the truth of A carries with it the truth of B in a range of different 
possible worlds isn’t quite as straightforward as it is for counterfactuals. 
But once the point has been made for counterfactuals, maintaining that 
conditionals that are not strictly counterfactual have the semantics of 
material conditionals becomes an uphill battle. What speaks for a 
uniform (and thus, given what has already been establsihed at this 
point, non-truthfunctional) analysis of counterfactual and non-
counterfactual conditionals is that by and large both kinds of 
conditional – the non-counterfactual as well as the counterfactual - are 
used to more or less the same ends. Consider for instance the 
conditionals in (39). One of their main functions is to give expression to 
our thoughts when we are making plans, in order to realise the goals we 
want to pursue.  When we are engaged in planning, we rely on our 
kowledge of what kinds of effects are likely to be brought about by 
what kinds of actions, and under what circumstances. Such connections 
between actions and their effects are naturally expressed by 
conditionals in which the effect is stated in the consequent while the 
action, possibly in conjunction with some of the relevant circumstances, 
is stated in the antecedent. The conditionals used in the context of 
planning aren’t – and shouldn’t be – counterfactual, since the question 
whether the contemplated action will actually be performed is typically 
still undecided. That is what distinguishes the conditonals in (37) and 

                                     
33  Other combinations of tenses in if-clause and main clause are possible as well, 
but here I have only listed those that seem most relevant in connection with our 
present concerns. 
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(39) from those in (38). None of the conditionals in (37) and (39) 
entails the falsity of either antecedent or consequent.34 
 
Assuming that the truth conditions of sentences of the form if A, then B 
- all of them or most of them - are not those of the material conditional 
A → B, then what are they? To explore this question a bit more closely, 
let us return to what we said about the claim that a counterfactual can 
be used to make about non-actual contininuations of the world w after 
some past time t. (What we will be saying about this case can be easily 
adapted without so that it applies to other uses of counterfactual and 
non-counterfactual conditionals, but we will not go into that matter 
here, and simply proceed on the assumption that such an adaptation is 
possible.) At least for uses of this kind we can restate what we said 
about the content of the counterfactual if it had been the case that A, 
then it would have been the case that B in a way that still allows the 
material conditional A → B to play a certain role: 
 
(40) if it had been the case that A, then it would have been the case  
 that B is true in w iff for all the continuations w’ of w after t,  
 A → B is true in w’. 
 
(The relation between (40) and our earlier description of the semantic 
contribution made by the counterfactual should be obvious: There are 
two kinds of continuations of w after t, those in which A is false, among 
which is w itself, and those in which A is true. It is about the latter that 
the counterfactual makes a claim directly, viz. that they also verify B. 
The material conditional A → B sets the continuations of the first kind 
aside, while securing the substantial claim that the conditional makes  
about the worlds of the second kind.) 
 
In the light of (40) it might be thought that all that we need in order to 
represent counterfactuals and other non-material conditionals is 
already present in the modal systems of Sections I.1.1 and I.1.2. We can 
represent the counterfactual conditional if it had been the case that A, 
then it would have been the case that B as in (41) and our only 
remaining task will be to make sure that the necessity operator gets the 
intuitively correct interpretation.  
 

                                     
34  There seems to be a certain tendency for subjunctive conditionals like those in 
(39) to give more prominence to the possibility that the antecedent is false, and to 
some extent also to the falsity of the consequent being false more prominent than in 
the case of indicative conditionals. But the difference between such conditionals and 
indicative conditionals of the sort found in (37) is subtle, and we won’t try to get to 
the bottom of what if any the difference is. 
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 (41)  (A → B) 
 
Indeed, once the right set W’ of relevant worlds has been determined, 
we can cast our analysis in the exact form of a necessity operator in the 
sense of Section I.1.1 be defining the accessibility relation R for the  of 
(41) by:  
 
(42)  For any w, w’ ∈ W, w R w’ iff w’ ∈ W’. 
 
(For the case we have been discussing, where W’ is the set of 
continuations of w after t, this would make R into the relation ≤t.)35 
 
Conditionals whose logical form is that in (41) are often referred to as 
strict conditionals. Thus the claim that natural language conditionals 
can be represented in this from can be rephrased as “natural language 
conditionals are strcit conditionals”. If this was all that needed to be 
said, then we could stop here: Conditionals in natural language are 
strict conditionals and the logical machinery to deal with those is 
already in place; end of story.  
 
But can this be the end of the story? At the very least one would expect 
from such an account something about how the world set W’ 
throughout which A → B must be true is determined. Or, to put it in 
slightly different terms: Suppose that C is the conditional which is to be 
analysed as a strict conditional C(A → B), where C is the necessity 
operator that must hold throughout a world set WC in order that C be 
true. How does the set WC depend on C (by itself or in combination 
with certain contextual factors)? If the backtracking uses of 
counterfactual conditionals and the corresponding uses of non-
counterfactuals in planning contexts were the only ones that we needed 
to worry about, it might perhaps be possible to come up with a 
systematic answer to this question. Consider again the case of a 
counterfactual conditional if it had been the case that A, then it would 
have been the case that B, where it is known that A is false.  Often A will 
make it possible to determine roughly how far back in time we must go 
to reach a point t where A was still undecided. To the extent that t can 
be determined, that then also determines, we have seen, the set WC (viz. 
as the set {w’ ∈ W: w ≤t w’}).  

                                     
35  An account of the meaning of counterfactuals would have to include also the 
preecondtiions that A, and for certain counterfactuals also B, be false. There is general 
agreement that these conditions should be seen as presuppositions for the use of  
counterfactuals. The treatment of presuppositions is a story in its own right, which 
cannot be addressed here. A few words will be said about it in Part II.  
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For planning-related uses of non-counterfactuals an interpreter is likely 
to need more contextual information to determine WC: He has to have 
an idea what the plan is in relation to which the conditional is being 
asserted and what assumptions are being made about the circumstances 
in which the plan is to be carried out. On the face of it it looks like 
more parameters are involved than in the typical backtracking cases, 
and often interpretation will be a matter of guess work. Still, in these 
cases too we can perceive some systematicity in the determination of 
WC.  
 
But these are only some of the uses of conditionals and in general the 
question how WC can be determined seems much harder. The following 
two conditionals, thought up by Quine36 for the very purpose of 
showing this, are a case in point.  
 
(43) i. If Caesar had been made commander in chief in the Korean  

war, he would have used catapults. 
 ii. If Caesar had been made commander in chief in the Korean  

war, he would have used the atom bomb. 
  
Both these conditionals seem reasonable, but each in its own way - or 
‘in its own setting’, we should perhaps say. The first is naturally 
understood as saying something about what would have happened if 
someone with the military knowledge of the first century B.C. had been 
given the command over the American troops in a war during the 
nineteen fifties. Here the relevant worlds are those in which Caesar, 
while being given the supreme command in Korea, nevertheless 
operates with a knowledge of warfare as it was practiced in his own day. 
The second conditional is different. Here the relevant possible worlds 
are worlds in which Caesar has been informed about modern weaponry, 
while having retained the single-minded ruthlessness that many 
associate with him on the basis of what is known about him through his 
own writings and those of his contemporaries. Here it is certain 
character traits that are being kept constant, not military expertise. 
Apparently, then, the two conditionals in (38) require different sets WC.  
Either conditional sounds reasonable and potentially true only if the 
right set WC is assumed.  
 

                                     
36  Willard van Orman Quine (1908-2000), one of the leading analytical 
philosophers and philosophical logicians of the 20th Century. 
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The moral of such examples is double-edged. On the one hand they 
seem to show that a simple recipe for determining the sets WC in terms 
of which they are to be evaluated is a remote possibility. But on the 
other they might also be seen as indicating that in actual practice that 
isn’t as much of a problem as might have been expected. Many 
conditionals, those in (43) among them, will sound reasonable only on 
the assumption that they are evaluated in terms of certain sets WC. A 
speaker who makes a reasonable use of such a conditional C must 
assume a context that specifies a set WC on which C is reasonable. And 
an audience that takes a speaker to say reasonable things will, when it 
hears or reads C assume that the context assumed by the speaker is 
such a context; and if all goes well, it will arrive in this way at roughly 
the same set WC that the speaker had in mind. (How interpreters 
manage to do this is is another matter; but somehow interpreters seem 
to manage quite well.)  In this way conditionals will select their own 
contexts, as it were. When they are used the user is under a general 
obligation to assume a context in which they make sense and the 
interpreter can infer this context from the assumption that the speaker 
is making sense. 
 
But that isn’t quite right. Conditionals aren’t that free in selecting their 
own contexts. Once a context has been settled on – in whatever way or 
by whatever means – then it cannot be changed at will. This appears to 
be a quite general principle, and it appears to be true in particular for 
the use of conditionals. We can appreciate this by seeing what happens 
when, say, two conditionals of the kind given in (43) are juxtaposed in 
one and the same context, as in (44). 
 
(44) If Caesar had been made commander in chief in the Korean  

war, he would have used catapults. But if he had been made chief 
commander in the Vietnam war, he would have used the atom 
bomb. 

 
You just cannot interpret this two sentence discourse as making the 
following conjunction of claims: (i) in the worlds in which Caesar was 
put in command in Korea and in which his knowledge of warfare was 
that of a Roman general in the 1st Century B.C., he deployed the 
catapult; and (ii) in the worlds in which he was put in command in 
Vietnam with his knowledge of weaponry updated to post World War II 
standards, he deployed the atom bomb. You cannot, in other words, 
evaluate the first conditonal on the assumption that its context is one 
where Caesar retains his 1st century B.C. knowledge of warfare and the 
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second conditional on the assumption that its context is one in which 
the knowledge is not preserved.37  
 
The difficulty one finds in making sense of (44) supports the more 
general observation that contexts cannot be changed without explicit 
indication that one is doing so. The speaker may have some freedom in 
choosing the context so that her claims are sensible and to expect her 
audience to follow her in this. But once the choice has been made, then 
she is bound by it; fickleness – flitting from one context to another at 
will – is something that the principles of conversation do not allow.  
 
This means in particular that conditionals do not themselves have the 
power to select their own contexts. Their evaluation depends on the 
context insofar as it depends on the set WC, and it is the context that 
provides that set. Moreover, conditionals may provide clues as to what 
the context is. But when two conditionals provide contradictory clues, 
then we are in trouble, for a single context cannot accommodate them 
both by providing two different sets WC at once.  
 
We can take the formal implications of these observations to be the 
following. Utterances are always made in a context and often the 
context is needed in some way or other to determine whether the 
utterance was true. In particular, a context c in which a conditional “if 
A, then B” is uttered will provide a world set Wc all worlds of which 
must verify the material conditional A → B. We can model this with the 
formal tools available to us if we assume that each utterance context 
determines a model Mc = <W, Rc, F>, where Rc can be thought of as 
obtained from a world set Wc via (41), and where, conversely, Wc can 
be recovered as the field of Rc. In this way we can hold on to the 
proposal that natural language conditionals have the form of strict 
conditionals c(A → B), but whose necessity operator c is context-
dependent insofar as its evaluation depends on the contextually 
determined Rc (or, equivalently, on Wc). 

                                     
37  It seems that for me personally the most plausible interpretation of (43) that 
comes to mind involves alternative worlds in which Caesar is projected into the 20th 
Century to take over the supreme command – either in Korea or in Vietnam - while on 
the one hand still much given to the 1st Century B.C. style of campaigning that he was 
so good at in his own day, but with on the other hand some vague knowledge of the 
atom bomb as a newly invented “wonder weapon”, that is to be used only as a last 
resort. Vietnam proved to be such a last resort case; Korea wan’t a catastrophe of 
quite that magnitude. But that is presumably only one of the various fantasies which 
an interpreter of (43) may be encouraged to engage in when struggling to make sense 
out of this conjunction. 
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If we could stop here, that would leave us with an account of 
conditionals that may not seem very satisfactory, but that might 
arguably be the best we can hope for. We summarise the position we 
have reached once more in terms of the following three points:  
 
 (i) Natural language conditionals are strict conditionals;  
 (ii) The set of worlds throughout which the corresponding  
  material conditional must be true varies from context to  
  context, with in some cases a possibility of determining this  
  set in terms of the conditional itself (such as in the  
  backtracking case).  
 (iii) However, contexts cannot be changed at will, without  
  explicit warning to the audience.  
 
But this too is a position that has been challenged. The challenge comes 
from conjunctions of conditionals which suggest that the context 
permits some flexibility in the choice of the set Wc after all. (45) is one 
of the examples that are often used to argue this. 
 
(45)  If Fred were to come to the party, the party would be a success. 
 But if had brought Susan along, the party would be a  

desaster. 
 

It is plain that the proposition “the party is a success” and the 
proposition “the party is a desaster” contradict each other: no party 
can be a success and a desaster all at once. We take account of this, 
while at the same time simplifying things slightly and inessentially, by 
symbolising the first proposition as q and the second as ¬q. Further, 
note that the if-clause of the second conditional is naturally understood 
as elliptic for “Fred comes to the party and brings Mary”. So, 
abbreviating “Fred comes to the party” as p and “Fred brings Mary to 
the party” as r, the full representation of the second if-clause becomes 
“p & r”. If we now represent the two conditionals in (45) according to 
the “strict conditional recipe” in (41), we get as logical form for (45) 
the formula in (46). (We have added the sibscript c to indicate that the 
necessity operator is supposed to depend on the context c.) 
 
(46) c(p → q) & c((p & r) → ¬q) 
  
But given our current assumptions this cannot be right. For note, first, 
that if there is any point in mentioning the second conditional of (45), 
the speaker must assume that there are possible worlds in  which Fred 
comes to the party and brings Mary. For otherwise the second 
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conditional would be vacuous, and there is a general conversational 
prohibition against making vacuous statements. So we may assume that 
there are some worlds in the set Wc in which p and r are both true. But 
then (46) must be false. For on the one hand the first conjunct of (46) 
requires that in all p-worlds of Wc it is the case that q, while on the 
other hand its second conjunct requires that in all (p&r)-worlds q is 
false. But those worlds are ipso facto p-worlds, so they are worlds in 
whih q is both false and true. So (46) will be false in any context which 
satisfies the preconditions for its being used reasonably. 
 
This blatantly contradicts our intuitions. Surely (46) can be used to 
make statements that are both reasonable and, to the best of our 
knowledge, true. To see what went wrong we must bring to the surface 
what this intuition rests on. 
 
That isn’t too difficult. Let us relct on what would be a natural context 
for uttering (45). In such a context the truth requirement imposed by 
its first condtional should come to something like this: Its consequent q 
(= the party was a success) should be true in the most salient (or most 
‘plausible’) worlds in which its antecedent p (= Fred comes to the party) 
is true, but not necessarily in all such worlds that the context admits; 
and the implication is that those most salient worlds in which Fred 
comes to the party are the ones in which he comes by himself. (Perhaps 
these are the most salient worlds precisely because people who invite 
Fred to their parties don’t encourage him to bring Susan, as she is such 
a notorious killjoy; so worlds in which he brings her are easily 
dismissed as unlikely or implausible, and thus as “non-salient”). On this 
assumption, then, the worlds in which Fred comes together with Susan 
will be ignored in the evaluation of the first conditional, which will 
qualify as true so long as the party is a success in the worlds in which 
Fred comes by himself. It is only when the antecedent of the second 
conditional forces us to face the non-salient possibility that Fred might 
turn up with Susan in his wake that it is no longer possible to ignore 
such worlds. And it is consistent with wat has been claimed up to that 
point (i.e. by the first conditional) that in those worlds the opposite is 
true of what holds of the more salient worlds in which Fred comes 
alone: In the salient worlds in which Fred comes to the party, i.e. in the 
worlds in which he comes on his own, we have q; but that is perfectly 
compatible with the assumption that in certain non-salient worlds in 
which he comes to the party, viz. those in which he brings Susan, q is 
false. 
 
If this analysis is on the right track, then the context doesn’t rigidly fix 
the set of worlds in terms of which conditionals are evaluated once and 
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for all. Rather, the context presents a range of different worlds some of 
which are more plausible, or salient, than others. The antecedent of a 
conditional can then select from this range the most salient worlds 
among those in which it is true. 
 
If we want to allow conditionals this much freedom to select, within the 
bounds set by the contet, the sets of worls in which the corresponding 
material conditionals are to be true, then we need an account of 
saliency: 
What exactly is saliency, in the sense relevant here, and how could it be 
captured formally? One popular proposal, which goes back to David 
Lewis and Howard Sobel38, is that saliency is a matter of how much the 
worlds in the given set - the world set Wc determined by the context c - 
resemble (in contextually relevant ways) the world in which the 
conditional is being evaluated. Lewis proposes to formalise this idea in 
terms of a 3-place relation ≤ between worlds. Predications involving this 
relation are usually represented in the form “w1 ≤w w2”, which is to be 
read as “w1 is a world that is more similar to w than w2 is”.  For given w 
the relation ≤w is assumed to be a weak linear ordering. Its field (here, 
since ≤w is assumed to be reflexive, this is simply the set  
{w’: w’ ≤w w’}) corresponds roughly to the set Wc, which we assumed as 
part of the analysis of natural language conditionals as context-
dependent strict conditionals.  
 
To formalise this idea within the general settting of our modal logic-
based analysis, we need, first of all, a more refined notion of model. 
The model Mc determined by a context c must now be assumed to 
provide us not just with a relation Rc, or with corresponding world set 
Wc, but with a pair < Wc, ≤w>, consisting of a world set Wc and a 3-
place relation ≤w on Wc of the kind just described. But that is not 
enough. At this point we can no longer assume that natural language 
conditionals have the logical form of strict conditionals. The reason is 
that the antecedent A of a conditional “if A, then B” must now be able 
to play the double role that we have already informally described: (i) 
the role of selecting from the set Wc the worlds in which the 
corresponding material conditional A  → B is to be evaluated, and (ii) 

                                     
38  The proposal to formalise natural langauge conditonals in this way was 
formulated independently and more or less simultaneously by David Lewis and 
Howard Sobel - at the time both assistant professors at UCLA - in the spring of 1967. 
The findings were reported in the same research seminar conducted by Montague, 
who summarised the results of that seminar in his paper “Pragmatics”. (See Montague, 
1974) 
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the role it plays in virtue of being the antecedent of that material 
conditional. Lewis and Sobel proposed to do justice to this double role 
of the antecedents of alethic conditionals by attributing them the same 
kind of logical form as that (A O⇒ B) which we introduced in the last 
section for deontic conditionals: alethic conditionals are represented 
with the help of a 2-place connective ⇒, whose first argument position 
covers both roles that the present analysis assigns to the antecedents of 
such conditionals. The double role of the antecedent A in formulas  
A ⇒ B is put in evidence by the truth clause for ⇒ proposed by these 
authors, a version of which is given in (47). 
 
(47) [A ⇒B]M,w = 1 iff  (i) (∀w’ ∈ Wc) [A]M,w’ = 0  

 v  
(ii) (∃w’ ∈ Wc)([A]M,w’ = 1 & 
             (∀w’’ ∈ Wc)(w’’ ≤w w’ &  

      [A]M,w’’ = 1 → [B]M,w’’ = 1)) 
 
N.B. (47) articulates the truth conditions for A ⇒B in the form of a 
disjunction. The first disjunct has been added to deal with a kind of 
degenerate case, which arises when there is no relevant world in which 
the antecedent A is true; how we handle this case is somewhat 
arbitrary, but we get a nicer logic if we assume that the conditional is 
true under those conditions, and that is the effect that the first disjunct 
of (47) achieves. But it is the second disjunct that really matters. It says 
that when there are relevant worlds in which A is true, then there is a 
relevant A-world w’ so that all A-worlds at least as close to w as w’ are 
also B-worlds. 
 
The route by which we have arrived at this final proposal, according to 
which alethic conditionals are to represented with the help of the 
operator ⇒, has been long and circuitous. If all this effort has been 
made just in order to present one further example of a 2-place modal 
operator, was that really worth it? Probably not. But just adding 
annother 2-place operator to our inventory wasn’t the only point of this 
excursion. Conditionals are a topic of prime importance in their own 
right, and they will play a crucial role in Part II. When we return to the 
topic there, that which has been said in this section will serve us as a 
useful starting platform.  
 
It might be added that there are few topics in the theory of language 
and logic that have had as much attention, and from as great a 
diversity of different perspectives as conditionals. On the one hand this 
is because conditionals play a central role in the theory of inference, 
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and at the same time a role that is highly controversial. Those who 
investigate conditionals from this angle aren’t even agreed on what 
sorts of things they really are: Some think of them as statements, which 
have a propositional content in virtue of which they are either true or 
false (much as we have assumed in what has been said in this section).  
Others think of them instead as inference rules, which may be used to 
deduce conclusions from premises in languages that themselves may 
lack conditionals among their grammatical constructs.  
 
These concerns can be distinguished from the principal interest that 
the topic of conditionals holds for linguists. Linguistics is concerned 
with the form and meaning of conditionals in natural languages. One 
part of the problem here is to determine the meanings of conditionals 
expressed by different linguistic forms: what the truth conditionals of 
those condtionals are, and perhaps also, what the logic is that those 
truth conditions define. In this section we have almost exclusively been 
concerned with this second problem. But the first problem, what 
linguistic forms are used in different languages to express conditionals, 
is non-trivial too, and more interesting than might have been thought. 
For instance, contrary to what one could easily be inclined to think, the 
presence of an if-clause in a sentence is by itself no guarantee that the 
sentence expresses a conditional, in which the if-clause plays the part of 
antecedent. Here is an example of a sentence for which this is not so: 
“Sometimes, if a farmer buys a donkey, he pays for it in cash.” This 
sentence just says that there are occasions when a farmer buys a 
donkey and pays for it in cash. (Lewis, 1979). In no logical 
representation of this sentence is there any use for the material 
conditional →, the strict conditional (..→..) or even, as we have 
defined its semantics in (47), for the 2-place operator ⇒. On the other 
hand, conditional operators are often needed in the representaetion of 
natural language sentences whose conditionality is not overtly manifest 
through the presence of particles such as if or when, which are good 
clues to conditionality (even if, as we have just seen, they do not do so 
invariably).  
 
 
 


