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 Notes Logic II.

IMS Stuttgart.

H. Kamp

These notes contain the material covered in the second level logic

course which has been offered at the Institut für Maschinelle

Sprachverarbeitung of the University of Stuttgart on an annual basis

since 1992.  The course is aimed at students who are familiar with the

notation and use of the first order predicate calculus but have had little

or no previous exposure to metamathematics.

Chapter I presents the syntax and model-theoretic semantics of

classical first order logic and an axiomatic ("Hilbert style")

characterization of first order deduction.  The central aim of this

Chapter is to establish the soundness and completeness of this

deduction system, and thus the computability of the model-theoretic

concepts of logical validity and logical consequence.  The Chapter

concludes with some easy corollaries of the Completeness Theorem

(Compactness Theorem, Downward Skolem-Löwenheim Theorem) and

the definition of the concepts of model isomorphism, elementary

equivalence  and of a first order theory.  The Chapter closes with

Robinson's preservation theorems for pure existential and for !" -

sentences (sentences in which a quantifier-free formuila is preceded by

a quantifier prefix consisting of a block of universal quantifiers

followed by a block of existential quantifiers).

Chapter II presents a number of examples of first order theories - the

theory of linear orderings, the first order theory of groups, the theories

of Boolean Algebras and Boolean Lattices, the theory of first order

Peano Arithmetic and the theory of real closed fields - and discusses

some of their salient model-theoretic properties.  The chapter also

presents certain fragments of 1-st order predicate logic:, viz. Equational

Logic (with a proof of Completeness for the equational Calculus and of

Birkhoff's preservation theorem for equational sentences) and a

version of feature logic. Thirdly, the Chapter contains a section on the

theory of definitions (with Beth's Definability Theorem and Craig's

Interpolation Theorem).

Chapter III is concerned with set theory.  Set theory too is presented as

a first order theory, more specifically, in the form of the so-called

Theory of Zermelo-Fraenkel. But in this case the concern is not just to

present yet another theory of first order logic, but also to develop, on

the basis of the ZF axioms, those parts of set theory which are needed
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when set theory is used as framework for the formalisation of

metamathematics - and more particularly those parts of

metamathematics that are discussed in the two preceding chapters.

These three chapters are devoted exclusively to the classical first order

predicate calculus.  For anyone familiar with the history of symbolic

logic over the past century this won't come as much of a surprise.  In

fact, many textbooks on mathematical logic have first order logic for

their sole subject, and this is more or less the norm for introductions

to symbolic logic.  The reason for this is not only that most of the

central results in formal logic pertain to first order logic, and that

those pertaining to other systems often presuppose or build upon

these; it is also a reflection of the mostly tacit but widespread belief

that first order logic is the logical system par excellence - that it ithe

best candidate we have for the position of 'the universal, all

compassing logical formalism' - for the position of characteristica

universalis  in the sense of Leibniz' - a view that gets support from the

fact that all other logical systems for which there exist precise

definitions can be reduced, in some way or another, to the system of

classical first order logic.

As a matter of fact the predominance of first order predicate logic is

much less pronounced today than it was, say, thirty or forty years ago.

There are several reasons for this, all connected with applications of

formal logic in domains which forty years ago didn't even exist, or were

still in their early development.  Most important in this connection has

been the use of mathematical logic in various branches of computer

science, such as the theory of programming languages, the theory of

communicating protocols that regulate parallel processing, programme

verification and chip design validation.  A second important domain of

application is Artificial Intelligence (if, that is, AI is classified as a

discipline that is distinct from Computer Science rather than as a

branch of it). And lastly the variety of logical systems has grown

through the use of formal logic in the semantics of natural language.

These developments have led to a rich landscape of logical formalisms.

In this landscape classical first order predicate logic still holds a central

place, but it is no longer one which dominates in quite the way it did in

decades past.

In the light of this, exactly what place first order logic should be seen as

occupying within this landscape has become a question that can no

longer be ignored, and that has practical as well as purely philosophical

implications. And even in an introductory text like this one it is
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appropriate that it should be asked at some point.  But the further

question that poses itself then is: When? On the one hand much could

said for putting the discussion of this question up front; for after all it

it is what can be said to this question which ultimately motivates the

choice of the topics that will be dealt with.  What speaks against this,

however, is that many of the issues that should be raised in an

exploration of the wider landscape are directly connected with the

formal results that the text will present and so will be understandable

only to a reader to whom the contents of bulk of the text (consisting of

the first three chapters) are familiar.  Believing that this last

consideration far outweighs the first, I decided to postpone the

discussion about hte relationship of classical first order logic to other

logical systems till the very end. oIt has been made the subject of a

separate chapter, Ch. 4.

[N.B. this chapter still needs to be added.]

Chapter I

1.1  Syntax, model theory and proof theory of classical first

order predicate logic

It is assumed that the reader has some basic familiarity with the

predicate calculus. There should be an awareness of how predicate

logic is used in simple formalisation problems, e.g. the formalisation of

mathematical structures such as orderings or Boolean algebras, and in

the symbolisation of sentences and arguments from natural languages.

Given this assumption it seems justified to proceed briskly with the

presentation of the syntax and model theory of first order logic.  In

particular, we forego any informal explanation of what first order

formulas 'mean'.

In fact, for a reader with antecedent exposure to the predicate calculus

there won't be anything of substance in this presentation of the syntax

and semantics of first order logic.  Nevertheless, such a presentation

cannot be dispensed with. Definitions of first order tend to vary in their

details and for what is to come it must be clear which version is at

issue.  Moreover, it will be crucial for what follows that our

characterisations of the syntax and semantics of our system are given

with the formal rigour and precision none of the results that form the

substance of these notes could be proved with the required logical

rigour.  For nearly all these results are results about  the logical system
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itself.  So exact proofs must be able to refer to exact definitions of the

structures, objects and relations that are their targets.

One of the choices that have to be made in specifying the syntax and

semantics of first order logic is the following:  We can either (i) define

a single formal system, with a fully fixed vocabulary and fully fixed sets

of terms and formulas that can be built from it, or (ii) we can define

first order logic as a family of  'first order languages', which will - while

much like each other since they are all languages of first order logic -

nevertheless differ form each other in one respect, viz. their so-called

'non-logical' vocabularies (roughly speaking; the part of their

vocabularies which consists of their 'content words').  It has turned out

that this second option has important conceptual and technical

advantages over the first, which is why it is usually chosen when the

focus is on the mathematical properties of first order logic.  For this

reason it is also the option that has been chosen here.

1.1.1 Syntax

The languages of first order predicate logic - or first order languages,

as we will call them - differ from each other only in their non-logical

vocabulary, in the predicates and functors which enable them to

express contingent propositions about any particular subject matter.

But they all share the logical vocabulary of first order logic, and with

that the general rules for building complex expressions from simpler

ones. We begin with the specification of this common logical

vocabulary.

Def. 1 The logical vocabulary of first order logic consists of the

following symbols:

( i ) (individual) variables: v1, v2, v3, ... (sometimes we also use

    the letters x, y, z, ... as 

         symbols for variables)

( i i ) connectives: , &, v, ,   

( i i i) quantifiers:  , 

( iv) identity:  =

Each language of first order predicate logic includes the logical

vocabulary listed in Def. 1.  In addition it has a certain non-logical

vocabulary, and as far as this vocabulary is concerned first order

languages differ.



5

What exactly are the symbols that the non-logical vocabularies of first

order languages consist of?  Here there are two different policies we

can follow.  We can either specify a fixed stock of symbols in advance -

enough to go around for any first order language we might wasnt to

consider, and then define each individual language in terms of the

subset of this total supply that constitutes its non-logical vocabulary.

But we can also take a more liberal line.  Instead of specifying one fixed

stock of possible non-logical symbols in advance, we can leave it open

what the non-logical symbols of any given first order are like.

This second option, which has certain advantages that cannot be

properly explained at this point1, is the one we adopt.  This means

however that we cannot assume that a symbol will tell us what kind of

symbol it is - is it a predicate of the language or a function constant;

and in either case, what is its arity  (i.e. the number of its arguments)? -

simply because of its form.  So the information what kind of symbol it

is must be supplied explicitly and separately: each symbol must come

with a signature,  as terminology has it, in which this information is

supplied. There are various ways in which the information that

signatures must provide could be encoded. For the case at hand, where

we are only dealing with the first order predicates and functors, we

have chosen the following encoding:  A signature is a pair <s,n>, where

s indicates whether the symbol of which it is the signature is a

predicate or a functor and n is the constant's arity.  This entails that

the non-logical vocabulary of any first order language L can be

specified as a function f whose domain is the set of non-logical

constants of L and for each #  in the domain f(# ) = <s,n> is the signature

of # .  Furthermore, since it is only in regard of their non-logical

vocabularies that first order languages can differ from each other, they

are, as first order languages, fully identified by their non-logical

vocabularies.  Thus it is formally possible to actually identify them with

their signatures.  This identification proves very convenient in practice,

and so we have adopted this stratagem.

The terms and formulas of any first order language L are built from on

the one hand the symbols of their own non-logical vocabulary and on

the other hand the logical symbols of first order logic, given in def. 1,

that L shares with all other first order languages. It should be intuitively

clear, therefore, that confusion might arise if there were overlaps

1 The point is this.  In certain applications it is important not to have to put
any upper bound on the size of the set of non-logical symbols of a language.  This
desideratum is incompatible with the first approach.  For any set of symbols fixed
in advance would impose an upper bound on the size of languages which would
exclude some langauges that would be needed.
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between the non-logical vocabulary of any language L and the

vocabulary of Def. 1.  We will therefore exclude this possibility.

These considerations lead us to the following definition:

Def. 2    A language of first order predicate logic is a function L from

a set of "symbols" (the non-logical constants of L) to the

signatures  (or logical types) of those symbols, where a

signature  is a pair of the form <# ,n>, where

(i) #  is either p (for "predicates") or f (for "functors") and

( i i ) n is a natural number which specifies the arity  (number of 

argument places) of the symbol.

The set of non-logical constants of L, DOM(L), must be

disjoint from the logical vocabulary specified in Def. 1-

Terminology: if L(# ) = <f,0>, then #  is an individual constant of

L; if L(#) = <p,0>, then #  is a propositional constant

of L.

Examples: {i)  if L(#) = <p,2>, then #  is a 2-place predicate of L;

 (ii) if L(# ) = <f,1>, then #  is a 1-place functor of L; etc.

The well-formed expressions of a first order language L, its terms a n d

its formulas , are built from its non-logical vocabulary together with the

fixed logical vocabulary of Def. 1.  We take it that the definitions of the

terms and the formulas of L are familiar in substance and present them

without further comment.  The same goes for the distinction between

free and bound occurrences of variables in terms and formulas.

Def. 3

1 . The  terms of a language L are defined as follows:

( i ) each variable is a term .

( i i ) if g is a functor with signature <f,n> and t1 ,....,tn  are 

terms, then g(t1 ,....,tn ) is a term of L .

2 . The formulas of L are defined thus:

( i ) If P is predicate of L with signature <p,n> and t1,....,tn
are terms, then P(t1 ,....,tn) is a formula of L .
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(i i ) If A, B are formulas of L, then A, (A & B), (A v B),

(A  B) and (A  B) are formulas of L.

(iii) If A is a formula of L, then ( vi)A and ( vi)A  are 

formulas of L .

(iv) If t1  and t2 are terms of L,  then t1 = t2 is a formula of 

L.

N.B. For any occurrence of a formula ( vi)A (( vi)A) the

corresponding occurrence of A is said to the scope of

the corresponding occurrence of ( v i) (( v i)) .

Def. 4 (Free and bound occurrences of variables)

( i ) Every occurrence # of a variable vi in a term $  is a free

occurrence of vi in $ .

( i i ) Every occurrence of a variable in an atomic formula is 

free  in that formula.

(iii) If #  is a free occurrence of the variable vj in A, then #  is

also a free occurrence in A .

( iv) If #  is a free occurrence of the variable vj in A or in B,

then #  is also a free occurrence in (A & B), (A v B),

(A  B) and (A  B).  

(v) If #  is a free occurrence of the variable vj in A, then it is 

free in ( vi)A and ( vi)A, provided i  j.

(v i ) No occurrence #  in a formula  A is free in A unless

this follows from clauses (ii)- (v).

Every occurrence #  in a term or A which is not free in A is called

a bound  occurrence of # in A.  

Note that Def. 4 entails that an occurrence of vj in A is always a bound

occurrence in ( vj)A and in ( vj)A.

Def. 5  A closed  expression of L is an expression (i.e. term or  

 formula) of L which has no free occurrences of variables.  

The closed formulas of L are also called the sentences of L.
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1.1.2  Models, Truth, Consequence and Validity

What was assumed in Section 1.1 regarding the syntax of first order

languages - that the definitions are assumed to be familiar in substance

- also goes for their semantics.  Each first order language L determines a

class of possible models for L. For each such model M we can define (i)

the set of possible assignments of objects from M to the variables of

first order logic and (ii) the value of any expression (term or formula)

of L in M relative to any assignment a  in M.  (We say that the formula A

is satisfied by in M if it gets the value 1 in M relative to a . (1 represents

the truth value TRUE.) The values of closed terms and sentences are

independent of what assignment is chosen.  In particular, we can speak

simply of the truth value of any sentence A of L in any model M for L:

either A is true in M or A is false in M.

The definitions of satisfaction and truth in a model lead to the

intuitively natural characterisations of logical validity and logical

consequence (also sometimes referred to as (logical) entailment or as

logical implication): the formula B of L is a logical consequence of the

set %  of formulas of L iff for every model M for L and every assignment

a in M, if every C & % is satisfied by a  in M, then B is also satisfied by a

in M.  And B is logically valid when it is a logical consequence of the

empty set of premises, i.e. if it is satisfied in all M by all a .

We take it that after this brief introduction the following definitions

will be self-explanatory.

Def. 6

1 . A model for L is a pair <U,F>, where

( i ) U is a non-empty set

( i i ) If L(g) = <f,n>, then F(g) is an n-place function from U 

into U

(iii) If L(P) = <p,n>, then F(P) is an n-place function from U 

into {0,1}.

2 . An assignment in a model <U,F> is a function from the set of 

variables into U.
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Def. 7

1 . The value of a term t of L in a model M = <U,F> under  an 

assignment a, [[t]]M,a , is defined thus:

( i ) [[vi]]M,a = a(vi)

( i i ) [[g(t1,....,tn)]]M,a  = F(g) ([[t1]]M,a ,...,[[tn]]M,a)

2 . The truth value of a formula A of L in model M under  

assignment a , [[A]]M,a , is defined as folows:

( i ) [[P(t1,....,tn)]]M,a  = F(P) ([[t1]]M,a ,..., [[tn]]M,a)

   1    if [[A]]M,a = 0

( i i ) [[ A]]M,a =

  0    otherwise

    1    if [[A]]M,a = [[B]]M,a = 1

(iii) [[A & B]]M,a   =

    0    otherwise

    1    if [[A]]M,a = 1 or [[B]]M,a = 1

( iv) [[A v B]]M,a   =

    0    otherwise

    1    if [[A]]M,a = 0 or [[B]]M,a = 1

( v ) [[(A  B)]]M,a =

    0    otherwise

    1    if [[A]]M,a = [[B]]M,a

(v i ) [[(A  B)]]M,a =

    0    otherwise

    1    if [[A]]M,a[u/vi] = 1 for every u & U

(vii) [[( vi)A]]M,a =

   0    otherwise

    1    if [[A]]M,a[u/vi] = 1 for some u & U

(viii) [[( vi)A]]M,a =

  0    otherwise
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1    if [[ti]]M,a  = [[tj]]M,a

(ix)   [[ti = tj]]M,a  =

0  otherwise

Lemma 1:  Suppose that X is a set of variables, that every variable

that has free occurrences in the term or formula A is a

member of X and that a  and b  are assignments in the

model M such that for every variable vi & X,

a(vi) = b(vi).  Then [[A]]M,a  = [[A]]M,b

Proof: Although the proof of Lemma 1 is not difficult as proofs in

mathematical logic go, it exemplifies some of the distinctive features of

a great many proofs in this domain.  In particular it provides a good

illustration of the ubiquitous method of proof by induction, over well-

founded but not necessarily linearly ordered domains.  This is why I

eventually decided to include a quite detailed proof, breaking with an

earlier practice of leaving the proof as an exercise.

The task of the proof is to show that all members of an infinite set of

objects - here the set of all terms and all formulas of a given first order

language L - have a certain property.  In the present case this is the

property that a term or formula A of L has when it gets the same value

in any model M under assignments a  and b  in M which coincide on a

set of variables which includes all the free variables of A.  The simplest

way in which we might hope to establish this inductively is to proceed

as follows:

We fix a particular model M for the language L in question as well as a

given set of variables X and two assignments a  and b  in M such that for

all x &  X a(x) = b (x), and then prove that all terms and formulas of L

have the following property (*):

(*) [[A]]M,a = [[A]]M,b.

To show that all terms and formulas have (*) we would then proceed

inductively, i.e. by showing (i) to (iv):

(i) any atomic term A has (*);

(ii) any complex term A has (*) on the assumption that all the 

immediate constituent terms of A have (*),

(iii) any basic formula A has (*) on the assumption that all its 

constituent terms have (*); and
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( iv) any complex formula has (*) on the assumption that its 

immediate constituent formula or fomulas has/have (*).

Unfortunately this will not work.  The problem cases are the quantified

formulas, i.e. formulas of the forms ( vi) B and ( vi) B.  If we try to

show that, say, ( vi) B has (*) on the assumption that B has (*), we run

into the following difficulty:  Our assumption is that the given variable

set X contains all the free variables of ( vi) B.  This, however, does not

guarantee that X contains all variables that have free occurrences in B,

for the variable vi, which is bound in ( vi) B and thus need not belong

to X, may well be free in B.  So even if we assume that B has (*), this

assumption may be of no use, since it does not tell us anything useful

about B and the fixed X, a  and b .

Therefore, as so often in proofs of induction, we need to "push

through" the basic and recursive clauses of the definitions of term of L

and formula of L, some property (**) other than (*), and which is such

that once we know that all terms and formulas A have (**), we can

conclude that all of them also have the property asserted in the

theorem or lemma that is to be proved.  In the present case the

property which will do the trick is not all that different from the one

which the Lemma requires us to show for all terms and formulas.

(There are many inductive proofs where it is much more difficult to

find the right property for which the induction can be made to go

through; in fact, often finding this property is the real challenge of such

proofs.) We get a property (**) which works simply by quantifying

universally over the set X and the assignments a  and b , rather than

keeping them fixed ghroughout the inductive argument. In this way we

obtain enough flexibility to deal with the quantifier cases . (The

language L and the model M can still be kept fixed.)

Definition of (**).  Let a language L and a moel M for L be given.  (**) is

the following property of terms and formulas A of L:

(**) For every set of variables X which contains all the free variables of

A and every two assignments a  and b  in M such that for all x & X , a(x) =

b(x), we have [[A]]M,a = [[A]]M,b .

The proof of (i)-(iv) above for the property (**) is for the most part

uneventful-to-boring.  The only slightly more interesting cases are

those involving the quantifiers.  (It is there where the difference

between (**) and (*) will pay off.)
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( i ) According to Def. 3.1. i the atomic terms of L are the variables of

first order logic.  So suppose that A is the variable vi.  Let X, a  and b b e

such that together with A they satisfy the conditions of (**) - i.e. vi & X

and a  and b agree on the variables of X.   So in particular a (vi) = b (vi) .

By Def.7.1.i we have

[[vi]]M,a  = a(vi)  and [[vi]]M,b  = b(vi) .

So we get: [[A]]M,a = [[vi]]M,a = a(vi) = b(vi) = [[vi]]M,b  = [[A]]M,b .

( i i ) Suppose that A is a complex term of L.  Then, according to

Def.3.1.ii, A is of the form fni(t1 , ..., tn).  Suppose that A is of this form

and that t1 , ..., tn  have (**).  Again choose X, a  and b as under (i).

Since X contains all the free variables of A, X contains all the free

variables of tj, for j = 1,..., n.  So since the tj all have (**), and X, a  and

b  fulfill together with tj the conditons of (**),  we have

( 1 )  [[tj]]M,a  = [[tj]]M,b   (for tj = 1,..., n)

According to Def. 7.1.ii we have:

( 2 ) [[fni(t1, ..., tn)]]M,a  = FM (fni)([[t1]]M,a , ..., [[tn]]M,a)

Because of (1) the right hand side of (2) equals

FM (fni)([[t1]]M,b , ..., [[tn]]M,b ) and this is, by Def, 7.1.ii, the same as

 [[fn i(t1 , ..., tn)]]M,b .

(i i i) According to Def. 3.2.i the atomic formulas of L come in two

varieties:  (a) Pn i(t1 , ..., tn ) and (b) t1  = t2 .

Suppose A is of the form Pni(t1 , ..., tn) and that (**) holds for

t1 , ..., tn .  Then we get, just as in case (ii):

[[Pni(t1, ..., tn)]]M,a  = FM (Pni)([[t1]]M,a , ..., [[tn]]M,a) =

FM (Pni)([[t1]]M,b , ..., [[tn]]M,b) = [[Pni(t1, ..., tn)]]M,b .

The case where A has the form t1  = t2  is just like the last one and is left

to the reader.

( iv) A is a complex formula.  Here there are quite a few possibilities

for the form of A:  A could be: a negation B, a conjunction B & C, a
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disjunction, an implication, a biconditional, a universally quantified

formula or an existentially quantified formula.  We consider three of

these possibilities: (a) A is of the form B, (b) A is of the form B & C

and (c) A is of the form ( vi)B .

( a ) Suppose that A is of the form B and that B has (**).  Let X, a , b

be chosen so that A, X, a , b satisfy the conditions of (**).  Since the

free variables of A are the same as the free variables of B, the

conditions of (**) are also satisfied by B, X, a , b .  So since B has (**),

[[B]]M,a = [[B]]M,b .  So we have, using Def. 7.2.ii:

[[A]]M,a = 1 iff [[ B]M,a = 1 iff [[ B]M,a = 0 iff [[ B]M,b = 0 iff

[[ B]M,b = 1 iff [[A]]M,b = 1.

( b ) Suppose that A is of the form B & C and that B and C both have

(**).  Again, let X, a , b be chosen so that A, X, a , b satisfy the

conditions of (**).  The free variables of B are among the free variables

of A and thus included in X; and the same holds for C.  So since b and C

have (**), we have

( 3 ) [[B]]M,a = [[B]]M,b and [[C]]M,a = [[C]]M,b.

So we have:

[[A]]M,a = 1 iff [[ B & C]M,a = 1 iff [[ B]M,a = 1 and [[ C]M,a = 1 iff

[[ B]M,b = 1 and  [[ C]M,b = 1 iff [[ B & C]M,b = 1 iff [[A]]M,b = 1.

( c ) Suppose that A is the formula ( vi)B and that B has (**).  Again,

let X, a , b be chosen so that A, X, a , b satisfy the conditions of (**).

Suppose that y is a free variable of B.  Then either y is the variable vi or

else y is a free variable of A and thus y & X.  So in either case y & X  {vi} .

According to Def. 7.2.vii,

[[A]]M,a = 1 iff [[( vi)B]]M,a = 1 iff for all u & UM  [[(B]]M,a[u/vi] = 1.

We observe the following:

( 4 ) B, X  {vi} and the assignments a[u/vi] and  b[u/vi] satisfy t h e

conditions of (**)
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To show (4) we first recall that X  {vi} contains all the free variables of

B.  Secondly we show that for any free variable y of B:

 a [u/vi](y) =  b [u/vi](y).  Recall that there are two possibilities for y.

either y = vi or (y '  vi  and y & X).  In the first case we have:

 a [u/vi](y) = a [u/vi](vi) = u = b [u/vi](vi) = b [u/vi](y) .

In the second case, since y '  vi,  a [u/vi](y) = a (y) and b [u/vi](y) =

b (y). Also, since a and b  coincide on the variables in X and y & X, a(y) =

b (y ) .

So we have: a [u/vi](y) = a (y) = b (y) = b [u/vi](y).  This concludes the

proof of (4).

We are now in a position to complete the proof of (iv.c).

[[A]]M,a = 1 iff [[( vi)B]]M,a = 1 iff for all u & UM  [[(B]]M,a[u/vi] = 1

iff (using (4) and the fact that B has (**)) for all u &  UM  [[(B]]M,b [u/vi]

= 1 iff [[( vi)B]]M,b  = 1 iff [[A]]M,b  = 1.

The proofs of the other cases under (iv) are trivial variants of the

proofs of cases (a), (b) and (c).

This completes the proof of Lemma 1. q.e .d.

1.1.3         Interlude about Proofs by Induction

It might be argued that strictly speaking the proof of Lemma 1 is not

yet complete.  For we are still left with the inference from all the basic

and recursive steps of the proof to the conclusion that (**) is true of all

terms and all formulas of L.  This last step is normally left out in

inductive proofs because it always rests on the same general principle.

The principle is easiest to explain in connection with induction on the

natural numbers (which incidentally is also the form of induction that

tends to be familiar to non-mathematicians  A well-known example of a

proof by induction that all natural numbers have a certain property P is

that where P is the property which the number n has if the sum of the

numbers from 0 to n is equal to 1/2(n.(n+1):

n

( 5 ) (   i  = 1/2(n.(n+1)
        i= 0
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The typical way to prove this is to argue as follows:

(i) The statement (5) holds for n = 0.  For in that case both sides 

are equal to 0.

( i i ) Suppose that the statement (5) holds for n = k.  Then (5) also 

holds for n = k+1.  For
k+1     k

(   i  =  (  i + (k+1) = 1/2(k.(k+1)) + (k+1) =
         i=0   i= 0

1/2((k.(k+1)) + 2.(k+1)) = 1/2(k2  + 3k + 2) = 1/2(k+1)(k+2)

From (i) and (ii) we can infer that (#) holds for all n.  Why?  Well, one

way to argue is as follows: (i) shows that (#) holds for the first natural

number 0.  Combining this information with (ii) leads to the conclusion

that (#) holds for 1.  Combining that information with (ii) we conclude

that (#) holds for 2; and so on.

We can also turn this argument upside down: Suppose that (#) does not

hold for all natural numbers n.  Then there must be a smallest number

no for which (#) fails.  Because of (i), no  must be different from 0.  So

there must be a number m such that no = m+1.  But then, since no  is

the smallest number for which (#) does not hold, (#) holds for m.  So

by (ii) it must hold for m+1, that is for no: contradiction.  So we

conclude that (#) holds for all n.

The case of our proof of Lemma 1 is somewhat more complex, but it is

in essence like the one just considered.  In the case of Lemma 1 the task

is to show that all terms and formulas of L satisfy a certain condition

(our condition (**)).  That the basic and inductive clauses (of which we

proved a representative selection) together entail that all terms and

formulas A have (**) can be argued along similar lines as as we followe

in proving (5).  Suppose that there was a term or formula A for which

(**) does not hold.  Then among those terms and/or formulas there

must be at least one that is minimal w.r.t. (**), i. e. a term or formula

A o which itself does not have (**) but which is such that all its

immediate constituent terms or formulas have (**).  But then we get a

contradiction, just as in the natural number case:  Ao can't be an

atomic term, for that would contradict the base case of the proof.  So

A o must have immediate constituents, all of which do have (**).  But

then we have a contradiction with that part of the proof which

concerns the particular form of Ao.
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A more abstract way of stating the validity of the method of proof by

induction is this:  Suppose that Y is a set of objects and that there is a

partial ordering < of Y which is well-founded , i.e. which has the

property that if Z is a non-empty subset of Y, then Z must contain at

least one <-minimal  element; that is, there must be at least one element

z of Z such that for all y & Y such that y < z, it is the case that y & Y\Z.

To establish that all members of Y have a certain property P it is then

enough to show the following:

( 6 ) Let z & Y and suppose that for all y < z, P(y).  Then P(z).

It is easy to see that the binary relation which holds between two

between terms and/or formulas A and B of L iff A is a constituent of B

is a well-founded partial ordering of the set of all tems and formulas of

L.  So what our proof of Lemma 1 amounts to is that (6) holds for the

case where < is the constituent relation between terms and formulas of

L and P is the property (**).

1.1.4         Continuation of 1,1,2

The most important consequence of Lemma 1 is that the values of

closed terms and closed formulas (i.e. sentences) are independent of

the assignment.

Def.8 A sentence A of L is said to be true in a model M iff for 

all assignments a in M, [[A]]M,a = 1.

Notation.  It follows from Lemma 1 that when A is a sentence, then for

all assignments a  and b , [[A]]M,a  = [[A]]M,b .  So in this case we may,

without risk of confusion, suppress mention of the assignment.  We will

often do this and write " M  A" instead of "[[A]]M,a  = 1 for some a" .

More generally, when the free variables of A are among v1, ..., vk, and

a1, ..., ak are elements of the model M, we will write

"M  A[a1, ...,ak]" in stead of " [[A]]M,a  = 1 for some assignment a  in M

such that a (vi) = ai for i = 1, ..., k".  Again the intuitive justification is

given by Lemma 1, which guarantees that if A is as described and a  and

b  are assignments which both assign a1, ..., ak  to v1, ..., vk , then

[[A]]M,a = [[A]]M,b.

Even more generally than this, in a case where the free variables of A

have been specified as x1, ..., xn, (where the xi may be any variables
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from the list v1,v2 , ... of all variables of first order logic) we will

sometimes write " M  A[a1, ...,ak]" in stead of " [[A]]M,a = 1 for some

assignment a in M such that a(xi) = ai for i = 1, ..., n".

Def.9

1 . A set of sentences %  of a language L semantically entails a 

sentence A of L (or: A is a (logical/semantic) consequence of % ; 

in symbols: %%%% A ) iff for every model M for L the following is

t rue :

   If every member B of %  is true in M, then A is true in M.

More generally, a set of formulas %  of L (semantically) entails

a formula A iff for every model M for l and every assignment

a  in L, if for all sentences B in % [[(B]]M,a  = 1, then [[A]]M,a  =1.

2 . A formula A is valid iff A .

N. B.  According to Def. 9.2 a formula A of L is valid iff for every model

M for L and every assignment a in L, [[A]]M,a = 1.

Exercise:  Show this!

The following Lemma 3 states an important relation between the value

of a term t or formula B with free occurrences of a certain variable vi
and the value of the result of substituting a term t' for the free

occurrences of vi in t or B.  In order to formulate the second part of

the Lemma we need a further definition.

Def. 10.  ( i ) Let B be a formula, #  some particular free occurrence

of the variable vi in B and let t be some term.  Then #

is said to be free for t in B iff no variable occurring in t

becomes bound in B when t is substituted for # in B.

( i i ) Let B, t be as under (i).  Then the variable  vi is said to

be free for t in  B iff every free occurrence of vi in B is

free for t in B.
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Lemma 2   (i)   Let t, t' be any terms of L, let M be any model for 

L and a  an assignment in M. Then:

[[ t[t'/vi] ]] M,a    =   [[t]] M,a[ [[t']]M,a  /vi ]

( i i ) Let B be a formula of L, let M, t' and a  be as under (i) 

and suppose that vi is free for t' in B. Then

[[ B[t'/vi] ]] M,a    =   [[ B ]] M,a[ [[t']]M,a  /vi ]

Proof. We first prove (i) by induction on the complexity of terms.

(a).  Let t be a variable vj.  First suppose that j = i. Then

t[t'/vi] =  vi[t'/vi] = t'.  So we have:

[[ t[t'/vi] ]] M,a   = [[t']] M,a   = [[vi]]M,a[ [[t']]M,a  /vi ].

Now suppose that j ' i.  Then t[t'/vi] =  vj[t'/vi] = vj.  So

[[ t[t'/vi] ]] M,a   = [[vj]] M,a  = a(vj).   Moreover, if j ' i, then

a (vj) = (a [[[t']]M,a /vi])(vj).  So

[[ t[t'/vi] ]] M,a   = [[vj]] M,a  = [[vj]] M,a[ [[t']]M,a  /vi ] =

[[t]] M,a[ [[t']]M,a  /vi ]

(b)  Suppose that t is the term g(t,...,t
n

) and suppose

that for k = 1,..., n. (i) holds with t
k 

instead of t,.  It is easily

seen that (g(t
1

, ..., t
n

))[t '/v i] = g(t
1

[t'/v i], ..., t
n

[t'/v i]).  So

[[ t[t'/vi] ]] M , a    = [[ (g(t1, ..., tn))[t'/vi] ]] M , a    =

[[ g(t1 [t'/v], ..., t1 [t'/vi])]] M , a    =

(FM (g))([[t1[t'/vi]]]M,a , .., [[tn[t'/vi]]]M,a ) =

(FM (g))([[t1]]M,a', .., [[tn]]M,a') ,

where a'  is the assignment a [ [[t']]M,a  /vi].  B u t

(FM (g))([[t1]]M,a', .., [[tn]]M,a') =

[[g(t1 , ..., tn)]] M,a' .

This concludes the proof of (i)
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We now prove (ii) by induction on the complexity of 

formulas .

(a) Let B be the formula P((t
1

, ..., t
n

).  We proceed

essentially as under (i.b):

[[ B[t'/vi] ]] M,a    = [[ (P(t1 , ..., tn))[t'/vi] ]] M,a    =

[[ P(t1 [t'/v], ..., t1 [t'/vi])]] M , a    =

(FM (P))([[t1[t'/vi]]]M,a , .., [[tn[t'/vi]]]M,a) =

(FM (P))([[t1]]M,a', .., [[tn]]M,a') =

[[ (P(t1, ..., tn))]] M,a' , where a' is as above.

(b)  Suppose that B is a formula whose main operator is a

sentence connective.  We consider just one case, that where

B is a negation, i.e. B = C for some C.  We assume that (ii)

holds for C.  Clearly we have that B[t'/vi] = ( C)[t'/vi] =

(C[t'/vi]).  So [[ B[t'/vi] ]]M,a  = 1 iff [[ (C[t'/vi])]]M,a  = 1

iff [[ C[t'/vi] ]]M,a  = 0 iff (by the induction assumption)

[[C]]M,a[[[t']]M,a/vi] = 0 iff [[ C]]M,a[[[t']]M,a/vi] = 1 iff

[[B]]M,a[[[[t']]M,a/vi] = 1.

(c)  Now suppose that B begins with a quantifier.  We only

consider the case where B is of the form ("vj)C.  Once more

we have to distinguish between the case where j = i and that

where j ' i.  When j = i, then (("vj)C)[t'/vi] = ("vj)C since in

that case vi has no free occurrences in ("vj)C.  But for this

very same reason we have that [[("vj)C]] M,a  =

[[("vj)C]] M,a[[[t']]M,a/vi ] (by Lemma 1, since a  and

a[ [[t']]M,a  /vi] coincide on the free variables of ("vj)C 

(because any free occurrences of vj in C are bound by the 

initial quantifier ("vj)). This concludes the argument for the

case that j = i.

The second case is that where j ' i.  This case has to be

subdivided once more into two subcases, (i) vi has no free

occurrences in C and (ii) vi has at least one free occurrence

in C. In case (i) we have, as in the case already considered

that (("vj)C)[t'/vi] = ("vj)C.  Again a  and a[ [[t']]M,a  /vi]

coincide on the free variables of ("vj)C, since in fact they

already coincide on all the free variables of C. So the
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conclusion follows as above.

Now suppose that vi has free occurrences in C. Since j ' i .

the freee occurrences of i in C are also free occurrences in

B. By assumption vi is free for t' in B.  This means that the

variable vj cannot occur in t', for if it did, then its

occurrences in t' would be bound in B (viz. by B's initial

quantifier ("vj)) when t' is substituted for the free

occurrences of vi in B.

Furthermore we observe that (("vj)C)[t '/vi] = ("vj)(C[t'/vi]) .

From the Truth Definition clause for " we get:

[[B[t'/vi] ]] M,a  = 1 iff [[ (("vj)C)[t'/vi] ]] M,a  = 1 iff

[[("vj)(C[t'/vi])]] M,a  = 1 iff

for some d & UM  [[C[t'/vi] ]] M,a[d/vj] = 1     (*)

By the induction assumption,

[[C[t'/vi] ]] M,a[d/vj] = [[C]] M,a'',

where a''  is the assignment a [d/vj] [ [[t']]M,a  [d/vj]/vi] .

We now make use of the fact that vj does not occur in t'.

Because of this [[t']]M,a  [d/vj] = [[t']]M,a .  So a'' =

a [d/vj] [ [[t']]M,a  /vi] = a [ [[t']]M,a  /vi] [d/vj], since the

order in which the assignment changes in a  to, respectively,

vi and vj are carried out is immaterial.  (These changes are

independent from each other.) This means that we can

rewrite (*) as:

for some d & UM  [[C]]M,a[ [[t']]M,a /vi][d/vj] = 1 (**)

By the Truth Definition clause for "  (**) is equivalent to

[[("vj)C]]M,a[ [[t']]M,a /vi] = 1.  In other words,

[[B]]M,a[ [[t']]M,a/vi] = 1.

Since the above transformations are all reversible, we have

thus shown that

[[ B[t'/vi] ]] M,a  = 1 iff [[B]]M,a[ [[t']]M,a /vi] = 1.
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This concludes the proof for the case where B is of the form

(("vj)C, and therewith of part (ii) of Lemma 2.

  q.e.d.

Below we will need in particular a special case of Lemma 2, stated in

Corollary 1, in which the term t' is an individual constant c.  (The proof

of this special case is somewhat simpler, because there is no need to

worry about proper substitution (i.e. about vi being free in B for the

term that is to be substituted for it in B); since c contains no varaibles,

v i will be free for c in b no matter what.)

Corollary 1  (i) Let t be any term of L, c any individual constant of 

L, M any model for L and a  any assignment in M.  

Then:

[[ t[c/vi] ]] M,a    =   [[t]] M,a[FM (c)/vi]

  ( i i ) Similarly, if B is a formula of L, and M, c and a  as 

under (i), then

[[ B[c/vi] ]] M,a   =   [[ B ]] M,a[FM (c)/vi]

Suppose that the free variables of the formula A of L are vi1,.., vin,

listed in some arbitrarily chosen order.  Let m be a model for L. Then

according to Lemma 2, any two assignments a  and b  which assign the

same objects u1,.., un of M to vi1,.., vin will assign to A the same truth

value in M.  We can make this explicit by displaying the free variables

of A, in the chosen order, as 'arguments' of A by including them in

parentheses behind A, and then fixing the truth values of A in M by

mentioning just the objects u1,.., un of M that these assignments assign

to the free variables vi1 ,.., vin .

With these specifications A turns into the expression

A(vi1,.., vin)[1,.., un ] .

Since the iinformation encoded in this expression determines a unique

truth value for A in M, we can write
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M A(vi1,.., vin)[u1,.., un ] to indicate that the assignment of

u1,.., un to satisfies A in M (i.e. that hte truth value of A under any

such assignment is 1).  This notation is quite useful in prctice and we

will make use of it occasionally.

When A is a sentence, i.e. when the set of its free variables is empty,

then, as Cor. 1 makes explicit, any two assignments in M will assign it

the same truth value.  In this case we can speak simply of 'the truth

value of A in M' and of A 'being true in M' or ' being false in M'.  We

express this formally by writing 'M A' for 'A is true in M'.
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1,1,5   Axioms, Rules. Proofs and Theorems.

Def.10

1 . An axiom of L is any formula of L that  has one of the forms A1 -

A13:

A1. A  (B  A)

A 2. (A  (B  C))  ((A  B)  (A  C))

A3. ( A B)  (B  A)

A4. ( vi)(A  B)  (A ( vi)B),  provided vi has no free 

   occurrences in A

A5. ( vi)A  A[t/vi],  provided vi is free for t in A2

A6. (A  B)  ((B  A)  (A  B))

A7. (A  B)  (A  B)

A8. (A  B)  (B  A)

A9. (A & B)  (A B)

A10 (A v B)  ( A B)

A11 ( vi)A   ( vi) A

A12.  vi  =  vi

A13. vi  =  vj  (A  A'),  where A' results from replacing 

one occurrence of vi in A by vj and the new occurrence 

of vj in A' is free in A'

In the formulation of A5 there is reference to the notion of "vi  being

free for t in A".  Intuitively this means that t can be substituted for each

of the free occurrences of in A without this leading to free variables of

t (other than vi) being captured by quantifiers in A.

To define the concept (of vi  being free for t in A) correctly, we must

(a) distinguish between the different occurrences of expressions -

variables, terms, subformulas, quantifiers - within a given formula B,

and then (b) define the notion of the scope of a quantifier occurrence

in B.

The notion of an occurrence in a formula presupposes that different

occurrences of the same expression type - for instance, two

occurrences of the variable v1 - must be somehow distinguishable so

2 For the definition of "vi is free for t in A" see Def. 10 below.
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they must be indexed, or labeled, in some way.  There are all sorts of

ways to accomplish this, some fancy, others homely.  Here we will

simply assume that each formula B can be identified as a finite string of

symbols, that is, as a function which maps some initial segment {1, ... ,

n} of the positive integers into the set of symbols of the given language

L to which B belongs.  In this way each of the symbol occurrences in B

will be assigned an identifying integer, and each larger constituent of B

can be identified with the subset of {1, ... , n} which consists of those

integers that are associated with the symbol occurrences in B that

belong to that constituent.  Among other things, identification of the

different symbol occurrences in B enables us to refer to individual

quantifier occurrences, i.e. particular occurrences of the symbol

strings "(!vi)" and "("vi)".

The definition of the notions free  and bound  rests on the fact that the

well-formed expressions (terms and formulas) of predicate logic are

syntactically unambiguous:  For each symbol string that is syntactically

well-formed (that is, each string that can be derived as an expression of

a language L by using the clauses of Def. 3.1 und 3.2) there is only one

syntactic analysis - only one way in which these clauses can be applied

to put the string together.  (Strictly speaking this is a property of Def. 3

that can and ought to be proved.  But the prooof is rather tedious and

has been omitted here.)

It is a familiar feature of definitions of syntactic structure (or

"grammars", as they are usually called, when the language in question is

a natural language) that expressions which are well-formed according

to these definitions have syntactic analyses (by virtue of the given

definition) that can be represented in the form of a tree. In the case of

formal languages (though not as a rule for natural languages) the

analysis of any well-formed expression will as a rule be unique.

Exercise:

Construct syntactic derivation trees for the formulas:

(a) ( v1)(( v1)P(v1)  P(v1) );

(b) (( v1)P(v1) & Q(v1))  ( v1)P(v1) & ( v1)Q(v1));

(c) ( v1)( v2)( v3)((R(v1,v2)  (R(v2,v3) R(v1,v3))  ((R(v1,v2)

 R(v2,v3)) R(v1,v3)).

Let  Q be an occurrence in B of the existential quantifier

expression "( v j)" (the scope of an occurrence of a universal quantifier
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expression is defined in the same way.).  Then the scope of Q in B is

that formula occurrence A such that the transition from A to the string

QA (using clause (iii) of the definition of well-formedness) is part of

the unique parse of B.

We can now define (i) what it is for a term t to be free for a

particular free occurrence v  of the variable vi in  the formula B, and (ii)

what it is for t to be free for vi in  B:

Def. 10:

( i ) t is free for v  in  B iff t contains no variable vj such that v  

belongs to the scope of any occurrence of either "( v j)" or 

"( vj)" in B;

( i i ) t is free for the variable vi in  B iff t is free in B for all free 

occurrences in B of vi.

2 .  The Inference Rules (of L) are given by the following two

schemata:

   (i)   A        A  B           A        .

         B ( vi)A

(Modus Ponens) (Universal

 Generalization)

3 . A proof in L of a formula A of L from  a set of formulas %  of L 

is a sequence A1,..., An of formulas of L such that

1 . An  = A, and

2 . for each Ai with i  n either:

(i) Ai is an axiom of L, or

( i i ) Ai &  %, or

(iii) there are j, k < i such that  Ak =  Aj  A i, or

( iv) Ai = ( vm )B, there is a j < i such that Aj = B and 

vm does not occur free in any member of % which 

occurs as a line Ar with r  j.

We write:  %%%%    L A for "there exists a proof in L of A from %" .
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Lemma 3: Supppose that L  L' (i.e. the function L' extends the f

unction L; in other words, that each non-logical constant of

L is also a non-logical constant of L' and with the same

signature), that A is a formula of L and %  a set of formulas of

L and that there is a proof of A from %  in L'.  Then there is a

proof of A from %  in L.

Proof. Suppose that A is a sentence of L and % a set of sentences of

L and that P is a proof of A from % in some language L'.  Take

   some fixed sentence B of L, e.g. ( v1) v1 = v1, and replace

every atomic formula occurring in P which contains a non-

logical constant that belongs to L' but not to L by the

sentence B.  It is easily verified that the sequence of

formulas P' into which P is converted by these

transformations is a proof of A from % in L. q.e .d.

Lemma 2 justifies dropping the subscript "L" from the expression "% L

A".  So henceforth we will write simply "%  A" to express that there

exists a proof of A from % .

The central theoretical result about first order predicate logic is that

semantic consequence can be captured by a notion of provability such

as the one defined here.  (This is one of several fundamental results

that logic owes to the greatest logician of the 20-th century, the Czech-

Austrian mathematician Kurt Gödel).  The equivalence has two sides,

usually referred to as the soundness  and the completeness   (of the

concept of proof in question):

1.2   Soundness and Completeness of the axiomatic proof

system of Section 1.1.3

Theorem 1 (Soundness): If %  A, then % A

Theorem 2. (Completeness): If % A, then %  A

Proof of Theorem 1.  Soundness is proved by showing:

(i) every formula B which has the form of one of the axioms has the 

property (*)
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(*) for any model M for L and any assignment a in M, [[B]]M,a = 1

a n d

(ii) if P is a proof of A from % , then all lines Ai of P have the 

following property (**):

(**) if M is a model, then for every assignment a in M such that 

[[B]]M,a = 1 for all B & % which occur as a line Ar in P with r  i, 

then [[Ai]]M,a = 1.

The proof of (i) is straightforward for all axioms other than A4 and A5.

An exact proof of (*) for formulas of the form of A4 requires Lemma 1

the proof for formulas of of the form of A5 requires Lemma 2.

Exercise:  Show the validity (i.e. condition (*) above) for each of

the Axioms A1 - A13.

   (Hint: Use Lemma 1 in the proof for A4 and Lemma 3 in 

the proofs for A5.)

Proof of (**):  The proof of (**) is by induction on the length of the

proof.  More precisely, fix L, %  and M and suppose that (**) holds for all

proofs from % of length < n.  We then have to show that (**) also holds

for proofs of length n.

Let P be a proof <C1, ..., Cn-1, Cn> be a proof from %  of length n.  Let a

be any assignment in M and assume that for all lines Cj in P which

belong to % , [[Cj]]M,a = 1.

There are four possibilities for Cn:

(i) Cn is an instance of one of the axioms A1 - A13;

(ii) Cn & %;

(iii) Cn comes by Modus Ponens from earlier lines Cj and Ck

(where Ck is the formula Cj Cn);

(iv) C n comes by Universal Generalisation from an earlier 

line Cj; in this case Cn will be of the form ( vi)A, 

whereas Cj is the formula A.

The only interesting case of the proof is (iv), which the one we

consider .
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We must show that [[Cn]]M,a = [[( vi)A]]M,a = 1.  To this end we must

show that [[A]]M,a[u/vi] = 1 for every u & UM .  Let u & UM .  Because of

the constraint on the application of UG we know that for every Ck
preceding Cj in P which is a member of % , vi does not occur free in Ck.

Since by assumption [[Ck]]M,a = 1 for each of these Ck, we conclude by

Lemma 2 that [[Ck]]M,a[u/vi] = 1.  By assumption the induction

hypothesis (**) holds for Cj (since Cj belongs to a proof from %  of

length < n).  So [[Cj]]M,a[u/vi] = [[A]]M,a[u/vi] =1.  Since this holds for

all u & UM, [[( vi)A]]M,a = 1.

1.2.1  Proof of the Completeness Theorem.

Proof of Theorem 2.  Proving completeness is a good deal more

involved than proving soundness.  The proof relies among other things

on showing that for certain consequence relations - i.e. relations of the

form "% A" for certain formulas A and formula sets %  - there exists a

proof of A from % using our axioms and rules.  To build up the needed

stock of such results it is necessary to proceed in the right order.  Here

follows a sequence of useful results about provability which (with the

exception of T2) can be established without too much difficulty so long

as one proceeds the indicated order.  It will be useful to distinguish

between provability simpliciter and provability without use of the rule

UG (Universal genralisation).  Provability in this latter, restricted sense

we indicate by " ' ".  Thus " % '  B" means that there is a proof of B

from % in which UG is not used.

T1. ' A  A

T2. For all formulas A, B and sets of formulas % ,

% ' A B     iff     % U {A} '  B

T3. ' (A  B)  ((B  C)  (A  C))

T4. ' (A  (B  C))  (B (A  C))

T5. If % ' A and ) U {A} ' B , then % U ) ' B

T6. B (A A)  '  B

We abbreviate the formula (A A) as A.  In the following it will also

be useful to have a name for one particular formula of this form, in

which A is some single sentence.  The sentence chosen involves only
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logical vocabulary and thus belongs to every first order language.  So

we let    be short for the following formula:

(Def. ) (( v1)(v1 = v1) ( v1)(v1 = v1)).

T7. '   B

T8.   '  

T9.  '  

T10. '  

T11. '  

T12. B,  B '  

T13. B  ' B

T14. B  ' B

T15. B  ' B

T16. B A,  A  ' B

T17. B  A '  A  B

T18. % ' B   iff    % U { B} '  

T19. B  B '  B

T20 %  {A} '  B and %  { A} '  B iff %  '  B

T21. ' ( vi)( A B)  ( vi) A vi) B)

T22. ' B ( vi) B provided vi does not occur free in B

T23. ' ( vi) B ( vk) B[vk/vi] ,

provided vk does not occur free in B and every occurrence

of vk in B[vk/vi]  which is not an occurrence of vk in B is 

free in B[vk/vi] .

T24. ' [B] t/vi ( vi)B

T25. ' t  =  t'    t'  =  t,  provided t is free for vi in B

T26. ' t  =  t'  &  t'  =  t'')    t  =  t''

T27. ( vi)( A B)  (( vi) A vi) B)

T28.  (( vi) A A, provided vi does not occur free in A.

T29. ( vi) A ( vk) A[vk/vi], provided vk is free for vi in 

        A.

T30. ( vi) t = vi,  provided vi does not occur in t.

T31. For all sentences A, formulas B and sets of sentences % ,

%  A B     iff     %  {A}  B

T32. A   A
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T33. ' A A

T34. If ' A A' and ' B B', then ' (A & B) (A' & B'),

' (A v B) (A' v B'), ' (A  B) (A'  B'),

' (A  B) (A'  B')

The theorems T1-T31 have been arranged so that the earlier ones may

be used in the proofs of later ones.  (Though some other orderings

would work just as well.)  We leave the proofs as exercises in all cases

except for those of T2 and T31.

Proof of T2:

  Suppose that P is a proof of A  B from % .  Append to P the new

lines: (i) A and (ii) B.  The first of these is justified as a member of the

premise set %  {A}, the second as an application of M.P. Thus this

extension will be a proof of B from %  {A}.

.  Suppose P = < C1, ..., Cn> is a proof of B from %  U {A} in which there

are no applications of UG.  Note that for each i < n, the initial segment

< C1, ..., Ci> is a proof (without UG) of Ci from %  U {A}.

We transform P into a proof <D1, ..., Df(n)> of A  B from %  in which

for each line Ci of P there is a corresponding line Df(i) of the form

A  Ci. (f is a monotone increasing function from {1, ..., n} into

{1, ..., f(n)}.)  We do this by (i) constructing a proof P1 of

A  C1 from % , and (ii) extending successively for i = 1, ...., n-1 the

already obtained proof Pi of A  Ci from %  to a proof Pi+1 of

A  Ci+1 from %.

(i)  In this case the proof <C1> consists of the single line C1.  There are

three possibilities regarding C1:

(i) C1 is the formula A;

( i i ) C1 is an axiom;

(iii) C1 is a member of % .

In case (i) we take for P1 a proof of A  A from the empty premise set

(see T1).
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In cases (ii) and (iii) we take for P1 the three lines:

( 1 ) C1 (Axiom or member of % )

( 2 ) C1 (A  C1) (Axiom A1)

( 3 ) A  C1 (MP from lines (1) and (2))

Clearly this is a proof of A  C1 from % .

Now suppose that 1  i < n and that a proof Pi  = <D1, ..., Df(i)> of

A  Ci from %  with the desired properties has already been

constructed.  For the line Ci+1 of < C1, ..., Cn> there are the following

possibilities:

(i) C1 is the formula A;

( i i ) C1 is an axiom;

(iii) C1 is a member of % ;

( iv) there are j, k < i such that Ck = Cj  Ci+1.

In cases (i) - (iii) we cosntruct Pi+1 by appending to Pi the proof P1
which we constucted for these respective cases under (1).  It is clear

that in each of these cases this does give us a proof of the intended

kind.  For the remaining case (iv) we extend with the following lines:

((f(n) + 1) (A (Cj  Ci+1))  ((A Cj) (A  Ci+1))

     (Axiom A2)

((f(n) + 2) ((A Cj) (A  Ci+1)) (MP, from lines f(k),

((f(n) + 1))

((f(n) + 3) (A  Ci+1) (MP, from lines f(j),

((f(n) + 2))

In this manner we obtain eventually a proof of A Cn from % .

This concludes the proof of T2. q.e .d.

T2 is a special case of the more general equivalence:

(*)  %  A B iff % U {A}  B

The proof of this equivalence is considerably more complicated than

the one just given.  Since our immediate need is in connection with the

"propositional calculus" theorems T3-T20, T25, T26, all of which can
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be proved without the use of UG, the more restricted version T2

suffices.  In the central part of the Completeness Proof we will need

another special case of (*), in which A, B and the members of %  are

sentences.  In the above lits this is T31, hte proof of which follows

presently.

In its full generality the equivalence (*) will follow as a corollary to the

Completeness Theorem, given that the semantic equivalent (**) of (*)

holds:

(**) %  A B iff % U {A}  B

That (**) does hold is easily shown.  (Exercise: Prove this!)

A proof of (*) along the lines of the proof of T2 is given in the

Appendix.

Proof of T31.

 As in the proof of T2.

   Again we assume that there is a proof P = < C1, ..., Cn> is a proof of

B from %  U {A} and construct for i = 1,..., n proofs Pi of A Ci from % .

The construction of P1 is as in the proof of T2, and the extension of Pi
to Pi+1 is also as in the earlier proof for the four cases considered

there.  The one additional case that is to be considered now is that

where Ci+1 is the result of an application of UG.  In that case Ci+1 has

the form ( vj)D for some j while there exists a k < i+1 such that Ck i s

D.  We  Pi with the lines

(f(i) + 1) ( vj)(A  D) (UG)

(f(i) + 2) ( vj)(A  D)  (A  ( vj) D)     (A4)

(f(i) + 3) A  ( vijD (MP, from (f(i) +1),

   (f(i) + 2))

Note that the application of UG in line (f(i) + 1) is unproblematic since

all members of %  are sentences.  Moreover, since A is a sentence, and

thus has no free occurrences of vj, (f(i) + 2) is a correct instance of A4.

Would that this were all the equipment we need for the proof of the

Completeness Theorem. But alas, it appears that there is one further

property of our axiomatic deduction system that we must verify in

order to be able to carry through the construction that the
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completenes proof involves. This is the property that our deduction

system enables us to prove the equivalence of alphabetic variants.

Roughly speaking ,two formulas are alphabetic variants of each other if

they differ only in that one can be obtained from the other merely by

"renaming bound variables". It is a well-known and intuitively obvious

fact that if this is the only difference between two formulas, then they

are logically equivalent. The "name" of a bound variable doesn't matter;

or, more correctly put, which variable symbol we use to play the role of

a particular bound varuiable in a formula makes no difference to the

semantics and logic of the formula. For instance, the sentences

( v1)( v2)(P(v1,v2) & P(v2,v1)), 

( v1)( v3)(P(v1,v3) & P(v3,v1))

are alphabetic variants; and so are the free variable formulas

( v1)( v2)(Q(v1,v2,v4) & Q(v2,v1,v4)), 

( v1)( v3)(Q(v1,v3,v4) & Q(v3,v1,v4)).

But we have to be careful about unwanted variable bindings. For

instance, the formulas

( v1)( v2)(Q(v1,v2,v4) & Q(v2,v1,v4)), 

( v1)( v4)Q(v1,v4,v4) & Q(v4,v1,v4) )

are not alphabetic variants, as the occurrences of v4 that are free in the

first formula are bound by the quantifier ( v4) in the second.  This

means that we have to be careful to define the relation of alphabetic

variance in such a way that such cases are excluded. The best way to

accoplish this is by defining the relation inductively on the complexity

of formulas.

Def. 10' (alphabetic variants)

( i ) Suppose A is atomic. Then A' is an alphabetic variant of A iff

A' = A.

( i i ) Suppose that A' is an alphabetic variant of A and B' is an

alphabetic variant of B. Then A' is an alphabetic variant of

A, (A' & B') is an alphabetic variant of  (A & B), and

likewise for the other connectives
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(iii) Suppose that A' is an alphabetic variant of A and that vi,

v j and vk are variables such that:

a. vi is free for vk in A and A has no free occurrences of vi;

b. vj is free for vk in A' and A' has no free occurrences of vj.

Then ( vj)A'[vj/vk] is an alphabtic variant of

( vi)A[vi/vk].

Likewise for ( vi)A[vi/vk] and ( vj)A'[vj/vk].

Remark Note that the only way in which two alphabtic variants can

differ is by having different bound variables subject to the restrictions

imposed in clause (iii). This means in particular that if the alphabetic

variants A and A' have any free variables at all, they have exactly the

same free variable occurrences. (For instance, if A has a free occurence

of the variable vi, then A' has a free occurrence of that same variable

vi, in exactly the same position. )

Lemmma. 3'  Let L be a language.

( i ) The relation of alphabetic variance is an

equivalence relation on the set of formulas of L.

( i i ) Let A be a formula with 0 or more free

occurrences of the variable vi and let vr be a

variable that is "fresh" to A, i.e. which does not

occur anywhere in A (neither bound nor free).

Then ( vi)A and ( vr)A[vr/vi] are alphabetic 

variants; and so are ( vi)A and ( vr)A[vr/vi] .

Exercise: Prove the two parts of this proposition.

Hint: (i) should be proved by induction along the

clauses of Def. 10'. (ii) follows from clause (iii) of

Def. 10', if one uses the fact that A is an alphabetic

variant

of itself.

Lemma 3''. Whenever A and A' are alphabetic variants, then |- A A' .
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Proof: We prove the result by induction along the clauses of

Def, 10'.

(i): We have |- A A by T33.

(ii) Suppose that  |- A A' and |- B B'. Then by the first

two theorems liset under T34 |- A A' and

|- (A & B) (A' & B'). For the other connectives the result

can be proved similarly, while making use of the other

theorems listed under T34

(iii) Suppose that  ( vi)A[vi/vk] and ( vj)A'[vj/vk] are as in

clause (iii) of Def. 10'. By induction assumption |- A A'. 

Because of the restrictions on vi, we have that vk is free for

vi in A[vi/vk] and that vk has no free occurrences in

A[vi/vk].  This entails that A = (A[vi/vk])[vk/vi] and from

that it follows that ( vi)A[vi/vk] A is a legitimate instance

of axiom A5. So we have:

|-  ( vi)A[vi/vk] A .

Since we also have |- A A', it follows that

|-  ( vi)A[vi/vk] A'.

By UG we can infer from this:

|-  ( vk)(( vi)A[vi/vk] A')

We now note that vk  has no free occurrrences in

( vi)A[vi/vk], since all its free occurrrences in A have been 

replaced by free occurrences of vi. If i k, then all free

occurrences of vk are gone from A[vi/vk]; and if i = k, then

the free occurrences of vk are bound by ( vi).  From this it

follows that the following is an instance of A4.

( vk)(( vi)A[vi/vk] A')  (( vi)A[vi/vk] ( vk)A')
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Since the antecdent of this conditional is provable, and the

conditional as a whole is too (since it is an axiom), the 

consequent of hte conditional is provable as well:

|- (( vi)A[vi/vk] ( vk)A' (*)

We now make use of the fact that vj is free for vk in A' and

that vj has no free occurrences in A'. From the first

assumption it follows that ( vk)A' A'[vj/vk] is an instance

of A5. So this formula is provable and by UG we can get

from it a proof of  ( vj)(( vk)A' A'[vj/vk]). Since

( vk)A'  has no free occurrences of vj,

( vj)(( vk)A' A'[vj/vk]) (( vk)A' ( vj)A'[vj/vk])

is an instance of A4, so that we get:

|- ( vk)A' ( vj)A'[vj/vk]).

Combining this with (*), we get:

|- (( vi)A[vi/vk] ( vj)A'[vj/vk] )

The converse of this implication is proved in exactly the

same way.

The equivalence of ( vi)A[vi/vk] and ( vj)A'[vj/vk] can be

obtained from the equivalence between ( vi)A[vi/vk] and

( vj)A'[vj/vk] by making use of axiom A11.

1.2.2  The core of the Completeness Proof.

We now turn to the construction which will yield the proof of Theorem

2 .

The method we will use to prove completeness is that developed by

Leon Henkin (1950).  As Gödel (1929) noticed, to prove completeness

it suffices to show that every consistent set of formulas has a model,

where a consistent  set of formulas is a set )  from which no explicit
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contradiction can be proved:  not-()   ).  We prove this by (i)

extending the given consistent set )  to a maximal consistent set )* a n d

(ii) using )* to construct a model which verifies all members of )* .

In the present proof we confine ourselves to the case where )  and )*

are sets of sentences.

Assume that % is a consistent set of sentences of some language L.  Let

c1, c2, ... be an infinite sequence of new individual constants and let L'

be the language L U {c1, c2, ... }.3  Let A1, A2, ... be an enumeration of

all the sentences of L'.  We define the sets ) i as follows:

( i ) )o     =      %

         )i  {Ai+1}  if )i U {Ai+1} is consis-

tent and Ai+1 is not of 

the form ( vj) B

(i i ) )i+1  = )i  {Ai+1, B[ck/vj]} if )i U {Ai+1} is consis-

tent, Ai+1 is of the 

form ( vj)B and ck is  

the first new constant 

which does not occur 

in )i U {B}

)i  { Ai+1} otherwise

Let  )*   =   Ui&* )i.  The )i and )* have the following properties:

(P1) ) i is consistent.

(P2) )*  is consistent.

3 This is not directly possible, of course, in case L already contains all but a
finite number of the individual constants which our formalism makes available.
However, since the set of all individual constants of our formalism is infinite, it is
always possible to make an "isomorphic copy" L' in which some infinite subset of
this set is not included.  For this language L' we can then proceed as indicated.
Each consistent set of sentences of L translates into a consistent set of sentences of
L' and the model for L' in which all the sentences of this second set are true can be
straightforwardly converted into a model for L in which the sentences of the
original set are true.
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(P3) )*  is complete in L', i.e. for each sentence B of L' either B & )* 

or B & )*.

(P4) If  B, then B & )*.

(P5) If B  C and B & )*, then C & )*.

(P6) ( vj)B & )*  iff B[c/vj] & )* for some individual constant c.

(P7) For each closed term t of L' there is an individual constant c s u c h

that the sentence t = c belongs to )* .

Here follow proofs of the propositions P1 and P3.  The others are left to

the reader:

Exercise:  Prove the propositions P2, P4 - P7!

Proof of P1.  (By induction on n.)

( i ) )o = %   is consistent by assumption.

( i i ) Suppose )n is consistent.  We show that )n+1 is consistent.

( a ) Suppose that )n  {An+1} is consistent.  If An+1 is not of the form

( vj)B, then )n+1 = )n  {An+1} and thus consistent.  So suppose that

A n+1 is of the form ( vj)B.  Suppose that )n+1 =

)n  {( vj)B, B[cr/vj} is inconsistent, where cr is a new constant which

occurs neither in )n nor in ( vj)B.  Thus

)n  {( vj)B, B[cr/vj]}   ( 1 )

So by T2 (the Deduction Theorem),

)n  {( vj)B}  B[cr/vj]   ( 2 )

That is, there is a proof C1 ( 3 )

C2
 .

 .

 .

Cn-1

B[cr/vj]   
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all premises in which are from )n  {( vj)B}.  Now let vk be a variable

that does not occur anywhere in the proof (3). Then it is easy to verify

t h a t

C'1 ( 4 )

C'2
 .

 .

 .

C'n-1

B[vk/vj]   

is also a correct proof (which now derives the free variable formula

B[vk/vj] from the premise set )n  {( vj)B}.  Since the premises are all

sentences, we can apply UG to this last line, obtaining as next line

( vk)(B[vk/vj]  ) ( 5 )

Using T27 and T28 we can extend this proof further to one whose last

line is

( vk)B[vk/vj]  ( 6 )

At this point we make use of our Lemmata about alphabetic variants.

From Lemma 3'.ii it follows that ( vk)B[vk/vj] is an alphabetic variant

of ( vj)B. So by Lemma 3'' ( vj)B and ( vk)B[vk/vj] are provably

equivalent. From this it is easy to see that the proof can be further

extended to noe whose last line is (7).

( vj)B  ( 7 )

We now have a proof of ( vj)B   from )n  {( vj)B}.  So by T31 we

have a proof of  from  )n  {( vj)B}.  So  )n  {( vj)B} is inconsistent,

which contradicts our assumption.

(b)  Now assume that )n  {An+1} is inconsistent.  Then  )n+1 =

)n  { An+1}.  Suppose )n+1 is inconsistent.  Then we have

)n  {An+1}   8 )

a n d
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)n  { An+1}   ( 9 )

From (12) we get, by T31 and T6

)n   An+1 ( 1 0 )

From (10) und (8) we conclude that )n , but this contradicts the

assumption that )n is consistent.  So once more our assumption that

)n+1 is inconsistent has been disproved, and )n+1 is consistent.

This concludes the proof of P1.

Proof of P3.

Suppose that B is a sentence of L' such that neither B & )* nor

B & )* .  Let B be the formula An+1 of our enumeration of the

sentences of L' and B the formula A m+1; and let us suppose, without

loss of generality, that n < m.  Since An+1 does not belong to )* , we

can conclude that

)n  {An+1}  .  ( 1 )

For if not, then An+1 would have been a member of )n+1 and thus of

)* .  By the same reasoning we conclude that )m  {Am+1}  .

Moreover, since by assumption n < m,  and so )n  )m , it follows from

(1) that

)m  {An+1}  .  So we have

)m  {B}  ( 2 )

a n d

)m  { B}  ( 3 )

But then we infer as in the last part of the proof of P1 that )m  is

inconsistent, which contradicts P1.  So our assumption that there is a

sentence B such that such that neither B & )* nor B & )*  has been

disproved.  This concludes the proof of P3.    q.e.d.
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We define the folllowing relation  between constants of L':

c  c'  iffdef the sentence c = c' belongs to )* .

(P8) is an equivalence relation.

(P9) if c  c' and P(t1,.., c,..,tn) & )* , then P(t1,.., c',..,tn) & )* .

Exercise:  Prove P8 and P9!

From )* we define a model M = <U,F> as follows:

( i ) U is the set of all equivalence classes [c]  for individual 

constants c of L'.

( i i ) for each n-place functor g, F(g) is that n-place function 

from U into U such that for any members [c1] , ..., [cn]  

of U, F(g) = [c] , where c is some individual constant 

from L' such that the sentence g(c1,...,cn) = c belongs to 

)*.

(i i i) for each n-place predicate P, F(P) is that n-place 

function from U into {0,1} such that for any members 

[c1] , ..., [cn]  of U, F(P) = 1 iff the sentence P(c1,...,cn) 

belongs to )* .

N.B Note that clause (ii) entails that if g is a 0-place functor (i.e. an

individual constant), then F(g) = [g] , since g = g will belong to )* .

We now prove by induction on the complexity of sentences B of L':

M  B   iff   B & )*. (*)

Proof of (*)

Before we can turn to the proof of (*) itself we first need to say

something about terms.  We start by recalling that for each closed term

t (i.e. each term t not containing any variables) the sentence ( v1) t =

v1 is a logical theorem.  (See T30.)

( v1) t = v1 ( 1 )

So  ( v1) t = v1  &  )* .  This means also that if ( v1) t = v1 is the

sentence An+1 in our enumeration, then )n U {An+1} is consistent and
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thus  )n+1 =  )n U {( v1) t = v1,  t = cr}, for some new constant cr.  So

there is at least one constant c such that the sentence t = c  belongs to

)* .

We now show that what we have made true by definition for "simple"

terms of the form g(c'1 , ... , c'n ) holds for closed terms in general:

Let a be any assignment in M.  Then we have for any ( 2 )

individual constant c of L' and any closed term t:

[[t]]M,a  =  [c]   iff   t = c & )*

The proof of (2) is by induction on the complexity of t.  If t is an

individual constant, then the result follows from clause (ii) of the

definition of M.  (See remark follwoing the def.)

So suppose that t is a complex term of the form g(t1 , ... , tn ) and that

(2) holds for the terms ti. First suppose that [[t]]M,a   =  [c] .  Let c'i (i

= 1, ..., n) be constants such that the sentences ti =  c' i &  )* .  So by

induction hypothesis,

[[ti]]M,a  =  [c'i] ( 3 )

Since [[t]]M,a  =  F(g) (< [[t1]]M,a, ..., [[tn]]M,a>), by the def. of F, we

get from (3):

F(g) (< [c'1] , ..., [c'n] >)  =  [c]   ( 4 )

As we have seen (def. of F!), this is equivalent to

g(c'1, ... , c'n) = c  &  )* ( 5 )

Since also ti =  c' i &  )*  for i = 1,...,n, we infer with the help of A13 that

g((t1, ... , tn) = c  &  ).

Now suppose that  t = c  &  )* .  Again choose c'i (i = 1, ..., n) such that ti

=  c' i &  )* .  Once more we have (3) because of the Induction

Hypothesis.  Also, by A13. etc. we may infer that (5).  So, by the def. of

F we get (4). (3) and (4) allow us to infer that

F(g) (< [[t1]]M,a, ..., [[tn]]M,a>)  = [c] ( 6 )
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So by the definition of [[ . ]]M,a, [[t]]M,a  =  [c]

We now start with the proof of (*) itself.  We begin with the case where

(i) B is an atomic sentence P(t1 , ... , tn) , in which the ti are closed

terms of L'.  In this case we have, for any assignment a, [[B]]M,a  = 1 iff

<[[t1]]M,a, ... , [[tn]]M,a > & F(P).  But for each ti we have that [[ti]]M , a

= [c'i]  and by definition F(P) consists precisely of those tuples

<[c'1] , ... , [c'n]  > such that

P(c'1, ... , c'n)  & )* .  Thus we conclude that [[P(c'1, ... , c'n)]]M,a   =  1

iff   P(c'1, ... , c'n) & )* .

( i i ) B is of the form t = t'.  Let c and c' be constants such that t = c

and t' = c' & )* .  First suppose that t = t' & )* .  Then, given the

assumption just made, also c = c' & )* .  Sob by Def. of M, [c]  = [c'] .

From the first part of the proof it follows that [[t]]M,a  = [c]  and

[[t']]M,a = [c'] .  So  [[t = t']]M,a = 1.  If conversely [[t = t']]M,a = 1,

then reasoning as above, we infer that [c]  = [c'] , and hence that c =

c' & )* .  Since also t = c and t' = c' & )* , it follows with A13 that

t = t' & )* .

(iii) B is of the form A.  Then [[B]]M,a  = 1 iff [[A]]M,a  = 0 iff (by

induction hypothesis) not (A & )*) iff (by P2 and P3)  A & )* .

The cases where B is of one of the forms A & C, A v C, A  C or

A  C are handled similarly to (iii).

(iv) B is of the form ( vj)A.  This case requires a special case of Lemma

3, which we will state here as Lemma 3'.  We also add, somewhat

superfluously, a separate proof of this case.

Lemma 3'.   (i)    Let t be any term of L, c an individual constant of 

L, M any model for L and a an assignment in M.  Then:

[[ t[c/vi] ]] M,a   =   [[t]] M,a[F(c)/vi] ( 7 )

  ( i i ) Similarly, if B is a formula of L, M, c and a as under

(i), then
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[[ B[c/vi] ]] M,a   =   [[ B ]] M,a[F(c)/vi] ( 8 )

Proof. (i) is proved by induction on the complexity of t, (ii) by

induction on the complexity of B.  We consider a few of the steps of

these two proofs.

( i ) ( a ) if t is a constant or a variable distinct from vi, then 

t[c/vi] is the same as t, and t is assigned the same value 

by a and by a[F(c)/vi].  So [[ t[c/vi] ]] M,a   =  [[ t ]] M,a   =   

[[t]] M,a[F(c)/vi] .

(b) Suppose that t is the term g(t1 , ... , tn ) and that (7) holds 

for t1 , ... , tn .  Then

[[ t[c/vi] ]] M,a   =     [[ g(t1[c/vi], ... , tn[c/vi])]] M,a =

F(g)(< [[ t1[c/vi]]] M,a, ... , [[ tn[c/vi]]] M,a >)      =

F(g)(<[[ t1]] M,a[F(c)/vi],.., [[ tn]] M,a[F(c)/vi] >)   =

[[t]] M,a[F(c)/vi]

( i i ) ( a ) B is the atomic formula P((t1 , ... , tn).  This case is just 

like (i.a) above.

( b ) B is of the form A while (9) is assumed for A.  Then

[[B[c/vi]]] M,a   = [[ (A [c/vi]) ]] M,a = 1 iff

[[A [c/vi] ]] M,a   =  0  iff (ind. hyp.)  [[A]] M,a[F(c)/vi]   

=  0   iff   [[ B ]] M,a[F(c)/vi]   =  1.

( c ) B is of the form  ( vj)A, with j /= i, while (9) is assumed 

for A.  Then [[ B[c/vi] ]] M,a  = 1 iff for some u & UM

[[A[c/vi] ]] M,a[u/vj] =  1  iff (ind. hyp.) for some

u & UM  [[ A ]] M,a[u/vj] [F(c)/vi] = 1 iff

[[ ( vj)A]] M,a[F(c)/vi] = 1.

We now proceed with case (iv) of the proof of (*), in which B is of the

form ( vj)A).  The case where B is of the form ( vj)A is proved

analogously.  First suppose that B & )* .  Then, by the construction of )* ,

A[cr/vi] & )* for some constant cr.  So, by induction hypothesis,

[[A[cr/vi] ]] M,a  = 1.  So, by Lemma 3',

[[A]] M,a[F(cr)/vi]   = 1.  So there is some u in UM  such that
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[[A]] M,a[u/vi]   = 1 and so by the Truth Definition,

[[( vj)A ]] M,a[F(c)/vi]  =  1.

Now suppose that [[B]] M,a[F(c)/vi]  = 1.  Then, by the truth definition,

there is some u in UM  such that [[A]] M,a[u/vi]  = 1.  but if u & UM ,

then there is some constant c such that u = [c] .  But then, because of

the way M has been defined, [c]  =  F(c). So by Lemma 3' we infer that

[[A[c/vi] ]] M,a  = 1.  So by induction hypothesis A[c/vi] & )* .   So, since

A[c/vi]   ( vj)A,  ( vj)A & )*.

       q.e.d.

1.3  Interlude on Set Theory and the Role of Logic in the

Foundations of Mathematics

The completeness theorem has a number of almost immediate but

independently important corollaries. In order to state these, however, it

is necessary to make use of a number of concepts and theorems from

the theory of sets.  Since these go beyond the (very basic) set-theoretic

knowledge which these Notes presuppose, they must be introduced

before the corollaries of the completeness theorem can be presented.
4

It would have been preferable to leave these set-theoretical matters

until Ch. 3, where set theory is developed in detail and in the rigorous

way in which it should be in a course on formal logic and

metamathematics.  But waiting that long would have the disadvantage

that the mentioned corollaries and a number of issues related to them

would have to wait until Ch. 3 as well, instead of being discussed here

and now, in immediate juxtaposition to the completeness theorem and

its proof, from which they follow.  That would be unnatural too, so I

have settled for a compromise:  The concepts and theorems we need

for our immediate purposes will be introduced informally in this

4
The only set theory presupposed here is that which can be found in the

lecture notes for the first semester introduction to logic that is offered at the IMS
("Institut für Maschinelle Sprachverarbeitung") of the University of Stuttgart.
(See Hans Kamp's web page, Lecture Notes/Introductory Logic (ps.file).)
The part of these notes that is devoted to set theory merely covers the basic
information that will be known to any mathematician (including those who have
no traffic with formal logic): set-theoretical notions such as that of 'set', 'set
membership', 'set inclusion', 'union', 'intersection', 'subtraction', 'relation' and
'function' as well as the standard devices of set-theoretical notation.
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interlude.  A more formal treatment - of these set-theoretical concepts

and results, together with many others - will then follow in Ch. 3.

Since the general tenor of this interlude is less formal and more

discursive than the rest of the notes, this seems a suitable point to raise

a number of other issues which are important for an understanding of

the role and place of predicate logic within a wider setting of

mathematical and philosophical logic, and, beyond that, within the

general context of the foundations of mathematics, science und human

knowledge.  So before we proceed with the informal presentations of

the set-theoretical notions and results we need at this point, I will begin

with a few observations on these more philosophical aspects of formal

logic and of the predicate calculus as its principal manifestation.

1.3.1  Predicate Logic and the Analyticity of Arithmetic.

The first observation is largely historical, and concerns the origins and

motives of symbolic logic as we know it today.  As noted in the

introductory remarks to this chapter, the father of modern formal logic

is Gottlob Frege (1848-1925).  To Frege we owe the first precise

formulation - in the form of his Begriffsschrift  - of the predicate

calculus.  Frege's principal motive for developing his Begriffsschrift

was a larger project, that of refuting Kant's claim that the truths of

arithmetic are synthetic a priori.  An essential ingredient to this

refutation was a rigorous formulation of a symbolic language

expressive enough to permit a formalisation of arithmetic, together

with an (equally rigorous) formulation of a system of inference

principles  - rules for inferring from any given formulas of this language

those other formulas that are logically entailed by them.

Kant (1724-1804) presented his doctrine that arithmetical truths are

synthetic a prori in his Kritik der Reinen Vernunft.  The theorems (or

"laws") of arithmetic, he observed, present us with two connected

epistemological puzzles:

(i) We can come to know the truth of arithmetical propositions -

such as that 5 plus 7 equals 12, that there are infinitely primes and so

on - without recourse to information about the outside world;

a n d

(ii) The method we have for obtaining such knowledge - that of

"arithmetical proof", as it is normally called - provides us with a
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knowledge that is apparently 'proof' against all possible doubt or

refutat ion.

The explanation which Kant proposed for these two observations was

that the truths of arithmetic are synthetic truths a priori:  They are

truths that can be known with certainty, he surmised, and without any

appeal to information about the outside world, because what they

express are aspects of the nature of consciousness itself:

Consciousness is constituted in such a way that it forces all our

experiences of what goes on in the world outside us (as well as our

experiences of our own inner life, but in this brief expose we will not

speak explicitly of these any more) into a certain mould.  As a

consequence, the actual form in which our experiences are accessible

to us when we are aware of them or reflect on them, is as much a

product of the moulding which consciousness imposes on information

which reaches it from the outside world as of the external facts or

events which are the source of this information.  Kant thought that it

was possible for consciousness to detect the nature of its own

constitution, and, more particularly, the general effects of that

constitution on the form in which its contents are represented.  In this

way consciousness can recognise certain statements as true, because

what they say follows from the contraints that it itself imposes on

representational form.

Kant called such statements, which consciousness can irecognise as

true because they pertain to its own structure, synthetic a priori.  He

saw them as truths a priori because they are true independently of any

contingencies concerning the outside world and hence can be

recognized as true without consultation of the outside world, but solely

on the strength of looking into the nature and "boundary conditions" of

consciousness itself.  He regarded them as synthetic  because they tell

us something of substance, viz. in that they reveal the effects of the

structure of human consciousness on mental representation.  In this

last respect they are different, he held, from purely "logical" or analyt ic

truths, statements which are vacuously true by virtue of the way in

which they arrange the concepts they involve:  In an analytic statement

the arrangement of concepts is such that the statement just could not

be false - the arrangement 'pre-empts' the statement as it were,

preventing it from making any meaningful statement about what its

concepts refer to and thus depriving it from any opportunity to say

something that could be false.  Kant believed, like the vast majority of

philosophers and scientists of his day, that the range of analytic truths

was very limited:  Analytic truths are not only vacuous but they can

also be quite easily recognized as such.  For understanding any
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statement necessarily involves recognizing the concepts it contains and

the way in which they are arranged in it; so in those cases where this

arrangement reduces the statement to vacuity, our understanding

should be able to see that right off.  Thus understanding an analytic

truth would have to be tantamount to seeing that it must be, vacuously,

true. Indeed, the comparatively few examples of analytic truths which

Kant cites seem to confirm this judgement.  They are either sentences

involving predicates which stand in some obvious relation of

subsumption, such as "Bachelors are unmarried.", or they are

straightforward "trivialities" like the Law of Identity: "a = a".)

One aspect of the moulding force which consciousness cannot help

exerting, Kant thought, is the temporal structure which it necessarily

imposes on experience:  We experience events as temporally ordered,

i.e. as arranged in what he saw as an essentially discrete linear

ordering.  He further saw arithmetic, the theory of the natural number

sequence 0, 1, 2, ..., as a reflection of this temporal dimension of the

structure of consciousness.  And that, he claimed, explains our ability

to establish the truths of arithmetic without reference to external

reality.  The basis of arithmetical proof is consciousness' capacity for

self-reflection.5

Contrary to Kant, Frege was persuaded that the truths of arithmetic are

truths of logic - or analytic truths. They are truths of pure logic, he

maintained, because when analyzed correctly, they can be shown to be

about purely logical concepts: about the ("second order ") concept of

being a concept, and, closely related to that, about an unending

sequence of second order concepts nCo, for n = 0, 1, 2, ... where 0Co is

the conept that is true of a concept C iff C has no instantiations, 1Co is

the conept that is true of a concept C iff C has exactly one instantiation,

2Co is the conept that is true of a concept C iff C has exactly two

instantiations, and so on.

It is these second order concepts, Frege held, - those of being a concept

C that has exactly n instances, for n = 0, 1, ... - that should be seen as

the entities that arithmetic is really about, viz. as the 'true natural

numbers'.  And he took these concepts to be purely logical concepts,

5 Kant held similar views about the statements of pure geometry and about
certain propositions about causation (such as that every event has a cause):  These
statements too, he maintained, reflect intrinsic features of consciousness, which
force the relevant kinds of experience into a predetermined mould.  However, in
the present context it is only his views on arithmetic which are at issue, for it was
only in relation to those that Frege meant to challenge him.
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since they can be defined in purely logical terms. (In present day

terminology: each nCo can be defined by a formula of predicate logic

which contains apart from the predicate symbol C only logical

vocabulary; thus as defining formula for 0Co we can choose: "(C falls

under Co iff) ( x) C(x)".  Moreover, Frege realized that when the

natural numbers 0, 1, 2, ... are identified with the concepts Co, C1, C2,

..., then the familiar arithmetical operations, such as addition and

multiplication, can also be defined in purely logical terms.6

Along these lines Frege succeeded in reducing all of standard arithmetic

in an intuitively plausible way to concepts and statements that he had

good reasons to regard as belonging to pure logic.  To show that the

truths  of arithmetic are logical  truths , however, something more is

needed than just this:  One also has to show that the true statements of

arithmetic, when recast in these logical terms, can be shown to be true

for purely logical reasons.  The traditional way to go about this kind of

task, and the one Frege chose, is to show that arithmetical truths can be

derived by a series of infallible logical steps from a set of equally

infallible basic logical laws, or 'logical axioms'.  The infallible truth of

these axioms must be established independently.  It was primarily to

this end that Frege developed the system of logic part of which has

survived as the first order predicate calculus.  It was also in this context

that he committed the fatal error that flawed his reduction of

arithmetic to logic and that to this very day noone has succeeded in

repairing in a way which does full justice to Frege's original intentions.

Notwithstanding this error (about which more below), Frege's

development of predicate logic has removed once and for all the

misconception which Kant shared with his contemporaries, according

to which analyticity is a marginal phenomenon within both language

and thought, and according to which analytic statements are easily

identified for what they are. Even though Frege's reduction of

arithmetic to logic does not go through in the way in which he

intended, he nevertheless pointed the way to a method for translating

arithmetical statements into formulas of pure logic such that the latter

are truths of logic when the former are truths of arithmetic, and where

discovering the logical truth of the latter is in essence just as hard as

discovering the "arithmetical" truth of the former.  We all know how

6 For instance, addition of two numbers n and m can now be defined as the
operation which when applied to the "numbers" nC o  and mC o  forms the second

order concept of being a concept whose extens ion  (= the set of things
instantiating it) can be split into two parts one of which is the extension of a
concept of which nC o  is true while the otherc is the extension of a concept that

nCo  is true of..
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hard that can be, something that even the more elementary books on

number theory will make plain to anyone who might harbour any

doubts on this point.  Moreover, that this is not just a matter of

subjective judgement was shown definitively about half a century after

the publication of Frege's Begriffsschrift  through the work of Kurt

Gödel (1906-1978) and Alonzo Church (1903-1997).  Following up on

Gödel's Undecidability Theorem, Church proved the undecidability of

predicate logic, which states in essence that there can be no algorithm

(or "abstract machine") which decides for arbitrary formulas of

predicate logic whether or not they are logical truths. If an argument

was needed that mathematics can be genuinely difficult, this surely will

be it:  No formal task which is even beyond the most sophisticated

calculating devices could be an easy task for any of us.

That arithmetic cannot be reduced to logic in the way Frege wanted was

the great tragedy of his intellectual career.  The flaw in his reduction

was discovered by Bertrand Russell (1873-1970) at the very time when

Frege's Grundgesetze der Arithmetik, the magnum opus in which his

reduction of arithmetic to logic was carried out in full detail and which

contained the fruits of more than two decades of assiduous work - was

completed and had already gone to press.7  Like the Fregean

programme to which it dealt such a devastating blow at the time,

Russell's discovery has been of enormous importance to subsequent

developments in the foundations of logic and mathematics.  It is known

as Russell's Paradox.

To understand the gist of Russell's Paradox it is necessary to say a little

more about Frege's attempt to reduce arithmetic to logic.  Frege made

an essential use of the systematic conceptual relation that exists

between concepts and sets (or 'classes', the distinction between sets

and classes, which will be explained in Ch. 3, doesn't matter at this

point):  Every concept determines a certain set (or class, but we won't

mention classes any further in the following considerations), its so-

called extension , consisting of those and only those things which fall

under  the concept (or to which, as one also says, the concept applies) .

7 Frege attempted to correct the mistake that Russell had discovered in the
galley proofs of the Grundgese t ze , which reached him at more or less the same
time as Russell's letter.  Unfortunately, the correction didn't improve matters:  The
resulting system was still inconsistent, while some of the derivations presented in
the book did no longer go through as given.  Nevertheless, the basic ideas of
Frege's reduction of arithmetic to logic have proved enormously influential and
have become a central ingredient of the philosophy of mathematics since the
beginnings of the 20-th century.  Russell himself developed an alternative
implementation of Frege's programme in his monumental Principia Mathematica ,
written jointly with A. N. Whitehead (1861-1947).
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Conversely, with each set there is associated the concept of being an

element of this set (and of course, the extension of that concept is the

very set from which one started).  Frege's reduction of arithmetic to

logic makes crucial use of what at face value appears as the obvious

and uncontroversial formal version of the first of these principles.  This

is his so-called Comprehension Principle.  The Comprehension Principle

says that for any formula A with free variable x (A is here to be thought

of as characterising the concept of being a thing such that A is true

when that thing is assigned as value to x) there exists the set consisting

of just those objects of which A is true.  Since sets are assumed to be

entirely determined by what elements they contain, this set is unique:

Each concept can have only one extension  (This is the so called

Extensionality Principle, another fundamental principle connected with

the concept 'set (and likewise with the concept 'class'.)

Exactly what the Comprehension Principle amounts to will depend on

the properties of the system over all, for it is these which determine

what free variable formulas the system contains.  As it turned out, the

expressive power of Frege's system was such as to allow instances of

the Principle which lead to a contradiction; this is what Russell's

Paradox showed.  In modernised and somewhat simplified terms, the

problem which the Paradox brings to light is the following.  Among the

possible values that the variables in Frege's system can take there are in

particular the sets themselves. (This is a consequence of the fact that

according to Frege any bound variable must range over the totality of

all entities there are.)  Moreover, the system makes it possible to say of

two entities x and y that the former is an element of the latter; let us

assume that this statement takes the form "x &  y", with &  being a 2-place

predicate symbol denoting the relation "is an element of".  As in any

current system of predicate logic, this formula can be negated, and the

two variables x and y can be identified.  The result is the formula " ( x

& x)".  When we apply the Comprehension Principle to this formula, it

returns the existence of a uniquely determined set X, consisting of all

things which do not contain themselves as elements.  The existence of X

now leads directly to a contradiction:  Suppose that X is an element of

X.  Then X does not instantiate the formula " (x &  x)", so it does not

fall under the concept which that formula defines and so doesn't

belong to its extension.  In other words, X is not an element of X.  This

contradicts our assumption.  So the assumption has been refuted and

we may conclude that it is false, i.e. that X is not an element of X.  This,

however, amounts to saying that X does fall under the concept defined

by " (x &  x)".  That is, X does belong to the extension of that concept;
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so X is an element of X after all.8  So we have arrived at hte conclusion

that X is not an element of itself and also that it is.

In other words, we have derived a logical contradiction simpliciter.  In

order to remove this contradiction Frege made the last minute

correction in the proofs of Grundgesetze  already referred to in fn. 7.

The correction meant to restrict the applications of the Comprehension

Principle to non-paradoxical cases.  As noted in fn. 7, this attempt was

not successful.  It was the first of a number of such attempts, generally

undertaken with the aim of saving the substance of Frege's reduction of

arithmetic to logic while eliminating the deficiencies of its original

implementation.  One of the first of these, we also noted in fn. 7, was

the logical system which Russell & Whitehead developed in Principia

Mathematica .   This system does away with Frege's assumption that the

value ranges of variables must consist of all entities at once. In the so-

called Theory of Types of Principia Mathematica this is never the case.

Instead each variable belongs to some particular type, which restricts

its possible values to just the entities that are of that type.  Thus the

Theory of Types presupposes a complex ontology of different logical

types of entities, and these are reflected in the types of the variables of

the formal system.

Today the Type Theory proposed by Russell & Whitehead is hardly used.

But it is still with us in modified and streamlined form, viz. as the so-

called Typed +-Calculus , a system designed originally for the

description of functions that was developed in the thirties by Church

(and used by him among other things to prove the undecidability of

first order predicate logic).  To most linguists and computational

linguists this formalism will be known primarily known through its use

in Montague Grammar and other theories of formal semantics.

A conceptually quite different way of tackling the problem exposed by

Russell's Paradox is the one first explored by Ernst Zermelo (1871-

1953).  The central idea here is that the paradoxical applications of the

Comprehension Principle arise in cases where the extension of the

concept to which it is applied is too large.  The goal of this approach is

accordingly to allow use of the Comprehension Principle only in cases

8 (N. B. The reason for calling this argument a "Paradox" is that it leads from
what appear to be valid principles - the Comprehension Principle together with
the other assumption used here, viz that there is such a concept as that of non-
self-membership, which falls within the scope of the Principle - to a
con t r ad ic t ion . )
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where there is a previously established bound on the extension of the

concept to which it is applied.

The actual form which this approach took eventually is that of a theory

of sets formalised within first order predicate logic.  This theory is

developed as a formal theory of the basic relation of set theory, the

relation of an entity x being an element of a set y.  (The symbol

commonly used for this purpose is the Greek letter & , as we did just

now in our proof of Russell's Paradox)  The most familiar

formalisations of set theory along these lines have been carried out in

the predicate-logical language {&}, in which & is the only non-logical

symbol.  These formalisations are committed to the assumption that

the totality of entities described by the theory consists exclusively of

sets.  (I.e. all entities in the universe of a model for the axioms of such

a formalisation are sets.)  This is an assumption that goes against the

intuitions of many people, professional logicians and mathematicians

no less than people outside these professions.  These sensibilities can

be accommodated by formalising the theory of sets in a form which

also leaves room for entities which are not sets.  To this end one needs

a way of distinguishing sets from non-sets.  Minimally this need can be

met by adopting besides &  one further non-logical constant:  a 1-place

predicate S, which serves to distinguish the sets from those entities

which are not. (Those who want to may extend the vocabulary further

by introducing additional predicates and functors which make it

possible to say more about entities that are not sets.)  For the deeper

logical and foundational issues connected with set theory as a theory of

first order logic it turns out to matter little which of these two options -

the one with or the one without S, etc. - one chooses.  In these Notes

(that is, in Chapter 3) we follow the more common practice within

mathematical logic of formalising set theory as a first order theory

within the language {&}.

Even when the decision has been made to formalise set theory in this

language, a further decision is needed:  What set-theoretical axioms

should one adopt?  The set theory which is most widely used today (and

the one that is presented in Chapter 3) is the so-called Theory of

Zermelo-Fraenkel , so-called after the two mathematicians to whom the

theory is due, Zermelo and the somewhat younger Abraham Fraenkel

(1891 - 1965).9

9 Usually the theory of Zermelo-Fraenkel is referred to simply as "ZF".  At
first glance ZF closely resembles the theory that was proposed by Zermelo in 1908.
The contribution made by Fraenkel consists of just one axiom, which to a casual
observer might look like a minor addition. As a matter of fact Fraenkel's axiom
makes an absolutely crucial difference.  For details we refer to Ch.3.
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All currently accepted formalisations of set theory have a feature that

must worry someone who would like to maintain a sharp distinction

between the truths of pure logic and those which make substantive

claims about non-logical matters (in other words, the distinction

between analytic  truths and contingent  truths, often referred to as the

analytic-synthetic  distinction).  The reason is that the claims which the

axioms of these formalisations make about the nature of sets appear to

detract from the "purely logical" notion of a set as the extension of a

concept.  Rather, sets now appear as one category of mathematical

objects among many others - numbers, straight lines, vectors,

manifolds, and so on and so forth.  In view of this the theory of sets -

and this holds in particular for formalisations such as ZF - takes on a

rather different character than what Frege had in mind:  Not that of a

(formal) theory of pure logic, but rather that of one mathematical

theory among others, dealing with its own province of the

mathematical universe.  True, the specifically set-theoretic part of a

formal theory like ZF rests on a foundation (provided by the axioms

and rules of the first order predicate calculus) which we can still accept

as "purely logical".  But what is made to rest on this fundament seems

to pertain just to the special province.

There is a tension between this view of set theory, and the fact that it is

possible to develop essentially all of mathematics within it (thereby

'reducing' all of mathematics to set theory).  This possibility largely

confirms the intuitions of Frege, Russell, Whitehead and others that set

theory (in combination with an underlying system of logic) has a

universal status, which sets it apart from other branches of

mathematics (such as number theory, geometry or functional analysis).

This tension - between set theory as one mathematical theory among

many and set theory as a general framework for the formalisation of

mathematics - is one of the central unresolved issues in the philosophy

of mathematics.  And it is one which may well prove to be beyond

resolution forever.  We will turn to issues related to this question in Ch.

4 .

1.3.2  Set Theory and the Formalisation of Mathematics

To fully appreciate the implications of this (admittedly informal)

conclusion we must take account of another motivation for the

formalisation of logic.  This motivation was not so much a

philosophical one - like that of Frege, who wanted to correct what he

took to be Kant's misconception of the nature of arithmetic truth - but
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rather one which relates directly to serious problems that had arisen

within mathematics itself.  Roughly at the same time when Frege

developed the Begriffsschrift , a crisis had developed within

mathematics as it was practiced and understood by the professional

mathematical community, and which affected some of the actual work

that mathematicians were doing at the time.  This crisis had its roots in

the spectacular advances that had been made during the two preceding

centuries in various branches of mathematics, and most strikingly in

functional analysis (i.e. the theory of functions on the real an the

complex numbers).  Progress in that domain had led to theorems and

proofs of an increasingly abstract nature - theorems and proofs which

often dealt with whole classes or types of functions, rather than with

particular functions for which explicit definitions could be given with

the means then available.  On the whole the abstract concepts that

these theorems made use of were without a proper foundation.  Missing

in particular was a proper definition of 'function', as well as of the

related concepts of 'set' and 'relation'.  In some instances this

unsatisfactory state of affairs led to paradoxes, in the sense elucidated

above: contradictions obtained through apparently impeccable

derivations from what were thought to be sound assumptions and

unobjectionable definitions.

Within a discipline which until then had been regarded as the paradigm

of intellectual soundness and certainty - and as the only remaining

bulwark against the ever growing scepticism that had made its entry

into western philosophy through the work of Descartes (1596-1650) -

the discovery of these paradoxes came as a real shock; and it was felt

to be of the utmost importance that the sources of these paradoxes be

discovered and eliminated, so that the trustworthiness of mathematical

argument would be restored.  One of the ways in which mathematicians

hoped to achieve this was to develop a logical formalism so rigorous

and transparent that its inference principles could not possibly lead

one astray, and to formalise all of mathematics (or at any rate all the

parts where trouble brewed) within it.  In this way, it was hoped, the

paradoxical arguments would be forced to reveal their hidden

assumptions and could then be banned from the new transparent

formal framework within which mathematics was to be redeployed.

It is important to distinguish between this second motivation for

developing systems of formal logic and the one we described as the

primary motive for Frege.  For one thing, the desire to put mathematics

on a surer footing through formalisation within a system of symbolic

logic is not confined to just arithmetic.  In principle it concerns all

branches of mathematics.  And the branch that seemed to be most
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seriously in need of such an overhaul was that where the paradoxes had

most glaringly appeared, viz. functional analysis.  As noted, the basic

ontological domain of analysis, however, is not that of the natural

numbers, but that of the real numbers (of which the natural numbers

form a proper, but in an important sense inseparable subset).1 0

The two motives that we have discussed for wanting to formalise the

principles of logic are thus quite different; and on the basis of the little

that has been said here one could well have imagined that since they

seem to impose quite different requirements on formalisation, they

might have led to quite different results.  But in fact this is not so.  In

both cases the need is for a system of formal logic that

(i) correctly captures the basic constructs that are indispensable for

the representation of information - including predication, sentence

connectors and quantification - and gives the correct inference

principles for those structures;

a n d

(ii) provides a suitable formalisation, on the basis provided by (i), of

the notions of 'set', 'relation', 'function' and certain others that are

connected with these.

It is these combined requirements which proved decisive and led to

formal systems such as ZF, which on the one hand permit the

formalisation of mathematics and on the other enable us to evaluate

philosophical claims like Frege's thesis about the logical nature of

arithmetical truth in ways not previously available.

It has to be admitted, however, that for either of these problems the

solutions that ZF and like systems make available fall short of what was

initially hoped for.  In either case this has to do with the nature of sets

1 0 We will see in Ch. 2 that the relationship between arithmetic and the theory
of the real numbers is complicated and surprising.  Connected with the mentioned
inseparability of the subset of the natural numbers from the set of all real
numbers is that as collectives the real numbers and the natural numbers behave
very differently; as mathematical totalities they have strikingly different
properties, and the same is true of the theories which describe those properties.
Russell & Whitehead's Principia Mathematica, which we mentioned in fn. 7 in
connection with Frege's project to reduce arithmetic to logic, targeted the logical
formalisation of mathematics in general - a truly monumental endeavour, of
which the formalisation of aritmetic is but one aspect taking up only a
comparatively small part of the work as a whole.
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and with what the set-theoretic axioms one adopts have to say about

them.  We already made the observation that what theories such as ZF

have to say about sets tends to make sets look like mathematical

entities - on a par with numbers, geometrical figures and so on - rather

than entities belonging to the realm of pure logic.  This has the effect

that a development of arithmetic within a theory such as ZF looks much

less like a confirmation of Frege's view of arithmetic as a part of pure

logic than he probably would have found acceptable.  Rather than a

reduction of arithmetic to logic we seem to have a reduction of one

branch of mathematics, number theory, to another, the theory of sets.

Perhaps this can still be seen as a refutation of Kant, but that doesn't

make it a corroberation of what Frege really wanted.

For this very same reason a system like ZF leaves room for doubt when

used as a framework for sanitizing mathematics through formalisation.

We noted that one of the problems in the design of these systems is to

decide which set-theoretical axioms to adopt.  On the one hand these

axioms must be powerful enough to make fomalisation of a given part

of mathematics possible.  For such a formalisation requires (a) that we

find a general schema for translating the statements from that part of

mathematics into formulas of our formalism (e.g. into formulas of the

language {&}), and, furthermore, (b) that the translations of those

statements that are theorems can be shown to be valid by formally

deriving them (using the logical inference rules of the system, such as

for instance MP and EG) from (logical and) set-theoretical axioms.  On

the other hand, however, we want our set-theoretical axioms to be t rue

- that is, true of our pretheoretically given notion of set, to the extent

that such a notion exists.  And that not only because truth is desirable

for its own sake, but also because the truth of a set of axioms

guarantees their consistency.  For it is consistency that we need most if

our formalisation of mathematics is to provide us with the much

wanted certainty that mathematics (in this new formalised guise) is free

from contradiction.

One might well have thought that consistency could be established

without any appeal to truth.  After all, there have been in the history of

mathematics and science many occasions where "axioms" that were

proposed at one time were subsequently shown to be false, but where

nevertheless the axiom system of which they were part was

demonstrably consistent. (Within the natural sciences, whose aim it is

to chart truthful accounts of aspects of the empirical world, and which

make extensive use of quantitative axioms coined in mathematical

language, there are instances galore of this.) In such cases it is often

possible to show consistency to everyone's satisfaction but by way of
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arguments which do not rely on actual truth, something which would of

course be impossible, since by assumption the axioms aren't all true!

Unfortunately, however, a formal proof of the consistency of the

axioms of ZF - or, for that matter, of other formal systems of

comparable power - is not to be had.  This is one of the consequences

of Gödel's famous Incompleteness Theorems, which he proved in

conjunction with his already mentioned Undecidability Theorem.  The

only hope we have for bolstering our confidence in the consistency of a

system like ZF is therefore to convince ourselves that the system is

consistent because all its axioms say things that are true of what they

talk about - i.e. about sets.  But how and where do we get the

knowledge that is extensive and solid enough to ascertain the truth of

these axioms, given that it is knowledge about a realsm that is almost as

elusive to is now as it must have been to those who were confronted,

more than a century ago, with the bewilderingly paradoxical properties

which made ist closer exploration such an urgent necessity?

1.3.3  Formalisation of Formalisations?

One of the central purposes of formalisation, we noted, is to guard

against the dangers that are lurking in the shadows when mathematics

is pursued without proper clarification of its basic concepts and

principles.  Only when these have been suitably clarified - and, in

particular, when an explicit formulation has been given of the rules of

mathematical proof - can we be reasonably confident that

mathematical arguments, when formulated in accordance with those

rules, will not lead to trouble (i.e. won't yield wrong conclusions

starting from correct premises).  This consideration applies not only to

arguments in parts of mathematics like analysis, where the

foundational crisis of the nineteenth century had its origin, but also for

arguments in the realm of metamathematics  - i.e. of that branch of

mathematics which studies the mathematical properties of formal

systems.  In fact, for metamathematical arguments the issue of

reliability is especially important.  For it is on these arguments that our

trust in the method of formalisation - as a method for avoiding error

and inconsistency in mathematics - is partly based.

Does this mean that what we should really strive for is yet a further

formalisation - a formalisation of metamathematics (i.e. of the science

of formal systems) itself?  The complexity of metamathematical

arguments is often such that the need for a further formalisation,

which turns these arguments into formal derivations, can be keenly
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felt.  The question must be asked, however, what could really be gained

by such a "secondary" formalisation. Aren't we, when we engage in

such a further formalisation, setting out on a path that is circular, or

that leads to an infinite regress?

Let us retrace the initial segments of this path: It starts with our need

for greater reliability of mathematical arguments than informal

mathematics can give us; therefore we want to develop methods of

formalisation which will reveal the hidden assumptions and errors of

informal arguments; to this end we want to develop formal systems

within which these methods can be made explicit; however, to convince

ourselves that these formal systems really do serve the purpose for

which they have been developed, we want to prove that they behave in

the ways we want them to.

So far so good.  But is this good enough?  How much trust are we

entitled to place in our proofs - which as we said are often quite

involved - that these systems do live up to our expectations?  Shouldn't

we formalise these  proofs in their turn, in order to make sure that t h e y

are sound?  But then, should we?  For if we do, what better grounds

could we find to trust this second formal system, needed for this

second formalisation, than can be found for the first one?

The answer to this question is anything but straightforward.  On the

one hand we have to take this into consideration:  The subject matter

of metamathematics is different from that of the traditional branches

of mathematics such as number theory, analysis or geometry.

Metamathematics' topics of investigation are formal systems - systems

consisting of symbols, structures built from symbols, such as strings or

trees, and rules for manipulating such structures (i.e. turning some

such structures by purely syntactic transformations into others).  It is

quite conceivable that a formal theory about such symbol systems

could be proved correct or consistent in ways that are not available for

formal theories about more traditional mathematical domains (such as,

for instance, the natural number sequence, the continuum or the

Euclidean plane, etc).  For a consistency proof for such a formal theory

would only have to deal only with finite structures such as strings and

trees of symbols, and their formal manipulations.  Such objects and

operations are, one might be inclined to think, much easier to  control

than mathematical objects in general.

 It was from such a conviction - that formal theories of formal systems

are special in that their correctness (and therewith their consistency)

can be demonstrated conclusively - that in the course of the first three
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decades of the 20-th century David Hilbert (1862-1943) developed an

approach to the problem of certainty in mathematics known as

finitism .  In order to place mathematics on a certifiably sound

foundation one should, he proposed, proceed in three steps:

(i) Formalise the different branches of mathematics using in 

each case some suitable formal system, consisting of a formalism

with a precisely defined syntax and a set of axioms characterising

the branch of mathematics that is being formalised.

(ii) Develop a formal system FS for the formalisation of these formal

systems; FS in its turn will consist of a well-defined syntax

together with formal axioms describing the general properties of

the symbolic systems used in these formalisations

(iii) Demonstrate the consistency of FS.

Hilbert's hope that the correctness of such a theory FS could be

established by simple and unquestionably sound methods was

destroyed by the cluster of results - culminating in the famous

Incompleteness Theorem - that were obtained by Gödel around 1930.

These results entail that for almost any of the established domains of

mathematics a formal system suitable for the formalisation of that area

can be proved consistent only in systems which are more powerful than

the system itself.  This entails that a proof of a formal system which

allows for its own formalisation - and surely the theory FS would have

to be such a system - is not possible using the resources which the

system itself provides.

One consequence of these general results is that since the first order

predicate calculus, with the syntax, axioms and inference rules defined

in Sections 1.1-1.3, is a formal system of the kind in question it cannot

be proved consistent by the means that it provides.  What is needed in

addition are certain non-logical principles.  There are various ways in

which these can be made available.  One of these is to add a certain

compendium of axioms of set theory, like the axioms of ZF which we

will discuss in Ch. 3.  Note however, that in order to prove the

consistency of this system an even more powerful system will be

required and so on - the regress is infinite.

As far as the first order predicate calculus is concerned, this is no

ground for serious worry.  By now, after 125 years during which

predicate logic has been used in uncounted applications and its formal

properties have been investigated in depth, and from many different

angles, the circumstantial evidence for its consistency is such as to

leave little room for suspicions that the system might be inconsistent
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after all.  In particular, the proofs of the Soundness Theorem make, in

view of all the different variations in which they have been given, the

possibility that the deduction systems to which they pertain might YET

be found to be inconsistent appear extremely remote. But the matter is

quite different for a system such as ZF, in which the logical axioms of

predicate logic have been extended with a powerful set of axioms which

concern the notion of set.  The realm of sets, and the properties of that

realm which the axioms of ZF articulate, are so complex that the fact

that no inconsistency has been uncovered in the course of the century

during which the system has now been in use doesn't seem to entitle us

to believe in its consistency with anything near the degree of

confidence that appears justified in the case of the predicate calculus

as such.  Here a formal consistency proof would be very welcome

indeed; but Gödel's results tell us that all such proofs must in a certain

sense be self-defeating, since they require formal systems more

powerful than the ones that they are about, for which the consistency

problem rises once again, and with a vengeance.

This is not to say, however, that the formalisation of metamathematics

is necessarily pointless.  Even if the formal system needed in the

formalisation of the notion of a formal system cannot be proved

consistent in a way that raises no further questions, the formalisation

may still help us to get a firmer grip on the metamathematical concepts

that have been formalised, and this may help to bolster our confidence

that the formal systems targeted in the formalisation - those used in the

formalisation of various branches of mathematics - do indeed have the

desirable properties of consistency and correctness which these proofs

are meant to establish.

1.3.4  Some Concepts and Results of the Theory of Sets.

The remarks of Section 1.3.3 were meant to give a glimpse of the

complex conceptual and formal relationship between logic and

mathematics, and especially of the crucial and at the same time delicate

role that is played within that relationship by the concept of set.

When compared with these sweeping vistas the few set-theoretical

notions and theorems which we need at this point - and which will be

presented in this section - will seem to be but a small matter.  But

actually this is misleading.  As only a thorough discussion of the aims

and methods of metamathematics could reveal more clearly, it is the

very notions and results that will be introduced below which are at the

heart of the conceptual and technical difficulties inherent in the
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concept of 'set' and its precarious position on the borderline between

mathematics and pure logic.

The set-theoretical concepts and facts that will be needed in the next

sections of this Chapter, and which will be reused in several parts of Ch.

2 ar the following:

(i) The notions of finite and infinite sets and the difference between

t h e m .

( i i ) The concept of the cardinality of a set.  Cardinality is a way of

assessing the size of a set.  For finite sets it amounts simply to the

number of elements the set contains.  But for infinite sets the notion of

the "number" of elements of a set has no unambiguous meaning.  Here,

a careful analysis of the notions of "number" and "size" is needed.  The

upshot of tghis analysis is that we must distinguish between (at least)

two different notions of size, 'cardinality' and 'ordinality'.

The latter notion, ordinality, applies only to sets whose elements are

given in a certain order.  In contrast, cardinality does not presuppose

any arrangement of the elements of the set, and therefore is applicable

to any set, irrespective of whether its presentation involves any kind of

order. The notion of cardinality we will present below is a simplified

version, but one which reveals all the most important features of the

notion of cardinality.

Both the distinction between finite and infinite we will define here and

the characterisation of cardinality (which differs somewhat from the

'official' definition which will be given in Ch. 3, are both based on the

concept of a 1-1 function from one set X to another set Y.  We begin

with the notion of cardinality.

A.       Comparative  Cardinality.

In Chapter 3 we will be in a position to develop this notion in such a

way that it will be possible to speak properly of "the cardinality of" any

set X.  That is, we will then be able to assign to each X a set-theoretical

object which can be identified with the cardinality of X.  For the time

being, however, we will have to be content with something less than

that.  What we will introduce now are (i) the relation of two sets X and

Y being of the same cardinality and (ii) that of X being of greater

cardinality than Y.
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The basic idea is that Y has cardinality at least as large as X iff there is a

1-1 function from X into Y.

Def.11 ( i ) Y is of cardinality at least as large as X, X  Y, iff 

  there exists a 1-1 function from X into Y.

       ( i i ) X is of greater cardinality than Y, Y  X, iff Y  X

and not X  Y.

Prop.1 (Obvious properties of the relations  and )

        (i)   is reflexive;  (ii)  is transitive.

        (iii)  is irreflexive;  (iv)  is transitive.

Perhaps the historically most important theorem of set theory says that

for any set X the corresponding power set P (X) is of greater cardinality

than X. (The power set P(X) of a set X is the set {Y: Y  X} consisting of

all subsets of X.)

Thm. 12  (Cantor)    X  P(X)

Proof.  We have to show (i)  X  P(X) and (ii) not P(X)  X. (i) is easy.

The function Si which maps each element x of X onto the singleton set

{x} is a 1-1 function from X into P(X).

The proof of (ii) is more interesting.  (It is one of classical examples of

a proof by reduction ad absurdum.)  Suppose there was a 1-1 function f

from P(X) into X.  Then we can distinguish between those Y  X such

that f(Y) & Y and those Y for which this is not so. Let A be the set of all Y

for which this condition does not hold, and let Z be the set of all

corresponding values f(Y):

(*) A = {Y  X: f(Y)  Y}.

(**) Z = {f(Y): Y & A}.

Then the question whether f(Z) is an element of Z leads to a

contradiction. First suppose that f(Z) &  Z.  Then by the definition of Z,

Z & A.  So by the definition of A, f(Z)  Z. So we have arrived at a

contradiction from the assumption that f(Z) &  Z. So this assumption is
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false and we have f(Z)  Z.  So by the definition of Z, Z  A.  So by the

definition of A, f(Z) &  Z, and now we have reached a contradiction

which only depends on the assumption that there is a 1-1 function from

P (X) into X.  So this assumption has been refuted.

q.e .d.

Given our definition of "Y has cardinality at least as large as that of X"

there appear to be two natural definitions of the notion: "X and Y have

the same cardinality": (i) X  Y & Y  X; and (ii) there exists a 1-1

function from X onto Y (also called a bijection , or 1-1 correspondence,

between X and Y).  Clearly (ii) entails (i):  if f is a bijection between X

and Y, then f is also a 1-1 function from X into Y and f-1 is a 1-1

function from Y into X.  What is not obvious is that the entailment also

holds in the opposite direction.  This is the content of the next

theorem.  First we define:

Def.13 X  Y (X is equipollent with Y) iff there is a bijection 

between X and Y

Thm. 3   (Schröder-Bernstein)

 If X  Y and Y  X, then X  Y.

Proof.  Suppose that X  Y and Y  X.  Then there exists (i) a 1-1

function f from X into Y and (ii) a 1-1 function g from Y into X.  Our

task is to construct on the basis of these two functions a bijection h

between X and Y.

The construction makes use of a lemma due to Tarski, according to

which any monotonic function F from the subsets of a given set Z to

subsets of Z has a fixed point (i.e. an argument of F such that F(x) = x):

Lemma 4. (Tarski).

Let F be a monotone function from P (Z) into P (Z), i.e. a function such

that for all U V  Z, F(U)  F(V). Then there exists a W  Z, such that

F(W) = W.

We will prove Lemma 4 below.  But first we will use it to carry through

the proof of the Schröder-Bernstein Theorem.
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Let U be any subset of X. By f[U] we understand the set {f(u): u & U}.

Consider the set Y\ f[U].  This is a subset of Y, so, using the same

notation, we can form g[Y\ f[U]].  This is a subset of X. So we may

define the function H from P(X) to P(X) as follows:

(*) H(U) = X\g[Y\f[U]].

Claim: H is monotone.  For suppose U V  X.  Then f[U] f[V]; so

Y\ f[V] Y\ f[U]; so g[Y\ f[V]] g[Y\ f[U]]; so X\g[Y\ f[U]] 

X\g[Y\ f[V]]. So, by Tarski's Lemma, H has a fixed point W.

Using W we can define the bijection that we are looking for as follows:

(**) Let x & X.  Then:

( i ) if x & W, h(x) = f(x)

( i i ) if x W, then h(x) =  g-1(x)

That h is indeed a bijection is easily verified.

( h . 1 ) We first show that h is properly defined for all of X. Let x & X.

If  x & W, then h(x) is obviously well-defined (since f is defined for all of

X).  Suppose x W.  Then x & X\W = X\H(W) = X\(X\g[Y\ f[W]]) = g[Y\

f[W]].  So there is a y & Y\f[W] such that x = g(y).  Since g is 1-1, also y =

g-1(x) = h(x) (by (ii) from the definition of h).  So once again h(x) is

defined.

( h . 2 ) We next show that h is onto Y.  Let y be any member of Y.

Then we have that either y & f[W] or y & Y\f[W].  In the first case y = f(x)

for some x & W, and so y = f(x) = h(x).  In the second case, g(y) & X\W,

so h(g(y)) = g-1(g(y)) = y.  So each y & Y is in the Range of h, and h is

onto Y.

( h . 3 ) Finally we show that h is 1-1.  Suppose that x, x' are

arbitrary members of X such that x  x'.  We must show that h(x) 

h(x'). If x, x' &  W, then h(x)  h(x') follows from the fact that f is 1-1.

If x, x' & X\W, then by the proof of (h.1) there are y, y' such that x =

g(y) and x' = g(y').  Since g is 1-1, h(x) = g-1(y) and h(x') = g-1(y'), it

follows that h(x)  h(x').  Lastly suppose x & W, x' & X\W.  Then h(x) &



6 6

f[W] and h(x') & Y\f[W], so again h(x)  h(x').  So h is 1-1.  This

concludes the proof of the Schröder-Bernstein Theorem.

q.e .d.

Proof of Tarski's Lemma:

Let F be a monotone function from P(X) to P(X).  Let

Z = {Y & P(X): Y F(Y)}.  We show that Z is a fixed point of F.

First note that since is a member of the set {Y & P(X): Y F(Y)}, this set

is not empty.  Second, we show that Z  F(Z).  Suppose z & Z.  Then

there is a V in {Y & P(X): Y F(Y)} such that z & V.  Since V &

{Y & P(X): Y F(Y)}, V F(V).  Since F monotone and V Z, F(V) F(Z).

So V F(Z) and consequently z & F(Z).

Third, we argue that F(Z) Z.  Since Z  F(Z), it follows by the

monotonicity of F that F(Z)  F(F(Z)).  So F(Z) belongs to the set {Y &

P(X): Y F(Y)} and so F(Z) is included in the union of that set, i.e. F(Z) 

Z.

q.e .d.

Let us take stock of what we have so far established about the relations

,  and .  The Schröder-Bernstein Theorem tells us that  is

equivalent to the intersection of  and its converse.  Moreover, i s

reflexive and transitive, and Cantor's Theorem tells us that there is no

upper bound to the sizes of sets in the sense of : For any set X, the

cardinality of P (X) is bigger than that of X.  So is a partial ordering

without a largest element.

What we do not know yet is whether  is a linear order.  As a matter of

fact   is a linear order, but this is a fact that at this point we can only

state. We will show that it is a fact in Chapter 3.

Thm 4.  For all sets X and Y, X Y or Y X.

B        Finite and Infinite.

We now turn to the notions "finite" and "infinite" set.  We have a fairly

good intuitive grasp of this distinction:  A finite set is one whose

members can be counted and thereby shown to add up to some finite
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number n, an infinite set is one for which this is not possible - one can

keep on counting elements without ever getting to the end.  However,

exactly how this intuitive idea is to be captured in formal terms is not

altogether straightforward.  In fact, the set-theoretical literature

contains several definitions of the notions, "finite set" and "infinite

set". and not all of these are based on the same conception what the

difference consists in.  Even so, the definitions turn out to be equivalent

given sufficiently strong set-theoretic assumptions.  But the

assumptions that are needed for this are not entirely self-evident.  In

Chapter 3 we will see what these assumptions are.  For now what we will

do is give just one of the possible definitions.  It is one for which the

intuitive support appears to me to be particularly strong.

The definition of a finite set (and, with it, of the complementary notion

of an infinite set) which we will adopt is based on the following

consideration:  If X is a finite set and Y is a proper subset of X then

there can exist no bijection between X and Y.  Intuitively this seems

obvious:  If X is finite, there must be some natural number n such that

X has n members. But then, if Y is a proper subset of X, then Y has at

most n-1 members, so no function which has Y as its Domain can

exhaust the members of X.  For infinite sets this consideration does not

apply.  Take for instance the set N  of natural numbers {0, 1, 2, ...}.  The

function f(n) = n-1, defined on the proper subset {1, 2, ...} of N  has N

for its range.  So here we do have a bijection between N  and a proper

subset of it.

Of course this last consideration doesn't prove that bijections between

a set X and a proper subset of it will exist for all sets X which we have

reason to regard as infinite.  But closer consideration makes this

equation - a set is infinite iff there exists a bijection between it and

some proper subset of it - seem very plausible.  The equation comes to

look compelling in particular when we think of an infinite set as one

which must of necessity include a subset which can be regarded as a

copy of N .  And that idea is very plausible too:  If a set's being infinite is

to mean intuitively that when you start counting its members, you don't

get to the end of it in a finite number of steps, then that would seem to

be tantamount to the set containing a (potential) copy of N ' which gets

"created" in this (unending and thus abortive) act of counting the set.

(To make this assumption formally precise is not quite so easy.  We will

see in Ch. 3 how this can be done.)

Returning to our equation:  As soon as a set X includes as one of its

subsets an "isomorphic copy" N ' of N, the existence of a bijection with
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a proper subset seems warranted:  Let N '' be the subset of N ' which we

get by taking away one element 0' of N ' (which we may think of as the

"copy" of 0 under an isomorphism g between N  and N ').  Let f be the

function which maps N ' 1-1 onto N '' and which maps all other elements

of X onto themselves.  Then f is a bijection between X and its proper

subset X\{0'}.

This much will have to do for now as motivation for the following

definition.

Def. 14     (i) A set X is infinite iff there exists a bijection

between X and a proper subset of X.

     (ii)  X is finite iff x is not infinite.

Nothing that has been said so far entails that any infinite sets exist
11

.

When systems for the formalisation of mathematics were first

developed, there seems to have been an expectation that their existence

could be proved from some more fundamental logical principles.  But

in the meantime this hope has had to be abandoned. The current

systems of axiomatic set theory acknowledge this necessity in that they

all contain an axiom which asserts the existence of some infinite set

more or less directly.

The form in which this axiom is often stated is that there exists a set X

which (i) contains the empty set as a member, and (ii) contains, for any

set x which is a member of it, also the set x {x} as a member. (This is

one way of saying that X contains all the "natural numbers", with 

playing the role of the number 0, { } (= { }) that of the number 1,

{ } {{ }} (= { ,{ }}) that of the number 2, etc.)

Postulate.  (Axiom of Infinity)

There exists a set X such that:

 (i)  & X;    and

(ii) for any x, if x & X, then x {x} & X.

From the Axiom of Infinity we can easily derive that there is a smallest

set satisfying the conditions (i) and (ii).  For let X be as postulated.  Let

1 1
I am referring here to the introduction to informal set theory which we

gave in the Introductory course ot which the present one is the sequel.  (Notes:
Logik & Mathematische Methoden I & II, University of Stuttgart, 1998/1999.
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Z be the set {Y: Y X &  & Y &  (!x)(x & Y  x {x} & Y}).  Since X & Z, Z

is non-empty. So its intersection Z is well-defined.  We will call this

intersection '* '.  Suppose that V is any set satisfying the conditions (i)

and (ii) of the Axiom of Infinity.  Then V X also satisfies these

conditions and since this set is included in X it belongs to Z.  So

* V X and consequently * V. So *  is included in all sets satisfying

the conditions of the Infinity Axiom and thus is the smallest among

them (in the strong sense of "smaller than" as "properly included").

In Ch. 3 we will adopt a principle that will allow us to show that * i s

indeed as small as any infinite set can be.  More precisely, we will then

be able to show that if X is any infinite set in the sense of Def. 3, then

*   X. For the time being, however, it is enough to observe two things:

(i)  *  is the starting point of an infinite sequence of sets of ever larger

cardinality: * , P(*), P(P(*)), P(P(P(*))), ...

(ii) *  belongs to the category of those infinite sets that are of smallest

infinite cardinality.  Sets of this cardinality - i.e. sets equipollent with *

- are called "denumerable", "denumerably infinite or "countably

infinite".  The distinction between the countable and uncountable

infinite plays an important role in many branches of mathematics and

in particular in mathematical logic.  One instance of its importance in

logic we have already encountered: the models constructed in the

completeness theorem are either finite or countably infinite.

Furthermore, the way in which completeness was proved made use of

the fact that the set of formulas of any first order language L

(containing either a finite or a countably infinite set of non-logical

symbols) is countable and thus can be enumerated as a sequence

indexed by the natural numbers.  In Ch. 2 we will see other instances in

which the fact that certain sets are countable is important.

1.4  Corollaries to the Completeness Proof.

Model Isomorphims and Elementary Equivalence.

After this set-theoretical interlude we return to the point where we left

the Completeness Theorem and its proof.  Corollaries 1 and 2 are some

of their immediate consequences.
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Def. 15 Let L be a first order language. We say that a set % o f

sentences of L is satisfiable iff there is a model M for L such

that for every C & % , M  C.

Corollary 1 consists of two simple restatements of the Correctness and

the Completeness Theorem.

Cor.1 Let L be a first order language.

a. A set % of sentences of L is satisfiable iff it is

consistent .

b . A set % of sentences of L is inconsistent iff it is not

satisfiable.

The next corollary is known as the Compactness Theorem.  The proof,

which makes an essential use of the Correctness and Completeness

Theorems, is left to the reader.

Cor. 2. (Compactness)

Let L be a first order language.  A set % of sentences of L is

satisfiable iff every finite subset of % is satisfiable.

A brief remark about the term 'compactness'.  The (to my knowledge)

earliest use of this term occurred in connection with one of the most

important theorems of Analysis , i.e. of the theory of the field of real

numbers. This is the so-called Theorem of Heine-Borel-Lebesgue, which

says: any closed bounded set of real numbers (i.e. every set that can be

written as a finite union of closed intervals) which is included within

the union of an infinite set Y of open intervals is already included

within the union of a finite subset of this set Y. Here the term

"compact" makes good intuitive sense: closed bounded sets of reals are

"compact" in the sense that their points are so much "heaped together"

that they cannot be spread out over an infinity of different open sets

(and so in particular not over an infinity of different open intervals.

In the meantime compactness has become a central notion in Topology ;

and in fact it has had an almost unparalleled number of applications in

all sorts of branches of mathematics.

The HBL Theorem can be seen as stating that a certain property P - that

of being a set whose union covers a given closed bouned set Y is

"finite": iff some infinite set U has P, then so does some finite subset V

of U has P. This is the general form of compactness.  In many instances
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the property  P is such that if any set V has it, then every superset of v

has it too. When such a property P is finite, then the implication holds

both ways:

U has P iff some finite subset V of U has P.

This is so for the HBL Theorem in its original form: if the union of a

finite subset of U already covers a given closed bounded subset, then

surely the union of all sets in U will do too. But the substance of the

compactness claim is the implication also holds in the opposite

direct ion.

In the application of compactness that is given by the Compactness

Theorem for first order predicate logic, which is stated here as Cor. 2,

the infinite set U is a set % of sentences of some language L of first

order pedicate logic and P is the property of being not satisfiable.  The

Compactness Theorem says this property is finite: A set % has P iff some

finite subset of  % has P.  Taking the negations of both sides of this

biconditioal gives us the Compactness as stated.

Cor. 2 follows from the statement  of the Correctness and Completeness

Theorems.  This is different for the Downward Skolem-Löwenheim

Theorem , given here as Cor. 3. The Downward Skolem-Löwenheim

Theorem follows not simply from the statement of the Correctness &

Completeness Theorem, but from the way in which we have proved

completeness .

Cor. 3.  (Downward Skolem-Löwenheim Theorem)

If a set % of sentences of some first order language L has any 

model at all, then it has a model whose universe is at most 

denumerably infinite.

The Downward Skolem-Löwenheim, Cor. 3.a, follows from the proof of

the Completeness Theorem.  This is because for any consistent set of

sentences %  the model of % which is constructed in the completenesss

proof is at most denumerable.  For the proof given above this is so

because the language L' for which a maximal consistent set is

constructed, which then gives us the model M = <U,F> of %, is of the

form L  {c1, ..,cn,..}, where c1, ..,cn,.. is a countable sequence of

individual constants not occurring in L, while U consists of equivalence

classes of constants each of which will contain at least one member



7 2

from the sequence c1, ..,cn ,.. .  It follows that U will be at most

countable.1 2

A companion theorem to the Donward Skolem-Löwenheim Theorem is

the Upward Skolem-Löwenheim Theorem:

Let  , be any inifinite cardinal. If a set % of sentences of some first

order language L has a denumerably infinite model, then it has a

model whose universe is of cardinality , .

The Upward Skolem-Löwenheim Theorem doesn't follow from the proof

of the Completeness Theorem as we have given it.  What we need in

addition is (i) a proper definiition of cardinals (especially infinite

cardinals) and (ii) a generalisation of the Completeness proof for

languages with arbitrarily large infinite sets of individual constants

(more precisely:, with sets of individual constants of any given infinite

cardinality ,).  (We can, for the sake of stating  the Upwards Skolem-

Löwenheim Theorem, identify cardinalities with equivalence classes of

sets under the equipollence relation   given in Def. 13 in Section

1.3.4. But to prove  the Theorem we need a somewhat different notion

of cardinal. See XCh. 3 for details, as well as certain set-theoretical

methods that are connectec with that definition.

We will return  to the Upward Skolem- Löwenheim Theorem there.

Exercise. Prove the following statement:  Suppose that L is a first

order language and that %  is a set of sentences of L which has an infinite

model.  Then  %  has a denumerably infinite model.

(Hint: For each natural number n there is a sentence Dn of First Order

Predicate Logic which says that there are at least n different things.  Let

M be an infintie model of % .  Then all Dn are true in M.  So

%  {Dn}n = 1,2,.. is consistent.)

1 2 In the Appendix to this Chapter Correctness and Soundness are proved not
for the axiomatic proof method described in 1.1.5, but for the method of proof by
construction of a semantic tableau.  This completeness proof also entails the
Downward Skolem-Löwenheim Theorem as an easy corollary. The point in this
case is that when an argument is valid, then there is a closed semantic tableau for
the argument. Since a closed tableau is always a finite object, involving finitely
man tree nodes and finitely man formulas associated with those nodes, a closed
tableau for the argument <% ,B> will involve only fnitely many premsies from % , So
the argument  <) ,B>, where )   is the set of those finitely many premises will also be
val id .
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The Downward Skolem-Löwenheim Theorem shows, in quite general

terms, that first order languages are unable to "fully describe" certain

structures which we should like to be able to characterise in terms of

first order logic.  Take e.g. the structure R  of the real numbers, with

the operations of addition, multiplication, the relation of less than and

0 and 1 as distinguished elements.  This structure is non-denumerable.

(There are as many real numbers as there are subsets of the natural

numbers, so the non-denumerability follows from Cantor's Theorem.)

Let %  be any set of sentences from some first order language chosen for

the purpose of describing this structure. (A common choice is the

language whose non-logical constants are the two 2-place functions +

and , the 2-place relation < and the individual constants 0 and 1.)

According to the Skolem-Löwenheim Theorem, if the sentences in %  are

all true in R , % will also be satisfied by certain denumerable models, and

thus by models which differ importantly from R .  To be precise, % will

have models which are not isomorphic  to the intended structure R .

This intuition can be made precise as follows:

Def. 16 Let L be a language and let M =  <U,F> and M' = <U',F'> be 

models for L.

1 . We say that the function h from U into U' is an 

isomorhism from M to  M'   iff

(i) h is onto U' (h is a surjection);

(ii) h is 1-1 (h is an injection);

(iii) if #  is an n-place predicate constant of L, then for all

u1 ,..,un from U, F'(# )(h(u1),..,h(un)) =  1 iff

(F(# ) (u1,..,un) = 1;

( iv) if #  is an n-place function constant of L, then for all

u1 ,..,un from U, F'(# )(h(u1),..,h(un)) =

h(F(# ) (u1 ,..,un) .

2 M and M' are called isomorphic , in symbols M  M', 

iff there exists an isomorphism from M to M'.

Prop. 3    For any first order language L,  is an equivalence 

relation on the class of all models for L.

Evidently no sentences of any language can distinguish between

isomorphic structures; for obviously such structures behave in exactly

the same way with respect to truth.  Indeed, we have the following
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theorem:

Thm. 5. Let M and M' be models for L and let h be an isomorphism 

from M to M'.  Then we have for every formula A of L and 

every assignment a  in M:  [[A]]M,a   = [[A]]M', h.a , where h.a

is the composit ion  of h and a, i.e. that function which

assigns to each variable vi the value h(a (vi)) .

Exercise:  Prove Theorem 5.

Theorem 5 has the following obvious corollary:  If M and M' are

isomorphic models for L and A is a sentence of L, then M  A iff M'  A.

We will state this corollary using the concept of elementary

equivalence:

Def.  17 Let M and M' be models for the language L.  M and M'

are said to be elementarily equivalent, in symbols

M  M', iff for every sentence A of L, M  A iff M'  A.

Prop.  4  Let M and M' be models for L.  If M  M', then M M'.

Cor. 3 makes explicit that there is no hope of using first order

sentences to distinguish between two isomorphic structures.  Arguably

that is no real draw-back, since from a mahtematical point of view two

ismorphic structures are essentially the same - they are the same as far

a their relevant mathematical properties are concerned. One might

hope, however, that it should be possible to use first order logic at least

to describe structures up to isomorphism. But we already have

evidence that that is not the case either. This is one of the implications

of the Skolem-Löwenheim Theorems. Take for instance the Downward

Skolem-Löwenheim Theorem.  It entails that an uncountable structure

can never be fully characterised (i.e. characterised up to isomorphism)

by a set of first order sentences. For any set of sentences that is true in

this structure will also be true in some denumerably infinite model, and

thus in a model that is not isomorphic to the original structure. And the

Downward and Upward Skolem-Löwenheim Theorems taken together

netail that this negative conclusion applies to all infinite structures,

countable and uncountable alike.

For finite models the situation is different.  Whenever M is a finite

model for some language L, then all models which are elementarily

equivalent to M are isomorohic to it. We give a slightly more elaborate

version of this claim in the next theorem.
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Thm 6.  Let M be a finite model for some language L.

  1. If M' is any model for L such that M' M, then

M'  M.

  2. If L is finite, then there is a single sentence AM  of 

L such that for any model M' for L, if M'  AM , 

then M'  M.

Proof.  We first prove 2.  Suppose that L is finite and that M = <U,F>  is

a finite model for L.  Since U is finite, we may assume that U  =

{u1,..,un} for some number n.  Let v1,..,vn be n distinct variables which

we choose to correspond 1-1 to the objects u1 ,..,un . (As a matter of

fact, v1 ,..,vn  are the first n variables from the infinite list in the original

definition of the syntax of predicate logic, which is fine, if not essential

to the following argument.) For each k-place predicate P of L let DP be

the set consisting of all formulas P(vi1,..,vik), such that

F(P)(<ui1,..,uik>) = 1, where uij & {u1,..,un} for j = 1,..,k, and all

formulas P(vi1,..,vik), such that F(P)(<ui1,..,uik)>) = 0.  Similarly,

where g is a k-place function constant of L, let Dg be the set consisting

of all formulas g(vi1,..,vik) = vj, such that F(g)(<ui1,.., uik>) = uj and

all formulas (g(vi1,..,vik) = vj), such that F(g)(<ui1,.., uik>) uj.  Let

B be the conjunction of all the formulas in the sets DP and Dg for

arbitrary P and g in L.  Since M is finite, each of the sets DP and Dg is

finite. Further, since by assumption L is finite, there are only finitely

many such sets DP and Dg. Therefore there are only finitely many

formulas in all the sets DP and Dg together.  So we can form the

conjunction B of all these formulas.  B is a formula of L and can be

turned into a sentence AM  in the way shown in (1).

( 1 ) ( v1) ... ( vn)((- i j vi  vj) & ( vn+1) Vi(vn+1 = vi) & B)

We will refer to the part of AM which follows the initial block of

existential quantifiers ( v1) ... ( vn) as A*M .

Claim: AM  describes M up to isomorphism.  That is,

( 2 ) For any model M' for L we have: M' is a model of AM  iff M'  M.
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The proof of (2) consists of two parts.  First, we have to show that M is

a model of AM .  This is more or less obvious from the way in which AM

has been constructed.  Second, we have to show that if M' A M , then

M'  M.  We observe first that if M' satisfies AM , then there are w1,..,wn

such that M' A*M , i.e.

( 3 ) M' - i j vi  vj & ( vn+1) Vi(vn+1 = vi) & B)[w1,..,wn]13.

It is easily seen that because of the part of the formula in (3) which

precedes B, w1,..,wn are all the elements of UM'. So M' has cardinality

n. Moreover, the function f: {u1,..,un}  {w1,..,wn} defined by

"f(ui) = wi" is an isomorphism from M to M'.  For instance, supose that

P is a k-place predicate of L and <ui1,..,uik> is some k-tuple of elements

from {u1,..,un}.  Then B will contain either the conjunct  P(vi1,..,vik) ,

or the conjunct P(vi1,..,vik), depending on whether F(P)(ui1,..,uik) =

1 or F(P)(ui1,..,uik) = 0.  In the first case we will have, because of (3),

that  M' P(vi1,..,vik) [wi1,..,wik].  This means that FM'(P)(wi1,..,wik) =

1. i.e.

( 4 ) FM'(P)(<f(ui1),..,f(uik)>) = FM'(P)(<wi1,..,wik>) =

F(P) (<ui1,..,uik>).

In the second case M' P(vi1,..,vik) [wi1,..,wik]. So FM'(P)(wi1,..,wik)

= 0 and again we have (4) and thus satisfaction of the requirement.

Since this holds for arbitrary argument sequences ui1 ,..,uik , the

isomorphism requirement for P is satisfied. The case of other

predicates of L and also that of any function constant of L are handled

in the same way. This concludes the proof of Part 2.  of the Theorem.

To prove Part 1 of thee Theorem we only need to consider the case

where L is infinite, as the case where L is finite has already been dealt

with.  If L is infinite, we may assume that L is the union of an infinite

chain of ever more inclusive finite languages Lj : L = {Lj: j = 1, 2, ..},

where Lj  Lj+1 and all Lj are finite.  Let M = <U,F> be a finite model for

L with universe U = {u1,..,un}.  For each language Lj let Mj be the

reduction of M to Lj, i.e. that model Mj which we obtain when we

1 3 For the notation with the objects from the model M' in squarwe brackets see
the remark following Corollary 1 to Lemma 2 on p. 21.
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"throw away" the specifications FM (# ) of the extensions in M for all

those non-logical constants # of L which do not belong to Lj.14 So Mj =

<U,Fj>, where Fj is the restriction of F to Lj. For each j we can find a

sentence AM j of the form (1) such that for any model M'j for Lj, M'j 

AMj iff M'j Mj.

Let M' be any model such that M'  M.  Then M' AM j for all j.  As in

the proof of Part 2, this entails (for any j whatever) that UM'  consists of

n elements w1,..., wn.  Furthermore we can construct for each j, just as

in the proof of 1., an isomorphism hj between Mj and M'j.

Now we observe the following: Since UM j (= {u1,...,un}) and UM'j
(={w1,...,wn}) are both finite, there are only finitely many different

bijections from the universe of Mj to the unvierse of M'j (i.e. only

finitely many bijections from {u1,...,un} to {w1,...,wn}).  So one of these

must occur infinitely often among the infinite sequence of bijections

h1, h2, , .. . Let h be such a bijection.  We show that h is an

isomorphism between M' and M.  Consider any non-logical constant #

of L.  Suppose (without loss of generality) that #  is a 2-place predicate

P.  There exists a number jP such that P belongs to Lj for j jP.  Since h =

hj for infinitely many j, there is a j1 jP  such that h = hj1.  Therefore f

maps the extension PM  of P in M onto the extension PM' of P in M'.  For

suppose that <ur,us> & PM .  Then P(vr,vs) is a conjunct of AM j1.  So by

the form of AM j1 specified in (1), <wr,ws> & PM'.  Similarly, if it is not

the case that <ur,us> &  PM , then P(vr,vs) occurs as a conjunct of

A M j1. So by the same reasoning it is not the case that <wr,ws> & PM'.

q.e .d.

1.5   First Order Theories and Modeltheoretic Relations.

We conclude this chapter with:

(i) a discussion of the notion of a (formal ) theory  (of  some first

order language L), and

1 4 For an explicit formal definition of model reduciton see Def. 21 below.
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(ii) the definition of two fundamental relations between models:

( a ) the relation of one model for a language L being a submodel

of some other model for L, and

(b) the reduction relation between models - that relation which

holds between a model M for a language L and a model M'

for some more inclusive language L' iff M is the reduction of

M'.

The first of these relations will then be applied in what will be the last

significant theorem of this Chapter. This theorem is a so-called

preservation theorem. In general, preservation theorems say that a

logical formula has a certain model-theoretic property P iff it is

logically equivalent to a formula with a certain syntactic form. The

model-theoretic property is typically of the form: if the given formula A

is true in a model M then it is also true in any model M' that stands in a

certain relation R to M; in other words, P says that the truth of A is

preserved going from models M to models M' standing in the relation R

to M, In the theorem we will consider here, R will be the submodel

relat ion.

We have already made a few very simple uses of the reduction relation

between models, viz. in those cases where we extended a language L to

a language L' with additional individual constants and then "expanded"

models M for L to models M' for L' by adding inerpretations for those

new constants. In each such case M is the reduction of M' to the

language L.  More interesting applications of the reduction relation will

not be given in this Chapter. But we will encounter the relation again in

the next section, in the logical theory of definitions that we will discuss

in 2.5. and where it will play a central role.

1.5.1   Deductive Closure and First Order Theories.

The notion of a first order theory which we will define shortly is

motivated by the use of logic in the formalisation of scientific

knowledge.  The formalisation of science - not only of pure

mathematics but also of the empirical sciences, especially sciences like

physics, chemistry, astronomy, etc. in which mathematics plays an

important role - became one of the central goals of the philosophy of

science in the first half of the twentieth century.  This, it was thought

by many, would be the one and only way to make scientific knowledge

truly precise and thus to make unequivocally clear what empirical
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predictions would follow from any given set of scientific hypotheses.

The thesis that this is the proper way to develop scientific theories is

known as the Deductive-Nomological Model (or, abbreviated, the 'DN

Model') of theory formation and scientific discovery, and the method

of theory development that is implied by this model as the D(decutive)-

N(omological) Method. The general formulation of the DN Model of

scientific theory formation is due to Carl Hempel (1905-1997) and Paul

Oppenheim (1885-1977).

We will have more to say about the history and the implications of the

DN-Method in the last section of this chapter (Section 1.5.3). Here we

will confine ourselves to just one observation, which has been of

central importance in the history of scientfic methodology and the role

that logic plays in it.

The assumption of the DN model that every scientific theory can be

formulated as an axiomatic theory of predicate logic implies that the

relation of entailment - the relation that holds between B and A when B

follows from A - is the same for all scientific domains: There is just one,

universally applicable entailment relation and that is the relation of

logical consequence as we have defined it in these notes - B is a logical

consequence of %  if truth is preserved from % to B in all possible

models.  The Completeness Theorem for first order logic, noreover,

adds to this the computability of this universal entailment relation. It

tells us that there exist formal deduction methods which are correct

and complete for the consequence relation of for first order logic.  Any

such deduction method can be used to derive the theorems of any

theory formalised as an axiomatic fiirst order theory.

According to the DN Model, then, both the question: "What the

entailment relations ifor different scientific domains?" and the

question: "How can the entailments defined by those relations be

actually computed?" are solved in one fell swoop: There is just one such

relation ans any complete proof procedure for that relation can be

used to compute its instances.1 5

At the time when the DN Method was first applied to particular

scientific theories, and then, not long after, formulated as a general

canon of scientific methodology, the logical uniformity it implied - that

1 5 In the course of the history of formal logic since Frege and Peirce a
considerable variety of such correct and complete proof methods for first order
logic have been developed. Some of these look quite different from each other at
least on the surface, even though they produce tghe same output.  Theory
engineers can take their pick.
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all sciences can be seen as making use of one and the same logic - came

as a revelation (or as a shock, depending on methodological or

philosohical persuasions).  Until then it had been widely believed that

many different sciences are governed by their own, domain-specific

logics, and that it was one of the important tasks of any branch of

science to discover the special properties of the logic determined by its

domain .

The most salient example of a science with which people associated

such a belief was plane geometry. For plane geometry an axiomatic

formulation had been in existence since Euclid (300 B.C.). Until the

very end of the 19th century it was thought that geometry was

distinguished by a special form of "geometrical reasoning", which

manifests itself in the use of diagrams (of "arbitrary triangles" and so

forth) and in the drawing of auxiliary lines as part of the demonstration

that iseems to be making an essential use of the diagram.16 This feature

of geometry was seen as distinct from the content of Euclid's postulates

as such. It took well over two thousand years before this belief in the

special nature of geometrical reasoning was shown to be without a

proper foundation. The demonstration was given by Hilbert in his

monograph Grundlagen der Geometrie (1900)17 In order to

demonstrate this Hilbert had to do what noone had done before him

throughout the long history of Euclidean Geometry: He formalised

plane geometry explicitly as a theory of formal logic. Throughout the

centuries Euclidean Geometry had been looked upon as the paradigm of

an axiomatic theory. But this view only focussed on the role and

meaning of Euclid's postulates. The perception of what constitutes a

geometrical proof was based on intuitions about valid mathematical

reasoning in general and valid geometrical reasoning in particular and

was at best marginally connected to an understanding of reasoning in

pure logic. Hilbert's formalisation (which  with hindsight we can see as

one of the first applications of the DN Method) - substituted for this

intuitive conception of ehat constitutes valid geometrical reasoning a

notion of entailment that was based on a precise logical analysis. It was

this that enabled him to show that in last analysis there is nothing that

sets geometrical reasoning apart from reasoning about any other

domain .

1 6 Well-known examples are the standard proofs of the theorem that the three
perpendiculars of a triangle meet each other in a single point, the  theorem that
the three bisectors meet in one point and the theorem that the three medians meet
in one point.
1 7 David Hilbert (1862-1943), one of the most important and influential
mathematicians of all times.
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Geometry is only one scientific theory among many. The reason why

Hilbert's demonstration that its logic is like that of any other domain

made so much of an impact was that throughout the centuries a good

deal of thought had been given to the nature of geometrical reasoning;

it was in particular the views of those who had argued explicitly and

extensively in favour of a mode of proof particular to geometry that

Hilbert was sperceived as having refuted.18 For other scientific domains

the thought that they were or might be governed by their own special

logics tended to be less specific. But as far as is possible to tell in

restrospect, the thought that they too involve special kinds of logic, if

perhaps not wholeheartedly embraced, wasn't firmly refected either.

And for those domains the message of the DN method was as clear and

unequivocal as it was for the domain of geometry: none of these

domains is distinguished by a logic of its own.

Obviously it is the axioms of a theory that is formalised within first

order logic which determine its properties. But even iif that is so, that

doesn't settle the identity conditions of such theories - it doesn't settle

teh question when a theory given as T and another theory given as T'

are to count as one and the same theory. Two points of view are

possible here. According to the first the only thing that really matters

about a formal theory is which statements can be derived in it as

theorems. From this point of view any two axiom sets that generate the

same set of theorems are equivalent and there is no reason to

distinguish between them. On this conception, then, a first order theory

can be identified with the set of its theorems. There may be various

ways of axiomatising the theory, but these should be seen as different

axiomatisations of the same theory.

Sometimes. however, it isn't just the set of theorems that matters, but

also the syntactic form of the chosen set of axioms which generates

1 8 Perhaps te most celebrated of those who argued for the specifically
geometrical character of geometrical demonstrations was the British empiricist
George Berkeley (1685-1753), also known as "Bishop Berkeley".
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that set. Another axiom set might generate exactly the same theorems

but its axioms could nevertheless have different forms, from which less

can be inferred about the logical properties of the theory.19 In such a

situation it would be natural to make the choice of axioms part of the

identity of the theory.

These considerations suggest two "levels of granularity" for the identity

conditions of formal theories: a coarse-grained level at which a theory

is identified with the set of its theorems and a fine-grained level at

which theorems are identified with particular axiom sets. Here we

adopt, following what is the standard practise in mathematical logic,

the coarse-grained level.

This coarse-grained notion of a formal theory - or deductive theory, as

one also says, or simply theory,  the term we will use here - is given

explicitly in Def. 18.b.  It is defined in terms of the notion of deductive

closure , which is given in Def. 18.a.

Def.  18     Let L be a first order language.

   1 . Let  %  be a set of sentences of L.  By the closure of %  in 

L, ClL(%), we understand the set of all L-sentences 

which are logical consequences of % :

ClL(%) = {A: A is a sentence of L & %  A}

  2 . A theory of L, or L-theory , is any set T of sentences of

L that is closed under deduction in L:

T is a theory iff ClL(T) = T.

Where it is clear which language L is intended we sometimes omit the

subscript L in "ClL".  We also use Cl(%) as short for ClL(%)(%), where

L(%), the language of % , is that language which consists of all non-logical

constants that occur in at least one sentence of % .

The operator ClL has a number of fairly obvious but useful properties

which are listed in the following proposition.

1 9 For instance, it could be that the axioms in one set have a form from which
we can infer that the set of theorems they generate is decidable - in the sense that
a computer programme could be written which decides for each statement within
a finite number of steps wether or not it is deducible from the axioms - whereas
some other axiom set generating the very same set of theorems would not enable
us to draw that conclusion because its axioms aren't of the right form.



8 3

Prop.  5  Let L be a first order language, %, ) sets of sentences of L.

Then the following hold:

1 . %  ClL(%).

2 . ClL(ClL(%)) =  ClL(%).

3 . ClL(%) is a theory of L.

4 . If %  ), then ClL(%)   ClL()).

5. Let L' be language such that L  L'.

Then ClL(%) =  ClL'(%) {A: A is a sentence of L}

Here are some further important notions connected with theories:

Def. 19  1 . Suppose that T is a theory of L and that T = ClL(%).  

Then we say that % axiomatises T.  T is called finitely 

axiomatisable iff there is a finite set %  which

axiomatises T.

  2. A theory T is called inconsistent iff T  20; otherwise T

is called consistent .

  3. A theory T of L is called complete  iff for each sentence

A of L either A & T or A & T.  (Often the term

"complete" is used for "complete and consistent".  In

general it will be clear from the context whether this is

in tended. )

  4 . We define L to be the set of sentences of L which

consistsof all sentences of L.  (As stated explicitly in

Prop. 6 below, this set is a theory.)

Proposition 6 collects some simple facts about theories.

Prop. 6 1 . L is a theory of L.

2 . A theory T of L is in consistent iff T = L.

3 . The set {A: A is a sentence of L and A} is a theory of L.

We refer to this theory as TL.

4. When T is a theory of L, then TL T L.

2 0 Recall that is some fixed sentence that is a logical conrtadiction. (Our

hoice was and conrinues to be the formula ( v1) v1  v1. )
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5 . When T and T' are theories of L, then T T' is a theory

of L.

6 . If T and T' are complete theories of L, then either

T = T' or T T'  .

More about first order theories can be found in the exercises to this

Chapter and in Chapter 2.

There is one basic notion conected with axiomatisation that we have

not yet mentioned. Often, when formalising a theory by providing a set

of axioms for it, we try to make sure that the axiom set contains no

redundancies. Firmally: a set of sentences % is called redundant  iff there

is at least one sentence in the set which can be derived from the other

sentences in the set; in such a situation we also call a sentence in % that

can be derived from the other sentences in % redundant in % .

Def. 20      Let %  be a set of sentences from some first order language L.

a . Let A be a member of % . Then A is redundant in %  iff

%\{A} A.

b . % is called redundant  iff it has at least one redundant

m e m b e r .

When the purpose of choosing a set % is simply to provide a set whose

theorems are all and only the sentences in some other set that is given

in advance, then redundant members of % don't do any work that

wouldn't be accomplished without them. In such situations it seems a

matter of "logical hygiene" to replace redundant sets by smaller non-

redundant ones. When the redundant set % is finite to start with one can

always obtain a redundant subset by dropping redundant axioms one by

one until a non-redundant subset of the orginal set remains which still

produces the same set of theorems. (When % is infinite, this is in

general not possible.)

Just as it is often considered a matter of logical hygiene to come up

with axiomatisations that are non-redundant in the sense just defined,

so it is sometimes also seen as a requirement of proper formalisation

that the set of primitive concepts of the axiomatisation - i.e. the set of

those non-logical constants that occur somewhere within the given

axiom set - be "non-redundant". Here "non-redundant" is meanr  in the

sense that none of the concepts in the set of primitives can be defined

within the given theory using the remaining concepts. Exactly what this

anounts to won't be obvious and in fact it is something that requires
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careful explication. To do this here would carry us too far afield.

However the matter in Section 2.5, of Ch. 2, which is devoted to the

theory of definition.

1.5.2   Model Extension, Model Expansion and Preservation

In this section we introduce the model-theoretic relations of submode l

and of reduction.   Both play a part in many important theorems of

Model Theory.  In this section we only give an application of the

submodel relation.

Def. 21      Let M = <U, F> and M' = <U', F´> be models for some

language L. We say that M is a submodel of M' if the

following conditions satisfied:

( i ) U  U'

( i i ) for each n-place predicate P of L and elements a1, ..., an 

of U, F'(P)(<a1, ..., an>) = F(P)(<a1, ..., an> )

(iii) for each n-place functor f of L  and elements a1, ..., an  

of U, F'(f)(<a1, ..., an>) = F(f)(<a1, ..., an> )

When (i)-(iii) are satisfied, we also say that M' is an extension  

of M.

When M = <U,F> is a submodel of the model M' = <U',F'> for L, we

sometimes denote M as "M' U ".

If the language L does not contain any function constants, then there

exists for every model  M' = <U', F'> for L and non-empty subset U of U'

a (unique) submodel M = <U,F> of M', viz. the model obtained by

defining, for each predicate P of L, F(P) as in (ii).  However, when L does

contain function constants, then in general this is not so.  For suppose

that f is an n-place function constant of L. Then the subset U of U' need

not be closed under F'(f), i.e. it may be that there are a1 , ..., an  & U ,

such that F'(f)(<a1, ..., an>) belongs to U' \ U.  In that case a submodel

of M' with universe U cannot be defined.
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The reduction relation is one that holds between models for different

languages, one of which is included in the other.

Def.  22 Let L and L' be first order languages such that L  L'.  

Let M <U,F> be a model for L and M' = <U',F'> a model 

for L'.  Then we say that M is the reduction of M' to L, in 

symbols: M = M' L, iff the following two conditions are 

satisfied:

( i ) U  =  U'

( i i ) For every non-logical constant #  of L, F(#) = F'(#)

When M is the reduction of M' to L, we also say that M' is an

expansion of M to L'

The following proposition is immediate from the definition of the

reduction relation.

Prop. 6  Suppose that M' is a model for the language L' and that M is

the reduction of M' to the sublanguage L of L'.

Then for every sentence A of L, M  A iff M'  A.

Prop. 6 says that a model and its reduction verify exactly the same

sentences that are interpretable in both of them.  No such relation

obtains in general between two models M' and M for some language L

when M is a submodel of M'.  In general, the only sentences whose

truth values are preserved between M and M' in both directions are the

quantifier free sentences of L.  When we restrict attention to

preservation in just one direction, we can do a little better:  The truth

of purely universal sentences (i.e. sentences consisting of a block of

universal quantifiers followed by a quantifier-free part) is preserved

from M' to M, and (ii) the truth of purely existential sentences (those

sentences which consist of a block of universal quantifiers followed by

a quantifier-free part) is preserved from M to M'.  (Note that each of

these statements can be obtained from the other by contraposition.)

Def. 23 Let A be a formula of some language L.

(i)  A is said to be purely universal if A is of the form

( x1) ... ( xn) B, where B is quantifier free and

( x1) ... ( xn) is a string of 0 or more universal 

quantifiers.
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(ii)  A is said to be purely existential iff A is of the 

form ( x1) ... ( xn) B with B quantifier-free.

The following theorem is straightforward and its proof left to the

reader .

Thm 7.  Let M and M' be models for some language L and let M b e

a submodel of M'.  Then for any assignment a  in M

( i ) If A is a quantifier free formula of L, then

[[A]]M,a = [[A]]M',a.

( i i ) If A is a purely universal formula, then if [[A]]M',a  = 1, then

[[A]]M,a = 1.

(iii) If A is a purely existential formula, then if [[A]]M,a = 1, then

[[A]]M',a = 1.

Proof. To prove (1), distinguish between the case where L does not

have any function constants and the case where it does. For

the case where L is without function constants, it suffices to

prove that for arbitrary assignments a   in M, [[A]]M,a  =

[[A]]M',a by induction on the complexity of A. To show (i)

for the more general case where L may have function

constants, we must first show (1) by induction on the

complexity of t that for arbitrary assignments a  in M, noting

that (1) entails that [[t]]M',a  & U M .

[[t]]M,a = [[t]]M',a, ( 1 )

The proof then proceeds as for the case where L has no

function constants.

q.e .d.

Cor. ( i ) Suppose that L, M and M' are as above and that A is a purely

universal sentence of L.  Then, if M'  A, then M  A.

( i i ) Similarly, if L, M and M' are as above and A is a purely

existential sentence of L, then, if M  A, then M'  A.

In a certain sense the results of Theorem 7 are the best we could hope

for:  While universal formulas are preserved by submodels, this is not

generally true for formulas of a more complex quantifier structure -
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Neither -formulas (formulas consisting of a block of universal

quantifiers followed by a block of existential quantifiers followed by a

quantifier-free part), nor -formulas (formulas consisting of a block

of existential quantifiers followed by a block of universal quantifiers

followed by a quantifier-free part) are in general preserved in either

direction.  Both these results follow from the stronger result that not

even purely existential formulas are preserved when we go from a

model to a submodel of it.  One easy way to see this is to consider the

language L whose only non-logical constant is the 1-place predicate P,

the model M' = <{a,b},F'> and its submodel M = <{a},F>, where

F(P)(<a>) = F'(P)(<a>) = 0 and F'(P)(<b>) = 1.  Then the purely

existential sentence ("x)P(x) will be true in M' but not in M.  In the

same way it can be shown that the truth of purely universal sentences is

in general not preserved when we go from a given model to an

extension of it.

The preservation properties that Thm. 7 attributes to purely universal

and purely existential sentences are obviously not restricted just to

formulas of those particular forms.  Any sentence that is logically

equivalent to a sentence of either of these forms will necessarily share

its preservation properties. For instance, if A is a purely universal

sentence and B is logically equivalent to A, then B too is preserved by

going from models to submodels.  For suppose that M is a submodel of

M' and that B is true in M'.  Then A is also true in M', since it is logically

equivalent to B and thus true in the same models. Since A is a purely

universal sentence, A will be true in the submodel M.  So, again because

of the logical equivalence of A and B, B will also be true in M.  The same

reasoning applies to sentences logically equivalent to purely existential

sentences

Interestingly, however, this set - the set of sentences that are logically

equivalent to some puerly universal sentence - exhausts the set of

sentences preserved by submodels.  This is the content of Theorem 8.

Thm 8. Suppose B is a sentence that is preserved by taking

submodels.  Then there is a purely universal sentence A such

that B is logically equivalent to A.

Theorem 8 is one of a number of model-theoretic results to the effect

that if a sentence is preserved by certain model-theoretic relations then

it will be logically equivalent to a formula of some special syntactic

form. Such results are called "preservation theorems". The proofs of

such theorems are as a rule non-trivial and in some cases they can be
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quite complicated.  The proof of Theorem 8 is among the simpler ones.

We present it as an illustration of the genre as a whole.

Proof of Thm. 8.  Suppose B is a sentence of language L for which the

assumption of Thm. 8 holds.  Let G be the set of all purely universal

sentences of L which are logically entailed by B:

G = {A: A is a purely universal sentence of L such that B A}.

We will show

( 1 )  the set G' = G  { B} is inconsistent.

From (1) the conclusion of the theorem follows easily.  For suppose G'

is inconsistent. Then there are finitely many sentences

A 1, ...,An from G such that  (A1 &...& An) B.  It is easily seen that the

conjunction A1 &...& An of the purely universal sentences A1, ...,An is

logically equivalent to a single purely universal sentence A. (First

rename the bound variables of A1,...,An in such a way that they are all

different, i.e. that no two quantifiers in A1 &...& An bind the same

variable.  Then the conjunction can be turned into a prenex formula

that will again be purely universal.).  So A B.  On the other hand all

the Ai belong to G. So we have B Ai   for i = 1, ...,n.  So B A.  So B is

logically equivalent to the purely universal sentence A.

To prove that G' is inconsistent, suppose that G' is consistent.  Then by

Corr. 2 to the completeness theorem it has a finite or denumerably

infinite model M.  Let C be a function which maps each element u of UM

to a distinct individual constant cu not occurring in L.  Let L' be the

expansion of L with all these new constants and let M' be the

corresponding expansion of M.  By D(M'), the diagram of M, we

understand the set of all atomic sentences of L' that are true in M'.

Note that the following holds for any model N for L'.

( 2 ) N is an extension of M' iff N D(M').

We next show that the set D(M')  { B} is consistent.  Suppose not.

Then there are finitely many sentences D1, ...,Dk from D(M') such that

 (D1 &...& Dk) B, or, equivalently,

( 3 )  B (D1 &...&Dk).
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Let D'1, ...,D'k  be obtained from D1, ...,Dk by replacing all those

constants from the range of C which occur in any of the formulas

D 1, ...,Dk by distinct variables y1,...,yr not occurring in D1, ...,Dk or B.

This substitution will preserve the validity of (3). Moreover, since none

of the constants that are involved in the substitution occur in B, the

substitution leaves B invariant. So we can conclude that the formula

B (D'1 &...&D'k) is logically valid.  But then it is easy to see that

B ( y1)..( yr) (D'1 &...&D'k) is also logically valid.  So

B ( y1)..( yr) (D'1 &...&D'k), which means that

( y1)..( yr) (D'1 &...&D'k) is a purely universal sentence of L logically

entailed by B.  Therefore ( y1)..( yr) (D'1 &...&D'k) is a member of G.

So ( y1)..( yr) (D'1 &...&D'k) is true in M.  But then

( y1)..( yr) (D'1 &...&D'k) is also true in M', which is impossible, since

its instantiation  (D1 & ... & Dk) is false in M'. (Recall that M' was a

model of D(M), so that D1,..,Dk are all true in M'.)

So we have shown that D(M')  { B} is consistent.  But this means that

there is a model N of D(M') in which B is true.  But if N is a model of

D(M'), then M is a submodel of N.  So because of the original

assumption about B, M B.  But this contradicts our earlier assumption

that M G', from which it follows that M  B. Thus this earlier

assumption is refuted and with it our assumption of the consistency of

G'. 

     q.e.d.

It is easy to infer from Theorem 8 that a sentence is purely existential

iff it is preserved by model extensions. A more difficult result is the

following:

Thm. 9.  A sentence is logically equivalent to an  sentence iff it is

preserved by unions of chains of models.

An  sentence is a sentence which consists of a block of universal

quantifiers followed by a block of existential quantifiers followed by a

quantifier-free part. (Again either block or both may be empty.) The

notion of a chain of models, to which Thm. 9 also refers, is defined as

follows.  A chain of models for a language L is a sequence of models Mi

for L such that for all n, m, if n < m, then Mn is a submodel of Mm.  By

the union  of such a chain of models Mi we understand that model M

such that UM = {U M i
: i = 1, 2,.. } and for any predicate P the extension
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in M of any non-logical constant of L is the union of its extensions in

the models Mi. (It should be checked that this is a proper definition of

a model for L, but the checking is easy.) Lastly we say that a sentence B

is preserved under unions of chains iff for any chain of models M1, M2,

... such that B is true in all Mi, B is true in the union model M.

The proof of Thm. 9 is significantly harder than that of Thm. 8.  The

proof will not be given here.

1.5.2   More on Formalisation of First Order Theories in

Mathematics, Science and the Systematisation of Knowledge.

In the Introduction to Section 1.5.1 we pointed out an important

implication of the claim that any serious scientific theory can, no

matter what its subject matter, be formalised as a theory of first order

logic: the methods of proof and inference in argumentation are the

same everywhere; there is only one concept of valid inference, and that

is the one which is given by the logical consequence relation . To show

that a sentence A and a set of sentences %  stand in this relation, one can

make use of any proof system that has been proved to be correct, and

so long as only first order logic is involved it is possible to use any

systems that hasve been shown to be both correct and complete. In a

derivation on the basis of T that the sentence A follows from the

premise set the axioms of T (and by implication any other sentences

that have already been shown to be theorems) can be used as

additional premises; and in fact, that is the only way in which what

distinguishes T from other theories make its impact on the derivation.

In other words, if T1 and T2 are two axiomatised theories, what follows

in theory T1 can differ from what follows in theory T2 only when the

axioms of T1 are non-equivalent to those of T2.  It is in this way, and

only in this way, that any differences between T1 and T2 can manifest

themselves in their consequences, and thus in their content.

We mentioned in the Introduction to 1.5.1 that this conception of the

the construction, use and significance of scientific theories is known as

the Deductive-Nomological Model of scientific  method.  In this section

we will address a few additional issues that the DN model raises.

The first of these has to do with what has been arguably the paradigm

of the axiomatic method for more than two millennia, viz. Euclidean

Geometry. In his Elements Euclid (ca. 300 B.C.) systematised plane

geometry by reducing the facts about this domain that were known at

his time to five "postulates" - five geometrical statements which were
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taken to be self-evidently true21: all other true statements about plane

geometry should be derivable from these five. (The Elements  show this

to be the case for the already impressive range of geometrical

statements that had been established as true in Euclid's own day.) Since

then, for a total of more than 23 centuries, Euclidean Geometry has

been perceived as something that anyone who wanted to lay claim to a

proper education should have been exposed to. In this way it became

part of the core of high school curricula in most European countries.2 2

At the same time, however - we mentioned this already in the

introduction to Section 1.5 - it was thought that there are aspects to

the method of geometrical proof that are unique to geometry. More

specifically, the use of diagrams of "ideal", "arbitrary" figures (such as

triangles, circles, parallelograms, ellipses, etc.) was held to be

indispensible to such proofs and at the same time essentially geometric

(i.e. irreducible to principles valid outside geometry). As noted in the

introduction to 1.5, this assumption - that the "logic" of geometrical

demonstration was specific to the subject of geometry - was finally

dismissed by Hilbert in 1900. Hilbert was able to show that geometrical

proof was in last analysis no different from proof in other areas of

scientific reasoning. And he was able to show this by doing something

that had never been tried before (notwithstanding the fact that

Euclidean Geometry had been treated since Euclid's day as the paradigm

of the axiomatic method): Hilbert spelled out the axioms with a

hitherto unknown concern for logical explicitness and detail. This

enabled him to bring to light certain aspects of the logic of Euclidean

Geometry which had been concealed from view until then, and to show

in his proofs from these axioms where those aspects play a decisive

part. When one proceeds in this way it becomes clear that the diagrams

which had always seemed an essential ingredient of Euclidean proofs

are nothing but a visual substitute for the application of certain

existence postulates, which license the steps that typically manifest

2 1 Euclid's fifth postulate, the so-called "parallels postulate", is the one irksome
case of a postulate for which self-evidence was considered problematic from the
start. (The postulate was considered dubious already by Euclid himself.). In an
effort to justify the parallels postulate by reducing it to less problematic
assumptions mathematicians kept trying for over 2000 years to derive it from the
other Euclidean postulates, which were generally accpted as self-evident. It wasn't
until the early 19th century when, partly as a spin-off from the indefatigable
attempts to prove the parallels postulate from Euclid's other postulates, both its
consistency with and its independence from the other Euclidean postulates were at
last demonstrated.
2 2 It has been only during the past fifty years or so that geometry has
gradually disappeared from the core curriculum. This is a development of which
the full intellectual implications cannot yet be properly fathomed. They may well
prove more significant than many people currently seem to think.
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themselves in the form of drawing of "auxiliary lines" when proofs are

given in the traditional mode, in which diagrams play their apparently

essential part.2 3

Although Hilbert's formulation stops short of formalising geometry as a

theory in the formal sense that it has been given in formal logic (see

Def. 18) it shows clearly how such a formalisation should go. The

language in which his system of plane geometry is to be formulated as a

formal theory in our sense has the 1-place predicates P(oint) and L(ine)

and the 2-place predicate (lies) O(n) which stands for the relation

between points p and lines l w.hich holds between p and l iff p is "on" l

(or, what comes to the ame thing, is one of the points that make up

l).24 One difficulty with the axioms that Hilbert proposed for a

formalisation in our sense, however, is that some of his axioms cannot

be stated within first order logic. This means that a straightforward

2 3 Among Hilbert´s axioms we find not only statements familiar from Euclid,
such as that through any two points there goes exactly one straight line, but also
that for each line there is at least one point that does not lie on it, or that for two
points A and B on a line l there is at least one point C on l such that B is between A
and C. All steps in geometrical proofs that seem to rely on some kind of
"geometrical intuition" prove to be instantiations of general principles of this
kind.  The difficulty we find in deciding which auxiliar lines we should draw in
order to obtain a proof for a given theeorem if geometry are just illustrations of
the difficulty well known to anyone familiar with deduction within predicate
logic: How do we decide which instantations of universally quantified premises
will be useful in the subsequent course of a given derivation and should therefore
be carried out?

Ever since computers came of age, the possibility has been explored of making
them take over various tasks that arise within mathematics. Although Gödel's
incompleteness and undecidability results (which antedate the birth of the
modern computer by roughly 15 years) had established that mathematics cannot
be reduced to mere computation, there are nevertheless certain mathematical
tasks at which computers are much better than human beings, simply because
they can perform certain elementary operations with such vertiginous speed that
it doesn't matter if they perform lots and lots of these without tangable benefit as
long as there are just a few that enable them to go ahead. Among the successful
applications of computer power within mathematics are programs which make
the computer search for proofs in formalised geometry, in which instantiations of
universally quantified axioms play a pivotal role. In this way it has actually been
possible to discover geometrical theorems, which until then had escaped attention,
notwithstanding the huge amount of energy that man has spent on the discovery
of new facts about geometry since antiquity. In some cases one could only be
amazed that  noone had stumbled on the theorem before. [Reference to Boyer &
Moore].

2 4 Hilbert's system is an axiomatiosation of 3-dimensional geometry which
contains Euclidean plane geometry as a proper part. Here we focus just on this
p a r t .
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formalisation would lead to a theory within second order logic, i.e.

within a logical formalism which we have not so far considered.

Moreover - and more importantly - second order logic differs from first

oder logic in that it does not admit of a correct and complete proof

system; there can be no Correctness-and-Completeness Theorem for

second order logic. (This is one of the consequences of Gödel's

Incompleteness results.) Therefore, from a methodological point of

view formalisations within second order logic are less satisfactory than

formalisations within first order logic; they do not permit the kind of

algorithmisation of inference that correct-and-complete proof systems

for first order logic provide for axiomatic first order theories. It is true

that there exist certain general methods for approximating second

order theories by first order theories, in which one makes use of first

order axiomatisations of set theory (see section 1.3 in the present

chapter and, for details on Set Theory, Ch. 3). But in general the results

of these methods are genuine approximations, which are logically

weaker than the theories they approximate not only with regard to

their second order but also to their first order consequences. (In other

words, there will be statements from the first order language of the

approximating theory which are not theorms of that theory although

they are logical consequences of the original theory which the first

order theory approximates.)

In the particular instance of Euclidean Geometry, however, it is possible

to do better. Hilbert's second order axiomatisation can be replaced by

a first order theory that covers all of its first order consequences. In

fact, this first order theory is complete in the sense of Def. 19:  each

sentence A belonging to the language of the theory is either itself a

theorem or else its negation is. One way in which this complete theory

can be obtained is to interpret plane geometry "analytically", i.e. as

speaking of "points" that are given by pairs of real numbers (which we

can think of as their x- and y-coordinates). In this analytical

interpretation lines can also be identified with pairs of real numbers, to

be thought of as the coefficients of linear equations. (The line

consisting of all points satisfying the equation y = ax + b can be

identified with the pair of numbers a and b.) The relation of a point

lying on a line then becomes the relation which holds between a

number pair (r,s) and a number pair (a,b) iff s = ar + b. In this way

geometrical statements translate into statements about real number

arithmetic. It was proved by Alfred Tarski (1901-1983) that the

arithmetic of the real numbers admits of a complete firsst order

axiomatisation.  This is one of the most striking results of modern

mathematical logic. It is especially suprising in the light of Gödel's
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proof of the impossibility of a complete axiomatisation of arithmetic on

the natural numbers. In fact, in combination these two results may

seem quite paradoxical.  More on this in Ch.2, Section 2.6.

Formal Deduction and Human Reasoning

Tarski´s axiomatisation of real number arithmetic provides us with a

theory which contains as theorems not only every statement in the

language of real number arithmetic that has a geometrical

interpretation (in the sense of analytical geometry indicated in the last

subsection) and is true on that interpretation. It also has numerous

theorems that have no such geometrical interpretation. (In fact, those

are, speaking somewhat loosely, the vast majority.) This is an indication

that the theory isn't dealing with geometry directly, but rather with a

kind of (numerical) interpretation or analogue of it. This observation

brings us to another aspect of formalised geometry. We claimed earlier

that the possibility of formalising plane geometry within predicate logic

showed that methods of proof and inference in geometry are in last

instance reducible to the universally valid deduction principles of

general logic. From a purely formal perspective this claim is correct

and incontrovertable. But there is also another dimension to this issue,

which concerns the way in which we, human beings with the particular

kind of cognitive endowment with which evolution has equipped us,

reason about spatial information.

The question how we process information can be raised in relation to

information of all sorts. But it has a particular importance in

connection with information about space. In the lives of the vast

majority of us visual information occupies a central and exceptionally

important place. By and large it is what we take in through our eyes on

which we rely in almost everything we do.25 It is this kind of

information that we use to find our way, to find food, to keep ourselves

from stumbling or bumping into things when we move around, to

recognise dangerous things and creatures from a distance at which it is

still possible for us to avoid or outrun them; and so on. Furthermore,

while visually acquired information tends to be very rich and complex

there are many situations in which it must be processed very rapidly.

Fast processing of visual information is of ubiquitous practical

importance and often it is what decides between life and death. Had we

not been as good at it as we have become in the course of evolution the

human race (or some ancestor of it) would have been wiped out long

2 5 This is not to deny that losing the use of any of our other senses constitutes
a serious handicap too.
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before we would have reached our present stage of development, in

which we have the capacity to reflect on the properties of our own

cognitive system and the way it relates to questions of formal logic.

Such considerations suggest that the ways in which we  reason in

geometry - the ways in which we find, state and understand proofs of

geometrical theorems - may well be an outcrop of the ways in which we

handle spatial, visually accessed or visualised information generally.

That geometry - the science which deals with the structure of the space

in which we exist and move and must see that we somehow survive -

can be reduced to pure logic in the way indicated above was without

any doubt a major scientific discovery. But that discovery tells us

nothing about the ways in which humans reason - or how they reason

most comfortably and effectively - about thee contents and structure of

space.

How human beings process visual information, and how they process

spatial information that is not visually acquired (which for all that is

known at present need not be the same thing), are questions of the

utmost importance to cognitive science. And they are questions about

which much is still unknown. But they are not among the questions on

the agenda of formal logic and they will play no further role in these

notes .

T r u t h

Directly related to the cognitive issues raised in the last four

paragraphs is the third issue to be discussed in this section. This is the

question in what sense spatial or geometrical statements can actually

be said to be true or false. Fast and accurate processing of spatial

information is important because it is information about the world in

which we live and struggle to keep alive. If the premises from which we

draw spatial conclusions - about how far a predator or a prey is away

from us, where a projectile approaching us will hit us if we do not

protect ourselves from its impact or step out of its way, etc. - aren't

true, then there is no relying on the conclusions we draw no matter

how sound the principles we apply in drawing them may be. Sound

inferencing is truth-preserving; but when premises aren't true, then

there is nothing to preserve.

Fortunately much of the information that we obtain by looking around

is quite trustworthy, and so are the general principles about space and

motion which our cognitive system makes use of when we draw
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inferences from information thus obtained.  So for the most part the

inferences we draw are  true in their turn and it is on the whole good

policy to make use of them in our further deliberations and actions.

All this presupposes that statements about space - the general claims of

geometry among them - can be distinguished into those that are true

and those that are false. But what does it mean for a statement of this

kind to be true or false? Before we address this question first a few

words about one that is even more fundamental: What is truth in

general - what is it for any statement, whatever its form or subject

matter, to be true or false? Questions that are phrased in such very

general terms may not admit of useful answers, and it is wise to

approach them with care. But of course that is no reason for shying

away from them altogether.

In fact, the question of truth has been a central concern of

philosophers at least since Socrates and Plato, and it plays an

important, and often central part in the thought of many of the leading

philosophers from antiquity to the present. Neverthelesss, it wasn't

until the 20th century that a method for defining truth was developed

which is exact and at the same time very general. This is another major

accomplishment of Tarski. Tarski's contributions to the theory of truth

are among the most important results in philosophy of the past century

and they have become the foundation of essentially all semantics within

formal logic. Tarski's  work on truth involves two learly distinct stages.

In his essay "The Concept of Truth in formalised Languages" from 1935

he showed how truth can de defined for a quite special case - that of

the sentences of a language designed for talking about one particular,

comparatively simple but well-defined domain, consisting of classes

structured by the relation of class inclusion. Tarski showed in a fully

explicit way how the truth value of any sentence of this language is

determined by on the one hand the subject matter about which it

speaks and on the other by its own syntactic form.2 6

This definition is a definition of an absolute  notion of truth, for one

particular language with a fixed and well-defined subject matter.

Eventually this absolute notion gave way to the relative notion of truth

2 6 Another important result of this essay is that it spells out in the clearest
possible detail what conditions have to be in place in order for a truth definition
of this kind to be possible: The definition must be stated in a metalanguage which
is capable of describing on the one hand the "object" language for whose
statements truth is to be defined and on the other the relevant properties of the
domain that the object language is designed to speak about. (Another, obvious,
condition is that both the object language and its subject matter must be
understood well enough to begin with in oder that descriptions of them can be
exact and yet recognisable correct.)
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that is the central concept in what has come to be known as model

theory. (This is the notion of truth that was given in the opening

section of this chapter - see Def. 7 of Section 1.1.2 - and that has been

explicitly or implicitly present in more or less everything that has been

discussed in this chapter from that point onwards.) In definitions of

this relative notion of truth - i.e. of truth in a model - the fixed

application domain of Tarski's 1935 essay is replaced by a

quantification over arbitrary domains. These domains, we have seen,

are specified in the form of models for the given object language -

arbitrary structures consisting of a "universe" together with

interpretations, relative to this universe, of the language's non-logical

constants. In this way the truth definition becomes a complex

statement in the meta-language which involves wide scope universal

quantification both over expressions of the object language L and over

models for L. We can get back from this more general definition of

relative truth for a language L to a notion of absolute truth by

instantiating the universally quantified variable which ranges over

models for L to the particular structure that is L's intended subject

ma t t e r .

Suppose now that we have a language L which we use for talking about

some part of reality - in other words, that this part of reality is the

intended subject matter of L. And let us suppose that a division of the

sentences of L into those that make true statements about this subject

matter and those that make false claims about it is somehow given.

Suppose further that we want to come up with a formal theory T that

contains the true statements of L as theorems - or, if that turns out to

be asking too much, then as many of the true sentences as possible -

and none of the false ones. In general the design of T will involve the

choice of a particular logical language L' in which T is to be stated, and

in that case the relationship between L' and L will have to be made

explicit. (Typically this is done by specifying how sentences of L are to

be translated into sentences of L'.) However, for the present discussion

there is no harm in making the simplifying assumption that L and L'

coincide. Under this assumption the requirement on T can be

formulated as follows:

It must be possible to cast the part of reality that L is used to

speak about in the form of a model for L (in the sense of 'model'

defined in the model theory for first order logic) and moreover

this model must be a model of T.

In the optimal case where T captures as theorems all sentences of L that

are true in its intended domain, T will be a complete theory and the
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model in question will be elementarily equivalent to all other models of

T. In the suboptimal case, where T captures some but not all true

sentences of L, T will have other non-equivalent models besides.

What does it mean for the given part of reality to be able to play the

part of a model of T? Since we are focussing on theories formalised

within first order logic the answer to this question might seem

straightforward: (i) the given part of reality must determine a universe

U and (ii) it must determine interpretations relative to U for each of

the non-logical constants of L. But how are these components fixed? In

particular - and here we return to the example that provoked this

discussion - how are they fixed in the case of plane geometry? This is

yet another question that may look simple at first sight, but which,

when we look more closely, reveals itself as anything but. First, what is

the "part of reality" that the language L of plane geometry is used to

speak about?27 Actually, in the case of plane geometry this isn't quite

the right way of putting the question, for there isn't just one such part

of reality, but - for all we know - indefinitely many: each "flat" plane in

the three-dimensional space in which we live is a part of reality in

which we expect the full range of truths of plane geometry to be

exemplified.  Which parts of this space qualify as "flat planes" is a non-

trivial question (about which more below). But it is one of the deep-

seated commitments that are part of our conception of plane geometry

that if there is one part of space that qualifies as a flat plane in the

sense of Euclidean Geometry, then there must be an unlimited supply of

such parts.

What are examples of flat planes - or, rather, fragments of flat planes

since according to the theory a Euclidean plane extends infinitely in all

directions and such planes are hard to come by - in the world in which

we live? Answers that might come to mind to someone who hasn't

thought about the matter too much might be: the surface of a pond or

a lake on a day when there is no wind; a sheet of well-made paper

(which has no unevennesses); the floor of a properly constructed

building; the surfaces of well-constructed tables or desks; an area of

land that is without hills or dips or crevasses; and .. and .. .

Let us accept this answer for what it is and ask what would be the

points and straight lines (or fragments of straight lines) that are

2 7 We may assume here that L is the first order language indicated above when
we said what a formalisation of Hilbert's theory of geometry as a theory of formal
logic would look like: Recall what we aaid there: the non-logtical vocbulary  of L
should consist of: two 1-place predicates for "point" and "line" and a 2-phace
predicate for "lies on".
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contained in such physically concrete (fragments of) planes. In

reflecting on this question it is helpful to concentrate on just one of the

cases mentioned in the answer suggested in the last paragraph. We

choose the case of a sheet of paper, which for our purpose is a

particularly natural choice, since it ithis kind of "flat plane fragment"

that people engaged in doing geometry in the familiar traditional way,

using diagrams for guidance inspiration and support, often use.28 The

"points" and "straight lines" that somebody doing geometry on paper

will be actually working with are dots he makes on the sheet with a

pencil or pen, and lines that he draws on it, typically with the use of a

ruler. But dots, no matter how fine the pencil or pen that we make

them with, have a finite diameter, whereas the points of Euclidean

Geometry are assumed to be infinitesimally small. Similarly, the lines

we draw will always have finite width, while the width of a straight line

in Euclidean Geometry is, like the diameter of a point, supposed to be

infinitesimally small too. What does this mean for the question whether

the kinds of statements that geometry is promarily concerned with -

such as, to pick out just two examples more or less at random, the

statement that the three angles of a triangle always sum up to 180° or

the statement that the bisectors of a triangle meet each other at a

single point - to be true? That is actually a quite difficult problem and

at the same time it is one whose importance it would be hard to

overestimate. Roughly what one would like to say is that figures

composed of the "points" and "lines" realised on a sheet of paper in the

manner just described can do no more than confirm the statement

"approximately", or "within a certain margin of error", where the

margin of error is determined in some way by the finite "thickness" of

the given "points" and "lines" of which the figure is made up.

The first difficulty here is that we would need a precise way of assessing

how  the margin is determined by the imperfections of the given

"points" and lines (i.e. by their diamteters and the extent of their

"thickness"). But even if this problem can be satisfactorily solved, there

still is the further problem how confirmation is related to truth.  One

aspect of this second problem is revealed by a distinction familiar from

the philosophy of science: given a certain margin of error that is

associated with a concrete figure the figure can in principle provide a

conclusive refutation for a geometrical statement of the kind

exemplified by the two mentioned above. For instance, consider the

(plainly false) analogue of the statement that the bisectors of the angles

of a triangle meet each other in a single point, viz. the statement that

2 8 It is easy to see, however, that the fundamental difficulties we are about to
point out arise equally in relation to any of the other examples of concrete planes
just mentioned. We will cometo this presently.
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the bisectors of the four angles of an arbitrary quadrangle all go

through the same point. If we can draw a quadrangle in which the

intersection points of two pairs of bisectors are farther apart from each

other than the margin of error associated with the figure permits on

the assumption that they should coincide, then that shows

conclusivelythat the statement is false. In contrast, concrete figures can

confirm geometrical statements of this sort only to the degree that

their error margin allows. Consider for instance the statement that

there is a common intersection point for the bisectors of a triangle. The

best we can expect from a drawin diagram of a triangle with its three

bisectors is that it confirms the statement within the given error

margin . But that tells us nothing about what we will find when we test

the statement at the hand of figures for which the associated error

margin is significantly smaller. Thus, no matter how "good" our figures,

no matter how small their error margins, agreement with all those we

have considered would be partial evidence at best that the statement

would also be confirmed by figures with even smaller error margins.

It should be plausible without further discussion that these problems

arise not only for the case where the concrete realisations of points,

lines and figures are dots and drawings on sheets of paper, but also for

other ways in which points and lines can be concretely realised. And it

should also be intuitively clear that these difficulties are compounded

by the deviations from perfect flatness that afflict the planes or

surfaces in which the given realisations of points and lines are

embedded .

In short, the relation between the theory of geometry and its physical

realisations is full of pitfalls and surprises.29 And what can be observed

2 9 One of the ironies in the history of science is that when straight lines are
identified with the paths of light rays - and that, it has been agreeed for centuries,
is about as good a conrete identification of the geometrical concept of  a straight
line there is to be had; in fact, the method of triangulation in land surveying and
in astronomy is based on it -, then,the geometry of the space in which we live is
not  Euclidean (e.g. the sum of the angles of triangles whose sides are formed by
light rays is not equal to 180°). This conclusion follows from Einstein's theory of
General Relativity and at the present time it is also supported by substantial
emporocal evidence. (e.g.. by certain (very large) triangles whose sides are paths
of lihgt rays and whose angles do not add up to  180°).

It is important, by the way, to distinguish between this issue - whether on this or
any other physical identification of straight lines physical space is or is not
Euclidean - and the question whether Euclidean Geometry is, as Kant had it, built
into the way in which we process spatial information. Although this conjunction -
a non-Euclidean space determined by physical phenomena combined with a
human cognition based on Euclidean geometry - is something that cannot really
be accommodated within Kant's general conception of mind and world, one should
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for this particular relation is in many ways paradigmatic for what we

find with theories of other real world phenomena, such as. among

others, those of physics, chemistry or astronomy. Even in the best of

cases the general statements that play the part of axioms or theorems

when the theory is formalised are only confirmed by the relevant

phenomena that have been considered within the error margins

associated with these. A more detailed analysis of such theeories

reveals that in each individual case - consisting of the set of phenomena

to be accounted for and the theory that is porposed to account for

them - the relationship between confirmation and truth comes with its

own special difficulties. But there are nevertheless also a range of

problems that all such cases have in common.  An entire discipline,

known as "Scientific Methodology" or as the "theory of Scientific

Method", has grown up around the investigation of these general

problems. Among other things it currently includes substantial parts of

statistics and the theory of probability.

Scientific methodology is not among the topics of these notes. Nor does

it have to be. For our actual concern here, viz. the formalisation of

scientific theories, a detailed analysis of statement conformation isn't

really needed. In this context it is enough to assume that such an

analysis is in place and that it will provide us in each relevant case - in

each case where the question arises how a theory of some part or

aspect of reality might be formalised as a theory in the sense of logic -

with (i) a set Tr of sentences from the given language L within which

the theory is to be formalised that count as true, (ii) a set Fa of

sentences of L that count as false and (usually) (iii) a remaining set Un

of sentences of L which neither count as sufficiently confirmed to be

included in Tr nor as sufficiently disconfirmed to be included in Fa. Any

formalised version T of the theory will have to be consistent with this

tripartite division of the sentences of its language in that (i) none of the

sentences in Fa are among the theorems of T and (ii) the theorems of T

include as many sentences from Tr as possible.30 In cases where Un is

non-empty - and it may be assumed that in practice that will allways be

so - T will have new predictive power vis-a-vis the data set (Tr,Fa,Un> if

and when it contains theorems that belong to the set Un. For if S is a

sentence of  L such that S & T Un, this means that according to T S

should really belong to Tr rather than to Un.  Further empirical

investigations will then be needed to see if this prediction is correct.

nevertheless credit Kant with having discovered a way of looking at the question
of spatial structure from an essentially cognitive perspective.
3 0 Note that this representation of the general situation is a refinement of the
one given on p. 98.
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There is one further aspect of what we have said about the verification

of geometrical statements in concrete settings that deserves to be

mentioned. This is the question what should be considered the "true"

subject matter of Euclidean Plane Geometry. As was already implied

earlier one natural way of seeing Euclidean Geometry is as a theory that

talks such ideal entities as dimension-less points and lines, and only

indirectly about their concrete but imperfect realisations. And indded,

it is structures made up of such ideal entities, and not parts of physical

reality, that we find among the models of Eisclidean geometry when it is

formalised as a logical theory. Or, put in almost equivalent terms but

from a slightly different perspective: to the extent that the models of

this theory can be thought of as "gemoetrical structures at all, they

should be thought of as made up of ideal, dimension-less points and

lines rather than of entities with non-infinitesinal size or width. Seen

from this angle the accomplishment of Euclidean Geometry, when we

look upon it as a theory of the "points" and "lines" that we encounter in

real life, isn't just that it offers a certain set of postulates towards the

description of these entities with their spatial properties and relations,

but also that it presents us with a certain idealised conception, which

manifests itself formally in the model (or models) of these postulates.

In the case of Euclidean geometry this way of seeing the theory's true

accomplisment is particularly compelling. For as Hilbert was able to

show, the axioms that he had come up with define (up to isomorphism)

a single model, viz. the structure R  R , the cartesian square of the

structure R of the real numbers with the usual arithmetical operations

of addition and multiplication.31 The models of theories for other

empirical phemomena are not always reconstructable from their

axioms in this unique and explicit way. But nevertheless many of those

theories can also be seen as providing not simply some set of

postulates, but rather a combination of postulates and an abstract

3 1 To obtain this result one has to make use of certain axioms that are
essentially second order. (If all axioms were first order, then Hilbert's unique
model result could not hold, as we have seen in connection with the Skolem-
Löwenheim Theorems.) Indeed, as we noted earlier, Hilbert's axiom system does
include such axioms, the Archemedean Axiom and what he called the Completeness
Axiom. (We must refer the reader to Hilbert's Foundations of Geometry or some
other foundational text on geometry for an explanation of what these axioms say.)
Tarski's complete axiomatisation of the first order fragment of Hilbert's theory
comes (almost) as close to the ideal of unique characterisation as a first order
theory ever can, in that it is not just complete, but categorical in the cardinality of

the target structure  R  R . (It then follows from Morley's Theorem that the

axiomatisation is categorical in all uncountable categories. However, the
axiomatisation is not categorical for countable models. For more on Tarski's
axiomatisation see Section 2.6.2.)
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conceptualisation that manifests itself as one or more of the postulates'

models and to which the phenomena themselves are related by

approximation. Examples o such theories abound. Newtonian celestial

mechanics, which should be thought of as speaking of structures

consisting of entities that are dimension-less points with finite mass,

Galilei's theory of free fall, which directly speaks of objects that are

propelled by gravity but are not affected by friction, are among the

cases that most of us have heard of; but there are countless others.

Theories which do not describe the phenomena they aim to account for

strictly and directly, but are most naturally viewed as descriptions of

idealised structures, to which the phenomena themselves stand in

complex approximation relations, throw an interesting light on the

meaning of the term 'model'. On the face of it, the use that is made of

this term in formal logic does not seem to correspond to what most

people - scientists as well as persons without a specific scientific

background - understand by it when they talk about 'modelling' certain

phenomena or aspects of the world. In their use of the term there is no

clear distinction between model and theory. The theory itself is said to

"model the phenomena". On this use of "model", theory and model are

one. This is clearly a quite different way of understanding the relation

between theories and models from the one that is favoured in formal

logic. According to the model-theoretic conception adopted there,

model and theory are, as we have seen, to be distinguished sharply:

theories are syntactic objects (sets of sentences) and models semantic

structures, about which the sentences from the language of the theory

make true or false assertions.

Formal theories which treat the phenomena that they are meant to

account for as approximations to some ideal structure can be seen as

providing a link between these two conceptions of 'model'. The

structures that are models of such a theory in the sense of model

theory - those in which the axioms of the theory are strictly and

literally true - can be seen at the same time as abstract structures

which model the phenomena in the sense in which the term is used by

most other people.  Inasmuch as the abstract structures can be

considered part of the package that theories offer towards description

and explanation of the phenomena, the theories can be seen as

providing us with models of the phenomena (or, to use the saame

phrase once again, as modelling them) in the non-logicians' sense. But

when we look inside the packages, what we see are theories  and

models as sharply distinct as the logicians want them to be, with the

theories as syntactic objects identified by their axioms or theorems and
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the models as the non-syntactic structures in which the axioms and

theorems are true.

As argued in the last two paragraphs, theories that come with abstract

structures of which they can be seen as the direct and literal

descriptions, but which at the same time function as idealisations of

some empirical domain, play a kind of double role. On the one hand

they can be regarded as theories of the empirical domain in question

and thus as empirical theories. On the other they can be seen as formal

descriptions of the given abstract structure or structures to which their

theorems are directly applicable. In a case like that of plane geometry,

where the abstract structure is one that can be defined in purely

mathematical terms (viz. as R  R ), it is therefore possible to look upon

the formal theory itself either as a theory of applied mathematics,

which tells us something about the structure of physical space, or

alternatively as an account of a purely mathematical structure and thus

as a theory of pure mathematics. Both views are legitimate, and at least

in this particular case the question which way the theory should be

classified is not something that can be settled once and for all. What

anyone will want to say will depend on the particular context in which

the theory is viewed by him or used.

The distinction between pure and applied mathematics is fraught with

difficulties and the difficulties vary with the particular branch of

mathematics that we consider. But the ambivalence we have just noted

for the case of geometry arises for many other branches of

mathematics as well.

This is all that will be said in these notes about the meaning and use of

formal theories within a wider scientific context. It should have been

clear that what we have said is no more than the tip of a very large

iceberg. But it is enough to enable us to raise the last question that is to

be considered in this section: How useful can formalisations be?

How useful is Formalisation?

When you ask an empirical scientist - e.g. a physicist or a chemist -

what he thinks about the usefulness of dformalising the theories he is

concerned with within formal logic, his reaction is likely to be one of

scepticism, perhaps even of derision. And much the same reaction can

be expected from most mathematicians. The reason for this is simple.

What is perhaps the most important conceptual advance connected

with logical formalisation - the implication that any form of valid

inference can be reduced to principles of general logic - turns out in
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practice to be more of a nuisance than an advantage. When proofs in

pure or applied mathematics are cast in the form of logical derivations,

in which every step is an application of such principles, they tend to

become inordinately long, unsurveyable and well-neigh impenetrable to

human understanding. Moreover, it is only rarely that such logical

proof expansions reveal anything new or important. Actual

formalisations of mathematical or scientific theories, in which proofs

take the form of such derivations, are thus the source of unnecessary

complications, and that almost always without compensating benefits.

It is important however to distinguish between (i) actual formalisation

of theories and their use in mathematical or scientific research and (ii)

the possibility of formalisation:  When can a theory be formalised, and

what does its formalisation look like, and what can that tell us about

the theory's intrinsic structure (the structure it possesses whether we

formalise it or not)? We have already encountered a number of non-

trivial questions connected with formalisability and seen glimpses of

the light that formal logic can throw on them. The results we

mentioned about the formalisation of geometry are a telling example:

Hilbert's axiomatisation determines a unique model, a structure that

can be defined independently, by using methods and principles of

arithmetic rather than geometry (successive applications of certain

number-theoretic closure operations, leading from the natural all the

way to the real numbers); this axiomatisation is therefore essentially

second order, but a complete first order axiomatisation of the first

order fragment of his theory is possible as well. These are deep results,

that have been obtained - and could only have been obtained - by the

methods of logic; and yet their importance is not restricted to logic as

such, but extends to the theory's intended subject, the structure of

space. In this regard they are representative of formal results about

logical theories, which give us insight into the possible forms that

formalised theories can take and into the logical properties associated

with different forms of formalisation.

What was presented in Section 1.5.1 are the very first steps of the

logical investigation of theories formalised within first order predicate

logic. In Chapter 2 we will look at a number of such theories, each of

which will reveal new aspects of this investigation. Not all of these

aspects are directly relevant to the importance of formalisation (as a

possibility, rather than an actual practice) for mathematics and

science. But many of them are, and between them they yield an

understanding of the logical stucture of theories (whether they be

stated in the form of logical theories or not) that we could not have

reached in any other way.
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Exercises to Ch. 1.

1 . (Comparative cardinalities of some infinite sets.)

( i ) Show that the following sets are equipollent with the set NN

of natural numbers.

a . the set of all positive natural numbers

b . the set of all odd natural numbers

c . the set of all multiples of 51

d . the set of all natural numbers that are squares

e . the set of all prime numbers

f . the set ZZ  of the integers

g. the set QQ   of the rational numbers

h . the set of all complex rational numbers

(= the set of all numbers r + i.s, where r,s &  QQ   a n d

i = -1)

i. the set of all pairs <n,m> of ingtegers n and m

j. the set of all finite sequences of natural numbers

( i i ) Show that the following sets are equipollent with the set RR

of real numbers.

a . the set of all real numbers  0

b . the positive real numbers

c . the closed real number interval [0,1]

d . the open rela number interval (0,1)

e . the set CC   of complex numbers, i.e. the numbers

f . the set RR   \ QQ , of the irrational real numbers 



1 0 8

2 . (Finite and Infinite)

Suppose that X, Y and Z are sets and that X  Y. Prove:

( i ) X  Z iff Y  Z;

( i i ) Z  X iff Z  Y;

(iii) X  Z iff Y  Z;

( iv) Z  X iff Z  Y.

3 . Suppose that Y is a finite set. Show:

( i ) If X  Y, then X is fintie

( i i ) If X  Y, then X is finite.

4 . Suppose that X, Y and Z are sets, that Y  X and that X Z = .

( i ) Show: Y Z  X Z.

( i i ) Show that the condition that X Z =  cannot be dropped.

5 . ( i ) Suppose that X is finite and Y infinite.  Show that (X  Y).

(N.B. Intuitively one would want a  stronger result, viz. that

X  Y.  This would follow from the general principle that for

any two sets A and B X  Z or X  Z.  We will establsih this

result only in Ch. 3. One might have thought that under the

special conditions that X is finnite and Y infinite this result

could be obtained with elementary means.  But as far as we

know this is not so.)

( i i ) Suppose that X and Y are finite sets.  Show that X Y is

finite.

6 . Prove Propositions 5 and 6. (See pp, 77,79)

7 . a . Let M be a model for some language L, and let Th(M) be the

set of all sentences of L which are true in M.  Show:  Th(M)

is a complete consistent theory of L.

b . Let M  be a non-empty class of models for the language L.

Let Th(M ) be the set of all sentences of L which are true in

each model M from M .  Show: Th(M ) is a consistent theory
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of L.

8 . Show:  Every infinite model is elementarily equivalent to a 

denumerably infinite model.

9. Let L be some first order language, let X be some

denumerably infinite set and let K  be the set of all finite models M

for L with UM  X.  Let T be the theory Th(K).  Prove that T has

infinite models.

10.  Let L be the language {<}, with < a 2-place predicate.  For each

positive integer n, let Mn be the model  Un, <n >, where Un  is the

set of the numbers {1, 2, ..., n} and <n is the standard 'less than'

relation between the numbers in UM n.  Let T be the set of

sentences of L which are true in every model Mn (i.e. in all models

M n for n = 1, 2, ..).

( i ) Show that T has infinite models and that these are all liner

orderings.  (That is, if M = <U,<> is such a model then, < is a

linear ordering of UM .)

( i i ) Show that rthere are infinite linear orderings that are not

models of T.

1 1 . Let M  be a finite set of finite models for some given finite

language L. Show that there is a sentence AM  such that for every

model M' for L:

 M' A M   iff M' is isomorphic to one of the models in M .

1 2 . A theory T of some first order language L is said to be axiomatised

by the set A of sentences of L iff T =Cl(A ).  T is said to be finitely

axiomatisable  iff there exists some finite set A which axiomatises

T.

a . Show that T is finitely axiomatisable iff there is a single

sentence of L which axiomatises T.

b . Show that T is not finitely axiomatisable iff there is an

infinite set A of sentences {A1, A2, A3, ...}, which

axiomatises T and which has the property that for n = 1,2,..

An is properly entailed by An+1:
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An+1  An, but not An  An+1.

1 3 . Let T be a theory of some 1-st order language L which only has

finite models.  Then there is some natural number n such that every

model of T has cardinality < n.

1 4 . Let T and T' be theories of L such that both T T' and Cl(T T')

are finitely axiomatisable.  Then T and T' are themselves finitely

axiomatisable.

1 5 . Let L be a 1-st order language with a finite set of non-logical

constants and let T1, T2, .. be an infinite sequence of theories of L such

that for i = 1,2,... Ti+1 is a proper extension of Ti  (i.e. Ti T i+1 but not

Ti+1 Ti).  Show that every Ti has infinite models.

1 6 . Let L be a language of first order predicate logic which does not

contain function constants of arity > 0 (i.e. of more than 0 places), let P

be a predicate not occurring in L and let L' = L {P}.  Let the translation

* of arbitrary formulas A of L into formulas A* of L' be defined as

follows:

( i ) A*  =  A ,  in case A is atomic;

(ii)  ( A)*  =  (A)*, (A & B)*  =  A* & B*, (A v B)*  =  A* v B*,

(A  B)*  =  A*  B*, (A  B)*  =  A*  B*;

(iii) (( x)A)*  =  ( x)(P(x) & A*), (( x)A)*  =  ( x)(P(x)  A*).

Let B  be the set of all sentences A* of L' that are translations of

sentences A which are tautologies of L:

B  =  {A*:  A is a sentence of L and A}.

a . Show that B   ( x)P(x).

b . Show that for all sentences B & B , ( x)P(x)  B.

c . Show that B is not a theory of  L'.

1 7 . Let A be a sentence from the 'pure language of identity'. i.e. from

that language {} of predicate logic which doesn't contain any non-

logical constants.  (So the only atomic fomulas of this language are of
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the form 'vi = vj', where vi  and vj are variables.)  Assume that the only

variables occurring in A are among v1, ... , vn.

Show:

(*) If A is consistent, then A has a model of at most  n elements.

Hint:  Let M und N be models für the language {}.  For assignments f in

M and g in N we define

f   g     iff       ( vi)( vj)( vi, vj   &  {v1, ...,vn }  

 (f(vi) = f(vj)  g(vi) = g(vj)))

By induction on the complexity of the formulas of {} we can prove for

the subformulas B of A (including A itself):

(**) Iff  f and g are assignments in M and N such that f   g, then

[[B]]M,f  =  [[B]]N,g

Show (**) and then prove (*) with the help of (**).

1 8 . Let T be a theory of the language L.

( i ) Let S be an infitnite set of sentences of L and let T = ClL(S)

be the theory 'axiomatised by S. 

Show: T is finitely axiomatisable iff there is a finite

subset S' of S such that  T = Cl(S').

( i i ) Let Lo = {} be the language of first order logic which contains

no non-logical constants whatever.   (So the only atomic

formulas are those of the form "x = y", where x and y are

variables.)

Let So the set consisting of the sentences A1, A2, ... of Lo,

which are defined as follows:

A1  =  ( v1)( v2) ( v1  v2)

A2  =  ( v1)( v2)( v3) ( v1  v2 & v1  v3 & v2  v3)

.

.

An  =  ( v1)..( vn+1) ( i j vi  vj)
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(It is easy to see that An says that there are at least  n+1 

individuals.)

Let To = ClL(So) the theory axiomatised by So.

Show that  To is not finitely axiomatisable.

( iv) Let L be a finite language (i.e. one with finitely many non-

(iii) Let L be a finite language (i.e. ne with finitely many non-

logical constants), let T be an arbritrary theory of L and let

T o be the theory defined under (ii)

Show : When T  To inconsistent, then T is finitely

axiomatisable.

19.  Let L be a first order language and T a theory of L. For arbitrary 

sentences A, B of L we define:

A T B     iff    T   A  B

( i ) Show that T  is an in equivalence relation.

( i i ) Let U be the set of all equivalence classes determined by  T .

For sentences A of L ist  we write "[A]" for the equivalence

class A generaetd by A: [A] = {B: A T B}.

On U we define the following  2-, 1- and 0-place functions:

 D [A]  [B]  =  [A & B]

 D [A]  [B]  =  [A v B]

 D-1 [A]-1       =  [ A ]

D0 0       =  [A & A]

D1 1       =  [A v A]

Show that the structure <U, dass U, , , , 0, 1> is a

boolean algebra. This algebra is known as the Lindenbaum

algebra of T in L, 'LB(T,L)' for short.

(iii). Show the following:

(a)  [A] is an atom of LB(T,L) iff Cl(T { A}) is a complete
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consistent theory.

(b)  LB(T,L) consists of exactly two elements iff T is a

complete and consistent theory of L

( c ) Let Lo = {} be the language of first order logic which

contains no non-logical constants whatever. Let V be

any logically valid sentence of Lo.

Then the atoms of LB(V,Lo) are the equivalence

classes [ B n] of the sentences Bn, which assert that

there are exactly n individuals.

( iv) . Give an example of a language L and theory T such that 

LB(T,L) is finite but consists of more than two elements.

2 0 . T1 and T2 are theories of some first order language L.

Show:   (i) T1 T2 is a theory of L.

   (ii) T1 T2 is a theory of L iff either T1 T2 or T2 T1.

2 1 . L is a language of first order predicate logic. recall that by TL we

understand that theory of L which consists of all and only the

tautologies of L.  Let T be an arbitrary theory of L.  We define:

T = { T': T' is a theory of L and T  T' is inconsistent}

T = { T': T' is a theory of L and T  T' =  TL}.

Show: (i) T and T are both theories of L.

(ii)  T T .

(iii) For any theory T of L there are the following two

possibilities:

( a ) T is finitely axiomatisable.  Then there is a

sentence A such that A axiomatises T,

T = T  = Cl( A) and T T  

( b ) T is not finitely axiomatisable.

Then T = T  = TL but not T T  
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2 2 . Let M be a model for a language L and let N  be the following

class of models for L: N = {M': ( A)(M A & M'  A}.  Let L be

the set of all tautologies of L.

Show:  Th(N ) = L iff Th(M) is not finitely axiomatisable.

23. Let L be some language for predicate logic let X be some

denumerably infinite set and let K  be the set of all finite models M

for L with UM  X.  Let T be the theory Th(K).  Prove that T has

infinite models.

2 4 . Let L1 be the language {0, S, <, c1} of first order predicate logic, in

which 0 and c1 are individual constants, S is a 1-place predicate

constant and < is a 2-place predicate; and let L2 be the language

L1  {c2}, where c2 is some individual constant not in L1.

Let T1 be the theory of L1 which is axiomatised by A1-A6 and let

T2 be the theory of L2 which is axiomatised by A1-A7.

A1. ( x) (x  0   ( y) x = Sy)

A2. ( x)( y) (Sx = Sy  x = y)

A3. ( x)( y) (x < y  y < x)

A4. ( x)( y) ( z)((x < y  &  y < z  &  x < z)   x < z)

A5. ( x)( x  <  Sx)

A6. no <  c1 , for n = 1,2,3, ... ,

where for any natural number n, no is the term "SS....S0",

consisting of a "0" followed by n occurrences of "S".

(Thus A6 is an axiom schema which consists of an infinite

number of individual axioms, one for each n. )

A7 nc1 <  c2 , for n = 1,2,3, ... ,

where for natural numbers n, the term nc1 is defined just as

no except that its first symbol isn't "0" but "c1" .

(So A7 also consists of an infinity of axioms.)

Show that

( i ) T 1 and T2 are both consistent.

( i i ) T1 and T2 only have infinite models.

(iii) There exists a model M for the language L1 such that
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( a ) M verifies all the sentences of T1.

( b ) There is no expansion M' of M to the language L2
which verifies all the sentences of T2.

2 5 . Let L be the language {f} of first order predicate logic, with f a

2-place function constant. Let %  be the set consisting of the following

five sentences B1-B5.

B1. x y (f(x,y) = f(y,x))

B2. x y (f(x,y) = x  v  f(x,y) = y)

B3. x y z ((f(x,y) = x  &  f(y,z) = y)   f(x,z) = x)

B4. x y (f(x,y)  y   z (f(x,z)  z  &  f(z,y)  y))

B5.  x y x  y

Show that %  has an infinite model but no finite models.

(Hint: A function which satisfies the axioms B1-B4 defines a weak linear

order : x y iffdef f(x,y) = x.)
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Solutions to some of the exercises to Ch. 1.

2 . (Finite and Infinite)

Suppose that X, Y and Z are sets and that X  Y. Prove:

( i ) X  Z iff Y  Z;

( i i ) Z  X iff Z  Y;

(iii) X  Z iff Y  Z;

( iv) Z  X iff Z  Y.

4 . Suppose that X, Y and Z are sets, that Y  X and that X Z = .

( i ) Show: Y Z  X Z.

( i i ) Show that the condition that X Z =  cannot be dropped.

5 . Suppose that X and Y are finite sets.  Show that X Y is finite.

2 . (Finite and Infinite)

Suppose that X, Y and Z are sets and that X  Y. Prove:

( i ) X  Z iff Y  Z;

( i i ) Z  X iff Z  Y;

(iii) X  Z iff Y  Z;

( iv) Z  X iff Z  Y.

Solution to (2.iii).  Suppose that X  Y and X  Z. Let h be a bijection

from Y to X.  We first show that Y  Z.  Let f be an injection from X into

Z. Then h o f is an injection of Y into Z.  Secondly, suppose that Z  Y.

Then there is an injection g from Z into Y.  But then g o h is an injection

of Z into X, which contradicts the assumption that X  Z.  So there can't

be an injection of Z into Y.  So (Z  Y).  Putting the two conclusions

together we get: Y  Z.

3 . Suppose that Y is a finite set. Show:

( i ) If X  Y, then X is fintie

( i i ) If X  Y, then X is finite.
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Solution to (3.i).   Suppose X were infinite.  Then there would be a

bijection f from some proper subset Z of X to X.  Let g be the union of f

and the identity function on Y \X.  Then g is a bijection from Z (Y \ X)

to Y.  Since Z is a proper subset of X, Z (Y \ X) is a proper subset of Y.

So Y would infinite, contrary to assumption.

Solution to (3.ii).   Let f be an injection of X into Y.  Suppose that X

were infinite.  Then there would be a bijection g from X to some proper

subset Z of X.  Then  f-1 o g o f to Z is a bijection from f[X]  to the set

(f-1 o g o f)[f[X]]. Since (f-1 o g)[Y] = Z is a proper subset of X,

(f-1 o g o f)[f[X]] is a proper subset f[X].  So Y would have an infinite

subset, contradicting (3.i).

4 . Suppose that X, Y and Z are sets, that Y  X and that X Z = .

( i ) Show: Y Z  X Z.

( i i ) Show that the condition that X Z =  cannot be dropped.

Solution to (4.i).  Let f be an injection of Y into X. Let g be the union of f

and the identity function on Z \ Y. Then, since X Z = , g is 1-1.

Furthermore DOM(g) = Y Z and RAN(g)  X Z.

5 . Suppose that X and Y are finite sets.  Show that X Y is finite.

Solution to (5.ii). Assume that both X and Y are finite.  Suppose

t h a t

X Y is infinite. Then there is a proper subset Z of X Y and a bijection

f of X Y to Z.  Since Z is a proper subset of X Y, there is a u &  X Y

which does not belong to Z. Since u &  X Y, u &  X or u &  Y.  Suppose that

u &  X.  Define for n = 1,2,.. fn(u) as follows:

( i ) f0 (u) = u

( i i ) fn+1(u) = f(fn (u ) )

Consider the set {fn(u): n & NN }.  We distinguish two possibilities:

(a) for infintely many n fn(u) & X;

(b) there is an n such that for all m > n fm (u) &  Y.
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First consider case (b).  Let n be a number instantiating ther existential

statement (b) and let Y' = {fm (u); m > n}. Then it is easily verified that f

is a bijection from Y' to its proper subset Y' \ {fn+1(u)}. This

contradicts the assumption that Y is finite.

Next we consider case (a). Let X' = {fn(u): n & NN } X.  Define the

function g on X' by the condition that if x &  X', then g(x) is that element

x' such that (i) x' &  X, (ii) x' = fn(x) for some n, and (iii) there is no

positive m < n such that fm (x) &  X.  Then g is a bijection from X' to the

proper subset X' \ {u} of X'.  This contradicts the assumption that X is

finite.

(The following 'solution' to (5) is not correct.  What is the mistake?

'Solution' to (5).   Assume that both X and Y are finite.  Suppose that

X Y is infinite. Then there is a proper subset Z of X Y and a bijection

f of X Y to Z.  Since Z is a proper subset of X Y, there is a u &  X Y

which does not belong to Z. Since u &  X Y, u &  X or u &  Y.  Suppose that

u &  X.

First assume f(u) & X. Note that f[X] = (f[X] X) (f[X] (Y \ X)).  So X

= f-1[(f[X] X)] f-1 (f[X] (Y \ X))].  Put X1 = f-1[(f[X] X)] and X2 =

f-1 (f[X] (Y \ X))].  Clearly,  X1 X2 = and X1 X2 = X. define the

function g on X as follows: (i) for x & X1, g(x) = f(x); (ii) for x & X2, g(x)

= x.  Then DOM(g) = X, RAN(g)  X and g is 1-1.  Moreover, u & (X \

g[X]); thast is, g maps X 1-1 onto a proper subset of X.  But this

contradicts the assumption that X is finite.

Now suppose that f(u) does not belong to X.  So f(u) &  Y.  If f[Y]  Y,

then we are done.  For then f[Y] is a proper subset of Y, since

f(u) &  Y \ f[Y], and thus f restricted to Y is a bijection from Y to a

proper subset of Y. So we may assume that it is not the case that

f[Y]  Y.  So there is a y &  Y such that f(y) &  X.  Let f' be the function

which is like f except that it switches the values of u and y. (That is:

f'(u) = f(y), f'(y) = f(u) and for all v &  X Y such that v u and u  y,

f'(v) = f(v).)  Then we have that f'[X Y] = f[X Y] = Z, u does not

belong to f'[X Y] and f'(u) &  X. This reduces the second case to the

first.  The cxase where u &  Y is com,pletely parallel to that where u &  X.)
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A p p e n d i x .

Soundness and Completeness for the Method of Proof by Semantic

Tableaus.

The proofs of soundness and completeness that were given earlier in

this Chapter concern the axiomatic deduction system presented in

Section 1.1.3.  The completeness proof is fairly involved and this is so

for one thing because it requires showing for a substantial number of

logical theorems that they can be derived from the given axioms.  To

make this task somewhat easier and less tedious a proof was given early

on of the Deduction Theorem. But that proof involves complications of

its own.  Most of these various complications leave one with a feeling

that they are peripheral to the central ideas of the completeness proof

as it is given in 1.1.3 and nourish the wish for a proof that circumvents

t h e m .

This Appendix offers, as an alternative to the proofs of 1.1.3, proofs of

soundness and completeness for the method of demonstration by

semantic tableau construction.  In some ways these proofs are easier,

since the Tableau Method is, by conception and general architecture,

much closer than the axiomatic method to the semantic conception of

logical consequence with which it has to be shown equivalent.  For after

all, proving validity for an argument by the Tableau Method is nothing

other than showing that an attempt to find a counterexample for it

necessarily fails.  (Furthermore, proving soundness and completeness

for the Tableau Method is natural for most of those for whose benefit

these notes have been produced, since the tableau method is the

principal deduction method with which they were familiarised in the

logic course that standardly serves as prerequisite for the present one.)

Unfortunately, proving soundness and completeness for the Tableau

Method isn't quite as straightforward as one might have hoped, in spite

of the fundamentally semantic conception on which the method is

based.  This is because as soon as one sits down to define them with

mathematical rigour semantic tableaux prove to be fairly complex data

structures - much more so than the remarkably simple formal objects

that are axiomatic derivations.  (Recall that these are strings of

formulas which satisfy a small number of simple and easily verifiable

conditions.)  So some of the benefit that one gains from the close

connections between the Tableau Method and the notions of truth in a

model and logical consequence is lost because of by the need to

manipulate these more complex structures.  Still, it would seem to me
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that on balance the completeness proof below is simpler and more

natural than the one given in Section 1.1 of this Chapter.

In what follows familiarity with the use of semantic tableaux will be

assumed.  Nevertheless, as a preliminary to the formal treatment of the

Tableau Method, we begin with an informal summary of the important

features of this method.

Semantic tableaux are structures that are built from sentences of some

particular language L of First Order Predicate Logic. The sentences

occur in either one of two columns, the 'TRUE' column and the 'FALSE'

column. To prove the validity of an argument with premises A1,..., An
and conclusion B one starts with a tableau in which A1,..., An a re

entered under 'TRUE' and B is entered under FALSE.  Rules are then

applied to these sentences and to the ones which result from earlier

rule applications until, roughly speaking, only atomic sentences are

left.  In the course of these rule applications the tableau may split into

different 'branches', each with its own pair of sets of 'TRUE' and 'FALSE'

formulas.  A branch is closed if it contains the same sentence under

both TRUE and FALSE; and the semantic tableau as a whole is closed if

each of its branches is closed.

The purpose of constructing a semantic tableau for an argument

<A1,..., An | B>, with premises A1,..., An and putative conclusion B is to

try and construct a countermodel for it, i.e. a model M in which A1,...,

A n are true and B is false.  This succeeds iff the construction produces

a tableau branch in which all reduction operations have been carried

out and in which there are no explicit conflicts, of the kind that arises

when the same sentence occurs both under TRUE and under FALSE.  A

conflict-free tableau branch in which no further reductions can be

carried out will provide a counter-model for the argument, and thereby

establish its non-validity.

From the present point of view a tableau all of whose branches are

closed is to be considered a failure: it doesn't provide the counter-

model which was the aim of its construction.  However, there is also

another point of view from which it is precisely tableau closure that

should be seen as a success.  Failure to find a counter-model this way,

which manifests itself as closure of all branches of the tableau, has the

status of a proof that no counter-model exists, and thus that the

argument is valid.  This is so because tableau construction is a fully

systematic search for counterexamples - one in which 'no stone is left

unturned', so to speak.  That the Tableau Method is exhaustive in this

strict sense, however, is not immediately obvious and is itself in need of
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a formal demonstration.  So this is one of things we will have to prove

in this Appendix.  (In the syllabus for LFG II the result followed from the

conversion of the tableau method into the method of proof by

deduction in the Sequent Calculus.)

This description of the Tableau Method might give the impression that

more or less all the work that is needed to establish soundness and

completeness of the predicate calculus has already been done: Either

the semantic tableau for <A1,..., An | B> is closed (i.e. all its branches

are closed) and then the argument is valid. or else the tableau has at

least one branch which is not closed and then there is a counter-model;

tertium non datur.  We can rephrase this in the words of principle (P1):

(P1) An argument is valid iff a semantic tableau constructed for it is

closed.

(P1) combines (a) the soundness and (b) the completeness of the

Tableau Method: For an argument <A1,..., An | B> to be valid it is (a)

sufficient and (b) necessary that its semantic tableau is closed.

What has just been said constitutes the gist of the proof of soundness

and completeness of the Tableau Method.  But turning these intuitive

ideas into a proper mathematical argument requires some real work.

To begin, let us list the three propositions for which explicit proofs are

needed:

PR1. If the tableau for the argument <A1,..., An | B> closes, then

<A1,..., An | B> has no counter-model (and thus is semantically valid).

PR2. When the tableau for <A1,..., An | B> has an open branch, then

<A1,..., An | B> has a counter-model (and thus is invalid).

PR3. Every complete tableau (i.e. one in which all possible reductions

have been carried out) is either closed or it has at least one open

branch .

At first blush PR3 may seem a tautology. It isn't quite that, however,

since complete tableaus can be infinite. In fact, infinite. non-closing

tableaux are far more common than finite ones. It is for infinite

tableaux that PR3 is not altogether self-evident. Its demonstration rests

on some (modest) combinatorial properties of set theory.
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Tableau construction involves the application of rules to 'reducible'

sentences occurring in the tableau. The reduction rules are fully

determined by three factors:

( i ) the form of the sentence to which the rule is applied. What rule is

applied is determined by the operator (connective or quantifier) which

has widest scope in the sentence;

( i i ) the question whether the sentence occurs under 'TRUE' or 'FALSE';

(iii) (for the quantifier rules) which parameter is to be used in 

reducing the outer quantifier of the sentence.

(iii) points to one important feature of tableau construction for

arguments of predicate logic, viz the substitution of 'parameters' for

variables bound by outer quantifiers.  In some cases the parameters

used belong to the tableau already, but in others they are (and must

be) introduced by the reduction operation in question. It is in this way

that the universes are constructed for the counter-models that are

determined by open tableau branches.

Here are schematic presentations of all the tableau rules for First Order

Predicate Logic with Identity:

( 8 )

( ,T) TRUE FALSE TRUE FALSE ( ,F)

         C      ||                                    ||    C  

     ||  C      C       ||

(v,T) TRUE FALSE TRUE FALSE (v,F)

         C v D  ||                                     ||    C v D 

         C  |  D   C

     D

( ,T) TRUE FALSE TRUE FALSE 

( ,F)

         C  D   ||                                   ||    C  D 

            |  D       C  |       C     D
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( ,T) TRUE FALSE ( ,F) TRUE FALSE

         C  D   ||                                           ||    C  D 

          C  |           |  C    C  |  D      D  |  C

 D   D

( ,T) TRUE FALSE TRUE FALSE    ( ,F)

( vi) A ( vi) A

_______ || _____ _______ | |_______

A(t /vi)   A(c/vi)

(t an arbitraryclosed term) (c a new parameter)

( ,T) TRUE FALSE    ( ,F) TRUE FALSE

( vi) A ( vi) A

       _______ || _____ ______ ||  _______

 A(c/vi) A(t /vi)

 

(c a new parameter)   (t an arbitraryclosed term)

        

(=,Sub) TRUE FALSE       TRUE   FALSE

s = t  s = t

  A     A

       _______ || _____ ______ ||  _______

  A'     A'

(s, t arbitrary closed terms; A is an atomic formula and A' is the result

of properly substituting t for one occurrence of s in A).

(=, Ref) TRUE  FALSE 

_______ || _____

  t = t               (t an arbitrary closed term)

Although familiarity with the Tableau Method is assumed, it may be

helpful to present a couple of tableau constructions as examples. This
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will also help us to focus more sharply on the tasks that lie ahead.  The

tableau constructions we will consider are those for the two arguments

that we get by taking as premise and conclusion the standard

formalisations in First Order Logic of the two possible scope readings of

a sentence like (2)

( 2 ) Some book about semantics has been read by every student.

Abbreviating 'student' as P, 'book' as Q and 'y has been read by x' as

R(x,y), we get as formalisations for the two readings:

( 3 ) i. ( x)(P(x)  ( y)(Q(y) & R(x,y)))

ii. ( y)(Q(y) & ( x)(P(x)  R(x,y)))

Thus the two arguments are:

(4)  i . <  ( y)(Q(y) & ( x)(P(x)   R(x,y))) |

( x)(P(x)  ( y)(Q(y) & R(x,y))) >

ii. < ( x)(P(x)  ( y)(Q(y) & R(x,y))) |

( y)(Q(y) & ( x)(P(x)  R(x,y))) >

Of these (4.i) is valid and (4.ii) is not.  The following two tableaus show

this.
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( 5 ) (Tableau for (4.i))

TRUE || FALSE

 ( y)(Q(y) & ( x)(P(x)  R(x,y)))    ( x)(P(x) ( y)(Q(y) & R(x,y)))

   Q(a) & ( x)(P(x)  R(x,a))

   Q(a)

   ( x)(P(x)  R(x,a))     P(b) ( y)(Q(y) & R(b, y))

    P(b)    ( y)(Q(y) & R(b,y))

 Q(a) & R(b,a)

           |        |

           |        |

       |      Q ( a )        | R(b,a)

=========== |  ||===============|

        P(b) R(b,a))     ||

         ||

     |           |  R(b,a)        |   P(b)    |

     |====== |========||        |=======|=====

Since this tableau closes, we conclude that (4,i) is valid.

( 6 ) (Tableau for (4.ii))

TRUE FALSE

  ( x)(P(x) ( y)(Q(y) & R(x,y)))      ( y)(Q(y) & ( x)(P(x)  R(x,y)))

     P(b) ( y)(Q(y) & R(b,y))

               | ( y)(Q(y) & ||         P(b)                  |

               |        R(b,y)) ||       |

      |  ||   Q(b) &  ( x)(P(x)    |

                                       |                            ||                         R(x,b))     |     

    |       |  ||    Q(b)    | ( x)(P(x)   |

    |       |  ||          |       R(x,b))     |
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The leftmost branch of this tableau is open.  It determines the

extremely simple counter-model defined in (7) and thereby shows that

the argument is invalid.

( 7 ) (Countermodel to (4.ii))

UM = {b}

PM =    

QM =   

RM =   

(6) is an example of a tableau with a finite open branch in which no

further reductions are possible. Besides such tableaux and tableaux in

which all branches close there are also those in which there are open

branches, but which have no finite open branches without further

reduction possibilities. It is these tableaux that are responsible for the

fact that the semantic tableau method is not a decision method for

validity. (Which is as it should be, since we know that there cannot be

such a decision method).

Tableaux with branches that do not close but which offer reduction

option at all finite stages of their construction are very common.

Perhaps the simplest example of such a tableau is that for the argument

<( x)( y)R(x,y), >. This tableau has no splittings, and its one branch

never closes lalhough its construction can be continued indefinitely.

The first stages of its construction are given in (8).

( 8 ) TRUE FALSE

( x)( y)R(x,y)            ||

   ( y)R(a,y) ||

         R(a,b) ||

   ( y)R(b,y) ||

     R(b,c) ||

   ( y)R(c,y) ||

. ||

         . ||

It is plain how this tableau construction will continue and equally plain

that a closure is not in the making. But in general things are not so

straightforward. Indeed, it follows from the fact that there is no
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decision procedure for validity in first order logic that there can't be an

algorithm that will tell us when we may stop with the construction of a

tableau branch on the grounds that if closure hasn't yet been reached

so far, it won't be achieved at any later stage either.

Exercise.

a . For the formula ( x)( y)R(x,y) we can find finite models (and

thus there are finite countermodels to the argument

< ( x)( y)R(x,y) | >).

Task:  Define a "minimal" model of ( x)( y)R(x,y), i.e. one in

  which the universe has as few elements as possible.

b . However there are also formulas that have models but on ly

infiinite ones.

Task:  Give one such formula and define a model (necessarily with

  infinite universe) in which the formula is true.

In order to be able to provide exact proofs of soundness and

completeness we need a more rigorous definition of semantic tableaux

and their construction than are provided by the semi-formal

descriptions of the Tableau Method which suffice for most purposes

(such as the description given in the syllabus for LFG II).   In the formal

definition of semantic tableaux that we will give below it will be

convenient to mark the distinction between formulas occurring under

TRUE and formulas occurring under FALSE directly on the formulas

themselves. That is, we will define semantic tableaux in such a way that

each tableau branch will be a set of pairs <A,T> and <A,F>, where the

A's are sentences and T and F are used to indicate whether A occurs in

the TRUE or the FALSE column of the given branch.  This means in

particular that a branch is to be considered closed if for some sentence

A both <A,T> and <A,F> belong to it.  We will refer to pairs <A,T> and

<A,F> as positively and negatively signed formulas, respectively, or

simply as signed  formulas.

We also need a formal characterisation of the branching structure of

semantic tableaux. To this end we represent semantic tableaux as trees

(in the mathematical sense of the term), i.e. as sets of nodes that are

connected by a partial order which has the following additional
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properties (which are distinctive of tree orderings).  That is, a tree  is a

strict partial order < such that

(T.i) ( x)( y)(y x x < y),  and

(T.ii) ( x)( y)( z)((y < x & z < x) z < y v z = y v y < z).

In connection with property (T.i), note that it follows from the fact that

a tree is a partially ordered set that there is at most one object in the

universe which satisfies the free variable formula ( y)(y x x < y).

This means that when ( x)( y)(y x x < y) is true, then there is

exactly one such object.  This object is called the root  of the tree.

The nodes of the tree which get created in the course of tableau

construction are to be thought of as representing the stages of tree

branches which are reached each time a reduction operation is applied

to one of the formulas belonging to the given branch.

The trees that arise in the course of tableau construction are thus

special in that any given node has either:

( a ) two successors; this happens when the reduction rule that is

applied to a formula from the set associated with the node 

leads to a pair of reduction products; this is the case

whenever the reduction rule applied is one of (&,R), (v,L),

( ,L), ( ,L) or ( ,R); or

(b) one successor; this happens when the reduction rule that is

applied to a formula belonging to the node leads to a single

reduction product, i.e. through an application of one of the 

remaining rules ((&,l), (v,R), ( ,R), ( ,L), ( ,R), ( ,L), 

( ,R). ( ,L) or ( ,R)); or

(c) no successor; this situation arises when either (i) all

possible formula reductions in the branch to which the node

belongs have been carried out, or else (ii) because the node

represents that stage of its branch Z at which closure of Z is

achieved.

It will be useful to adopt a special mode of representation for the kinds

of trees we will be needing. This mode doesn't cover all tree-like

orderings defined above, but it will cover all those we want, and it has

the advantage that the partial order is exhaustively characterised by the
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internal structure of the nodes.  The nodes of the trees in question are

finite sequences of 0's and 1's. and the ordering relation holds between

two such nodes s and s' if and only if s is a proper initial segment of s'.

We include the empty sequence <> among the possible tree nodes.

Since trees will be defined as non-empty node sets closed under initial

segments, this means that <> will be member of every tree. and it will

always be its root.

In any tree T of the kind described each node s will have either 0, 1 or

2 immediate successors.  s will have two successors in T if both s.0 and

s.1 belong to T and it has no successor in T if neither of these belong

to T.32  In the third case, where s has one successor, it could be that

this successor is either s.0 or s.1, but to make things as tight as

possible we want to exclude the second of these cases. In other words,

the successors of s in T will always be one if the following three sets: / ,

{s.0}, {s.0,s.1}.  We summarise these stipulations in the following

definition.

Def. DA1. (Trees)

A tree T is a pair <T,0 >, where

(a) T is a non-empty set of sequences of 0's and 1' satisfying the

following two conditions:

( i ) if  s.1 & T, then  s.0 & T,

( i i ) if  s.0 & T, then  s & T;

( b ) for any nodes s, s' &  T, s 0 s' iff s is a proper initial segment of s'.3 3

N.B. since the ordering relation of a tree T  = <T,0 > is fully determined

by the internal structure of its nodes, we will henceforth identify T

with its node set T.

The branches of a tree T are its maximal linearly ordered subsets.  For

trees of the kind we are using here this means that if Z is a branch of T

and s and s' are nodes in Z then either s = s' or s is a proper initial

segment of s' or s' is a proper initial segment of s.

3 2 By s. n we understand the concatenation of s and n, i.e. the result of adding

n on to the end of s; so if s is <s1, ..., si>, then  s.n is the sequence <s1, ..., si, n>
3 3 Here it is assumed that every sequence counts as an initial segment of itself.
Thus 0 is reflexive, and thus as weak partial order, as the symbol '0 ' suggests.
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A semantic tableau for an argument <A1,...,An | B>, where the premises

A 1,...,An and the conclusion B are formulas of some first order

language L, is to be thought of as a tree whose nodes are 'decorated'

with the information that makes each node into a stage of a tableau

construction for this argument. We represent this information by

means of a decoration  function .  This is a function which is defined on

the nodes of the tree and maps each node onto the information that is

to be associated with it.34  In particular, our semantic tableaux will be

defined as decorated trees of certain special sort.  More precisely, we

will define a semantic tableau as a decorated tree <T,D> in which the

decorating function D associates with each node s of T information

about which sentences have been included under 'TRUE' at the tableau

construction stage identified by s and which have been included under

'FALSE'.

There is an additional feature of semantic tableaux which a mere

association of sets of 'true' and 'false' sentences with nodes of the tree

may seem to overlook.  This is the set of parameters  which have been

introduced into a tableau branch at any one stage of its construction.

We recall that parameters are individual constants and that the origin

of an individual constant c in a tableau for an argument

<A1,...,An | B> can be of two kinds: either c occurs somewhere in A1,...,

A n or B or else c has been introduced (as a 'parameter') in the course

of the construction of the tableau through the application of reduction

rules applying to quantified formulas.  In general these new parameters

cannot be assumed to belong to the language L of the argument <A1,...,

A n | B>, so their introduction into the tableau means that the tableau,

conceived as a structure involving formulas of some first order

language L, is strictly speaking no longer a tableau for the language L

but rather for some extension L' of L, which is obtained by adding new

individual constants to L. In keeping with this observation we assume

that before the construction of the tableau for an argument <A1,..., An |

B>, with premises and conclusion belonging to L, is started, L is

extended with an infinite sequence c1, c2, .. of new constants.  From

this set the parameters that are needed in course of the tableau

construction will then be drawn.

3 4 Combinations consisting of some abstract mathematical support structure S
and a function which assigns certain items to each of the elements of S are often
referred to as decorated structures. Decorated trees are a special case of decorated
structures in general, but it seems that they are the kind that is used most often.
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Strictly speaking the set of constants that have been introduced at the

point of tableau construction identified by a tree node s can be

recovered from the formulas associated with s by the decoration

function. For these constants are just the ones which have occurrences

in those formulas. However, it will be convenient to define the tableau

construction process in such a way that the set of constants that have

been introduced at any stage in any branch is explicitly available and

directly accessible.

We need access to the information what constants have already been

introduced before a certain stage s of the tableau construction

whenever the sentence that is up for reduction at s is either of the form

(!x)E(x) and occurring under TRUE or of the form ("x)E(x) and

occurring under FALSE.  Reduction of such a formula is required iff

there is a constant c that has been introduced at some stage before s

with which the formula has not been instantiated before. (That is, E(c)

has not yet been added to the TRUE c.q. FALSE column.) Having the

sequence of previously introduced constants as a separate item in the

decoration of s makes it easier to state whether and how reduction of

such a formula is to be executed at s.

There is also another piece of information that we need in order to

make the right decisions with regard to such formulas. It could be the

case that the formula has in fact been previously instantiated with a

given constant c, but that the formula E(c) to which this instantiation

led is no longer available at s as a witness to this fact.  For E(c) might

itself have been a complex formula and might have been reduced in its

turn at some stage before s.  Therefore it is desirable to keep an

explicit record in some other form of what instantiations have already

been carried out.  The simplest way to do this is to attach to formulas

of the kind at issue besides a feature that tells us under which of the

two columns they occur also the set of constants with which they have

already been instantiated.

This additional piece of information sets the formulas in question apart

from all other cases. In the other cases the column in which the

formula occurs is all the information about their status in the given

tableau branch that we need; for the cases under discussion the set of

instantiated constants is needed as well. This distinction is built into the

following definition of the notion of a signed formula. (The signed

formulas will be the items that go into the decorations of the tree

nodes . )
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Def. DA2.  (of signed formula)

A signed formula of L is either:

( i ) a pair <A,1>, where A is a sentence of L, 1 & {T,F}, and neither of

the following two conditions (a), (b) holds:

( a ) 1  = T and A is of the form (!x)E(x)

( b ) 1  = F and A is of the form ("x)E(x)

o r

( i i ) a triple <A,1 ,S>, where A, 1  are as under (i),

one of the conditions (a), (b) obtains and S is a (possibly empty) 

set of individual constants.

One last point before we come to our formal definition of semantic

tableaux.  We want the construction of semantic tableaux to be fully

deterministic: at every stage the form of the tableau at that stage

should fix unequivocally which reduction, if any, is to be performed

next and how it is to be carried out.  This requires that the (signed)

formulas that are part of the decoration of any stage s are given in

some particular order.  We will assume, moreover, that this is also the

case for the constants that have already been introduced into the

tableau (although here an ordered presentation isn't absolutely

necessary). In other words, the decoration D(s) of a tree node (=

tableau construction stage) s will consist of a pair of two finite

sequences, the first consisting of signed formulas and the second of

individual constants.

For languages with function constants of one or more argument places

tableau construction is complicated by the fact that instantiation of

formulas of the form ( x)E(x) under TRUE and ( x)E(x) under FALSE

may be needed not only for individual constants, but also for the

complex terms that can be built from these constants with the help of

function constants of L of one or more argument places. (For instance,

if c is an individual constant and f a 1-place function constant,

instantiation will in general be required not just with c but also with the

terms f(c), f(f(c)), .. and so on.) To carry through the formalisation of

tableaux and their construction and the proofs of soundness and

completeness based upon that formalisation for languages with

function constants doesn't encounter any fundamental obstacles, but it

presents extra complications which detract from the central points of

the proof.  We will therefore restrict attention to languages L without

function constants of one or more argument places.  The general case,
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in which L may contain such constants, can be reduced to the one we

will consider by translating formulas with such function constants into

formulas with corresponding predicate constants; see Exercise EA2

below.

In fact, we will initially restrict the language L even further, by also

excluding 0-place function constants (i.e. individual constants).  That

is, L won't have any individual constants of its own, and so the only

constants occurring in a semantic tableau for an argument whose

premises and conclusion belong to L will be those introduced in the

course of its construction.  Finally, as our third initial restriction, we

will assume that = occurs neither in the premises nor the conclusion of

the arguments we will consider.  Note that this entails that = won't

occur anywhere in the tableaux for these arguments.

We are now ready for a formal definition of the notion of a semant ic

tableau for an argument <A1,..., An | B>. Note well that what will be

defined is the notion of a completed  tableau, i.e. a tableau in which all

possible reductions have been carried out.  As noted, such tableaux are

very often infinite (i.e. they involve an infinite node set T).

Def. DA3 (Formal characterisation of the notion 'Semantic Tableau for

an argument <A1,..., An | B> in a first order language L)

Let L be a language of First Order Predicate Logic without function

constants, c1 ,c2 ,.. an infinite sequence of individual constants not

belonging to L, and let A1,..., An, B be sentences of L in which = does

not occur.

A (completed) semantic tableau for the argument <A1,..., An | B> given

the sequence c1,c2,.. is a pair <T,D>, where

( i ) T is a tree as defined in Def. DA1 and

( i i ) D is a function defined on T which assigns to each node s &  T a

pair D(s) consisting of

(a) a finite sequence of signed formulas (see Def. DA2), and

(b) a finite sequence of constants from the sequence c1 , c2 ,. .

(iii) T and D satisfy the conditions specified below.

Before we set about describing these conditions, first a notational

convention.  For any node s of T we refer to the first component of the
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pair D(s) (the sequence of signed formulas) as 'D(s)F ' and to the

second component (the sequence of individual constants) as 'D(s)C '.3 5

The conditions alluded to under (iii) recapitulate, in strictly formal and

strictly deterministic terms, the construction of the tableau from its

starting point, when the column TRUE consists just of the premises only

the premises A1,..., An and the column FALSE just of the conclusion B.

Our first condition concerns this starting point; it specifies the

decoration of the root <>. But before we can state it in the form in

which it will be most useful later on, there is one further aspect of

tableau construction that we must make explicit. As our examples

illustrate, there are in essence two reduction rules for quantified

formulas. Reduction of existential formulas under TRUE and universal

formulas under FALSE requires replacement of the variable that is

bound by the quantifier by a new constant, which does not yet occur in

the tableau that is being constructed; and such reductions have to be

performed only once. Reductions of existential formulas under FALSE

and universal formulas under TRUE, on the other hand, involve

constants that have been introduced already. These are reductions that

have to be repeated again and again to the same formula, in order to

make sure that all constants occurring in the tableau branch to which a

given quanified formula belongs are substituted for the bound variable

of its outer quantifier eventually.

But there is one exception to the principle that quantified formulas of

the second category are only instantiated with constants that have been

previously introduced. This is when tableau construction has to be got

under way somehow and the only reductions that are possible involve

formulas of just this kind. Of the three tableaux that were shown above

the second and third are both examples of this. In such cases there is

nothing for it but to instantiate one of the quantified formulas with

some constant or other, which makes its entry into the tableau in this

way. In each tableau such a step needs to be performed at most once.

For once one such rule application has occurred and the constant

involved in the application has been thereby introduced into the given

tableau branch, then from then on tableau construction can proceed in

3 5 It should be noted that both sequences may in principle be empty.  In fact,
given the restrictions on L we have adopted here, D(<>)C will always be empty;

D(<>)F would be empty only when the argument had neither premises nor

conclusion.  (This, however, is a purely theoretical possibility without any
intuitive interest.) It is standard to think of an argument as involving at least a
conclusion, even if the premise set of an argument may sometimes be empty.
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accordance with the principle that quantifiers of the first kind are

instantiated (once) with new constants and quantifiers of the second

kind with all and only the previously introduced ones.3 6

It would be possible but awkward if we had to make special provisions

for the possibility that tableau constructions may have to start in this

particular way. But it is easy to set things up in such a way tzhat no

special provisions are needed. It suffices to add one constant to the

tableau at the very start of its construction, irrespective of whte form

of hte argument for which the tableau is being constructed. Doing this

is yet another way of saying that no matter what the (counter) model

we are trying to find by constructing the tableau will be like, it will have

at least one element (viz. the denotation of this constant) in its

universe. As regards the constant we choose for this special role, the

most natural choice would seem to be the first constant c1 from our

list; so that is the one we choose.

For the decoration of the root of the tableau this means that the

sequence of already introduced constants is not the empty sequence,

but the one element sequence <c1> .

With this last bit of informal explanation out of the way we are ready

for the exact specification of the decoration of the root .

Croot D(<>) = <<#1,..., #n, 2>, <c1>>,

where #1,..., #n are signed formulas which establish the

premises A1,..., An as occurring in the TRUE column and 2 i s

a signed formula establishing B as occurring in the FALSE

column.

N.B. that #1,..., #n are signed formulas which establish the

3 6 We recall that the justification for this way of starting tableau
constructions is the assumption of classical logic that the universe of discourse is
never empty (and thus that models never have empty universes). This means that
for instance a universally quantified statement will never be true vacuously, that
is,  simply because there is nothing at all in the model in which it gets
interpreted. Since this possibility of vacuoous truth is excluded in the model
theory for classical first order logic, it is always legitimate to instantiate the
quantifier of such a statement to a new constant, with which no information about
its referent is as yet connected. Instantiating the quantifier in this way is nothing
more than making explicit that if the statement is true at all, then there will be at
least one thing of which its scope (i.e. the formula to which the quantifier is
attached) will be true. The non-empty universe assumption netails that this
procedure is sound..
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premises A1,..., An as occurring in the TRUE column is to be

understood as follows:  If Ai begins with a universal quantifier, then # i
has the form <Ai,T,/>; otherwise # i has the form <Ai,T>.  Analogously,

2 is a signed formula establishing B as occurring under FALSE.  That is, 2

has the form <B,F,/>, if B begins with an existential quantifier and

otherwise is equal to <B,F>.

The next two conditions concern the end nodes (or 'leaves') of T.

These are the stages s at which either (i) no further formula reductions

are needed or (ii) all possible reductions have already been carried out.

Case (i) arises when a contradiction (= closure) has been reached in the

transition to s.  That is, the same formula A occurs in D(s)F  both with

the sign T and with the sign F.  Given the particular way in which we

formalise semantic tableaux here, case (ii), where all possible

reductions have been carried out already, manifests itself as follows.

As will be described in detail below, all reducible formulas are removed

from the decoration when they are reduced except for universally

quantified formulas occurring under TRUE and existentially quantified

formulas under FALSE.  Whether a signed formula of this kind is a

candidate for reduction at stage s depends on whether the sequence

D(s)C contains constants that do not occur in the set S that the signed

formula contains as its third component.  Formally the condition about

end nodes can be stated as follows:

Cleaf s &  T is an end node of T (in other words, s.0 is not a

member of T) iff one the following two conditions (a), (b) is

satisfied:

( a ) (closure at s)

D(s)F contains signed formulas # i and # j which involve

the same formula A but the opposite signs T and F,

respectively.

( b ) (no further reductions possible)

The only signed formulas in D(s)F which involve non-

atomic formulas are either of the form <( x)E(x),T,S>

or of the form <( x)E(x),F,S>, where in each case S

contains all the constants occurring in D(s)C .

The remaining conditions concern the relations between the

decorations of mother nodes and their daughters.  In these cases s is

not closed and D(s)F contains at least one signed formula that is a

candidate for reduction. The reduction that is performed will then
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concern the first such signed formula in D(s)F .  The nature of the

reduction depends on what kind of signed formula this is, and the

precise description of the way in which it is reduced depends on the

form of D(s) and relates D(s) to the decorations of the one or two

daughters of s.  There are as many cases to be distinguished here as

there are tableau construction rules (see pp. 93, 94). Strictly speaking

it would be necessary to go through each one of those cases separately.

We will proceed selectively, however, and leave the majority of the

cases as exercises.

We first consider those reductions which lead to a split of the given

tableau branch.  That is, in these cases s has two daughters, s.0 and

s.1.  Reductions of this kind arise when the signed formula that is to be

reduced has one of the following forms: <CvD,T>, <C&D,F>, <C D,T>,

<C D,T> or <C D,F>.  We consider only the first of these possibilities,

<CvD,T>.   In this case the decorations of the successor nodes s.0 and

s.1 are obtained by eliminating <CvD,T> from D(s)F and adding at the

end of that sequence a signed formula 3  containing C in the case of s.0

and a signed formula 4 containing D in the case of s.1.  3 is defined as

follows: 3 = <C,T> in case C does not begin with a universal quantifier,

and  = <C,T,/ > if C does. Likewise for 4. Thus the decorations D(s.0 )

and D(s.1) can be defined as follows:

C(v,T) Suppose the member # i of D(s)F that is up for reduction

has the form <CvD,T>. Then s has the successors s.0 and s

s.1 in T, whose decorations are determined as follows:

D(s.0) = <<#1, .., # i-1, # i+1, .., #n, 3>, D(s)C> ,

D(s.1) = <<#1, .., # i-1, # i+1, .., #n, 4>, D(s)C> ,

where 3, 4  are as defined above,.

We now turn to the reductions which do not produce a split.  Here we

distinguish between three major cases:

(i) the main operator of the reduced formula is a sentential

connective:

(ii) the reduced formula either begins with an existential quantifier

and occurs under TRUE or begins with a universal quantifier and

occurs under FALSE;

(iii) the reduced formula either begins with an existential quantifier
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and occurs under FALSE or begins with a universal quantifier and

occurs under TRUE.

Case (i).  In this case the signed formula that is up for reduction is of

one of the following forms: < C,T>, < C,F>, <C&D,T>, <CvD,F>,

<C D,F>.  This time we only consider the conjunction case.  The only

difference with condition C(v,T) is that now we have just one successor

and both constituents of the reduced formula are added on to the end

of the formula decoration of that successor.

C(&,T) Suppose the member # i of D(s)F that is up for reduction

has the form <C&D,T>. Then s has one successor, s.0, in T,

whose decoration is determined as follows:

D(s.0) = <<#1, .., # i-1, # i+1, .., #n, 3, 4>, D(s)C> ,

where 3 and 4  are as defined as in the case of C(v,T).

Case (ii). In cases of this kind reduction involves the introduction of a

new parameter c into the given tableau branch. We choose for this

parameter the first constant in our fixed sequence c1 , c2 ,.. that does

not occur in D(s)C . We only consider the subcase where the member of

D(s)F that is up for reduction has the form <( x)E(x),T>.

C( ,T) Suppose the member # i of D(s)F that is up for reduction

has the form <( x)E(x),T>. Then s has one successor, s.0, in

T.  The decoration of s.0 is given by

D(s.0) = <<#1, .., # i-1, # i+1, .., #n, &>, D(s)C 
.c>;

here & = <E(c),T,/> if E begins with a universal quantifier

and & = <E(c),T> otherwise.

(Note that this is the one rule application in which D(s)C
gets extended.)

Case (iii).  This case differs from all others in that the reduced formula

is not eliminated from D(s)F  but 'recycled' by being added to the end of

D(s)F .  Also a special check is needed in this case to see whether the

formula should be reduced at stage s, and which parameter should be

involved in its instantiation.  Since we have discussed this issue in

considerable detail above, we proceed with the formal specification of



1 3 9

the relevant condition right away.  We only consider the case where the

signed formula that is up for reduction is of the form <( x)E(x),T,S>.

C( ,T) Suppose the member # i  of D(s)F that is up for reduction

has the form <( x)E(x),T,S>, that D(s)C contains at east one

member that does not belong to S and that c is the first

constant in D(s)C with this property. Then s has one

successor, s.0, in T and the decoration of s.0 is given by

    D(s.0) = <<#1,., #i-1, #i+1,., #n, &, <( x)E(x),T,S {c}>>,D(s)C>;

again & is equal to <E(c),T,/> if E begins with a universal

quantifier and equal to <E(c),T> otherwise.

This completes the list of conditions that any semantic tableaus must

meet and therewith Def. DA3.3 7

It is useful to see at least for one example what a tableau construction

according to the specifications of Def. DA3 looks like.  Hence the

following exercise:

Exercise EA1.   Construct a tableau in accordance with the specifications

of Def. DA3 for the argument

<( y)(Q(y) & ( x)(P(x)   R(x,y))) | ( x)(P(x)  ( y)(Q(y) & R(x,y)))>

Having given a precise formal reconstruction of semantic tableaux and

their construction, we can now proceed to prove, on the basis of our

formalisation, the properties of semantic tableaux which jointly

establish soundness and completeness of the Tableau Method.  As a

preliminary we prove a lemma about infinite trees of the kind we are

using.

3 7 As described, the procedure for construc ting semantic tableaux is still not
fully deterministic. Usually a tableay leads to splittings, and as soon as the tableau
that is being constructed has more gthan one branch, there is the question in
which bramch the next reduction is to be performed.  This is a question that the
tableaqu construction algorithm we have outlined doesn't address. (It is
detreministic onlky with regard to the order of reductions within a ny given
branch.) It is straightforward to turn the given algorithm into oe which also
decides in a fully deterministic way which is to be the next branch in which a
reduction step  is to be carrie out. But to do so explicitly is yet another burden on
notation, so  have decided to let this matter rest. The reader can modify the given
algorithm so that it is deterministic also in this respect if he or she feels the urge.



1 4 0

Lemma LA1. Every infinite tableau has at least one infinite branch.

Proof.  Let T be a tree in the sense of Def. DA1.  It is easy to see that the

nodes of T can be distinguished into three categories: (i) nodes s such

that there are only finitely many successors of s in T; (ii) nodes s whose

successor s.0 has infinitely many successors in T; and (iii) nodes s such

that s.0 has only finitely many successors in T but s.1 has infinitely

many successors in T.

We make use of this tripartite division in defining the following

function f on T:  For s & T, f(s) is specified as follows:

    in case (i) (s has finitely many successors in T)

f(s) =    s.0 in case (ii) (s.0 has infinitely many successors in T)

    s.1 in case (iii) (s.1 has infinitely many successors in T

while .0 has finitely many successors in T)

Since T has infinitely many nodes, its root <> will have infinitely many

successors.  Moreover, if s is a node which has infinitely many

successors, then f(s) will have infinitely many successors as well.  This

means that if we define the function g on the natural numbers 0, 1, 2, ..

as in (1) below, then it will be the case that for each n g(n) is a node of

T which has infinitely many successors in T:

( 1 ) ( a ) g(0) = <>

(b) for all natural numbers n, g(n+1) = f(g(n))

It is evident that the range of g is an infinite sequence of nodes of t

such that for each n g(n) is an initial segment of g(n+1).  From this it

follows immediately that if n and m are any natural numbers such that

n < m, then g(n) is an initial segment of g(m).  So the range of g is a

linearly ordered subset of T, and, given that g is defined for all n, it is

infinite.  In fact, the set is a branch of T, since for each n the length of

the sequence g(n) is n. So it is impossible to extend the set with an

element s of T which does not yet belong to it without losing linearity.

For s will of necessity be of some finite length n and so of the same

length as the node g(n).  It is clear, however, that for any two distinct

sequences s1  and s2  of the same length neither is an initial segment of

the other, i. e. we have neither s 0 s' nor s' 0 s. So no proper extension

of Ran(g) with a further element of T will be a linear order.  Hence

Ran(g) is a maximal linear subset of T and thus a branch of T.
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q.e.d.

N.B. The property which Lemma LA1 establishes for trees with at most

binary branching - i.e. trees in which each node has at most two

daughters - is a special case of a more general statement:

Every infinite tree in which each node has finitely many daughters

has an infinite branch.

Exercise:   Show that any infinite tableau has an infinite branch.

For the remainder of this Appendix it will be convenient to introduce

the following terminology.  Suppose that <T,D> is a semantic tableau

and that s is one of its stages (i.e. s &  T).  We say that the formula A

occurs positively at s iff A is the formula of a signed formula occurring

in D(s)F whose sign is T.  (That is, the signed formula is of the form

<A,T,S> when A begins with a universal quantifier and in all other cases

it equals <A,T>.)

Similarly, A occurs negatively at s iff A is part of a signed formula

occurring in D(s)F whose sign is F.

Def. DA4

1 . Suppose that <T,D> is a semantic tableau and Z a branch of T.

Then we say that Z is closed  iff there is a node s & Z and an atomic

sentence A which occurs both positively and negatively at s.

2 . A semantic tableau <T,D> is closed  iff every branch of it is closed.

Lemma LA2. Suppose that <T,D> is a semantic tableau and that Z is

an infinite branch of T.  Then Z is not closed.

Proof.  This is immediate.  Supppose that Z was closed.  Then there

would be an atomic formula A and a node s of Z such that <A,T> and

<A,F> belong to D(s)F.  But in that case s would have no successors.

(See (1) of Def. DA2.)  So Z would be finite.

Corollary.  If the semantic tableau <T,D> is closed, then T is finite.

Theorem TA1. (Soundness of the Tableau Method)

Suppose that the semantic tableau <T,D> for the argument

<A1,..., An | B> is closed.  Then <A1,..., An | B> is valid.
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Proof. Assume <T,D> is closed.  From the Corollary it follows that T

is finite.  This entails that every branch of T consists of a finite set of

nodes <s1, .., sk> .

We have to show that A1,..., An  B, i.e. that every model for the

language L of <A1,..., An | B> which verifies the premises A1,..., An also

verifies the conclusion B.  Suppose that this is not so.  Then there is a

model M for L which verifies the premises but falsifies the conclusion.

We will construct a branch <so,.., sk> of nodes of T and a sequence

< M o,.., Mk> of models where each pair (si,Mi) (i = 1,.., k) has the

following three properties:

(P1) M i is a model for the language Li = L  D(si)C.

(P2) If A occurs positively in D(si)F, then Mi A .

(P3) If A occurs negatively in D(si)F, then not Mi A .

N.B. the models Mi will all be expansions of the model M, i.e. they have

the same universe U as M and the same interpretations for the non-

logical constants of L. They differ from M only in providing denotations

in U for the individual constants in the sets Ci.  For the notion of 'model

expansion' see Section 1.5 of this Chapter.

It should be clear that the combination of P1 - P3 leads to a

contradiction.  For it entails that P2 and P3 hold in particular for the

final node sk of the branch. But since sk has no successors in T and its

branch is closed, it must be the case that some sentence A occurs both

positively and negatively at s.  By P2 and P3 we then have that both Mk

A and not Mk A.

The construction of the pairs (si,Mi) proceeds by induction.  For the

basic step, which concerns the root node so , recall that D(so) = D(<>)

= < <#1,.., <#n, 2>, <c1> >, where # i is a signed formula with positive

sign which contains premise Ai and 2 is a signed formula with negative

sign which contains the conclusion B. In other words, the Ai occur

positively at <> and B negatively. Further, since D(so)C  is the sequence

<c1>, we have that Lo = L {c1}, A model Mo for this language can be

obtained from M by extending the interpretation function FM  of M to

c1. Since c1 doesn't occur in either the Ai or B, it is immaterial how the
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interpetation of c1 is chosen. That is, we can arbitrarily pick an

element u of UM  and extend to the function FM o = FM  {<c1,u>}. If we

then put: Mo = < UM , FM o >, then clearly Mo |= A1,.., An and not

Mo |= B.

Now suppose that si and Mi have been chosen, that (si,Mi) has the

properties P1-P3 and that si has at least one successor in T.  Then the

one or two successors of si are the result of reducing one of the signed

formulas in D(si)F .  The choice of si+1 and Mi+1 and the proof that

they satisfy P1-P3 depends on what kind of reduction is involved.

We first consider those reductions which lead to one successor of si.

And as regards these reductions, we begin by looking at the ones where

the main operator of the reduced formula is a sentence connective.

These are the cases where the signed formula to which the reduction

applies has one of the following forms: < C,T>, < C,F>, <C&D,T>,

<CvD,F> or <C D,F>. Once again we consider just one of these cases,

and as before we focus on that of a conjunction occurring under TRUE,

i.e. <C&D,T>.

Suppose then that the transition from s to its immediate successor s.0

is the result of reducing the signed formula <C&D,T> belonging to

D(si)F . Since the reduction does not involve the introduction of a new

parameter, we have in this case that D(si+1)C  is the same as D(si)C .  So

Li+1 = Li.  This means that we can take Mi+1 to be the same as Mi.  So,

since by assumption Mi satisfies P1, this will then also be the case for

M i+1. To verify P2 and P3 we need to show that the signed formulas in

D(si+1)F are true or false in Mi+1 depending on whether their sign is T

or F.  For those signed formulas of D(si+1)F that also belong to D(si)F
this follows from the assumptions made about si and Mi.  So the only

signed formulas for which P2 and P3 have to be checked are those that

have been added to D(si+1)F  in the transition from si to si+1.  In the

case at hand these are the positively signed formulas containing C and

D.  But since <C&D,T> belongs to D(si)F it follows by the induction

assumption (more specifically, the assumption that P2 holds for si and

M i) that Mi  C & D.  So by the clause for & in the Truth Definition,

M i  C and Mi  D.  Since Mi+1 = Mi, the desired result follows.

Next, we consider cases where si leads to si+1 through the reduction of

a quantified formula.  First suppose that the reduction involves a

parameter that already belongs to D(si)C .  In this case the signed
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formula to which the reduction applies is either of the form

<( x)E(x),T,S> or of the form <( x)E(x),F,S>.  We focus on the first

possibility.  Once more the immediate successor si+1 is si
.0.  This

entails that D(si+1)C  is identical to D(si)C , so that once more Mi+1 =

M i.  Suppose further that the reduction of ( x)E(x) consists in

substituting for the free occurrences of x in E(x) the constant cr from

the list of parameters provided by D(si)C .  Thus the only signed

formula in D(si+1)F which does not belong to D(si)F is <E[cr/x],T>.  So

it is only necessary to verify P2 for this signed formula.  By assumption

M i  ( x)E(x).  This means that [[( x)E(x)]]M i,a  = 1 for all assignments

a in Mi, including in particular those assignments a such that a(x) =

Fi(cr) (which in turn is equal to [[cr]]M i,a ). So by the clause of the

Truth Definition for the universal quantifier it follows that [[E(x)]]M i,a

= 1, where a  is any assignment in M such that a(x) = [[cr]]M i.  And

from this it follows by the Corollary to Lemma 238 that [[E[cr/x]]]M i,a  =

1.  Since E[cr/x] is a sentence, this amounts to the same thing as:

M i  E[cr/x]. This concludes the case under consideration.

Now consider those reductions of quantified formulas which involve

the introduction of a new parameter into the tableau branch.  These are

the cases where the signed formula that is reduced is either of the form

<( x)E(x),T> or of the form <( x)E(x),F>. We focus on the first of

these .

Again we put si+1 = si
.0. Suppose that the new parameter is ck. Then

D(si+1)C consists of D(si)C  together with ck.  This means that Li+1 =

Li {ck}, so this time Mi+1 will have to be a proper expansion of Mi.

Since <( x)E(x),T> occurs in the first member of D(si), by induction

assumption Mi  ( x)E(x).  So there is an element d in the universe U of

M i such that [[E(x)]]M i,a  = 1 where a  is any assignment such that a(x) =

d.  This means that we can make sure that (si+1,Mi+1) satisfy P1-P3 by

defining Mi+1 to be that model for Li+1 which is like Mi as far as Li i s

concerned and in addition interprets ck  as denoting d.  (That is, Fi+1(# )

= Fi(# ) for every non-logical constant # of L, and Fi+1(ck) = d.) For then

we have that [[E(x)]]M i+1,a  = 1, provided a(x) = [[(ck]]M i+1.  So, again

by the Corollary to Lemma 2, Mi+1  E[ck/x], which concludes the

argument for this case.

3 8 See Section 1.1 of this Chapter.
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This concludes the argument for all reductions which lead to a single

successor.  Now we consider those reductions which produce two

successors.  These are all reductions of formulas whose main operator

is a sentence connective.  To be precise, the types of signed formulas

which lead to pairs of successor nodes are, as may be recalled from

Def.DA2, <CvD,T>, <C&D,F>, <C D,T>, <C D,T> and <C D,F>.  Once

more we focus on the first of these.

Since we are dealing with a reduction in which no new parameter is

introduced, we have, as in earlier cases of this kind, that Mi+1 = Mi.

But this time the choice that matters is that of the successor si+1 to si.

We know from the induction assumption that Mi  C v D.  This entails

(by the Truth Definition clause for v) that either Mi  C or Mi  D.

Suppose that the first of these is true.  Then we choose si+1 to be si
.0 .

The first member of D(si+1) = D(si
.0) differs from the first member of

D(si) only in having the additional signed formula <C,T>39.  But by

assumption Mi  C.  So, since Mi+1 = Mi, Mi+1  C. If it is not the case

that Mi  C, then Mi  D. In this case we choose si+1 to be si
.1 .

Otherwise the reasoning is just as in the first case.

It should be stressed that since the entire tree T is finite (see the

Corollary to Lemma LA2), there is a finite upper bound n to the possible

length of the branch we are constructing.  So after at the very most n

steps the end node of this branch will be reached and with it the

contradiction we have been aiming for.

This concludes the argument for our last case, and with it the proof of

Theorem TA1. q.e .d.

Theorem TA2.  (Completeness of the Tableau Method)

Suppose that the semantic tableau for the argument <A1,..., An | B> is

not closed.  Then <A1,..., An | B> is not valid.

Proof.  Suppose that the premises and conclusion of <A1,..., An | B>

belong to the language L and that the tableau <T,D> for <A1,..., An | B>

is not closed.  Then <T,D> has an open branch Z.  Let C(Z) be the set of

all individual constants c such that there is a node s in Z with c

3 9 Or <C,T,/> in case C begins with a universal quantifier. This qualification
will be needed also in a number of further cases below. Since it should by now be
clear when such cases arise, we will henceforth forgo drawing explicit attention
to this qualification.
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occurring in D(s)C and let L' be the language L C(Z).  Furthermore, let

PF(Z) be the set of those sentences of L' which occur positively at some

stage of Z and let NF(Z) be the set of those sentencs which occur

negatively at some stage of Z.   We prove Th. TA2 by constructing a

model M for L' in which the members of PF(Z) are all true and the

members of NF(Z) are all false.  This will entail that in particular the

signed formulas that occur in D(<>) are true or false in M according to

whether their sign is T or F.  So the premises A1,..., An  are true in M

and the conclusion B is false in M, which proves that <A1,..., An | B> is

invalid.

M is defined as follows

( i ) The universe UM  of M is the set C(Z).

(ii) Let P be an n-place predicate of L. Then the interpretation FM (P)

of P in M is defined to be the following function from the

Cartesian product Un (= U ..(n times).. U) into the set {0,1}:4 0

FM (P)(c1, ..,cn) = 1 iff P(c1, ..,cn) & PF(Z)

(iii) c is a constant from C(Z).  Then FM (c) = c.  (That is, we let c

denote itself.)

To prove that M verifies the sentences in PF(Z) and falsifies the

sentences in NF(Z) we proceed by induction on the syntactic complexity

of formulas.

To show the base case, suppose first that the atomic sentence

P(c1,..,cn) belongs to PF(Z).  Then, by the definition of FM ,

FM (P)(c1, .., cn) = 1. So by the Truth Definition, M P(c1, .., cn).  Now

suppose that P(c1, ..,cn) &  NF(Z).  Then it is not the case that P(c1, .., cn)

&  PF(Z); for if this were the case, then there would be a node s of Z such

that <P(c1, .., cn),T> and <P(c1, .., cn),F> both occur in D(s)F, and then

s would have been the final node of Z and Z would have been closed.

So, by the definition of FM , FM (P)(c1, .., cn) = 0, and so it follows from

the Truth Definition that it is not the case that M P(c1, .., cn) .

Second, assume that A is a complex sentence, that the induction

assumption holds for all sentences of smaller complexity and that the

main operator of A is a sentence connective.  We only consider one

4 0 As usual, U1 = U.
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case, that where A is of the form C & D.  We assume that the induction

hypothesis holds for C and for D.

First suppose that A & PF(Z).  Then there must be some node s in Z such

that A occurs positively at s and the signed formula containing A that

belongs to D(s)F  has been reduced in the transition from s to its

(unique) successor s.0.  (That there must be such an s follows from

the fact that there is by definition of PF(Z) some s' in Z such that <A,T>

belongs to D(s')F .  Since D(s')F  is a finite sequence, and since with each

reduction of an element of the sequence the signed formula containing

A moves closer to a position in the sequence where it will be the

formula up for reduction, its reduction is bound to take place either at

s' itself or at some successor of s'.  Note also in this connection that

universal formulas under TRUE and existential formulas will be reduced

at least once.)  This means that D(s.0)F contains both <C,T> and

<D,T>.  From the induction assumption it then follows that M C and

M D.  So by the clause for & of the Truth Definition, M C & D.

Now suppose that A & NF(Z).  Then for some node s' in Z A occurs

negatively at s'.  As above, we infer that there must be a node s in Z

such that a negatively signed formula containing A is reduced at s.  In

this case the reduction has led to two successors s.0 and s.1 of s, with

<C,F> occurring in D(s.0)F and <D,F> occurring in D(s.1)F.  One of

these successor nodes must belong to Z, for otherwise Z would not be a

maximal linearly ordered subset of T and thus wouldn't be a branch.

Let us assume that s.0 belongs to Z.  Then we may conclude from the

induction assumption that it is not the case that M C.  But then it also

won't be the case that M C & D.

The remaining cases are sentences beginning with a quantifier.  We will

only consider the case of the existential quantifier. Suppose that A has

the form ( x)E(x).  Once again we begin with the case where A belongs

to PF(Z).  This means that for some s' in Z <( x)E(x),T> occurs in D(s')F.

As before we may conclude that there is a node s in Z such that s s '

and <( x)E(x),T> is reduced in the transition from s to s.0.  In this case

a new parameter ck  is introduced into Z and the signed formula

<E[ck/x],T> belongs to D(s.0)F.  From the induction assumption it

follows that M E[ck/x] and from this by the Truth Definition that

M ( x)E(x), i.e. M A.
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The final case to be dealt with is that where ( x)E(x) & NF(Z). In this

case there is a node s' in Z such that a signed formula <( x)E,F,S> is a

member of D(s')F . As we have seen, reductions of signed formulas of

this kind do not result in elimination of the signed formula to which the

reduction applies; instead the formula is put at the end of D(s.0)F  each

time that the formula is subjected to reduction in the transition from

some node s in B to s.0.  In fact, given the way in which we have

defined the procedure for treating signed formulas of this type and

putting them back in the queue, it is easy to verify that for each c in the

parameter set C(Z) there will be a transition from some node s in Z to

its successor s.0, in which c has been used to instantiate the quantifier

( x) in <( x)E(x), F>, with the effect that <E[c/x],F> has been added to

D(s.0)F;.  Thus E[c/x] & NF(Z).  Therefore we can infer, using the

induction assumption, that for each c &  C(Z) it is not the case that M 

E[c/x].  Since C(z) = UM , and for each c & C(Z), FM (c) = c it follows

from the Corollary to Lemma 2 and the clause for of the Truth

Definition that it is not the case that M ( x)E(x).  In other words, it is

not the case that M A .

This concludes the proof of our last case, and therewith of Theorem

TA2.

q.e .d.

Arguments with identity.

So far we have proved soundness and completeness under the

assumption that = does not occur in <A1,..., An | B>.  We now drop this

assumption. This means that the tableau for <A1,..., An | B> will in

genral contain atomic formulas of the form 'ci = cj'. When the sign of

such a formula is T, then it can give rise to 'reduction' steps involving

applications of the rule (=,Sub). And for such applications there is the

same requirement as for other rules: all possible applications must be

carried out at some stage.  It might be thought that for applications of

(=.Sub) this requirement presents a similar bookkeeping problem as

for universally quantified formulas under TRUE and existentially

quantified firmulas under FALSE, since in both cases the same formula

will typically have to be subjected to repeated applications. (For

instance, the formula P(c1,c2) will have to be subjected to the rule in

combination with each formula under TRUE that is either of the form

'c1 = ci' or of the form 'c2 = ci'.) In the case of the two types of

quantified formulas that give rise to this problem we were forced to



1 4 9

introduce a special device that keeps track of which instantations have

already been carried out. Fortunately, however, in connection with

(=,Sub) no new notational device is needed. The reason is that we have

restricted the applications of (=,Sub) to atomic formulas. The result of

applying (=,Sub) to an equation  ci = cj and an atomic formula

P(ci1,..,cin) is again an atomic formula and no atomic formula is ever

deleted from a tableau branch once it has become part of it. This

means that whenever a given application of (=,Sub) is being considered,

we can check whether the formula that would result from it already

belongs to the given tableau branch. If that is so, then we do not carry

out the application and pass to the rule application that is next in line.

It is still necessary to agree on a convention which ensures that all

substitution results that can be obtained by applications of (=,Sub) are

obtained, without the risk that other rule applications might remain in

the queue forever. One convention that will do this is as follows: (i)

apply (=,Sub) only when its signed identity premise <ci = cj,T> occurs

as first formula of D(s)F. Then look at the first signed formula <A,T/F>

in D(s)F  such that A has an occurrence of ci. Consider the leftmost

occurrence of ci in A. If the result of applying (=,Sub) to <ci = cj,T> and

A,T/F> already occurs in D(s)F , then pass to the next occurrence of ci
in A. If all results of substituting cj for some occurrence of ci in A

already belong to D(s)F , then pass to the next signed formula in which

there is an occurrence of ci; and so on. When all possible applications

of (=,Sub) with ci = cj as identity premise have been carried out - at any

stage there can of course be only finitely many such applications - then

<ci = cj,T> is moved from the beginning to the end of D(s)F.

There is one further matter connected with the rule (=,Sub) that must

be raised at this point. Intuitively, applications of the rule with identity

premise <ci = cj,T> and second premise <A,T/F> should not only allow

replacements of ci by cj but also replacements of cj by ci. This is not

the way in which we have formulated the rule, however, The reason

why the formulation we have given, according to which an identity

premise <ci = cj,T> only allows for replacements of ci by cj, suffices is

that tableau construction also allows for applications of the rule

(=,Ref). These allow us to introduce signed formulas of the form

<ci = ci,T> whenever we need them. Such formulas can then serve as

non-identity premises in applications of (=,Sub) to lead from

<ci = cj,T> to <cj = ci,T>.

In order to make sure that we get all the instances of <ci = ci,T> that

might ever be needed in our tableau branches we make the following
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provision. Each time a constant ci gets introduced into a tableau branch

at a stage s, we add <ci = ci,T> to the end of D(s.0)F (the formula part

of the decoration of hte unique successor of s).

We are now ready to modify the proofs of the Soundness and

Completeness Theorems so that they also apply to arguments that

contain =. For Soundness this is straightforward. Once again we assume

that the tableau T for the argument <A1,.., An | B> is closed and

suppose that there is a model M for L such that M |= A1,.., An  while not

M |= B. Agaon we prove by induction on n that there is a linearly

ordered subset <so,..,sn> of T, with so = <>, and a sequence of models

<Mo,..,Mn>, where Mi is a model for the language L  D(si)C such that

the positive formulas of si are true in Mi and the negative formulas are

not.  As before, this then gives a contradiction with the assumption that

T is closed, which entails that there is a uniform finite upper bound to

the lengths of its branches.  The proof that such a pair of sequences

<so,..,sn> and <Mo,..,Mn> can be built carries over without

modification except that we must now also deal with the new rule

applications, viz. those of (=,Sub) and (=,Ref).

The applications of (=,Ref) are adjoined to the applications of those

rules that introduce new constants. None of these applications need

worry us here, since formulas of the form ci = ci are true in all models.

That leaves applications of (=,Sub). Suppose that we have constructed

the pair of sequences <so,..,sn> and <Mo,..,Mn> and that the rule

application in sn is an application of (=,Sub) with identity premise

<ci = cj,T> and second premise <A,T/F>. By assumption A is an atomic

formula, so it is either of the form P(ci1,..,cin) or else an identity. The

argument is the same for these two cases; let us assume, without loss of

generality, that A has the form P(ci1,..,cin). We also assume, again

without loss of generality, that the sign of <A,T/F> is T.

Since applications of (=,Sub) produce no splitting, sn will have a single

successor sn
.0 in T. This fixes the next node sn+1 of the sequence as

sn
.0.  Also, since no new constants are introduced by applications of

(=,Sub), we can take the model Mn+1 to be the same as Mn. By

induction assumption (i) Mn+1|= ci = cj and (ii) Mn+1|= P(ci1,..,cin). Let

cik be the occurrence of ci in P(ci1,..,cin) which gets replaced in the

given application of (=,Sub) by ci; the result is the T-signed formula

P(ci1,.,cik-1,cj,cik+1,.,cin). It follows directly from the clause for atomic
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formulas in the Truth Definition together with (i) and (ii) above that

M n+1|= P(ci1,.,cik-1,cj,cik+1,.,cin) .

So much for the modification of the proof of TA1. To adapt the proof

of TA2 a little more is needed. To see this suppose for instance that the

sentence c = c' is a sentence from PF(Z), where c and c' are distinct

constants from C(Z).  Then it should be the case that M c = c'.  But

according to the Truth Definition this will be so only if [[c]]M,a  =

[[c']]M,a  (where a  may be any assignment whatever).  But that won't be

the case if FM (c) = c and FM (c') = c', since by assumption c c' .

We adopt the standard solution to this difficulty, which consists in

taking UM  not to consist of the constants in C(Z) themselves, but of

equivalence classes of these constants, which we obtain by "dividing"

the set C(Z) by a certain equivalence relation.  This relation is

generated by the set of all sentences of the form c = c' that belong to

PF(Z).  To be precise, we define the following relation between

constants in C(Z):

c c' iff c = c' & PF(Z) ( ) 

But is this relation really an equivalence relation?  It is, but a few

remarks are in order to show why that is so. First, Reflexivity of holds

because our tableau construction makes sure that c = c gets added to

PF(Z) for every constant c that gets introduced into Z. Secondly, that 

is symmetric follows from our observation above: Suppose that c c ' .

Then c = c' belongs to PF(Z). We know already that c' = c' also belongs

to PF(Z). But that means that c' = c also to PF(Z). For if this formula

doesn't enter Z in some other way, then some application of (=,Sub) in

Z, in which the identity premise c = c' is used to replace the second

occurrence of c' in c' = c' by c, will have added it. Thirdly, i s

transitive, for much the same reason that it is symmetric. Suppose that

c c' and c' c''. Then c = c' and c' = c'' both belong to PF(Z). But then

c = c'' will also belong to PF(Z), either through an application of

(=.Subj) in which c' = c'' is used as identity premise and c = c' as A, or

in some other way.

Along these same lines we can also show that  PF(Z) has the following

proper ty
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Let P be any m-place predicate of L.  (Con )

If P(c1,..., cm ) and c1 = c'1 , ..., cm  = c'm  belong

to PF(Z), then P(c'1,..., c'm ) also belongs to PF(Z).  

Remark 1  "Con " stands for 'Congruence of '.  A binary relation R is

called a congruence relation with respect to some m-place relation S

(where m can be any natural number) iff for any two m-tuples

<a1, ..., am > and <b1, ..., bm >, if <a1, ..., am > & S and <ai,bi> & R for

i = 1, ..., m, then <b1, ..., bm > & S.  So (Con ) states that is a

congruence relation with respect to the m-place relation S which holds

between entities a1 , ..., am  (here the entities are the constants in

C(Z)) iff the sentence P(a1,..,am ) belongs to PF(Z).

Remark 2  Note that (Con ) includes cases where for one or more i m

c'i is the same constant as ci.  In these cases "replacement of one or

more occurrences of ci by c'i" amounts to leaving those occurrences

just as they were.  Since any self-identity formula <c = c,T> will belong

to D(s)C  from the stageat which c has made its entry into the given

tableau branch, (Con ) also covers cases where only some of the

constants in P(c1 ,..., cm ) are replaced by other constants. And of

course, many applications of (=,Sub) will be of this kind. For as we have

formulated (=,Sub), it is always applied to only one constant

occurrence at a time. So whenever the head of the atomic formula that

plays the part of A in the application is a predicate of 2 or more places,

then the application will leave some constant occurrences unchanged.

The properties which have been shown to hold for entail that an open

tableau branch Z can be converted into the following counter-model M.

(We denote the equivalence class generated within the set C(Z) by a

constant c & C(Z) as "[c] ".)

( i ) UM = {[c] : c & C(Z)}

(ii) FM (P)([c1] ,.., [cm] ) = 1 iff  there are c'1 & [c1] ,...,

c'm & [cm]  such that PP(c'1,...,c'm) & PF(Z)

(iii) FM(c) = [c]

The proof that all sentences in PF(Z) are true in M and all sentences in

NF(Z) false in M involves the same steps as the proof of Theorem TA2

given earlier.  Most of the steps carry over without change. The steps
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that deserve a closer look are those for atomic sentences and those for

quantified formulas.

( 1 ) Atomic sentences.

First suppose that P(c1,...,cm) & PF(Z).  Then by (ii) above

FM (P)([c1] ,.., [cm] ) = 1.  So, in virtue of (iii), M P(c1,...,cm).

Now suppose P(c1,...,cm ) & NF(Z).  To show that it is not the case that

M P(c1,...,cm) we need to show (***):

For no c'1 & [c1] ,..., c'm  & [cm ]  , P(c'1,...,c'm ) & PF(Z)  (***)

Suppose there were c'1&  [c1] ,..., c'm  &  [cm ]  such that P(c'1,...,c'm ) &

PF(Z).  Then by (Con ) also P(c1,...,cm) & PF(Z).  But then Z would be

closed, contrary to assumption.  So (***) holds; so by (ii) of the

definition of M FM (P)([c1] ,.., [cm ] ) = 0; so it is not the case that

M P(c1,...,cm).

It is to be noted that we now also have to deal with a type of atomic

sentence which did not play a role in our earlier proof of Lemma 6

under the restrictions there assumed, viz. sentences of the form c = c'.

However, this case is just like the case of atomic formulas of the form

P(c1,...,cm ), of which we have just shown that they behave in the

required way.  It is left to the reader to verify this.

( 2 ) Quantified sentences.

Again we only consider the case of an existential sentence ( x)E(x).

First suppose that ( x)E(x) & PF(Z).  Then there is a node s in Z such

that, for some c & C(Z), <E[c/x],T> belongs to D(s)F.  So by the

induction assumption M E[c/x].  By Corollary 1 to Lemma 2 this

entails that [[E(x)]]M,a  = 1 for any assignment a  such that a(x) =

[[c]]M,a  = FM (c) = [c] .  So it follows from the Truth Definition that

M ( x)E(x).

Second, assume that ( x)E(x) & NF(Z).  Then for no c & C(Z) E[c/x] &

PF(Z).  For suppose that E[c/x] & PF(Z).  Then <E[c/x],T> would belong to

D(s)F  for some node s in Z.  But then c would have had to be a member
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of D(s)C.  Since ( x)E(x) & NF(Z), it may be assumed without loss of

generality that D(s)F also contains <( x)E(x),F>.  So either at s or at

some later stage of Z <E[c/x],F> would have become part of the

decoration as well.  But then Z would have been closed, contrary to

assumption. So it follows that E[c/x] & PF(Z) for no c & C(Z).  Using the

induction assumption we can infer that for no c & C(Z), M  E[c/x].

Relying once more on Corollary 1 of Lemma 2, we conclude that for no

element [c]  of UM , [[E(x)]]M,a[c] /x] = 1.  So it follows from the Truth

Definition that it is not the case that M ( x)E(x).

This completes the modifications that are needed in the proof of

Theorem TA2.

Remark on the rule (=,Sub).

The version of (=,Sub) we have assumed involves the restriction that

replacement of constants is allowed only in atomic formulas. There is

also a stronger version of the rule, according to which replacements of

constants are permitted in arbitrary formulas. That the more general

version of the rule is over all no more powerful than the restricted

version is something that may not be immediately obvious. But one

corollary of our completeness proof is that this must be so: Since

applications of the general version are valid, they must be provable by

means of the tableau method in which only the restricted version of the

rule is used. Ao any proof in which there are applications of the

generalised version of (=,Sub) can be replaced by a proof of the same

argument in which there are only applications of the restricted version.

(=,Sub) also allows for another generalisations, according to which

several occurrences of the same constant c in A can be replaced at

once. Our proof showsthat this generalisation doesn't add real

deductive power either.  However, in this case it is obvious in any case

that the generalisation doesn't buy us more than the version which

permits only one replacement at a time. For, evidently, any case of

simultaneous replacement can  be mimicked by a succession of

applications of (=,Sub), in which each application involves replacement

of just one of these occurrences.

As noted at the outset of this Appendix (see also Section 1.1.3 of this

Chapter), the Soundness and Completeness proofs we have given are

still not quite as general as they might have been, since we have

assumed that the language L contains no function constants.  Extending
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the formal treatment of the tableau method, and exact proofs of

soundness and completeness based on it, to this more general case is a

routine exercise.  But the exercise is awkward and cumbersome, and

doesn't bring anything to light that is of real interest.  On the other

hand, as we noted earlier on, we can generalise the results we have

obtained to languages with function constants by translating arguments

in which function constants occur into arguments in which those

constants have been replaced by corresponding predicate constants.

The reader can find out how this works by going through Exercise EA2

below.

One final observation on the tableau method in the context of this

Chapter.  In Section 1.4 we made use of the fact that for arbitrary sets

of sentences %  (i.e. infinite as well as finite sets) satisfiability coincides

with consistency.  This result is established in the proof of the

Completeness Theorem given in Section 1.2, but strictly speaking it has

not been established by the tableau-related proof we have given in this

Appendix.  The problem is that we have developed our algorithmic

version of the tableau method only for arguments with finite sets of

premises.  We still need to establish that the method can be extended

so that it also covers infitnite premise sets.

As a matter of fact, with the mathematical tools available to us at this

point this result can be proved only for sets that are at most

denumerably infinite.  Given how we have defined first order predicate

logic this doesn't constitute a real limitation, as our definition admits

only denumerable sets of sentences anyway.  But since our formalism

does allow for denumerable sets and since these will play an important

role throughout, the tableau method should be modified so that at least

denumerable premise sets can be handled.

As a matter of fact extending the construction algorithm to this effect

isn't difficult.  Suppose that we want to construct a tableau for the

argument <% | B>, where % is denumerably infinite and C1, C2, .. is a

complete enumeration of % .  Then we can modify the tableau

construction as it was defined hitherto as follows:  We reserve certain

construction stages s for the introduction of a new premise from our

list C1, C2, ..  .  (For instance we could reserve for this purpose those

stages whose length is a prime number.) Each time when such a node s

is reached, (e.g, when length(s) = pn, where pn is the n-th prime

number), we add the pair <Cn,T> (or <Cn,T,/>, depending on the form

of Cn) to the end of DF(s).  Since this is an operation that does not

produce a tableau split, so s has only one successor s.0.  No other

modifications are needed.  So apart from the points where new
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premises are brought into play, everything proceeds as before.

Moreover, if at a given stage of a tableau branch construction no

reduction rules can be applied, then the next premise is "loaded" at

that point.

It should be clear that an open branch B of a completed tableau

constructed according to the new specification will have occurrences

under the column 'TRUE' of all the premises in % . (i. e. % PF(B). So the

model we construct from B will verify all sentences in % .  It is also easy

to see that notwithstanding the extra construction steps that are now

required for the introduction of the premises in % , the length of B will

be at most denumerably infinite.

Exercise EA2.

a . Let L be a language of First Order Predicate Logic with finitely

many function constants f1, ..., fk and let <A1,..., An | B> be an

argument of L.  Let for each i = 1, ..., k ni be the number of argument

places of fi.

We form a new language L' which contains all the predicates of L which

occur in <A1,..., An | B> and which furthermore has for each i = 1, ..., k

a distinct predicate Qfi of ni +1 places which does not occur in <A1,...,

An | B>.  We translate <A1,.., An | B> into an argument <A'1,..., A'n+k |

B'> of L' as follows:

( i ) With any term t of L we associate formulas Pt(x) of L' with

distinguished free variable x.   Pt(x) is defined by induction on the

complexity of t.

( a ) If t is the variable vi, P(t) is the formula x = t, where x is a

variable not occurring in t.

(b) Supppose that t = f(t1 ,...,tm ), and that Pt1(x), .., Ptm (x) have

been defined.  Choose distinct variables x1,...,xm  not 

occurring in t and let Pt(x) be the formula

("x1)..("xm )(Pt1(x1) & .. & Ptm (xm ) & Qf(x1,..,xm ,x)).

( i i ) Each of the sentences A1,..., An, B is translated as follows.  (In the

description of the translation we focus on A1 but the same procedure

applies to all other sentences of the argument)
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( a ) Let #  be an occurrence of the atomic formula P(t1 ,..., tn) in A1.

Then we replace this occurrence by the formula

("x1)..("xn)(Pt1(x1) & .., & Ptn(xn) & P(x1,..,xn)),

where x1,..,xn are variables not occurring in A1.

( b ) Let #  be an occurrence of the atomic formula t1 = t2  in A1.  Then

we replace this occurrence by the formula

("x1)("x2)(Pt1(x1) & Pt2(x2) & x1 = x2) .

where x1, x2 are variables not occurring in A1.

(iii) The translation of the argument <A1,..., An | B> is the argument

<A'1,..., A'n+k | B'>, where

( a ) for I = 1, ..., n A'i is the translation of Ai as described under

(ii);

( b ) B' is the translation of B as described under (ii);  and

( c ) for j = n+1, ..., n+k A'j is the sentence

     (!x1)..(!xnj)("y)(Qfj(x1,..,xm ,y) &

        (!y)(!y')(Qfj(x1,..,xm ,y) & Qfj(x1,..,xm ,y') y = y'))

(This sentence says that Qfj behaves like an m-place function with the

function value represented by its last argument.)

Show:  A1,..., An  B iff A'1,..., A'n+k   B' ( 1 )

b. Show (1) for the case where L has infinitely many function

constants .

Exercise EA3.

Suppose that <A1,..., An | B> is an argument in which = does not occur.

We can then still apply the tableau construction as described for

arguments which do contain occurrences of =. Show that when a
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tableau for  <A1,..., An | B> that is constructed according to this

method has an open branch and is the relation between constants

determined by this branch, then  is the identity relation on the set C

of constants occurring in this branch (i.e. = {<c,c>: c & C}.

Exercise EA4.

We can prove the correctness and completeness results for argumentts

with constants also by modifying the tableau construction algorithm

directly.  This is not difficult in principle, but it requires careful

bookkeeping. For as soon as we have to deal with function constants of

1 or more argument places, the number of terms that have to be

substituted for univeral quantifiers under True and existential

quantifiers under False explodes. (Even with one 1-place function

constant f and one indvidiual constant c we get an infinite number of

such terms: f(c), f(f(c)), f(f(f(c))) and so on. Since we cannot allow for

any of the possible substitutions to be "missed" by the algorithm, some

kind of "pecking order" among the terms has to be defined, so that via

the right kind of rotation system each pair consisting of (i) a term that

can bebuilt form the function constants and the individual constants

that have been introduced and (ii) a formula that can be instantiated by

the term gets its turn.

Think of a modification of the construction algorithm which guarantees

that every possible substitution of every closed term for the quantifiers

of such formulas is executed at some point in the course of the

construction of every infinite (open) branch of a non-closing tableau.

Solution to Ex. EA4.

The result that needs showing is that

A1,..., An  B iff A'1,.., A'n, A'n+1.., A'n+k   B' (*)

where the first argument belongs to a language L with function

constants f1 ,.., fk , the second argument belongs to the language L'

which has instead of each n-place function constant fi of L a new

p(n+1)-place predicate Qfi, A'1,.., A'n are the translations of A1,..., An

and A'n+1.., A'n+k  are the axioms that state that the new predicates are

functional in their last arguments. (*) followss from the following

statement (1)
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( 1 ) Let C be any formula of L, M = <U,F> a model for L and let M' =

<U,F'> be the model for L' which is obtained by putting:

( i ) F'(#) = F(#) for all # & L L',

( i i ) F'(Qfi,)(<u1,.. un, un+1>) = 1 iff F'(fi,)(<u1,..., un>) = un+1.

Then for any assignment a  in M, [[C]]M,a = [[C]]M',a

We first show that (1) entails (*). First suppose that

A'1,.., A'n, A'n+1.., A'n+k   B'. Let M be a model for L and a a n

assignment in M such that [[Ai]]M,a = 1 for i = 1,..,n. Let M' be the

model for L' that is obtained from M in the way described under (1).

Then the following two statements hold:

( i ) [[A'i]]M',a = 1 for i = 1,..,n, because of (1)

( i i ) [[A'i]]M',a = 1 for i = n+1,..,n+k, because of the way M' is

constructed from M.

Since by assumption A'1,.., A'n, A'n+1.., A'n+k  B', it follows that

[[B']]M',a = 1. So by (1) [[B]]M,a = 1. Since this holds for arbitrary M

and a we conclude that A1,..., An  B.

Now suppose that A1,..., An  B. Let M' be a model for L' such that

[[A'i]]M',a = 1 for i = 1,..,n+k. Note that since [[A'n+j]]M',a = 1 for j =

1,..,k, there is for each j = 1,..,k and each mj-tuple <u1,..., um j> (where

m j is the arity of the function constant fj) a unique object wj in U such

that [[Q(x1,..., xm j,y>]]M',a[wj/y] = 1. This means that we can define

the model M for L from M' by keeping its universe U and the

interpretations F'(# ) for all # & L L' while defining the interpretations

F(fj) of the function constants fj of L by the clause:

for every mj-tuple <u1,.,um j> of objects & U, F(fj)(<u1,..., m j>) =  wj,

where wj is the object that is uniquely determined by <u1,..., m j> in the

way indicated above.

It is easily seen that because of the way in which we have defined the

interpretations of the function constants of L in M, M and M' are

related as in (1). So by (1) we get that  [[Ai]]M,a = 1 for i = 1,..,n. Since

by assumption A1,..., An  B, it follows that [[B]]M,a = 1. So by (1)
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[[B']]M',a = 1. Again we can conclude because of the generality of the

reasoning that this holds for arbitrary models M' for L', so that A'1 ,..,

A'n, A'n+1.., A'n+k   B'.

This concludes the proof that (1) entails (*). To prove (1) we have to

proceed in two steps. The second step consists in proving (1) by

induction on the complexity of formulas. But before we can do that, we

first have to prove another fact by induction on the complexity of

terms. This fact consists in  each term t having the following property

(1 .a ) :

( 1 . a ) If  M and M' are related in the manner of (1) and a is any

assignment in  M, then [[t]M,a = is the unique element wj o f

U such that[[Pt(x)]M',a[wj/x] = 1.

In the proof of (1.a) we can keep M and M' fixed.

( i ) If t is the variable vi, then Pt(x) is the formula x = vi. In this case

there is obviously only one element in U such that [[x = vi]M',a[wj/x] =

1, namely the element that a assigns to vi.

( i i ) Now suppose that t = f(t1 ,..., tm ) and that (1.a) has been proved

for t1 ,.., tm . Let u1 ,.., um  be the objects denoted in M under a  by t1 ,..,

tm , respectively (i.e ui = [[ti]M,a for i = 1,..,m. By induction assumption

we have that ui  is the unique element of U such that

[[Pti,(x)]M',a[ui/x] = 1.

Note further that in this case Pt(x) is the formula

( 2 ) ("x1)..("xm )(Pt1(x1) & .. & Ptm (xm ) & Qf(x1,..,xm ,x)).

Let u be the value of the term t in M under the assignment a , i.e. u =

[[t]M,a. First we show that u satisfies Pt(x) in M' under a . This follows

from the fact that u is the value which F(f) returns for the arguments

u1,.., um , since these satisfy the predicates  Pt1(x1),.., Ptm (xm ) in M

under a .  Since by the definition of M' <u1,..,um ,u> belongs to the

extension of F(Qf), it follows that u satisfies (2) in M' under a , i.e,

[[Pt(x)]]M,a[u/x] = 1.

Now suppose that u' is an object that satisfies (2) in M' under a .  We

have to show that u' = u.  Since u satisfies (2) there  are objects u'1 ,..,
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u'm  which satisfy Pt1(x1),..,Ptm (xm ) in M under a . But since by

assumption the satisfiers of Pt1(x1),.., Ptm (xm ) are unique, it follows

that for i = 1,..., m, u'i = ui.  From the definition of M' it follows that

there is just one object w such that u1 ,.., um ,w> belongs to the

extension of F(Qf), We already know that u has this property. So if u'

has this property too, then u' = u.

To prove (1) we proceed by induction on the complexity of formulas of

L. First, let A be an atomic formula of L. Then A is either of the form

P(t1 ,..., tm ) or of the form t = s. Suppose that A is of the form

P(t1 ,..., tm ). Then P(t1 ,..., tm )' is of the form

( 3 ) ("x1)..("xm )(Pt1(x1) & .., & Ptm (xm ) & P(x1,..,xm ))

Suppose [[A]]M,a = 1. Let a ' = a[ [t1]]M,a /x1 ]..[ [tm ]]M,a /xm ]. By

Lemma 2 of p. 18 [[P(x1,..,xm )]]M,a ' = 1 and so, using the fact that F'(P)

= F(P), [[P(x1,..,xm )]]M',a ' = 1. By property (1,a) [[Pti(xi)]]M',a ' = 1 for

i = 1,.., m. So the conjunction Pt1(x1) & .. & Ptm (xm ) & P(x1,..,xm ) is

satisfied in M' by a '. Therefore (2) is satisfied in M' by a  (using the

clause for the existential quantifier in the Truth Definition).

Conversely, assume that [[(2)]]M',a = 1. Then there are u1,.., um  in U

such that [[Pt1(x1) & .., & Ptm (xm ) & P(x1,..,xm )]]M',a' = 1, where

a ' = a[u1/x1 ] .., [um /xm ]. From [[Pti(xi)]]M',a' = 1 we can infer, using

(1.a), that ui = [[ti]]M,a. Since also [[P(x1,..,xm )]]M',a' = 1, this entails

that F'(P)(<[t1]]M,a ,.., [tm ]]M,a>) = 1, and, using once more that F'(P)

= F(P), we conclude that F(P)(<[t1]]M,a,.., [tm ]]M,a>) = 1, which comes

to the same thing as [[P(t1,..,tm )]]M,a = 1, i.e. [[A]]M,a = 1.

The case where A is the formula t = s can be dealt with in essentially the

same way.

What remains are the inductive steps in the proof of (1). These are

largely routine. Suppose - to take one of the least uninteresting steps -

that A is the formula ("vi)B. In this case A' will be the formula ("vi)B',

where B' is the translation of B.

Suppose that [[A]]M,a  = 1 By the Truth Definition there is a u in U such

that [B]]M,a[u/vi] = 1. Then, by the Induction Hypothesis,

[B']]M',a[u/vi] = 1. So by the Truth Def. [("vi)B']]M',a  = 1. But ("vi)B' =
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(("vi)B)' = A'. So [A']]M',a  = 1. The converse direction is proved

analogously.

All other inductive steps of the proof of (1) are similar to this one, or

even simpler. This concludes the proof of (1) and thus of the exercise.

q.e .d.

The Craig Interpolation Theorem.

First order predicate logic has several properties which seem very

plausible and natural, but which do not obtain for systems of formal

logic in general. One of these is the interpolation property. A formalism

(such as first order predicate logic) is said to have this property if the

following holds:

( i p ) Suppose A and B are formulas such that A  B. Then there is a 

formula C in the common vocabulary of A and B such that A  C 

and C  B.

Explicating what is meant by "in the common vocabulary of A and B"

depends in general somnewhat on the specification of the logical

system in question. But for the case of first order predicte logic the

explication is straightforward: C is in the common vocabulary of A a n d

B iff every non-logical constant occurring in C occurs both in A and in

B.

Another way to put this is as follows. Let LA be the language whose non-

logical constants are those occurring in A, let LB  be defined analogously

and let LAB be the language LA LB. Then C is in the common

vocabulary of A and B iff C is a formula of the language LAB.

The claim that first order predicate logic has the interpolation property

can thus be stated as follows:

Thm. (Craig Interpolation Theorem)

Let A and B be sentences of first order predicate logic such that

A  B. Then there is a sentence C of the language LAB = LA LB,

such that A  C and C  B.
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Proof. The proof of this theorem is surprisingly easy when we build

upon the completeness proof given in this Appendix, in which

correctness and completeness have been proved for the method of

proof by semantic tableau construction. This is the way we will proceed

here. (Another proof of the Interpolation Theorem, which builds on the

completeness proof given in the main part of this chatper, can be found

in Ch. 2)

Before we start with the proof itself, first a trivial but useful

observation. We can rephrase the interpolation property as in (1)

( 1 ) Let A and B be sentences of first order predicate logic such that

A  B. Then there is a sentence C of the language LAB = LA LB,

such that A  C and B  C.

Suppose that A  B. Then, by the Completeness Theorem, the semantic

tableau for the argument <A | B> will close. This closed tableau will be

finite and thus in particular it will have finitely many end nodes. An end

node s of a closed tableau always means that closure has been obtained

in the step that led to the construction of s; in other words, DF(s )

contains a pair of signed formulas <E,T> and <E,F> (i.e. a pair with the

same formula E but opposite signs) that are responsible for closure of

the branch of which s is the last node, i.e. two signed formulas with

opposite signs but the same formula E. Each of these formulas is either

obtained via 0 or more of successive reductions from A, or else is

obtained in this way from B. The end nodes that are of special interest

for the construction of the inerpolating sentence C are those where one

of the two signed formulas that produce closure comes from A and the

other from B.  In that case E will belong to LAB, and can be used as a

piece in the construction of C. Moreover, we can then show that the

formulas in the given branch which stem from A entail E while the

formulas in the branch stemming from B entail E, or vice versa.

(Details follow presently.) The other two types of end nodes - (i) both

signed formulas stem from A or (ii) both signed formulas stem from B -

must be handled in a slightly different way. For instance, suppose that

both signed formulas that produce closure stem from A. That means

that the set of all formulas stemming from A in the branch of which s is

the end node entail a contradiction. This means that we can choose a

contradictory sentence from LAB (e.g. ( v1)v1  v1 ) to give us the

piece for the construction of C contributed by this node. The formulas

occurring in the branch that stem from A entail in this case whereas

those stemming B (trivially) entail . The case where both signed
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formulas that produce closure stem from B can be handled

analogously.

In this way we can associate with each end node a pair of formulas

(C, C) from LAB. We can then work our way up from the end nodes to

the root, constructing at each step a pair for formulas (C, C) for the

given mother node on the basis of such assignments to her daughter

node or nodes. In the end we arrive at such a pair for the root <>. The

C of that pair will then be the interpolating formula we are looking for.

To make this precise we must begin by defining the notion "stemming

from". This is quite simple. Given an argument <A | B>, we can annotate

every formula that gets produced in the course of the tableau

construction with "A" or "B", depending on whether it comes from the

first or the second of these formulas. The simplest way to do this is to

extend the signature of a formula with an additional slot, to be

occupied by either "A" or "B". Thus a signed formula will now have the

form of a triple41 <E,T/F,A/B>, where E is a formula, the second slot is

filled with either a "T" or an "F" depending on whether the formula is

meant to be true or false, and the third slot has an "A" or a "B"

depending on whether the signed formula stems from A or from B.  The

premise A and the conclusion B are of course marked as "stemmng

from themselves"; that is, DF(<>) = <<A,T,A>,<B,F,B>>. Furthermore,

the "stemming from" information is simply passed on from each signed

formula to the one or two that result(s) from its reduction. (For

instance, when the formula <G&H,T,A> is reduced at node s, then the

new formulas added to DF(s) in the transition to DF(s.0) are <G,T,A>

and <H,T,A>.)

Given this information about the origin of the formulas which occur in

the sequences DF(s) it is possible to associate with a node s a formula

that "conjoins" all the formulas that are part of the decoration of s or

any of its predecessors. Let DESC(A,s) be the set of all formulas E such

that <E,T,A> occurs in the decoration of s or in that of some

predecessor of s, and of all formulas E, such that <E,F,A> occurs in

the decoration of s or in that of some predecessor of s; and let

REPR(A,s) be the conjunction of all the formulas in DESC(A,s); similarly

for DESC(B,s) and REPR(B,s).

4 1 As before, universally quantified formulas marked "T" and existentially
quantified formulas marked "F" involve as an additional component of their
signatures the set of constants with which their quantifiers have already been
instantiated. So in the case of such formulas signed formulas are now 4-tuples..
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In order to formulate the precise hypothesis that we will be able to pull

through the mentioned backwards induction, there is one more matter

we need to address. Tableau construction involves the introduction of

new constants. We have built a mechanism for recording which

constants have been introduced by the time a tableau node s has been

reached, viz. by including the sequence DC (s) in the decoration of s.

The constants in DC (s) can occur in the formulas that occur within

D F(s) and that is so in particular for those formulas associated with an

end node s which produce the closure of the branch of which s is the

last node. This means that in such cases we cannot assume that the

formula C we want to construct for s belongs to the language LAB.

Rather, we will only be able to assume that it belongs to the language

we will call LAB,s, the language whose non-logical constants are those

of LAB together with the constants in DC(s).

We are now ready to formulate the hypothesis we will be able to prove

by "backwards induction" on the nodes of the closed tableau <T,D> for

<A | B>:

( 2 ) For each node s of the tree T for < A | B> there is a sentence C

from the language LAB,s, such that REPR(A,s)  C and

REPR(B,s)  C.

That we can find a C of the required kind for each of the end nodes of T

has already been shown. (Now that we have defined REPR(A,s) and

REPR(B,s) explicitly, it is easy to verify that the claims we made abut the

three types of end nodes earlier are true in the precise formal sense of

(2).) To prove the inductive steps of the argument we once again

consider only a few representative cases.

( i ) Suppose that the formula reduced at the node s is G, that G

stems from A and that the sign of G is T. We assume that a sentence C

from the language LAB,s.0 has already been associated with s's one

successor node s.0 and that  (2) holds for s.0 and this C. The

difference between REPR(A,s) and REPR(A,s.0) is in this case merely

that REPR(A,s.0) contains a conjunct corresponding to the signed

formula <G,F,A>. But this conjunct is just G, and that formula is also

part of the conjunction REPR(A,s) because of the presence of < G,T,A>

in DF(s). So REPR(A,s) and REPR(A,s.0) are logically equivalent.

Moreover, we have in this case that LAB,s.0 = LAB,s. So we can take for

the sentence associated with s C itself. Then REPR(A,s)  C; and since

REPR(B,s.0) is identical with REPR(B,s), also REPR(B,s)  C.
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(i i ) Suppose now that the formula reduced at the node s is G, that G

stems from A, but that the sign of G is F. Again we assume that a

sentence C from the language LAB,s.0 has been assigned to s.0. In this

case the difference between REPR(A,s) and REPR(A,s.0) is that

REPR(A,s.0) has the additional conjunct G. However, REPR(A,s) has G

as a conjunct (because of the signed formula < G,F,A> in the

decoration of s). So again REPR(A,s) and REPR(A,s.0) are logically

equivalent and (2) follows for s.

(ii i) Now consider the case where the reduction of s involves the

signed formula <G&H,F,A>. Then s has two successors s.0 and s.1 .

Suppose that for both of these we have sentences C0 and C1 satisfying

(2). Note that in this case REPR(A,s.0) has, as compared to REPR(A,s),

the additional conjunct G and that REPR(A,s.1) has the additional

conjunct H. So REPR(A,s.0) is logically equivalent to (REPR(A,s) & G)

and REPR(A,s.1) to (REPR(A,s) & H). We further note that REPR(A,s)

has as one of its conjuncts the formula (G&H) and finally that

LAB,s.0 = LAB,s.1 = LAB,s. Let the sentence C associated with s be

(C0 v C1). Then, since (REPR(A,s) & G)  C0,

(REPR(A,s) & G)  C0 v C1, and by an analogous argument

(REPR(A,s) & H)  C0 v C1. So (REPR(A,s) & ( G v H)  C0 v C1. But

G v H is logically equivalent to (G & H), and that formula is a

conjunct of REPR(A,s). So again REPR(A,s) and REPR(A,s.0) are logically

equivalent, and it follows that REPR(A,s)  C.

We further note that REPR(B,s.0) = REPR(B,s.1) = REPR(B,s) in this case.

by induction assumption we have that REPR(B,s.0)  C0 and

REPR(B,s.1)  C1. So REPR(B,s)  C0 and REPR(B,s)  C1. Therefore

REPR(B,s)  C0 & C1 and so REPR(B,s)  (C0 v C1), i,e,

REPR(B,s)  C. This concludes the proof of case (iii).

( iv) Now suppose the reduction at s is of the signed formula

<( vi)G,T,A>. In this case a new constant ck has been introduced in the

transition from s to s.0, i.e. LAB,s.0 = LAB,s  {ck}. REPR(A,s.0) now

has besides the formulas from REPR(A,s) as new conjunct the formula

G[ck/vi]. So we have by induction assumption: REPR(A,s) & G[ck/vi] 

C', where C' is the sentence from LAB,s.0 that has been associated with
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s.0. We can rewrite this as REPR(A,s)  G[ck/vi]  C'. Since ck does not

occur in REPR(A,s), it follows that

REPR(A,s)  G[ck/vi][vr/ck]  C'[vr/ck] ( i )

where vr is a variable not occurring in either G or C'. (Here, as always,

C'[vr/ck] is the result of replacing all occurrences of ck in C' by vr and,

similarly, G[ck/vi][vr/ck] the result of replacing all occurrences of ck
in G[ck/vi] by vr. Note that G[ck/vi][vr/ck] has free occurrences of vr
in all and only those positions in which G has free occurrences of vi. So

we may write "G[ck/vi][vr/ck]" also as "G[vr/vi]".

From (i) we can infer (ii) and from (ii) we infer (iii) since the right

hand side of (iii) follows logically from the right hand side of (ii).

REPR(A,s)  ( vr)(G[ck/vi][vr/ck]  C'[vr/ck]) ( i i )

REPR(A,s)  ( vr)G[vr/vi]  ( vr)C'[vr/ck] (iii)

It is easy to verify that ( vi)G  ( vr)G[vr/vi]. (( vi)G and ( vr)G[vr/vi]

are alphabetic variants; see Section 1.1 of this chapter.) Moreover,

( vi)G is a conjunct of REPR(A,s). We now choose as sentence C

associated with s the sentence ( vr)C'[vr/ck]. Note that ck does not

occur in C, so that C belongs to LAB,s. From what has been argued it is

clear that REPR(A,s)  C. On the other hand, by induction assumption

REPR(B,s.0)  C'. Since the reduction step which leads from s to s.0

does not involve a formula stemming from B we have once more that

REPR(B,s) = REPR(B,s.0). So REPR(B,s.0) has no occurrences of ck.

Therefore, it follows from the Induction Hypothesis that

REPR(B,s.0)  C'[vr/ck]. So REPR(B,s.0)  ( vr) C'[vr/ck]. Since

( vr) C'[vr/ck] is logically equivalent to ( vr)C'[vr/ck], we conclude

that REPR(B,s)  C.This concludes the proof of case (iv).

( v ) Finally suppose the reduction at s is a reduction of the signed

formula <( vi)G,F,A>.  In this case the reduction step involves

instantiating the quantifier of ( v i)G by a constant ck that belongs to

LAB,s. So LAB,s.0 = LAB,s. Again, let C' be the sentence associated with

s.0. The new conjunct of REPR(A,s.0) is now G[ck/vi], whereas

( vi)G is a conjunct of REPR(A,s). Since ( vi)G G[ck/vi] and since
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by induction assumption REPR(A,s.0)  C', it follows that REPR(A,s)  C'.

So we can take for the sentence associated with s simply this same C.

All other inductio steps are closely similarr to one of those we have

presented. So we may consider the proof of (2) as completed.

Applying (2) to the root <> we obtain a sentence C in the language LA B

such that  A  C and B  C. This proves the theorem.

q.e .d.
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 Chapter II.  Mathematical Structures and their Descriptions

in First Order Logic.

In this chapter we will look at a few well-known examples of first order
theories.  These examples are important in their own right, i.e. as
formalisations of structures which arise in certain branches of
mathematics and other scientific domains.  But they will also serve as
illustrations of certain general logical issues and we shall use them as
opportunities to introduce and discuss those.

The kinds of structures which we will discuss fall into four main classes:

(i) order ings

(ii) certain classes of algebraic structures such as boolean and non-
boolean lattices and groups

(iii) the structure of the natural numbers and that of the real numbers
with their familiar arithmetical operations + and .

(iv) feature structures

The first order theories of these structures and structure classes we will
present will serve as anchors for the discussion of such general issues
as: incompleteness, completeness and categoricity of theories; theory
extensions and Lindenbaum algebras; quantifier elimination;
independence; implicit and explicit definability; equational logic as a
subsystem of first order logic; and feature logic as an alternative to first
order logic.

2.1     O r d e r i n g s .

Our first examples concern the concept of order.  Mathematically,
order is most naturally represented in the form of a binary relation -

either a strict   ordering relation < or a non-strict  ordering relation .
(Strict ordering relations are irreflexive and non-strict orderings
reflexive.  Given a strict ordering < we can define a corresponding non-

strict ordering by: a b iff a < b v a = b; conversely, from a non-strict

ordering we get a strict ordering < via:  a < b iff a b & a b.)
Orderings can be classified in terms of the properties of < (or,

equivalently, of ).  First, there is the distinction between linear  orders

and partial orders.  In a linear order of a domain D any two distinct
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elements a, b of D are ordered in the sense that either a stands in the
ordering relation to b or b else stands in the relation to a.  In partial
orders this condition is in gene4ral not satisfied.  (Thus the notion of a
partial order is the more general one; linear orders are a special kind of
partial order.)

A second important distinction is that between denseness and
discreteness.  In a dense order there is for any a and b such that a < b
an element c such that a < c < b; in a discrete order there exists for any

a and b such that a < b a c with the properties that (i) a < c b and (ii)
there is no d such that a < d < c; and, similarly, if b < a then there is a c

such that (i) b  c < a and (ii) there is no d such that c < d < a.  (The
element c in question is called the immediate successor (predecessor)
of  a in the direction of b.)  It should be emphasised that denseness and
discreteness are mutually exclusive (in the sense that no non-trivial
ordering - i. e. no ordering which holds between at least two different
elements - can be dense and discrete at the same time), but that they
are not jointly exhaustive:  An ordering may be neither dense nor
discrete, for instance because it consists of one part which is dense and
another which is discrete.

Here we will look at two distinct kinds of ordering structures:

(a) certain linear orders, among them the ordering of the rational 
numbers, that of real numbers (both dense orderings), that of the
narural numbers and that of the integers (both discrete

orderings);

(b) partial orders which have the additional property of being lattices .
A lattice is a partial order in which for any two elements a and b
there is a "smallest element above both of them" - i.e. an element

c

such that a c and b c and which is least with regard to this

condition, i.e. if c' is any other element such that a c' and b c ' ,

then c  c' - and, dually, there exists for any a and b a "greatest

element that is a and  b".)

Lattice-like orders have the important property that they c an be
described not only in terms of their orderings, but also interms of the

lattice operations and , which can be defined in terms of the

ordering (a b is the least element above a and b and a b the greatest
element below a and b) and which in their turn allow definition of the
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ordering relation (e.g.  via the definition: a b iff a b = b).  Thus
lattices can also be viewed as algebraic structures or algebras  - that is,
structures consisting of a universe together with a number of functions
defined on that universe.  (In other words, an algebraic structure is a
model for a language L all of whose non-logical constants are function
constants . )

Of particular importance among the lattices that we will discuss are the
boolean lattices (or boolean algebras, the term that is used to refer to
them when they are pressented as structures involving functions).  The
logical importance of boolean algebras will no doubt be familiar:
classical propositional logic with the connectives & and v has the
structure of a boolean algebra.

The order in which we proceed in this section is as follows.  We begin
with the ordering theory Trat of the rational numbers, presenting the
conceptually and historically important theorem of Cantor's according
to which any denumerable model of Trat is isomorphic to the ordering
structure of the rationals.  This will be the basis for introducing the
notion of a theory being categorical in a certain cardinality ! . Cantor's
Theorem shows that Trat is categorical in the cardinality of the
denumerably infinite sets, but as it turns out not in any other infinite
cardinality.  The subsection closes with a brief discussion of Morley's
Categoricity Theorem.

Next, in subsection 2.1.2, we proceed to lattices.  We begin with
axiomatic characterisations of the class of all lattices, first from the
ordering perspective (i.e. formulating our axioms in the first order
language {"} whose only non-logical constant is the 2-place relation " ,

and then form the algebraic perspective, using the language { , }.  We
show that each of these two theories is definable within the other.  We
then extend these axiomatisations to obtain theories for the class of all
boolean lattices and for that of all boolen algebras, respectively,
theories that are again definable within each other.  Section 2.1.3 is
concerned with the variety of boolean algebras.  It presents some
particular boolean algebras and some properties in terms of which
arbitrary boolean algebras can be classified. 2.1.4 presents the Cech-
Stone Representation Theorem, according to which every boolean
algebra is isomorphic to (and thus 'can be represented as') a set
algebra - a boolean algebra consisting of sets, with the set inclusion
relation as the partial order of the lattice.  Representation theorems,
which assert that every structure with certain abstract properties can
be 'represented', or 'realised' as a structure of some more specific
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kind, are of great importance in many areas in mathematics; the Cech-
Stone Theorem can be regarded as the classical paradigm of theorems
of this general form.

The theory of boolean algebras is incomplete, since among its models
are boolean algebras that can be distinguished from each other by
properties expressible in the language of the theory itself.  Even more
obvious is the incompleteness of the theory of all lattices, since among
its models are on the one hand the boolean lattices, which are also
models of the theory of boolean lattices, and on the other hand non-
boolean lattices, which are not models of that theory.  (Thus the theory
of boolean lattices is a proper extension of the general theory of
lattices, which proves the latter's incompleteness.) In Section 2.2 we
look at incomplete theories from a more general and systematic
perspective.  The structure consisting of all theories of a given language
l., and more generally that consisting of all theories of L which extend a
given theory T, are both lattices (though in general not boolean
lattices).  Thus the study of these structures provides with a further
application of lattice theory, as well as giving more insight in the
structure of first order logic.

The lattice consisting of all extensions of a given theory T as well as a
certain boolean sublattice of this structure, the so-called Lindenbaum
algebra of T, are studied in 2.2.1. 2.2.2 contains a discussion of almost
complete theories.  here we return to linear orderings comparing
theories of dense orderings with certain theories of discrete orderings.

2.1.1.  The Theory of Dense Linear Orders without End Points.

We choose as our first task in this chapter that of formulating a first
order theory that captures all truths about the ordering of the rational
numbers.  To this end we choose as our language, in which the theory
will be formulated, the language {<}, whose only non-logical constant is
the two-place predicate <.  We will refer to {<} also as L<.  Our task is
thus to state a theory of L<  whose theorems are all and only the truths
expressible in L<  about the structure <Q,<Q>, where Q is the set of
rational numbers and <Q  is the standard ordering of the rationals.

Here is our proposal: Let Trat be the theory consisting of all logical
consequences of the following set of axioms:



5

Def. 1 (Axioms of Trat)

L1. ( x)( y) (x < y  (y < x))

L2. ( x)( y)( z) ((x < y & y < z)   x < z)

L3. ( x)( y) (x < y  v  x = y  v  y < x )

L4 ( x)( y) (x < y  ( z) (x < z  &  z < y))

L5 ( x)( y) (x < y)

L6. ( x)( y) (y < x)

T rat is also known as the theory of dense linear orders without

endpoints . The subtheory of Trat that is axiomatised by L0-L3 is known
as the theory of linear orders and that axiomatised by L0-L2 as the
theory of partial orders.1  WE will refer to the first as Tlin and to the
second as Tpar.

Some the properties of Trat are stated in Theorem 10.

Theorem 1. ( 1 ) Every model of Trat is infinite:
           ( 2 ) (Cantor)  Every two denumerably infinite models

of Trat are isomorphic.
 ( 3 ) Tden is complete.

Proof.

(1) Note that because L0 is an axiom of Trat any model of Trat must
have at least 2 elements.  Secondly, suppose that M = <UM ,<M > is a
finite model of Trat, i.e. that UM  consists of elements a1, ... , an , where
n is some natural number.  As just observed, n must be at least 2.
Furthermore, since <M  is a linear order, there must be among the
elements a1 , ... , an  at the very least one pair of elements (ai, aj) such
that ai < aj and for no ak, ai < ak & ak < aj.  But this contradicts L5.2

1 Often axiom L0 is not included in axiomatisations of the theories of linear or
partial orderings.  leaving it out has the effect that among the models of the
hteory one also includes structures of the form <{a}, >, where {a} is any singleton

set and < is interpreted as the empty relation .  Whether such structures are
included or not makes no real difference to what the theory says about the
structures which really matter, viz. those in which the universe contains more
than one element.  In hte present context it has proved to be a little more
convenient to exclude them from the start, and thus to include L0 among the
axioms.
2  Strictly speaking the existence of a pair (ai, aj) as just stated should be proved.
In fact it is easy to prove, by induction on n, that every model of the theory of
linear orders whose universe consists of n elements contains such a pair:
Suppose this holds for n and let M be a model with universe {a1 , ... , an , an+1} .
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( 2 ) Let M, M' be denumerable models of Trat with universes UM  =
{a1, a2,...  } and UM' = {b1, b2,...  }.  We refer to the interpretations <M
and <M' in respectively M and M' of the predicate < as  <  and <'.  We
construct, by induction on n, partial isomorphisms hn from M to M'
with domains {a1, ... , an} and ranges {b1, ... , bn}.  In this notation we
assume that a1  <  ... <  an  and  b1  < ' ... < ' bn  (and thus that hn i s
defined by: hn(ai) = bi, for i = 1, .., n.  Moreover, the hn will be

constructed in such a way that, putting h = U n hn, h is an isomorphism
from M to M'.

We proceed as follows.  Suppose that the elements a1, ... , an  and b1, ...
, bn have alredsy been chosen.  We distinguish between the case where
n is odd and that where n is even.

(a) Suppose n is odd.  Then we pick the first element ai from the
enumeration {a1, a2,...  } which does not occur among {a1, ... , an}.  For
the position of ai with respect to the a1 , ... , an there are three
possibilities:

( i ) ai <  a1;
( i i ) an <  ai;
(ii i) ak <  ai <  ak+1, for some k < n.

(i)  Because M' is a model of Trat and Trat contains L4, we know that
there is a b among {b1, b2,...  } such that b <' b1. Let bj be the first

such b and let hn+1 = hn  {<ai,bj>}.  Then hn+1 is an isomorphism
with DOM(hn+1) = {ai, a1, ... , an} and RAN(hn+1) = {bj, b1, ... , bn} .

(ii)  This case is just like (i): We know that there is a b in {b1, b2,... }
such that b <'  bn  , etc.

(ii i)  This time we make use of L5.  Because Trat contains L5 that we
may infer that {b1, b2,...  } contains a b such that bk <M' b <'bk+1.
Again we let bj be the first such b.  Putting, as before, hn+1 =  hn U

Then consider the restriction M' of M to the set {a1 , ... , an }, i.e. the model with
universe {a1 , ... , an } in which the interpretation of <  is the restriction of the
interpretation of < in M to {a1 , ... , an }.  Since M' has n elements, there is by

assumption a pair (ai, aj) (i,j n) such that there is no ak  in M' with ai < ak & ak  <
aj.  If it is not the case that ai < an+1 & an+1 < aj then (ai, aj) is a pair for M of the
required kind.  If ai < an+1 & an+1  < aj then a pair of the desired kind is (ai, an+1) .
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{<ai,bj>}, we conclude that hn+1 is an isomorphism with Domain {a1, ...
, ak, ai , ak+1, ... , an} and Range {b1, ... , bk, bj, bk+1, ... , bn} .

(b)   n is even.  In this case, let bi be the first element from the
enumeration {b1, b2,...  } which does not occur among {b1, ... , bn} and
find, in each of the cases (i) - (iii), an aj in M which is "similarly

situated" with respect to {a1, ... , an}.  We put hn+1 =  hn  {<aj,bi>} .

It is not hard to verify that the union h of all the hn  has for its Domain
all of {a1 , a2 ,...  } (because of the steps in the construction for odd n)
and that it has for its Range all of {b1, b2,...  } (because of the steps for
n even).  Moreover, it is obvious from the construction that if a, a' are
elements of M and
a <  a', then h(a) <' h(a').  From linearity (Axiom L3!) it then follows
that for all a, a' from M, a <  a' iff h(a) <'  h(a').

( 3 ) This follows almost directly from (2).  Note that if Trat were not
complete, then there would be a sentence A from the language L< such

that (A # Trat) and ( A # Trat).  So it follows that Trat {A} and Trat
{ A} are both consistent and thus each of them has a model.  Let M1

be a model of Trat {A} and M2 a model of Trat { A}.  By (i) both
models are infinite.  So by the downward Skolem-Löwenheim Theorem

there are denumerably infinite models M'1 and M'2 such that M'1  M1
and M'2  M2.  So A is true in M'1 and false in M'2. But by (ii) M'1 
M'2: contradiction.  We conclude that Trat is complete.

q.e .d.

The centre piece of Theorem 1 is part (2).  This result is generally
known as 'Cantor's Theorem' (or more fully 'Cantor's Theorem about
Dense Linear Orders', in order to distinguish this theorem from the
equally famous theorem of Cantor that the cardinality of the power set
of a given set X always exceeds that of X).  The proof of this theorem
has, like Cantor's proof of his power set theorem, been a milestone in
the development of our understanding of what constitutes valid
mathematical reasoning.  At first, many mathematicians were very
sceptical with regard to the soundness of these proofs.  Precisely
because their initially controversial status, Cantor's arguments were a
major input to the debates over the foundations of mathematics that
became a vital concern in the second half of the nineteenth Century and
which in its turn provided much of the impetus to the development of
formal logic as a fool-proof framework for doing mathematics. (Recall
the interlude on Set Theory in Chapter I.)
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As opposed to part (2) of Theorem 10, which is specifically about dense
linear orderings. the purport of part (3) is much more general.  The
general statement. known as 'Vaught's test', is this:

Prop. 1 (Vaught's Test)

Whenever T is a theory which (i) has only infinite models and (ii) 
is such that for some infinite cardinaltiy !  any two models of T of
caridnality  ! are isomorphic, then T is complete.

Complete theories are the closest we can get to characterising the
properties of a given mathematical structure, when we want to do this
by dscribing them within some logical language L.  We have already seen
some general limits to what can be achieved along these lines, viz. those
imposed by the Skolem-Löwenheim Theorems presented in Chapter I.
But in fact, for many structures, the best that can be achieved is even
farther from the ideal (characterisation of the structure up to
isomorphism) than the Skolem-Löwenheim Theorems would in principle
allow for.

Let us be more exact. In order that a theory T of a first order language L
can be considered a characterisation of some given structure A , two
conditios must be satisfied.  First, all the structural properties of A

must be expressible in L.  That is, we must be able to represent A as a
model Mo = <Uo,Fo> of L such that each relation that is relevant to the
structure of A  is either given as the interpretation F o($ ) of some non-
logical constant $ of L or else must be definable in terms of  one or
more relations Fo($ ) with $ # L. (For a general discussion of notions of
definability see Section 2.3.)  Second, all sentences of L that are true in
M o must be iderivable from T as theorems (and thus, because T is
closed under logical consequence,, must be members of T).

Assume that we have succeeded in choosing a language L such that the
first condition is fulfilled - i.e. that we can represent A as some
particular model Mo of L.  In that case there exists - trivially - a unique
theory T of L which verifies all and only the sentences of L that are true
in Mo, viz, Th(Mo).  That the set Th(Mo) always exists follows from
general principles of set-theory (which will be spelled out in Ch. 3).  But
from the general principles which guarantee the existence of Th(Mo)
nothing follows that has anything to do in particular with the structure
A  whose properties Th(Mo) describes.  What we eally want is a non-
trivial characterisation of Th(Mo) that reveals some of the special
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properties of Th(Mo), and that ideally gives us some insight into them
that might have eluded us without them.  A natural way to go about this
is to try to find 'axioms' for Th(Mo) - sentences belonging to the theory
which on the one hand can be readily verified as true in Mo and on the
other as entailiing all other sentences that are true in Mo.  It seems
particularly desirable form this perspective to find a finite set of axioms
for the theory. As we saw in Chapter I, this is always possible whenn A ,
and therewith Mo, are finite.  But for infinite structures A  the situation
is very different.  For instance, it is an interesting and surprising
consequence of Gödel's Incompleteness Theorems that for many
infinite structures A no finite axiomatisation of Th(Mo) exists.  (In fact,
the situation is even worse in that there isn't even an infinite
recursively enumerable set of axioms for Th(Mo); for 'recursively
enumerable' see Ch. ??.)

These negative results hold in spite of the fact that iby requiring only
that our theory captures all the truths about A  that are expressible in L
we haven't pitched our aims necessarily very high.  There is also
another, stricter sense in which one can define complete
characterisation of A by T

Any model M of T is isomorphic to Mo

(where again Mo is represented as model for the language L of T)
Again, when A is finite, then, as established by Thm. 6 in Chapter I, a
theory T satisfying this requirement can always be found (and when L is
also finite, then this theory is finitely axiomatisable, e.g. by the single
axiom described in th proof of Thm. 6).  But the Skolem-Löwenheim
Theorems tell us that this desideratum is never met iwhen A  is infinite.
For as soon as A is infinite, Th(Mo) will have models of different infinite
cardinalities and these can never be isomorphic to each other.  The best
we can hope for is that models of Th(Mo) are isomorphic to each other
so long as they are of the same cardinality.  But even this weaker
condition is only seldomly fulfilled and holds only for rather
uninteresting structures A , with largely trivial structural properties.

In fact, even for the ordering structure <Q,<Q > of the rationals this
weaker requirement is not fulfilled, Cantor's Theorem notwithstanding.
For while , as the Thm states, any two denumerable models of
Th(<Q,<Q >) (= Trat) are isomorphic, this is not so for non-denumerable
models - see Exercise ??.
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For easier formulations during the remainder of this section we
introduce some further terminology.

Def. 2 A theory T in a first order language L is called categorical in 
a cardinality !, or also !-categorical, iff any two models of T of

cardinality ! are ismorphic.

Using this defintion we can restate what has just been said about Trat)
as:

( i ) Trat is % -categorical (where % is the cardinality of the
denumerable sets and structures)

( i i ) For any non-denumerable cardinality ! , Trat is not
!-categorical.

Another way to describe these two facts makes use of the notion of the
categoricity spectrum of a (complete) theory T.  By the categoricity

spectrum  of T, CS(T), we understand that function which maps an
infinite cardinality ! to 1 iff any two models of  T of cardinality !  are
ismorphic, and otherwise maps !  to 0.  In terms of categoricity spectra
the characterisation of Trat is as follows:

( i ) CS(Trat)(%) = 1;
( i i ) CS(Trat)(!) = 0, if ! non-denumerable.

From what little has been said so far, we should be prepared for all
sorts of categoricity spectra - functions CS(T) according to which the
collection of infinite cardinalities ! such that CS(T)(!) = 1can take a
wide variety of different forms.  But as a matter of fact this is not so.  It
was shown in the early sixties by Morley - arguably the first truly deep
result in general model theory - that for categoricity spectra CS(T)
there are altogether only four possibilities: :

i . CS(T)(!) = 1 for all infinite cardinalities ! ;
ii. CS(T)(% ) = 1; CS(T)(!) = 0 for !  non-denumerable;
iii. CS(T)(% ) = 0; CS(T)(!) = 1 for !  non-denumerable;

 iv. CS(T)(!) = 0 for all infinite cardinalities ! .

As indicated above, case (i) turns out to be very rare and arises only for
essentially trivial structures. (An example is the theory Tinf of the
language {} which says that there are infinitely many indviduals.)  An
example of case (ii) is, as we have seen, our theory Trat, but there
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aren't many other interesting examples in this category, involving
structures that are familiar on independent grounds.  Examples of case
(iii) are also rare; one - very surprising - example is the first order
theory of the arithmetic operations + and . on the real numbers (see
Section 2.4.2).

The bulk of mathematically important structures gives rise to theories
falling under (iv).  Among these structures there are in particular all
those which contain the arithmetical structure of the natural numbers
(i.e. the natural numbers with the operations of + and .)as a definable
substructure.  (Trivially, this includes in particular to the arithmetical
structure of the natural numbers itself.  For that structure contains
itself as an (improper) substructure, definable by means of identity
maps . )

All these negative results are indications of the limits of first order logic
as a toll for characterising non-trivial mathematical structure.

Morley's Theorem is usually stated in the following form3:

Theorem 2 (Morley).

Suppose that T is a theory of some first order language L and that
T is !-categorical for some non-denumerably infinite cardinality ! .
Then T is !-categorical for all non-denumerably infinite
cardinalities ! .

2. 1.2        Lattices, as Partial Orders and as Algebras.

We noted in 2.1 that lattices can be viewed in two different ways.  On
the one hand they can be described as partial orderings with certain
special properties (any two elements a and b have a least element above
them (the supremum  of a and b) and a greatest element below them
(the in f imum  of a and b).  But they can also be described as algebraic

structures, characterised by two binary operations and , which

3 We do not prove Morley's theorem in these Notes.  The proof is of this
theorem is hard (much harder than any proof presented in these Notes) and would
detain us for far too long.  Proofs can be found in several textbooks on model
theory, for instance in Chang & Keisler, Model Theory. or Hodges Model Theory .
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assign to any pair of elements a, b their supremum a  b and their
inf imum

a  b.

We first present lattices as partial orders with the mentioned
properties; that is, we formulate an axiomatic theory Tlato ('lato'
stands for 'lattice order') in the language Llato (the language whose

only non-logical constant is the 2-place predicate  and for which the

canonical reference would be '{ }') whose models are all and only the

partial ordering that are lattices. We then show how the operations 

and  can be defined in this theory and form a new theory T'lato in the

language { , , } by adding the proposed definitions of and to the
given axioms of Tlato.  From the axioms of T'lato (which, remember,

include the definitions of and in terms of  we derive a certain set

of theorems which are phrased strictly in terms of and (and thus do

not contain ).  These theorems can serve in their turn as axioms of a

theory Tlata in the language Llata = { , }.  In this theory it is now

possible to define (either in terms of just or in terms of just ) .

And these definitions are the reverse of the definitions of and i n

terms of  in that adding them to the axioms of T'lata yields a theory
T'lato:

( 1 ) T'lata = T'lato

Equation (1) captures the ultimate equivalence of the two directions
from which lattice structure can be approached.

After having obtained this result we proceed to the theories of boolean
lattices and boolean algebras.  These theories - Tbl and Tba  (for
'boolean lattices' and boolean algebras', respectively)  - are obtained by
adding further axioms to Tlato and Tlata.  It is easy to show that Tlato
and Tlata stand in the same relation of definitional equivalence as Tlato
and Tlata.

As implied by what was said in the introductory remarks to this section,
it is convenient to o axiomatise the theory of lattice-like partial
orderings using as primitive relation not the strict ordering relation <
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but rather the corresponding weak ordering relation .4  In other words

we start with the language Llato = { }.  Let Tlato be the theory
axiomatised by the following sentences of this language.

Des. 3 (Axioms for Tlato)

Axlato.1 ( x)( y)(x  y & y  x  x= y)

Axlato.2 ( x)( y) z)(x  y & y  z  x  z)

Axlato.3 ( x)( y)(( z)(x  z & y  z & ( u)(x  u & y  u  z  u))

Axlato.4 ( x)( y)(( w)(w  x & w  y & ( u)(u  x & u  y  u  w))

Note that Axlato.1 says that  is both reflexive and antisymmetric.  Thus

Axlato.1 and the transitivity axiom Axlato.2 together state that is a
partial ordering. Axlato.3 and Axlato.4 assert the existence of suprema
and infima.

Our first task is to show that the suprema and infima whose existence is
asserted by Axlato.3 and Axlato.4 are unique.  We will argue the case
for suprema; the case of infima is analogous.

We argue informally.  (Here as elsewhere the argument could be turned
without a formal derivation without any real difficulties, but such
formal derivations tend to be lengthy and cumbersome and to obscure
the idea of the argument.)  Let x and y be any elements. Suppose that z
and z' have the properties stated in (2) and (3)

( 2 ) (x  z & y  z) & ( u)((x u & y u)  z  u)

( 3 ) (x  z' & y  z') & ( u)((x u & y u)  z'  u)

Then we have, instantiating u to z' in (2),

( 4 ) (x  z' & y  z')  z  z'

Since the antecedent of (3) is a conjunct of (2), we get z  z' by MP.  In

the same way we get z'  z by instantiating u to z in (2).  From Axlato. 1
we then get z = z'.

4 As noted in the opening remarks to this Chapter the choice between < and 

is strictly one of convenience.  If we choose < as primitive, then we can define  

in terms of it via x  y df x < y v x = y; and if we choose  , then < can be defined via

x < y df x  y & x  y.
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Exercise: Derive the sentence

( x)( y)( z)( z')((x  z & y  z & ( u)(x  u & y  u  z  u)) &

x  z' & y  z' & ( u)(x  u & y  u  z'  u)))  z = z')

from Tlato.  (The easiest way to do this is to construct a Semantic
Tableau.  Constructing a derivation in some system of Natural
Deduction is also quite doable.  An axiomatic derivation is (here as in
most other cases) much harder.)

Given that Tlato entails the existence and uniqueness of suprema and

infima, we can define the operations and in Tlato in terms of as in

Def( ,{ }) and Def( ,{ })below.  These definitions correctly determine

the interpretations of and in any model of Tlato.  Also, they can be
added to Tlato without undesirable 'side effects', i.e. without adding
new theorems that can be expressed in the language Llato of Tlato.5

Def( ,{ }) ( x)( y)( z)(x y = z 

(x  z & y  z & ( u)(x  u & y  u  z  u)))

Def( ,{ }) ( x)( y)( z)(x y = z 

(z  x & z  y & ( u)(u  x & u  y  u  z)))

Let, as already indicated in the introduction to this section, T'lato be

the theory in the language Llat = { , , } that is obtained by adding the

definitions Def( ,{ }) and Def( ,{ })as new axioms to the axiom set
{Axlato.1-Axlato.4} of Tlato.  It is not hard to show that the following
sentences are all theorems of T'lato:

5 If existence and/or uniqueness could not be proved fromTlato, then adding
the definitions would also add the non-derivable statement or statements of Tl a to
which expressing existence and uniqueness, respectively to the theory.  The
reason is that the left hand sides of the biconditionals in the definitions Def( ,{ })

and Def( ,{ }) (e.g. x y  = z for the first of these) entail existence and uniqueness
of z simply because that is part of the general logical properties of function
constants.  The fact that Tlato entails the existence and uniqueness conditions
associated with the right hand sides of the biconditionals guarantees that addition
of the two definitions is what is called a conservat ive  extension of Tlato, i. e. an
extension which has exactly the same theorems as Tlato in its original language
L lato. For more on conservativity and other properties of formal definitions see
Section 2.3.
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Thlata. 1 ( x) x  x  =  x

Thlata.2       ( x)x  x  =  x

Thlata. 3      ( x)( y) x  y  = y  x

Thlata.4      ( x)( y) x  y  =  y  x

Thlata. 5      ( x)( y)( z) (x  y) z =  x  y z)

Thlata.6        ( x)( y)( z) (x  y) z =  x  y z)

Thlata. 7       ( x)( y) (x y) x  =  x

Thlata.8    ( x)( y) (x y) x  =  x

Exercise:  Show that these are theorems of T'lato.

The theorems Thlat.1 - Thlat.8 can now be used in their turn as axioms

of a theory Tlata of the language Llata  = { , }.  In this new capacity we

refer to them as Axlata.1 - Axlata.8.  Tlata allows us to define in terms

of the non-logical constants  and  of its language Llata.  In fact, as

adumbrated earlier, we need only one of  and  in such a definition.

Two such definitions, one in terms of and one in terms of , are given

below as Def( ,{ }) and Def( ,{ }).

Def( ,{ }) ( x)( y)(x  y  x y  =  y)

Def( ,{ }) ( x)( y)(x  y  x y  =  x)

Adding either Def( ,{ }) or Def( ,{ }) as a new axiom to the set
{Axlata.1,.., Axlata.8} of axioms of Tlata yields an extension in the
language Llat from which the our original axioms Axlato.1 - Axlato. 4
can be derived in their turn.  For the sake of definiteness let us assume

that the definition that is added is Def( ,{ }) and that the resulting
extension of Tlata is the theory T'lata of the language Llat.  As we noted
in the introduction, it turns out that this theory is the very same theory
as the theory T'lata which we obtained by approaching the
characterisation of lattice structure from the perspective of partial
orderings.  That is, we have the equality (1).

( 1 ) T'lata = T'lato.
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Exercise: Show the equality (1) is true.  This requires showing -in
addition to what has already been asked of the reader in earlier
exercises from this section:

(i) T'lato Def( ,{ });

( i i ) T'lata Axlato.i for i = 1,..,4;

(iii) T'lata Def( ,{ }) and Def( ,{ }).

2. 1.3        Lattices based on sets and Boolean Lattices

Prominent among the models of Tlato are power set inclusion

structures.  These are models of the form <P (X), >, where P (X) is the

power set of some set X and  is the set inclusion relation (restricted to
P (X)).  Similarly a prominent subclass of the models of Tlata is that

consisting of  models of the form <P (X), , >, where  and  are the
operations of set-theoretic union and intersection, again restricted to
P (X).  What we have seen in general terms in the last section - viz. that

 and  are definable in terms of and that  is conversely definable in

terms of or  - is reflected by the well-known fact that set-theoretic

union and intersection are definable in terms of and conversely. In

fact, for any given X we can combine the structures <P (X), > and

<P(X), , > into a single structure

<P (X), , , >), which is a model of the theory which we have denoted
either as T'lato or as T'lata.

But models of this kind are speial not only in that they are based on set-
theoretic relations and operations. They are also special in that they all
verify some additional conditions, which are expressible in the
languages of our theories but are not derivable from those theories.

Among these conditions are in particular the so-called distribution laws

for  and .  Formulations of these laws are given in BA9 and BA10.

DISTR.1       ( x)( y)( z) (x  y)  z =  (x  z) y z)

DISTR.2     ( x)( y)( z) (x  y)  z =  (x  z) y z)

It follows from the results in the last section that DISTR.1 and DISTR.2

can be expressed in the language { }.  (In fact, one way to obtain such
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formulations is to translate DISTR.1 and DISTR.2  into formulas of Llat
using definitions Def( ,{ }) and Def( ,{ }) of and in terms of .)

Exercise:  Carry out this translation for DISTR.1 and prove that

Cl(T'lata {DISTR.1}) = Cl(T'lato {DISTR'.1}), where DISTR'.1 is the
translation of DISTR.1.

Lattices satisfying DISTR.1and DISTR.2 (or, what comes to the same
thing, satisfying their translations into Llato) are called distributive

lattices. The following simple example shows that not all lattices are
distributive.  Let M be hte following model for the language Llato:

M = <{0,a,b,c,1}, >, where  is the following set of ordered pairs:
{<0,0>,<0,a>,<0,b>,<0,c>,<0,1>,<a,a>,<a,1>, <c,c>,<c,b>,
<c,1>,<b,b>,<b,1>,<1,1>}.

More perspicuously, M can be represented as the following directed
graph6:

1

b
a

c

0

In this lattice we have: a c = a b = 1 and a c = a b = 0. So (a b )

 c = 0 c = c and (a c) (b c) = 1 b = b, falsifying DISTR.2.

Exercise:  Show that the structure M described above also falsifies
DISTR.1.

6 A directed graph G is a structure <U,R> where U is a set ( the nodes  of the
graph G) and R is some binary relation on U. The pairs (a,b) of elements of U that
belong to R are the (directed) edges of G.  The edge (a,b) goes from a to  b. Certain
directed graphs, in which R is antisymmetric and either reflexive or irreflexive,
can be used to represent partial orderings. When a graph G is used in this way, its
node set represents the universe of the ordering,while the ordering relation itself
is the transitive closure of R.  Thus the ordering relation holds between two nodes
a and b iff there is a path (i.e. a chain of edges) from a to b.
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When a lattice is finite, it always has a smallest element - keep taking
infima of pairs of elements - first taking the infimum c of two
arbitrarily chosen elements a an b, then taking the infimum of c and
some element d chosen arbitrarily from the elements not yet
considered, and so on - until you have used up all elements of the
lattice's finite universe - and a largest element (obtainable by taking
suprema until the universe has been exhausted).  Infinite lattices - i.e.
infinite models of our theory Tlato - do not necessarily a smallest
element (an element a such that for all other elements b in the lattice a

 b - or a largest element.  (A counterexample is any unbounded linear
order, such as, for instance, the orderings of the integers, the rationals
or the reals.7) For the remainder of this section, however, we will focus
on lattices which do have a smallest and a largest element.8  We will
refer to these as the 0 of the lattice and the 1 of the lattice,
respectively.  We will also use '0' and '1' as individual constants to
denote these elements.  We further limit our attention to distributive
lattices. Thus - stated in terms of the language Llato - we will be dealing
with models of the theory Td,0,1, whose axioms are, besides those of
Tlato, translations into Llato of  the axioms DISTR.1 and DISTR.2 as well
as the following two axioms, which assert the existence of a smallest
and a largest element:

ExO  ( z)( u) z  u

Ex1  ( z)( u) u  z

It is easy to see that Td,0,1 entails that both the smallest and the largest
element are uniquw.  (This follows from ExO and Ex1, respectively,
together with the fact that the models of Tlato are partial orderings.)
This means that we can, for the same reason that this was possible

earlier for and , and following the same procedure, introduce
individual constants 0 and 1 into the language Llato by definitions
obtained from the existence axioms ExO and Ex1.  For the sake of
explicitness the two definitions are given below.

Def(0,{ }) ( z)(0 = z   ( u) z u )

Def(1,{ }) ( z)(1 = z   ( u) u z )

7 Every linear order is a lattice. Exerice: prove that this is so.
8 The notion of a lattice is sometimes def ined  as including the existence of a
smallest and a largest element. This is not the practice we have adopted here.
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Note that all set inclusion algebras are distributive lattices with a 0 and
1.  On the other hand, as we already noted, linear orderings are
distributive lattices, but they need not have a 0 or 1.

From here on it will be convenient to work in a language which contains

all the constants considered so far - the 2-place predicate , the two 2-

place operations  and  and the individual constants 0 and 1.  For the
moment this is the language which contains just these five constants,

i.e. { , , ,0,1}.  Let T'd,0,1 be the theory of this language whose axioms
are :

(i) Axlato.1 - Axlato.4,

(ii) Def( ,{ }) and Def( ,{ }),
(ii i) DISTR.1 and DISTR.2

( iv) Def(0,{ }) and Def(1,{ })

The theory T'd,0,1 provides a suitable basis for the introduction of yet
another operation, the 1-place operation of complement . To pave the
way for the introduction of this operation we proceed once as we did

before in the case of , , 0 and 1, viz. by first adopting a new axiom
which asserts the existence of suitable values for the operation, then
proving that these values are unique, and then, on the basis of this
result introducing hte operation by means of a definition that is derived
directly from the existence axiom.

Our existence axiom, COMP, asserts that for every element x there is an
element y such that (a) the supremum of x and y is the 1 of the lattice
and (b) the infimum of x and y is the 0 of the lattice:

COMP ( x)( y)(x y = 1 & x y = 0)

From the combination of  T'd,0,1 and COMP it is possible to prove that
the element y mentioned in COMP is uniquely determined in relation to
x.  We argue as follows. First we observe that the sentences (i) and (ii)
are theorems of T'd,0,1.  (The proof of this is left to the reader.)

( i ) ( u) u 1 = u

( i i ) ( u)(u 0 = u
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Assume that y1 and y2 both satisfy the matrix (= the quantifier-free
part) of COMP for some given x, i.e. that

( a ) x y1  = 1 ( b ) x y2  = 1

( c ) x y1  = 0 ( d ) x y2  = 0

Then, since x y1  = 1, (x y1) y2 = 1 y2 = y2, by (i).  By DISTR.1

(x y1) y2 = (x y2) (y1 y2) and (x y2) (y1 y2) =

0 (y1 y2) = y1 y2, by (ii) and assumption (d).  So y1 y2 = y2.

Similarly we show that y2 y1 = y1.  So y1 = y2 y1 = y1 y2 = y2.

The definitions Def( ,{ }) and Def( ,{ }) enable us to translate the

axioms DISTR.1, DISTR.2 and COMP into sentences DISTR.1( ),

DISTR.2( ) and COMP( ) of the language { }.  Consider the theory Tbl
that we obtain when these translations to the theory Tlato. ( T h e
subscript 'bl' stands for 'boolean lattice'.) The models of Tbl are called
boolean lattices.   In view of the existence and uniqueness of
complements in such models we can, in the same way in which we
extended the theory of lattice orderings with definitions for the
supremum and infimum functions and those for the '0-place functions'
1 and 0, now add a definition of  the complement function.  We denote
this function as '-'. (That is, -x is the complement of x.)

The definition Def(-,{ , }) of - can, as we already said, be directly
obtained form the corresponding existence axiom COMP.

Def(-,{ , }) ( x)( y)(y = -x (x  y = 1 & x y = 0))

'-' and Def(-,{ , }) are our final additions to language and theory,

respectively.  Let Lbla be the language { , , ,0,1,-} and let Tbla be the

extension of T'd,0,1 with COMP and Def(-,{ , }).  The models of Tbla
are on the one hand, because of the properties of their partial ordering
relation, boolean lattices, while on the other hand they have, because of

the properties of their operations , ,0,1 and -, the structure of
boolean algebras.

To amplify this last statement:  We have seen that the theory of lattices

can be formulated in terms of the operations  and . (This was the
theory Tbla.) We can extend this theory with existence axioms and



2 1

definitions for 0,1 and - all couched in terms of  and .  It is not hard
to show that the theory that we obtain this way, and which belongs to

the language { , ,0,1, -} is identical with the restriction of Tbla to the
sentences of this language.  This theory is known as the theory of
boolean algebras and its models as boolean algebras.  So as to fit in

with this terminology we refer to the language { , ,0,1, -} as Lba and to
the theory of this language which we have just described as Tba.

For further reference we list once more the set of axioms for Tba w h i c h
has emerged in the course of this discussion.  In this list we have
combined the existence axioms which guarantee the legitimacy of the
corresponding definitions we used to introduce the new operation
symbols into single axioms, in which the operation symbols take the
place of the existentially quantified variables in the existence axioms.

Def. 4 (Axioms for the theory Tba of boolean algebras.9)

Axba.1 ( x) x  x  =  x

Axba.2       ( x)x  x  =  x

Axba.3      ( x)( y) x  y  = y  x

Axba.4       ( x)( y) x  y  =  y  x

Axba.5      ( x)( y)( z) (x  y) z =  x  y z)

Axba.6        ( x)( y)( z) (x  y) z =  x  y z)

Axba.7       ( x)( y) (x y) x  =  x

Axba.8      ( x)( y) (x y) x  =  x

Axba.9       ( x)( y)( z) (x  y)  z =  (x  z) y z)

Axba.10     ( x)( y)( z) (x  y)  z =  (x  z) y z)

Axba.11 ( u) u 1 = u

Axba.12 ( u)(u 0 = u

Axba.13 ( x)(x  -x = 1 & x -x = 0))

9 Here Axba.1 - Axba.8 are the theorems Thlat.1 - Thlat.8 of Section 2.1.2;
Axba.9 and Axba.10 are the earlier DISTR.1 and DISTR.2; Axba.11 and Axba.12 -
mentioned earlier as (i) and (ii) in the proof of uniqueness of complements, are
the results of combining the existence axioms Ex0 and Ex1 for the lattice One and
the latice Zero with the definitions of the individual constants 0 and 1 in terms of 

and  - these definitions we did not actually give, but they can be obtained from

the defintions Def(0,{ }) and Def(1,{ }) we did give by translating them into

sentences of  Lba using the definition of  in terms of ; Axba.13 results form

combining the axiom COMP with Definition Def(-,{ , }).
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This concludes our general account of lattices, lattice algebras, boolean
lattices and boolean algebras.  The route we have followed, with all the
switching back and forth between partial orderings and operations, may
appear rather round-about and hard to follow, certainly on a first
reading. But I believe that this is a price worth paying.  The central
methodological point of the last two sections has been to show, by
means of the example that lattices and the corresponding algebras
provide, how two at first sight very different perspectives on structure -
here that of structure in the form of partial order and structure in the
form of a number of connected operations - can nevertheless prove to
be concerned with what is essentially the same structure after all.  In
order to bring out how and why this convergence arises in the case in
question, switching between the two perspectives was essential.  That
does of course require a greater effort, both on the part of the
presenter and that of the reader, than a simple presentation of lattices
just  as ordered structures or of lattice algebras and boolean algebras
just in terms of their operations.

There is also a practical spin-off to the presentation of lattices as being
describable either as partial orders or as algebras: Now that we have
explored the nature of this correspondence thoroughly, we can, with
the benefits of that investigation, join the wide-spread practice of
switching betgween the two perspectives in discussions of such
structures if and when this proves convenient.  We will make use of this
freedom in particualr in the next sections.

In the next two sections we focus exclusively on boolean algebras.
2.1.4 presents a number of distinct types of boolean algebras and
defines certain properties in terms of which they can be distinguished
from each other and classified. 2.1.5 is devoted to the Stone Cech
Theorem, according to which every boolean algebra is isomorphic to a

structure in which the operations , and - are set-theoretic union,
intersection and subtraction, respectively.
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2.1.4         Some Examples of Boolean Algebras.

As compared with lattices in general, boolean lattices form a quite
special category.  But even so there is much variety even within this
special domain. One important subtype is that identified by the power

set inclusion lattices <P (X), >that were mentioned earlier.  These are
distinguished by two properties: they are (i) atomic  and (ii) complete .

Before we define these two properties, first, in Prop. 2, an obvious
observation about the power set lattices, viz that they are determined
up to isomorphism by their carrier sets X:

Prop. 2 If |X| = |X'|, then <P(X), > P(X'), >.

Proof:  It suffices to note that a bijection between X and X' induces a
bijection between P (X) and P (X') and carries the inclusion relation
restricted to P (X) into the inclusion relation restricted to P (X') .

Next the definitions of atomicity and completeness.  The first of these
presupposes the notion of an element being an atom , which is
important in  its own right.

Def. 5 (a) Let BL =<U, > be a boolean lattice, b an element of BL.
b is an atom  of BA iff

(i) a 0 and
(ii) there is no c in BL such that 0 < c < a (where < is the

strict partial order corresponding to the lattice

ordering .

 (b) BL is atomic iff for every b in BL there is an atom a of BA

such that a  b.

Def.     6 A boolean lattice BL = <U, > is complete iff for every
subset V of U there is a least element c in U such

that for all v # V, v  c. More formally:

For each V U there is a c in U such that

( i ) ( v # V) v  c, and

(ii) ( c')(( v # V v  c')  c  c')
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To show that power set inclusion lattices are atomic and complete is
once again very easy to show and we record the fact as another
proposi t ion.

Prop. 3 Every power set inclusion lattice is atomic and complete.

Proof:  Let PSIL = <P(X), > be any 0power set inclusion lattice. Note that

the 0 of PSIL is the empty set . So the atoms of PSIL are the singleton
sets {x}, where x is any element of X. Suppose that Y is any element of

PSIL distinct from 0.  Then Y is a subset of X and Y . So Y contains at

least one element x # X. But then we have {x} Y, i.e. the lattice ordering
relation holds between the atom {x} and Y.  Thus PSIL is atomic.

To see that PSIL is complete, let V  be any subset of P(X). Then V   is a
subset of X and thus a member of P (X).  It is easy to verify (i) that for

all V # V, V V  and (ii) if W is any other element of P (X) such that for

all V # V, V W, then V  W.  Thus PSIL is complete.

But not all boolean lattices are either atomic or complete, In fact, there
are boolean lattices that are the extreme opposite of atomic in that they
have no atoms at all. And there are also boolean lattices that are the
extreme opposite of complete in that they have the following property:

Every set V  of elements is either essentially finite or else V does
not have a supremum.

Here by essentially finite we mean the following: V is essentially finite

iff there is a finite subset W  of V  such that ( v # V )( w # W ) v w .
(Note that in this case the supremum of W , which must exist since W  is
finite, is also the supremum of V . )

But besides boolean lattices which occupy the opposite end of the
spectrum from the power set inclusion lattices with regard to either
atomicity or completeness or both, there are also many which display
less extreme forms of non-atomicity or incompleteness. For instance
there are boolean lattices which do contain some atoms but which
nevertheless do not have enough of them to make them atomic.

Our first example of a boolean lattice that is not like the power set
inclusion lattices, BL1, differs from them in being not complete,



2 5

although it shares with them the property of being atomic. The example
also illustrates another important fact, the true significance of which
will become clear when we turn to the Stone Cech Representation
Theorem in the next section.  This is because it is a boolean lattice
whose ordering relation is, just like it is for the power set inclusion
lattices, set-theoretic inclusion.  The only, but crucial difference with
the power set inclusion lattices is that in our example the universe is no
longer a full power set P (X), but rather some proper subset of such a
power set. (The Stone Cech Theorem says that just by varying the
universes of inclusion lattices all possible properties of boolean lattices
can be exemplified.)

In the case of BL1 the universe is defined as the set of all fintie and all
cofinite subsets of the set N of natural numbers.  Here a cofinite subset
of N is a subset Y of N such that N \ Y is finite. In other words, if  U is

the set of all finite and cofinite subsets of N, then BL1= <U, >, where is
the relation of set-theoretic inclusion restricted to U.

Before we show that BA1 has the mentioned properties, i.e. that it is
atomic but not complete, we first have to show that it is a boolean
lattice- in other words, that it is a lattice and that is it boolean.  To this
end we make use of the possibility of switching back and forth between
lattices and the corresponding algebras.  To start, note that the

restriction of  to any set of sets will always be a partial order. To
show that in the case at hand this order is a lattice we note that U is

closed under the set-theoretic operations , .  To see that the union X

Y of two subsets X and Y of U belongs to U, we have to distinguish

between two cases: (i) if X, Y are both finite, then X Y is finite and

thus in U; (ii) if at least one of X, Y is cofinite, then X Y is cofinite and

thus also in U.  In the same way one shows that U is closed under .

From the fact that U is closed under  and it follows that <U, > is a
lattice.  For if, say, the union of the sets X and Y from U is again a

member of U, then it will be the supremum of X and Y in <U, > ;
likewise, since the intersection of subsets X and Y of U again belongs to

U it must be the infimum of X and Y.  Thus <U, > is a lattice.

Furthermore, and N both belong to <U, >, since is a finite and N  a
cofinite subset of N. But then it is obvious that these are the smallest

and largest element, respectively, of <U, >. So <U, > has a 0 and a 1.
We also note that set-theoretic union and intersection satisfy the

distributivity laws DISRT1 and DISTR2.  So <U, > is a distributive lattice
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with a 0 and a 1. To see that <U, > is boolean, we note that U is closed
under the operation of complementation relative to N (that is, the
operation of subtracting a given X from N, denoted as N \ X). For the
relative complement of a finite subset of N is a cofinite subset and vice
versa.  Using the same reasoning as above, we conclude that the relative

complement is the operation we obtain when we apply Def(-,{ , }) (see

section 1.2.3) to the supremum and infimum operations of <U, > ,
which, as we have already shown, are nothing but the operations of set-
theoretic union and intersection.  Moreover the relative complement
operation of set theory does satisfy, in conjunction with union and

intersection, the laws Axba.11 and Axba.12. So <U, > is a boolean
lattice.

We next show that BA1 is atomic.  This is easy.  All singleton sets {n},
where the n #  N, are finite and thus belong to U.  Clearly they are the

atoms of <U, >.  And if X is a member of U that is different from the 0

of U, i.e. X , then there must be some n such that n # X and thus {n}

 X; so there is an atom between 0 and X.

Finally BA1 is not complete.  For let A be a subset of N such that both A
and N\A are infinite. (For instance, we could take for A the set of even
numbers.) Let A  be the set {{n}: n # A}.  Then A  has no supremum in

<U, >.  For if Y is any element in U with the property that ( Z)(Z e A  

Z Y), then A Y.  The only elements of U with this property are the
cofinite subsets of N which include A.  But among these there is no
smallest element:  Take any such Y.  Then Y\A is non-empty (in fact it is

infinite).  Let m # Y\A and Y' = Y\{m}.  Then Y' # U, A  Y' and Y' is a
proper subset of Y. So there is no smallest member of U which includes
all members of A .

Our second example, BA2, is presented as a boolean algebra. And it is
not a set algebra. Once again the set N of natural numbers is our
starting point. But this time we begin by defining an equivalence
relation on the subset of N:

X Y iffdef. X -Y is finite.

Here "X - Y" denotes the symmetric difference between X and Y, i.e.

X - Y = (X\Y) (Y\X).
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The first thing to observe is that is a congruence relation with respect

to the set-theoretic operations ,  and \.  That is, if the arguments of

the operations stand to each other in the relation , then so are the

results of those operations.  For instance, suppose that X  X' and that Y

 Y'.  Then also (X Y)  (X' Y').  That this must be so is not hard to

see. On the one hand (X Y) \ (X' Y')  (X \ X') (Y \ Y'). This entails

that if the term on the right of  is finite, so is the one on the left.

Analogously (X' Y') \ (X Y) is finite.  So (X Y) \ (X' Y') is finite.  It

follows that (X Y)  (X' Y').  Likewise for the other two operations.

Let V be the set {[X] : X N}.  (N.B. during the remainder of our

discussion of BA2 we will leave out the subscript .) The congruence of

w.r.t. ,  and \ entails that we can define the following operations on
V:

Def. For arbitrary X, Y N,

( i ) [X] [Y] = [X  Y]

( i i ) [X] [Y] = [X  Y]

(iii) [X]      = [N \ X]

Now let BA2 be the structure <V, , , ,[ ],[N]>.  That this is a
Boolean algebra follows straightforwardly from the Boolean nature of

the set-theoretical operations  ,  and \, in terms of which we have

defined the operations , , .  Note that the lattice ordering of this
structure holds between any two members [X] and [Y] of V iff X \ Y is

finite.  To see this, recall that can be defined in terms of  by: [X]  [Y]

iff [X]  [Y] = [Y]. This entails that (X  Y) \ Y is finite.  But (X  Y) \ Y is
the same set as
X \ Y.

We first observe that BA2 is atomless, and thus not atomic.  Suppose

that [X] [ ].  Then X is infinite.  But then we can split X into two

infinite subsets Y and X \ Y  But in that case we have < [Y] < [X], where

< is the strict order in relation corresponding to the lattice ordering 
of BA2. So [X] is not an atom.
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BA2 is also not complete.  To see this, let A  be a denumerably infinite
set of infinite mutually disjoint subsets of N whose union is N.  (That is,

if X # A, then X is infinite, if X, Y # A and X Y, then X Y =  and A  =
N.)  Then there is no element in V which is the supremum of A .  For

suppose that [Z] were the supremum of A .  Then for each X # A , [X] 
[Z].  So, by the remark at the end of the penultimate paragraph X \ Z is

finite.  Consequently, since X infinite and X = (X \ Z) (X Z), Z X

must be infinite and thus .  So we can for each X in A  pick an

element nX from X Z.   Note that if Y # A  and Y X, then by assumption
Y is disjoint from X and therefore nX is not an element of Y. So each nX
belongs to exactly one element of A .  That is, if B = {nX: X # A}, then for

each X # A, X  B = {nX}.  Now let Z' = Z \ B.  Since B Z, Z \ Z' = B and
thus Z\Z' is infinite.  So [Z'] <  [Z].  On the other hand, for any X # A , Z' \

X = (Z \ X)  {nX}, and this set is finite, since Z \ X is finite.  So, by the

remark at the end of the one-but-last paragraph, [X]  [Z'].  It follows
that [Z] is not the supremum of A .

There are also boolean lattices that are complete but not atomic.  [An
example of such a lattice can be found in the exercises.]

2.1.5         The Stone-Cech representation Theorem

One of the most famous and most fundamental results in the theory of
boolean algebras is the Stone-Cech Representation Theorem, which says
that every boolean algebra is isomorphic to (and thus 'can be
represented as') a set algebra; that is, it is isomorphic to a structure

<U, , , -,0,1> in which the elements of U are subsets of some set X,

the operations , , -, are set-theoretic union, intersection a n d
complementation relative to X, 0 is the empty set and 1 the set X.
(Once more, note well that U will in general not consist of all subsets of
X.)

The proof of the Stone Cech Theorem involves the notion of an ideal  of
a boolean lattice, or, alternatively, that of a filter.  So we begin by
defining these notions as well as a few others connected with them.
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Def. 7. Let BL = <U, > be a boolean lattice.

1 . A subset V of U is an ideal of BL iff (i) V ; (ii) V U ;

(iii) if b # V and a b, then a # V; and (iv) if a, b # V, then

a b # V.

2 . A subset V of U is a filter of BL iff  (i) V U; (ii) V ;

(iii) if  b # V and b a, then a # V; and (iii) if a, b # V, then

a b # V.

3 . Let b # BL, b 1.  The ideal of BL generated by b is the set

{a # U: a b}
An ideal is called a principal  ideal if it is generated by some

b # U such that b 1 .

Likewise, if b 0, the filter of BL generated by b is the set

{a # U: b a}; and a filter is called a principal filter if it is

generated by some b #  U such that b 0 .

4 . An ideal V of BL is called a prime or maximal ideal of BL iff
for each b # U either b # V or else -b # V.

Likewise, a filter V of BL is called a prime  or maximal  filter
of BA iff for each b # U either b # V or else -b # V.

Prop. 4. 1 . If V is an ideal of a boolean lattice BL = <U, >, then -V
= {-b: b # V} is a filter of BL, and conversely.

2 . If V is a principal ideal {a # U: a b} of BL, then -V is

the principal filter {a # U: -b a} of BL, and conversely.

3 . If V is a prime ideal of BL, then -V is a prime filter of
BL, and conversely.

Lemma. 1. (Boolean Prime Ideal Theorem for Boolean Lattices)

Let V be an ideal of some BL <U, >.  Then there exists a

prime ideal V' of BL such that V V'.
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A general proof of the Prime Ideal Theorem, which applies to lattices of
arbitrary cardinality, is not possible at this stage, since it requires set-
theoretic assumptions and methods that are not available to us as yet.
We can only prove the theorem for BA's which are at most infinitely
denumerable.  For this case the argument goes as follows.

If <U, > is denumerable, then we can assume an enumeration u1, u2, ...
of all elements of U and extend V stepwise, first with u1 or -u1, then
with u2 or -u2, and so on, obtaining in the limit an extension of V which
is a prime ideal.  We just sketch the first step, in which V is extended
with either u1 or -u1 .  (The other steps are completely analogous.)

With regard to V and u1 we distinguish two cases:

( a ) For all finite W V, sup(W) u1 1.

( b ) For some finite W V, sup(W) u1 = 1.

In case (a) V1 = {u # U: ( W)(W V & W finite & u sup(W) {u1}};

in case (b) V1 = {u # U: ( W)(W V & W finite & u sup(W) {-u1}}

We begin by showing that in case (a) V1 is an ideal.  First, note that

u1 # V1.  This is so since the empty set  is a subset of V and

u1 0 u1 = sup( ) u1.  Second, suppose b # V1 and a b.  Then

there is a finite W V such that b sup(W) u1.  But then also

a sup(W) u1, so a # V1.  Third, suppose that V1 = U.  Then 1 # V1.

This means that there is a finite W V such that 1 sup(W) u1, which

is equivalent to: sup(W) u1 = 1.  This contradicts the assumption of

case (a) and we conclude that V1 U.  Lastly, let a, b # V1.  Then there

are finite subsets Wa, Wb of V such that a sup(Wa) u1 and b 

sup(Wb) u1.  If Wa and Wb are both finite subsets of V, then so is

W a  Wb.  Also, sup(Wa) sup(Wa  Wb), so a sup(Wa  Wb) u1.

Similarly, b sup(Wa  Wb) u1.  So a b sup(Wa  Wb) u1.  Our

final observation is that V  V1.  Suppose that u # V.  Then u sup({u})

u1, with {u} a finite subset of V.  So u # V1.

From all this we conclude for case (a): V1 is an  ideal which extends V
and contains one of u1 and -u1 .
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Now consider case (b).  We show:

(*) for all finite W' V, sup(W') -u1 1 .

Suppose this is not so.  Then there is a finite W' V such that

sup(W') -u1 = 1.  By assumption of case (b) there also is a finite

W V such that sup(W) u1 = 1.  Let W'' = W W'.  Then W'' is a finite

subset of V.  Let w = sup(W'').  Then w # V, so, since V is an ideal, w 1

(for otherwise we would have that V = U).  Furthermore, sup(W) w .

So, since sup(W) u1 = 1, w u1 = 1.  Similarly w -u1 = 1.  So

(w u1) (w -u1) = 1 1 = 1.  But (w u1) (w -u1) =

((w u1) w)  ((w u1) -u1) = w  ((w -u1) u1 -u1)) =

w  ((w -u1) ) = w  (w -u1) = w.  So w = 1, contrary to what we
established above.  This proves (*).

We can now show as in case (a) that V1 is an ideal which extends V and
contains -u1.  So it follows in either case that V1 is an ideal which
extends V and contains one of u1 and -u1.

In this way we coinstruct a denumerable sequence V1, V2, ... of ideals
extending V such that for each n Vn will contain, for i = 1, ..., n, one of
ui and -ui.

Now let V' = n V n. Then it is easy to show that V' is an ideal.  (In
particular V' does not cootain 1.  For is it did than 1 would be an
element of some Vn, contradicting the already established fact that Vn
is an ideal. From the construction of V' it is also clear that V' is
maximal.

   q.e.d.

Corollary.  Let u be an element of some BL <U, > such that u &  1.  Then
there exists a prime ideal V' of BL such that u # V'.

Proof.  Suppose that u is as described in the statement.  Then

Vu = {v # U: v u} is an ideal.  (Show this.  N. B. ideals of this form,

which consist of all elements some given element, are called principal

ideals .) So, accroding to Lemma 3 there is a prime ideal V such that

Vu  V.  Clearly u e V.
q.e .d.
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We now turn to the Stone-Cech Theorem itself.

Theorem. 3 (Stone-Cech Theorem for Boolean Lattices)

Let M = <U, > be any boolean lattice.  Then there is a set inclusion

lattice M* - i.e. a structure <U*, > in which U* is a subset of some

power set P (X) and is the set-theoretic inclusion relation on U* - such

that  M  M*.

Proof.  For any u # U let u* be the set consisting of all maximal ideals V
of M such that not u # V: u* = {V: V is a prime ideal of M and not u # V}.

Let U* = {u*: u # U}.  Then U* P(P(U)); so U* P(X) for some X.  We
show that * is 1-1 map from U onto U*.  That * is onto follows from the
definition of U*.  To show that * is 1-1 we argue as follows.  First

suppose that u, u' #  U and that u  u'.  Then either not u u' or not

u' u.  Assume that not u u'.  (The other case is analogous.) Then

u' -u 1.  For if u' -u = 1, then  u u' = u' u = (u' u) 0 =

(u' u) (-u u) = (u' -u) u = 1 u = u, so u u', contrary to

assumption.  Since u' -u 1, there is according to the Corollary to

Lemma 3 a maximal ideal V containing u' -u . Since -u # V it is not the

case that u # V', For otherwise u, -u # V', so u -u # V' and V' wouldn't
be an ideal.  So by teh definition of *, V' # u*.  On the other hand, u' #

V'.  So it is not the case that V' # u'*.  So u* u'*.

Next we prove that u  u' iff u*  u'*.  First assume u  u'. Then, as can

easily be shown,  -u'  -u. Let V be any maximal ideal in u*. Then, since

not u # V, -u # V.  So, since -u'  -u, -u' # V.  So it is not the case that

u # V, and therefore V # u'*.  So u*  u'*. Conversely assume that

u*  u'*.  Suppose it is not the case that u  u'.  Then, as we saw above,
there is a maximal ideal V' such that u' #  V' but not u #  V'.  So V' #  u*,

but not V' #  u'*, contrary to the assumption that u*  u'*. 
q .e .d.

The Stone-Cech Representation Theorem for Boolean Algebras is a
paradigm for a type of result that has proved of great value in
mathematics and logic in a number of distinct contexts.  Results of this
type are generally called 'representation theorems'.  Informally
speaking, a representation theorem for a theory T of a language L is a
statement to the effect that a certain class M' of models for some
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extension L' of L is representative for T's models.  Putting the matter
more formally, representation theorems take the following general
form:

Let T be a theory in some language L.  Let M  be the class of all
models of T.  Let L' be an extension of L and let M'  be a class of

models for L' such that for each M # M' the reduction M L of M to
L is a member of M .  Then M'  is representative of the models of T

iff for each M # M  there is an M' # M'  such that M  M' L .

The use and importance of representation theorems is in most cases
that they provide a clearer view of the range of variation among the
models of a given theory T and/or a way of studying this variation.  In
order to obtain a picture of the different (isomorphism) types of
models of T it is enough to study the variation within the representing
class M' .  And in many cases this latter investigation is helped by the
fact that the models within this class are of a special kind, e.g. in that
they have additional properties which do not apply to models of T in
general.  (Normally this is because these properties are not expressible
within the language L of T, but only in the extended language L' of the
models in M' .

The Stone Representation Theorem for boolean lattices is a good
example of this:  There are ways to explore the possible structure of set
inclusion lattices which are not directly available for arbitrary boolean
lattices.  On the other hand, however, the very fact that the Stone
Theorem is true is an indication of how much variation can be found
among set inclusion lattices.  To take just one example, our algebra BAII
was not a set inclusion lattice as we defined it.  Stone's Theorem tells us
that there is a set inclusion lattice isomorphic to BAII, and also gives us
a method for how to construct such a lattice.  But the resulting lattice is
not a set inclusion structure that one would easily have thought of off
the bat.  Should one have expected that a set inclusion lattice with this
structure actually exists?  That would of course depend on our general
knowledge of set theory, but at the very least the answer is not
obviously 'yes'.

In fact, one way to look at the Stone-Cech Theorem is as a statement
telling us how much variation can be obtained by starting from the
narrowly circumscribed notion of a power set lattice

<P (X), > - recall: any such lattice is atomic and complete and it is fully
determined by the cardinality of the carrier set X - and then to broaden
this notion by allowing for variation in just one respect: the universe U
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need not be all of P (X), but may also be some proper subset of it. All
variety, in other words, can be located in the choice of U.

2.1.6         Booelan Algebra and Logic.

We noted at the outset of this Chapter that boolean algebras are of
particular importance for logic; some the most prominent structures
that are studied in formal logic have the properties of such algebras.1 0

The simplest (and arguably most central) example is the 'algebra of
propositions', in which the disjunction p v q of two propositions p and
q interpreted as the supremum of p and q, their conjunction p & q as
their infimum and the negation -p of p as its complement.  Exactly what
boolean algebra this will give us depends on how we decide to
characterise propositions.  When we identify 'propositions' with the
Fregean denotations of sentences - 'the True', or '1', and 'the False', or
'0' - then we get a boolean algebra whose universe is the two-element
truth value space {0,1}, in which the boolean operations are as follows:

( i ) 1 1 = 0  1 = 1 0 = 1, 0 0 = 0;

( i i ) 1 0 = 0  1 = 0 0 = 0, 1 1 = 1;
(iii) -1 = 0, - 0 = 1.

Note that this algebra results as the image of any language L of
propositional logic under any classical valuation Suppose that V is a
classical  valuation of the set of propositional letters of L (classical in
the sense that it assigns each letter one of the classical truth values 0
and 1).  Then V will map each formula of L into {0,1} according to the
familiar truth table rules:

1 0 Boolean algebras and lattices owe their name to one of the founders of
modern logic, the 19-th century mathematician George Boole (1815-1864).  Boole
was together with his compatriot Augustus de Morgan, the first to look at logic
from an algebraic perspective, according ot which the logical connectives &, v, ,
etc. are seen as operators, or functors, which can be used to obtain propositions
out of other propositions (e.g. the conjunction 'A & B' from the propoisitions A and
B). Boole tried to formulate the laws of logic (his 'Laws of Thought') in algebraic
terms, i.e. as equations that express logical equivalences that hold between
propositions in virtue of their logical structure, such as e.g.

( i ) A & B = B & A
( i i ) (A & B) & C = A & (B & C)

to express the commutativity and associativity of conhunction.  Eventually such
equations became the axiomatic foundation of the definition of the concept of a
boolean algrebra, see our axioms Axba.1 - 13 on p. 21 of this Chapter.
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( i ) V(AvB) = V(A)  V(B);

( i i ) V(A&B) = V(A)  V(B);

(iii) V( A) = 1 if V(A) = 0 and V( A) = 0 if V(A) = 1.

More interesting is the kind of algebra that we get when propositions
are characterised intensionally , viz. as sets of possible worlds.  Let W be
the set of all possible worlds.  Then each proposition p determines a
subset of W, consisting of those worlds in which p is true.  According to
the intensional  theory of propositions this set - or, if one prefers, the
division of W into two parts that comes with it, the part of those
possible worlds in which p is true and those in which it is false - fully
identifies the proposition p; in other words, propositions are  sets of
possible worlds; and on the assumption that the set of all possible
worlds is W, they are subsets of W.  The logical operations of
disjunction, conjunction and negation now turn into set-theoretic
operations.  For instance, the conjunction p & q of the propositions (i.e.
subsets of W) p and q is the set of worlds of W in which both p and q
are true, i.e. the worlds which belong both to the subset p of W and to
the subset q of W.  Thus p & q is the set-theoretic intersection of p and

q. Similarly, p v q becomes the union of p and q and p the set-
theoretic difference W\p.  Furthermore, the 0 of the proposition

algebra thus defined is the empty set  ('the contradictory
proposition') and its 1 the entire set W ('the tautologous proposition').

This 'intensional' proposition algebra is the model-theoretic fundament
of the currently most popular developments of modal and intensional
logic, in which logical relations are defined in terms of a 'Kripkean'1 1

model-theoretic semantics, propositions are interpreted as sets of
possible worlds and modalities are analysed in terms of relations
between such worlds.  It is also the model-theoretic foundation of the
system of Higher Order Intensional Logic, the logical formalism that was
introduced by Montague12 in his seminal work on the semantics of
natural languages - work that, in various guises has served as the formal
basis for the formal semantics of natural languages since the early
seventies.

1 1 Saul Kripke (1940 - ) is the founder of modern modal logic.  He did his
astoundingwork in this area at the astoishingly young age of 16, while still in
high school.
1 2 Richard Montague (1930 - 1971).  Founder of the model-theoretic approach
to the analysis of meaning of natural languages.  Montague was the first to see
that it was possible and illuminating to apply the model-theoretic methods
developed by his teacher Tarski for the formal languages of mathematical logic,
such as, in particular, the predicate calculus..
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There is a further connection between the semi-formal ideas expressed
above and Montague's conception of the semantics of (formal and
natural) languages.  Montague thought of the way in which the syntactic
structure of a sentence determines its meaning as generally taking the
form of a homomorp i sm  from syntactic structures to meanings (or
'semantic values').  In the context of the present discussion of boolean
structure this idea can be explained rather succinctly.  Doing so,
moreover, will give an opportunity to introduce the general notion of a
homomorphism and its systematic connections to the already familiar
notions of an equivalence relation and that of one relation being
congruence relation wrt. some other relation.  And finally it throws an
illuminating light on the ideas that Boole and De Morgan were after but
that can be stated fully transparently only now that we know how to
draw a clear distinction between sentences of a language as symbol
strings with a syntactic structure and the samentic values
('propositions') they denote.

In the more formal discussion that follows we focus on first order
languages as we have been doing hitherto.  This will also allow for a
natural transition to the topic of the next two sections.

Central to the discussion will be the language of boolean algebra, i.e.

the language  Lba whose logical constants are , ,0,1and -. Let L be any
first order language.  We can use the set SL  consisting of the sentences
of L to define the following model ML for Lba: the universe is SL and the
interpretations of the non-logical constants of Lba are given by the
following function FL:

FL( )(A,B) = (A v B); FL( )(A,B) = (A & B); FL(0) =

( v1) v1 = v1; FL(1) = ( v1) v1 = v1; & B); FL(-)(A) = A,
where A and B are arbitrary sentences of L.

In other words, the 'boolean' operator symbols  etc. are interpreted in

as syntactic operations of the sentences of L.  For instance, L operates
on arbitrary sentences (that is, arbitrary well-formed symbol strings) A
and B of L and maps such a pair to the symbol string (A & B).

Now let M  be some class of models for L.  Then each sentence A of L
can be said to express wrt M a 'proposition' [[A]]M , consisting of those

models M in M for which M A: [[A]]M = {M # M:  M A}. (It is
reasonable to refer to [[A]]M as the 'proposition expressed by A wrt. M '
insofar as [[A]]M tells us for each M #  M , and thus for each of the
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'possible worlds' described by models of M , whether or not A (or the
proposition A expresses) is true in that world or model.)

From the propositions [[A]]M  expressed by A wrt. M  it is possible to
construct another model for Lba, to which we refer as MM . The

universe of this model is the set {[[A]]M : A is a sentence of L} anf its
interpretation function FM  is defined by:

FL( )([[A]]M,[[B]]M) = ([[A]]M  [[B]]M;

FL( )([[A]]M,[[B]]M) = ([[A]]M  [[B]]M;

FL(0) = ; FL(1) = M; FL(-)([[A]]M) = M\[[A]]M.

(Here we have used bold face and to distinguish the set-theoretical

union and intersection from the function constants  and of the
language Lba.)

It follows directly from what we seen in the last section that MM  is a
boolean algebra.  On the other hand the model ML is not, for one thing
because syntactic disjunction and conjunction, the functions which

interpret the function constants  and in ML, are not commutative.
(For instance, in general, (A&B) is not the same string as (B & A); in

particular, ( ( v1) v1 = v1 & ( v1) v1 = v1) is not the same string as

(( v1) v1 = v1 & ( v1) v1 = v1); and so on.)  This means that the
function [[ ]]M maps the non-boolean model for Lba onto the boolean
model MM .

Given a first order language L many different classes of models M  are
possible and for each such choice we get a different function [[ ]]M . The
possible choices of M are bounded on the one side by the smallest such
choices- those where M is a singleton set {M} - and on the other side by
the maximal choice, where M  is the class of all models for L.  When M =
{M}, then the universe of the model MM  consists of just two elements,

the set {M} itself and the empty set .  We can think of these two
elements as 'true in MM ' and 'false in MM ' and replace them by 1 and 0.
This gives us the 2-element boolean algebra, whose universe is the set
{0,1} and whose operations are the familiar connectives of classical
propositional logic, given by the classical truth tables.  (For example,

the interpretation of  in this model is the 2-place function &  defined
by & (1,1) = 1; & (1,0) = & (0,1) = & (0,0) = 0, and so on.) In this case the
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notion of a 'proposition wrt MM ' reduces to that of a mere truth value.

[[ ]]M  throws together any two sentences that have the same truth value
in M and we end up with just two 'bags' one for the sentences of L that
are true in M and one for the false sentences.

At the other extreme, where M is the class of all models for L, we get a
maximal diversity of bags.  Now two sentences A and B end up in the
same bag only iff tghey are logically equivalent: [[A]]M  = [[B]]M  iff for

every model M for L, M A iff M B.

The function [[ ]]M is an example of a homomorphism .
Homomorphisms are maps from one structure into another which are
structure-preserving. In general such maps are not 1-1.  And that is true
also for [[ ]]M , since any two different logically equivalent sentences
will be mapped onto the same value.  For instance, we have for any
sentences A and B that [[(A & B)]]M  = [[(B & A)]]M , even though the
two conjunctions (A & B) and (B & A) are, as we have just observed, in
general distinct.  In fact, the point of a homomorphism is often that it
isolates those aspects of a given type of structure that are relevant from
a certain perspective while abstracting from all remaining features.  It
does this by 'throwing into the same bag' any two elements for which
the structural features that are relevant from the given perspective are
the same and that thus only differ in respects that do not matter.  Thus
[[ ]]M  identifies, by mapping them onto the same value, any two
sentences whose structure guarantees that they have the same truth
value in all models of M .

We will define the notion of a homomorphism only for algebraic
structures - that is, for models of algebraic languages. (There is a way
of generalising the notion to arbitrary first order languages, some or all
of whose non-logical constants are predicates, but since we won't need
this generalisation here or later, we will limit ourselves to the case of
algebraic languages only.

Def.  8

a . Let L be any algebraic language, M, M' models for L, h a function 
from UM  into UM' . h is a homomorphism from M into  M' iff for

every non-logical constant fn of L and every n elements d1, ..., dn
from UM :

h(fnM (d1 ,..,dn )) = fnM ' (h(d1),.. ,h(dn) )
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Special cases are those where a homomorphism h from M into M'is   (i)
onto M' and (ii) where h is 1-1.  It is immediate that if h is both 1-1 and
onto, then it is an isomorphism from M onto M'.  We already noted that
[[ ]]M is onto MM .  Usually MM is a proper submodel of the set

inclusion lattice M' = <P (M ), >, and when that is so, [[ ]]M is a
homomorphism into, but not onto, M'. (Exercise: For which
combinations of of a first order language L and a class M of models for
L is MM  a proper submodel of M'?)

There is an important general connection between homomorphisms and
congruence relations.  Again we use our 'syntax-semantics interface
function' [[ ]]M to illustrate the matter.  As a preliminary recall that
there is a general correlation between functions and equivalence
relations: (i) Let f be a function defined on some set X. Then f induces

an equivalence relation on X, defined by:

( 1 ) for any x,y # X, x y iff f(x) = f(y).

Conversely, any  equivalence relation on a set X induces a function on
X which maps each x  # X onto the equivalence class [x]  it generates

under .  Moreover, when (1) is applied to this function, it gets us

back to the relation .

This correlation holds in particular for functions that are
homomorphisms. In particular, when h is a homomorphism from one
structure M into another structure M', then there will be a

corresponding equivalence relation on UM  induced by h via (1).  In

this case, however,  has additional properties, which reflect the fact
that h is a homomorphisms (and not just any function): is a congruence

relation wrt each of the operations of M.  We recall the notion of a
congruence relation:  Suppose that f is an n-place function defined on
some set X, i.e. both the arguments and the values of f belong to X, and

that  is a binary relation on X.  Then is a congruence relation wrt f

iff for any x1, ..., xn, x'1, ..., x'n from X such that x1 x'1, ..., xn x'n,

f(x1,.,xn) f(x'1 ,.,x'n) .

It is easily verified that when h is a homomorphism from a model M for
an algebraic language L into some other model M' for L, then the

relation induced by h via (1) is congruence relation wrt. all
interpretations in M of function constants of L.  Moreover, the converse
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also holds in this case: If is an equivalence relation on UM which is a
congruence relation on the interpretations in m of all the non-logical
constants of L, then the function which maps any element d of UM on to
its equivalence class [d]  is a homomorphism from M into the model

M' whose universe is the set of equivalence classes [d]  and which

interprets each n-place function constant f of L via the definition:

fM' = {<[d1] ,  ..,[dn] ,[d] >: d1, ..,dn,d # UM & f(d1,..,dn) = d}

(This definition is legitimate because is a congruence relation wrt f.)

Returning to [[ ]]M we recall that this function is a homomorphism in
that this function preserves the interpretations of all the function
constants of Lba.  (For instance, [[ ]]M  converts the syntactic
conjunction operation & into the 'propositional conjunction' which
maps the model sets [[A]]M and [[B]]M onto their intersection.)  It
follows from the general connection between homomorphisms and
congruence relations we have described above that the relation which
holds between sentences A and B iff they have the same truth values in
each of the models of M is a congruence relation wrt to the syntactic
operations that interpret the function constants of Lba in MLba.  This is

the formal justification for looking at the connectives of classical
propositional logic as algebraic operations on 'sentence meanings'.

As noted in footnote ?? , the conception of the way in which meaning is
determined by form as a homomorphism that maps syntactic strings
onto meanings, thereby identifying any two strings whose structures
make them identical in meaning, is a central assumption in the
approach to meaning in natural languages developed by Montague in
the late sixties and early seventies and now generally known as
'Montague Grammar'.  The idea is that the syntax of any language -
natural languages no less than the formal languages of logic and
computer science (including in particular the first order languages that
are the topic of these Notes) - can always be characterised by a set of
syntactic operations which build complex expressions from
constituents, and that to each such syntactic operation corresponds a
rule which combines the semantic values of the constituents into the
semantic value of the expression that is the output of the syntactic
operation. It became clear soon that (except for very restricted
fragments) the strictest implementation of this conception comes at a
cost of assumptions about the syntax of natural languages that are quite
artificial, and are ill supported by intrinsically syntactic evidence, of the
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kind that linguists do, and should, take seriously.  Nevertheless, the
attempt to develop a syntax-semantics interface that is based on an
independently plausible syntax and yet keeps as closely to Montague's
original conception has proved a principle of immense methodological
value in the development of semantics over the past 40 years.

The model MM  for Lba that we obtain when M is the class of all models
for L is known as the Lindenbaum algebra of L.  Lindenbaum algebras
will play an important part in the next section, be it in the different
guise of structures whose elements are the finitely axiomatisable
deductive theories of a given first order language L.  (There is an
obvious 1-1 correspondence between the finitely axomatisable theories
of L and the classes [[A]]M into which [[ ]]M partitions the set of all
sentences of L and that make up the universe of MM   when M contains
all models for L.  For on the one hand, if t is a finitely axiomatisable
theory of L, then there is a single sentence A of L such that T = ClL({A}).
On the other hand, when two sentences A and A' belong to the same
class, i.e. if [[A]]M  = [[A']]M , then A and A' are logically equivalent and
thus axiomatise the same theory: ClL({A}) = ClL({A'}).  Thus each finitely
axiomatisable theory of L corresponds to exactly one element of the
universe of MM .)
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2.2     Incomplete Theories and their Extensions.

In section 2.1 we saw that complete theories do not always do what one
might have expected of them, and for which they are often designed:
describe a given structure uniquely up to isomorphism.  A complete
theory always succeeds in doing this, we observed, when the structure
it is meant to describe is finite.  (See Thm. 6 of Ch.1.) But for theories
with infinite models the picture is much more complicated.  We know
that if a complete theory has an infinite model, then all its models are
infinite (see exercise ??).  But the differences between these infinite
models may still be considerable.  Not only will the theory always have
models that are not isomorphic for the simple reason that their
universes are of different cardinality - recall that the Skolem-
Löwenheim Theorems tell us that theories with infinite models always
have models of every possible infinite cardinality -, there exist complete
theories that have non-isomorphic models even within the same
cardinality.  Though Morley's Theorem indicates that the range of
possibilities us much more limited than one might have thought, there
nevertheless remains considerable room for variation.  For suppose a
theory T has non-isomorphic models in some infinite cardinality ! .
Then there is the further question how wide the variety of models of T
of cardinality !  is.  To answer this question a much finer - and much
deeper - analysis of complete first order theories is needed than
anything presented in these notes.  Such an analysis exists.  it is known
as Stability Theory, a subject of considerable complexity, developed and
brought to conclusion almost single-handedly by the Israeli
mathematician and logician Saradon Shelah [ref. to Shelah]

When we move from complete to incomplete theories we find much
wider ranges of possible models.  Now the models of a theory T can be
given a first classification in terms of the sentences they verify, in other
words, in terms of those of the complete extensions of T which they
verify.  So the range of models of an incomplete theory T can be
studied from two complementary perspectives, first the set of complete
extensions of T, and second, for each of these complete extensions the
range of models for that extension.

So far we have encountered examples of complete as well as of
incomplete theories.  But we haven't looked much at the structure of
the entire field of theories in a given language L, including both its
complete and its ncomplete theories. It is this issue that we will pursie
in the present section.
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2.2.1  Lattices of Theories.

Let L be a first order Language and let TL be the set of all theories of L.

The structure TL = <TL, >, where is the relation of set-theoretical
inclusion restricted to TL, is called the Lattice of Theories of L.  We will
also refer to it as the Tarski Lattice of L in honour of the logician A.
Tarski, who was the first to study these structures.

Our first task is to show that TL  is a distributive lattice with 0 and 1.

We already noted in the precious sections that any restriction  V  of  
to some set V of sets is a weak partial order on V. To show that when V
= TL this partial ordering is a lattice, we must show that for each pair of

theories T1 and T2 of L TL yields an infimum and a supremum with.

First, note that T1  T2 (where  is set-theoretic intersection) is a

theory of L.  For suppose B is any sentence of L such that T1  T2 B .

Then T1 B and T2 B, So, since T1 and T2 are theories, B # T1 and B #

T2. So B # T1  T2. Since this holds for arbitrary B, T1  T2 is a theory.

It now follows almost directly that T1  T2 is the infimum of T1 and T2
in TL. For if T is any theory of L such that T  T1 and T  T2, then T 

T1  T2.

The case of is different because T1  T2 is in general not a theory. (It

is a theory only if T1  T2 or T2  T1, (See Exercise 20.ii of Ch.1)  But
T1 and T2 do have a supremum in TL nevertheless, viz. the theory

ClL(T1  T2).

To see this, observe that T1 ClL(T1  T2) and T2 ClL(T1  T2). Now

suppose that T' is any theory of L such that T1 T' and T2 T'.  Let B

be any sentence from ClL(T1  T2).  Then T1  T2 B.  So by the

Completeness Theorem T1  T2 B. From this is can easily be inferred
that there must be a single sentence C #  T1 and a single sentence D #  T2,

such that C & D B.  Since T1 T', C # T1  T2 and thus C # T'. Similarly

D # T'.  So, T' C & D and so since T' is a theory, C & D # T'. So since

C & D B, also B # T'.

Having shown that the supremum and the infimum of any two members
of TL exist, we facilitate further discussion by introducing the symbols

L and L for these operations:
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( 1 ) ( i ) T1 L T2 =df ClL(T1  T2)

( i i ) T1 L T2 =df T1  T2

That TL has a 0 and a 1 is obvious.  Its 0 is the theory 0L = {A # L: A }
and its 1 the contradictory L-theory 1L consisting of all sentences of L.
That is distributive requires an argument.  We show that the distributive
law  DISTR.2 holds in TL.13 (The validity of the other law is shown in
much the same way.)

DISTR.2 T1 L (T2 L T3) = (T1 L T2) L (T1 LT3)

To show the inclusion of the left hand side in the right hand side is
straightforward.  (In fact this inclusion holds in all lattices.)  To show

inclusion in the opposite direction, let B # (T1 L T2) L (T1 LT3).

Then B # (T1 L T2) and B # (T1 L T3).  Since B # (T1 L T2), there are

C' # T1 and D # T2 such that C' & D  B.  Similarly, since B # (T1 L T3),

there are C'' # T1 and E # T3 such that C'' & E  B.  Putting C =df C' & C'',

we have C & D  B and C & E  B.  So C & (D v E)  B.  But D v E # T2 and

D v E # T3.  So D v E # T2 TT3.  So T1 L (T2 L T3)  B.  So

B # T1 L (T2 L T3).
q.e .d.

While TL is always a distributive lattice, it is never a boolean lattice.
The reason is that if T is a theory of a first order language L which is not

finitely axiomatisable, then there is no theory T' of L such that T L T' =

1L and T L T' = 0L. And every first order language has theories that are
not finitely axiomatisable.  We record this fact as Theorem 4.

Thm. 4   For no first order language L is TL a boolean lattice.

We postpone the proof of Thm. 4 till later in this section.

While TL is never a boolean lattice, each TL has a certain sublattice
which invariably is boolean.  This is the so-called Lindenbaum algebra

of  L.14  It consists of all finitely axiomatisable theories of L, i.e. all

1 3 See Section 2.1.2.  Note that here we have omitted the universal quantifiers
binding T1, T2 and T3.
1 4 Speaking on the one hand of 'Tarski lattices and on the other of
Lindenbaum algebras will seem incoherent.  The term 'Lindenbaum algebra  has'
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theories T of L such that for some finite set A  of L-sentences T = ClL(A  ).
We denote the Lindenbaum Algebra of L as LL.

To show that LL is a boolean lattice, we recall that a theory T is finitely
axiomatisable iff there is a single sentence A such that T = ClL({A}) - see
Exercise 12.a of Ch. 1. (For easier reading we write 'TA ' instead of
'ClL({A})'.) It is straightforward to verify that if T1 and T2 are finitely
axiomatisable theories of L and T1 = TA and T2 = TB, then the following
two conditions hold (Exercise:  Show this.)

( 1 ) ( i ) T1 L T2 = TA&B
(i i ) T1 L T2 = TAvB

Now let T be any finitely axiomatisable theory of L and suppose that T =

TA. Let T' = T A.  Then  according to (3.i,ii)  TA L T A = TA& A and

TA L T A = TAv A.  But TA& A = ClL({A& A}) = 1L and TAv A =

ClL({Av A}) = 0L.  So T' is the complement of T, in that the two satisfy
the characteristic equations, repeated in (2).

( 2 ) ( i ) T  L T' = 1L

(i i ) T  L T' = 0L

Since for each member T of LL there is a complement T' in  LL such that
(2.i,ii) are satisfied, LL is boolean. q.e .d.

As noted in the remarks leading up to Thm. 4, theories that are not
finitely axiomatisable do not have boolean complements.  However, it is
possible to define an operation on arbitrary theories that (a) satisfies at
least one of the conditions in (2), viz. (2.ii), (b) is the largest element
satisfying this condition and (c) coincides with the boolean
complement of any finitely axiomatisable theory.  One definition of this
operation is given in Def. 9.

It is possible to define a complement operation on theories of L which
acts as a boolean complement when the theory in question is a theory

been adopted because of its general use in the literature - few people if anyone
speak of the Lindenbaum lattice  of L. Because of the equivalence between lattices
and algebras nothing much hangs on this terminological issue.  In fact we might
just as well speak of Lindnbaum latticesa as of Lindenbaum algebras, and likewise,
speaking of Tarski algebras is just as legitimate as talking about Tarski lattices.
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of LL.  The definition we will give is such that it can be applied to
arbitrary theories.  But only when the theory is finitely axiomatisable,
will the theory and its complement stand in the relations that are
distinctive of boolean algebras.

Def. 9 Let T be an element of TL.  The pseudocomplement of T in

TL, -LT, is defined by:  -LT = {T' # TL: T L T' = 0L}15

Prop. 5 ( i ) -LT is the largest theory T' of L such that T L T' = 0L.

( i i ) Suppose that T = TA.  Then -LT = T A.
Proof.

( i ) Let T = ClL(-LT ). Suppose that B # T T. Then B # T and there is a

C # -LT such that C B.  But if C # -LT, then there is some theory T' such

that  T L T' = 0L and C # T'.  Since C # T' and B # T, C v B # 0L. On the

other hand, since C B and B B. C v B B. So, since 0L is a theory, B #

0L. This establishes that T is a theory T' such that T L T' = 0L.

Therefore ClL(-LT ) = T  -LT. So -LT = ClL(-LT ).  That is, -LT is a theory
It now follows directly from Def. 8 that it is the largest theory T' such

that T L T' = 0L.

( i i ) Suppose that T = TA. Then, as we have already seen, T A is a

theory T' such that T L T' = 0L.  So T A  -LT.  Now let T' be any

theory such that T L T' = 0L. Suppose that B # T'. Then, since A # T ,

A v B # 0L; that is, A v B.  But A v B is logically equivalent to A  B.

So A  B, and therefore A  B. So B # T A. This establishes that

-LT T A. So T A = -LT.
q.e .d.

1 5 Tarski lattices are thus structuresc which, according to a well-esrablished
terminology are called pseudo-complemented lattices. A pseudo-complemented
lattice is a lattice with an additional 1-place operation - with the properties that
for all x, -x is the largest element such that x -x = 0. Tarski-lattices have
additional properties, one of which is that they are distributive.  In fact, most of
the well-known examples of pseudo-complemented lattices that are not Boolean
algebras are distributive. However, the existence of a pseudo-complement does not
entail distributivity. For instance, the 5-element lattice of Section 2.1.3 is pseudo-
complemented (-1 = 0, -0 = 1, - a = b, -b = -c = a), but as we saw it is not distributive.
Sometimes the pseudo-complement of x is defined as the smallest element y such
that x y = 1. From a formal poitn of view this comes in last analysis to the same

ting because of the duality of and .
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We now proceed to the proof of Thm. 4.

 Proof of Thm. 4

( a ) Suppose that T is a theory of some first order language L and that

T L -LT = 1L. Then there are a sentence A from T and a sentence B

from -LT such that A & B . This entails that B A.  So we have A #

-LT. We show that T = TA.  Suppose that C # T. Then, since A # -LT, C v

A # 0L. So  C v A, which is equivalent to: A  C.  So C # TA. So we

have shown that T TA. On the other hand, since A # T, TA T. So
T = TA.

( b ) We observe that the following infinite set of sentences {Dn}n =

2,3,..is strictly increasing in that for all n, Dn+1 D n but not Dn D n+1:

D2: ( v1)( v2) v1  v2

D3: ( v1)( v2)( v2) (v1  v2 & v1  v3 & v2  v3)
.
.
(D n says that there are at least n different elements in the universe.)

Let L be any first order language and let Tinf,L be the theory
axiomatised by the sentences , i.e. Tinf,L =  ClL({Dn}n = 2,3,..).  (Note
that the sentences only use logical vocabulary and thus belong to any
first order language whatever.) Then according to Exercise 7.b of Ch. 1
Tinf,L is not finitely axiomatisable. So Tinf,L has no complement in L
satisfying both of the two conditions (2.i,ii).
It follows that for no L is TL, the Tarski lattice for L, a boolean lattice.

q.e .d.

So far we have considered the Tarski lattices TL of first order languages
and just one type of substructure of those, the Lindenbaum algebras.
But of course we could in principle study many other sublattices of the
TLs.  Of special importance among those sublattices are certain lattices
whose bottom element is not 0L , but rather some theory T of L.  More
particularly, it has proved useful in a variety of contexts to study (i) the
lattice consisting of all extensions of T, and (ii) the lattice consisting of
the finitely axiomatisable extensions of T (those extensions T' of T for
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which there is a sentence A of L such that T' = ClL(T  {A}).16 We call
these the Tarski lattice of L generated by T and the Lindenbaum algebra

of L generated by T, respectively, and denote them as TL,T and LL,T.

Def. 1 0 Let L be a language, T a theory of L.

a . The Tarski lattice of L generated by T is the structure TL,T =

<TL,T, >, where TL,T is the set of all L-extensions of T and 
is the relation of set-theoretic inclusion restricted to  T L,T.

b . The Lindenbaum algebra of L generated by T is the structure

LL,T = <LL,T, >, where LL,T is the set of all L-extensions of T
which are finitely axiomatisable over T - that is. All those
L-extensions T' of T for which there is an L-sentence A such 

that T' = ClL(T {A})) and is the inclusion relation on LL,T.

Like TL, TL,T is always a distributive lattice with 0 and 1.  This can be
shown in just the same way as we did for TL. The argument that LL,T i s
always boolean also goes as before.  So far, then, there is no difference
between the more general cases of TL,T and LL,T and the more specific
cases of TL and LL, in which the bottom element is 0L. But there is
nevertheless one difference, viz. that among the lattices TL,T we now
find many that are boolean (while, as we have seen, this is never so for
the lattices TL ).  It can be inferred from what has already been
established in this section that this happens only when the Tarski lattice
generated by T and the Lindenbaum algebra generated by T coincide,
i.e. when all extensions of T are finitely axiomatisable over T.  In the
next section we will see a number of comparatively simple examples of
this situation.

Besides the lattices TL,T and LL,T other sublattices of TL are worth
consideration as well. Among these are in particular the lattice of all
subtheories of a given theory T and the lattice consisting of all its
finitely axiomatisable subtheories. (Exercise: prove that the former is
again a distributive lattice with 0 and 1, where the set of tautologies of
L is the 0 and T is the 1, and that the latter is a boolean lattice.)  Even

1 6 Often the lattice T L,T provides us with certain insights into the nature of T.
For by telling us something aqbout the range of possible extensions of T it also
tells us something about the range of its possible models, or true interpretations.
and with that of the range of variability among the models of T.
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more generally, we can, for any pair of L-theories T and T' such that T 
T', consider the Tarski lattice and Lindenbaum algebra consisting of
those L-theories (or finitely axiomatisable L-theories, respectively) that
lie between T and T', - in other words, at the sublattices of TL whose 0
is T and whose 1 is T'.  None of these, however, will be further
considered in these Notes.

We have already observed that TL is never boolean - not even for the
simplest language {}.  This is not so for the lattices TL,T.  These can be
boolean.  Among them is the trivial lattice TL,'L, whose only element is

'L, and all two element lattices TL,T, for T a consistent and complete
theory of L, lattices whose only elements are 'L and T.

In general, lattices of the form TL,T are always both atomic and
complete.  More precisely, this is so for any such lattice with more than
two elements. (If a lattice has " 2 elements, then there are no atoms and
the concept of atomicity is not applicable.) To see that TL,T is atomic,
assume that TL,T has > 2 elements and observe that the complete
consistent extension of T are the 'anti-atoms' of TL,T: they are those
theories different from the inconsistent theory of L such that there is
no theory between them and the inconsistent theory. It is easy to show -
Exercise: do this! - that the atoms of TL,T are precisely the theories -LT '
where T' is any complete and consistent extension of T. With this in
mind it is easy to see that TL,T is atomic. For let T' be any proper
extension of T (i.e. any extension of T that is different from T). Let A be
any consistent sentence in T'\T - there will be such sentences if TL , T
has > 2 elements - and let T'' be any complete and consistent extension

of Cl({ A}). Then -LT' ' is an atom below T'. (Exercise: prove this!)

That TL,T is a complete lattice is straightforward.  Let T  be any set of
extensions of T.  It is easy to show that ClL((T  ) is the supremum of T .

We already know that TL,T is not always a boolean lattice.  (In
particular, this is never so when T is 0L.)  For some L and T, however,
TL,T is boolean. Trivial examples are those where T is the inconsistent
theory of L, in which case TL,T is the trivial boolean algebra consisting
of just one element and the case we already considered, where T is a
complete consistent theory, in which case TL,T consists of two
elements, T and the inconsistent theory of L.  There are also many
examples of boolean TL,T of more than 2 elements.  However, all
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boolean lattices TL,T are finite.  Note that this does not simply follow
from the fact that such lattices are atomic and complete. For there exist
infinite atomic and complete boolean lattices, viz. the power set

inclusion structures <P(X), > in which X is infinite.

The fact that boolean lattices of the form TL,T are always finite thus has
to do with the special properties of theory lattices.  Since we have
already established that TL,T is always atomic and complete, the
argument is quite simple.  It goes as follows.  First we observe the
following general property of complete atomic boolean lattices L :

( 1 ) Let L  be a complete atomic boolean lattice and let A1 and A2 b e
two distinct sets of atoms of L .  Then the suprema in L o f
these two sets, sup(A 1) and sup(A 2), are distinct.

We prove (1) by making use of (2), which we leave as an exercise:

( 2 ) Let L  be a boolean lattice and let a, a' be distinct atoms of L .
Then a "  -a'.

Proof of (1): Let A1 and A2 be two distinct sets of atoms of L . Then
there is an a #  A 1\ A 2 or there is an a #  A 2\ A 1.  Assume that

a #  A1\ A2.  Then by (2) for each a' #  A2, a' "  -a. So, sup(A2)  -a. On

the other hand a sup(A 1).  So it is not the case that sup(A 1)  -a; for

that would mean that a  -a, which is obviously impossible, as it would
entail that -a = 1L, which evidently it isn't. (If it were, then a =  --a = 0L,
and thus a would not be an atom.)

We next observe (3)

( 3 ) Any complete, atomic boolean lattice L  = <U, > with atom set A  is

isomorphic to the power set inclusion lattice <P(A ), > .

(3) follows from (1) and (4), the proposition that in a complete atomic
boolean lattice L  each element other than 0L  is the supremum of the set
of all atoms below it.

( 4 ) Let L  be a complete atomic boolean lattice with atom set A and let
b be any element of L  such that b &  0L . Let Ab be the set of atoms
below b: Ab = {a # A : a "  b}. Then b = sup(Ab).
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The proof of (4) is left as an exercise.  (See Exercise ?? at the end of

this Chapter.)

In view of (1) and (4) we can define the following map h from L  to

P(A ), >: for b # U such that b &  0L h(b) = sup(Ab); and h(0L) = ) . It is

then easy to see that h is onto an that it transfers into the inclusion
relation on P(A ) .

Suppose now that TL,T is infinite.  Then because of (3) its atom set A

must be infinite.  Now let A ' be any proper infinite subset of A .  Since
each element a of is finitely axiomatisable we can choose for each such
a a single sentence Aa which axiomatises a.  Let T(A ') be the theory of L
which is the supremum of A ' in TL,T. Then, since A ' is a proper subset
of A , there is at least one atom a that does not belong to A '. Then, as we

have seen, T(A ')  -a, so T(A ') consistent. But then T(A ') is not finitely
axiomatisable. The argument is like that of Exercise 12 of Ch. 1. Let
a1 ,a2 , ... be an enumeration of all members of A '. Note that A ' is
denumerable. (Why?).  Furthermore, let the sentences Bn be defined as
follows: (i) B1 = Aa1; Bn+1 = Bn & Aan+1.  Then it is easily verified (i)

that the Bn are strictly increasing in logical strength - i. e. we have for

all n that Bn+1  Bn, but not Bn  Bn+1 - and (ii) that T(A ') = ClL({Bn}n
= 1,2, ..).  So we can argue as in Exercise 12 of CH.1 that T(A ') is not
finitely axiomatisable.  But then, as shown in Exercise 21 of CH. 1,

T(A ')  -T(A ') 1. So TL,T is not boolean.

This concludes the proof of our claim that when a lattice TL,T i s
boolean, it must be finite.  We record this claim once more, as part of
the following more elaborate Theorem 5, which gives three additional
equivalent conditions.

Thm. 5  Let T be a theory in some first order language L
Then the following five statements are equivalent:

( i ) TL,T is boolean.
( i i ) T has finitely many complete extensions.
(iii) T has finitely many extensions. (i.e. TL,T is finite.)
( iv) All of T's complete extensions are finitely

axiomatisable over T.
( v ) All of T's extensions are finitely axiomatisable over T.
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The main work of the proof of Theorem 5 has been done above. What
remains is left as an exercise.

Theorem 5 entails that boolean lattices of the form TL,T  a r e
comparatively rare.  They are found only 'at the upper end' of the set of
all lattices TL, i.e. when T is cose to being complete.  (The cases we
have already mentioned, i.e. the lattices TL,T where T is itself a
complete theory, are the extreme examples of this.)  In the next section
we will look at some simple cases of boolean lattices of the form TL,T.

To get a clear picture of the structure of the lattices TL for different
languages L turns out to be a far from trivial problem.  Only for the
very simplest languages is it possible to describe the structure of TL i n
fairly straightforward and readily understandable terms.  This is so in
particular for the language without any non-logical constants, {}.
Already for the language {P} whose only non-logical constant is the 1-
place predicate P, ta complete description proves to be considerably
more involved.  But a much higher degree of complexity is reached
when the language contains predicates of 2 or more places or function

constants whose arity is 1.  There are all sorts of questions that can be
asked here, for instance:

(a) What is the full range of isomorphism types of lattices TL for
various first order languages?

( b ) How does the structure of TL depend on L?

( c ) Call two languages L1 and  L2  isomorphic iff they have essentially
the same signature; that is, if there is a bijection h of
the set NLC1 of non-logical constants of L1 onto the set NLC2 of 
n o n - logical constants of L2 which preserves signature in that for
any $ # NLC1, L1($) =  L2(h($)).

Question: Are there (finite) non-isomorphic languages for which
the corresponding theory lattices are isomorphic nevertheless?
And if so, for which language pairs is this so?

To none of these questions do I have answers, and I do not know
whether answers to them exist.

2.2.2.        Tarski Lattices of some almost complete Theories
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In this section we look at two examples of Tarski lattices TL , T
which are comparatively simple and tractable.

In the first example the theory T is the theory Tden of arbitrary dense
linear orderings.  One of the extensions of this the theory Trat of the
ordering of the rationals (or, what comes to the same thing: the theory
of all dense linear orderings without beginning or end point) which we
investigated in Section 2.1.1.  Of Trat we showed that it is % -categorical,
und thus, since it also has the property that all its models are infinite,
complete .

Tden is axiomatised by the following axioms Tden.0 - Tden.4. Tden.1 -
T den.4 are from our earlier axiomatisation of Trat;  Tden.0 has been
added in order to eliminate the degenerate order which consists of just
one element. (In the case of Trat this possibility was excluded by the
presence of axioms L5 and L6, repeated below, which assert that there
is no beginning and no end point, respectively-)

Tden. 0 ( x)( y) (x  y)

Tden. 1 ( x)( y) (x < y  (y < x))

Tden. 2 ( x)( y)( z) ((x < y & y < z)   x < z)

Tden. 3 ( x)( y) (x < y  v  x = y  v  y < x )

Tden. 4 ( x)( y) (x < y  ( z) (x < z  &  z < y))

L5. ( x)( y) (x < y)

L6. ( x)( y) (y < x)

Unlike Trat Tden is of course not complete.  But it is not far removed
from that.  It has a total of no more than four complete extensions.
One of these is Trat, which we get by adding the axioms L5 and L6.
The other three are obtained by adding the other boolean combinations

of these two axioms: (i) { L5, L6}, (ii) {L5, L6}, (iii) { L5, L6}.

We denote the four extensions of  Tden as(i) Tden(+,+), (ii) Tden(+,-),
(iii) Tden(-,+)and (iv) Tden(-,-).  The + and - signs indicate the
presence or absence of a first or last point.  For instance, if the first
sign is a plus, then the models of the theory all have a beginning point,
and if it is - then all models don't.  In other words, Tden(+,+) is the

theory we get by adding to Tden the axioms L5 and L6, and so on,
In particular Tden(-,-) = Trat.
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That each of the theories Tden(+,+), Tden(+,-) and Tden(-,+) is
consistent and complete can be shown in the same way as we did this
for Trat in Section 2.1.1.  In fact, since the rational interval (0,1) is one
of the models of Trat  (Exercise: show this!), it follows from what was
shown in Section 2.1.1 that every denumerable model of Trat  is
isomorphic to (0,1). Using the same method we can also prove that
[0,1), (0,1] and [0,1] are models of  Tden(+,-), Tden(-,+) and
T den(+,+), respectively, and that they are the only denumerable models
of these theories up to isomorphism. So since each of the theories only
has infinite models (Exercise: show this!), they are all complete as well
as consistent.1 7

It is also easy to show that these are all the complete and consistent
extensions of Tden.  For suppose that T is any complete extension of
Tden and that M is a model of T.  M will either have or fail to have a
first point and likewise it will either have or fail to have a last point.
This gives a total of four possibilities, corresponding to the four
boolean combinations of L5 and L6 mentioned above. In each case T is
identical with the theory we get by adding this boolean combination to
T den.  For instance, suppose that M has both a first and a last point.

Then it will verify both L5 and L6.  So these sentences are consistent
with T, and so, since by assumption T is complete, they must belong to
T.  So T is the theory Tden(+,+).  Likewise for the other three
possibilities.

This shows that the lattice TL,Tden has exactly four 'anti-atoms'.  So it

also has exactly four atoms, which means that it consists of 24  theories
altogether.  Exercise: give explicit axiomatisations for each of the
theories that make up TL,Tden!

2.2.3         Quantifier Elimination

1 7 The same is true for the other three complete extensions of Tden .  Consider
for instance Tden(+,-).  The only complication which we have to deal with, when
constructing martching tuples <a1, ..., an>, <b1, ..., bn> from two models M1, M2 of
T den(+,-) is that if <a1 , ..., an> contains the first element of M1, and more precisely,
if this first element is ai, then bi must be the first element of M2 , and conversely.
That that is the only additional precaution we need to take in constructing the
finite sequences  <a1, ..., an>, <b1, ..., bn> and the isomorphiisms  between them rests
on the fact that all elements of M1 (casu quo M2 ) which are distinct from its first
element are "infinitely far away from it" in the sense that there are infinitely
many points between any such point and the first point (just as there are
infinitely many points between any two distinct points of any model of Tden , )



5 5

Our second example concerns the theory of discrete linear orderings.
We will explore the Tarski lattice TL,Tdis, where Tdis is the theory

defined below.

This exploration will be more involved than that of TL,Tden in the last

section, and that for two distinct reasons.  First, TL,Tdis is a more

complex lattice than TL,Tden, although its complexity is still quite

modest when compared with most Tarski lattices. But also - and this
will be the bigger hurdle we will encounter - proving that the structure
of the lattice is indeed what we will claim it to be, will prove a good
deal more involved than tit was in the case of  TL,Tden and it will

require a fundamentally different method. This is the method of
quantifier elimination mentioned in the title to this section.

The base theory of our lattice, Tdis, is once more a theory of the
language L = {<}.  Tdis is axiomatised by the axioms Tdis.0 - Tdis.5.  Not
surprisingly there is a considerable overlap with the axioms of Tdis.  For
after all both theories deal with linear orderings.  Consequently the first
four axioms are the same, and divergence from Tden comes only with
the discreteness axioms Tdis.4 and Tdis.5.

Tdis.0 ( x)( y) (x  y)

Tdis.1 ( x)( y) (x < y  (y < x))

Tdis.2 ( x)( y)( z) ((x < y & y < z)   x < z)

Tdis.3 ( x)( y) (x < y  v  x = y  v  y < x )

Tdis.4 ( x)(( y) (x < y (( y) (x < y & ( z) (x < z  &  z < y))

Tdis.5 ( x)(( y) (y < x (( y) (y < x & ( z) (y < z  &  z < x))

Tdis is not complete and for much the same reasons as Tden: Nothing is
said about the existence or non-existence of beginning or end points.
Using the same notation that we resorted to in our discussion of Tden,
we define the theories Tdis(+,+), Tdis(+,-), Tdis(-,+) and Tdis(-,-) to be
those which we get by adding the boolean combinations of L5 and L 6

described in the last section. (Thus Tdis(+,+) is obtained by adding 

L5 and L6, etc.)  All of these have, like the corresponding extensions
of Tden, infinite models.  In particular, Tdis(+,-)is satisfied by the
ordering of the natural numbers, Tdis(-,+) by the order of the negative
integers,Tden(-,-) by the order of the positive and negative integers and
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Tdis(+,+) by the structure which we get when we put the negative
integers "behind" the natural numbers.1 8

There is however an important difference between Tdis(+,+) and the
other three: while the latter only have infinite models, Tdis(+,+) has
finite models as well.  In fact, Tdis(+,+) has models of cardinality n for

all finite n 2: any linearly ordered set of n elements will be a model of
T dis(+,+).19 On the other hand it is also clear that for each finite
cardinality n there is essentially just one model for Tdis of that
cardinality: Any two linearly ordered sets of n elements are (obviously)
order-isomorphic; we can define, in the obvious way, an order-
preserving correspondence between them.  This means that if we add to
T dis(+,+) a sentence which states that there are exactly n elements,
then the resulting theory will have for its only models the linear orders
of n elements.  And since any two such orders are isomorphic, it
follows that all these theories are complete.

In the spirit of the notation which we have been using, let us denote as
Tdis(+,+,n) the theories obtained by adding to Tdis(+,+) a sentence
saying that there are exactly n elements; and let us denote as
Tdis(+,+,* ) the theory obtained by adding to Tdis(+,+) the infinitely

many sentences D n which say that there are at least n elements.

What can we say about the theories Tdis(-,-), Tdis(+,-), Tdis(-,+) and
Tdis(+,+,* )?  The first pertinent observation is that unlike what we
found for the corresponding extensions of Tden, these theories are not
% -categorical.  Let us focus on Tdis(+,-).  One of its denumerably
infinite models, we noted, is the set of the natural numbers with their
natural order. But there are other denumerably infinite models too, and

1 8 More presicely, we can define this structure as the ordered disjoint union of
these two structures, viz as the set of all pairs <0,n>, with n #  N and all pairs <1,-n>
with n #  N, with the ordering relation < defined by:

( i ) <0,n> < <0,m> iff n <N m
( i i ) <1,-n> < <1,-m> iff m <N n
( i i i ) <0,n> < <1,´m> for arbitrary n, m

1 9 The requirement that n 2 comes from Tdis.0, which we have retained from
our axiomatisation of Tden .  We could have dropped this axiom without changing
much to the structure of T L,Tdis.  The only effect would have been that the

degenerate, one point ordering would have been included among the possible
models of Tdis.  This would have meant that in addition to the complete extensions
of  Tdis  we are in the process of describing there would have been the extension
which says that there is exactly one point.
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as a rule these will not be isomorphic to the natural number structure.
The simplest model of Tdis(+,-) which is not isomorphic to the natural
numbers is the structure that we obtain when we put a copy of Z (the
negative and positive integers) behind a copy of the natural numbers.
We can make this precise in the same way as we did for the infinite
model we considered for Tdis(+,+) described in footnote 16.  That is we
let M be the model < UM ,<M >, where

( a ) UM = {<0,n>: n # N} {<1,z>: z # Z}

( b ) <M = {<<0,n>:, <0,m>>: n < N m} {<<1,z >:, <1,y>>: z < y}

 {<<0,n>:, <1,z>>}

It is obvious that M is not isomorphic to the set N of natural numbers
with their standard order.   Just try to construct an isomorphism
between N and M, starting with the 0 of N, 0N .  Obviously there is only
one element of M on which an order isomorphism h from N to M could
map 0, viz. M's first point <0,0>.  In other words, it is necessarily the
case that h(0N ) =<0,0>.  Likewise the number 1 of N, 1N , which is the
immediate successor of 0 in N, can only be mapped onto the immediate
successor <0,1> of <0M  in M. That is, we must have h(1N ) = <0,1>. In
the same way the structure of N and M fixes the images under h of all
the other elements of N.  This means that, when N has been exhausted -
i.e. h has been defined for all of N - only the "N-part" of M (consisting
of the pairs of the form <0,n>) has been covered in the range of h.

The non-isomorphism of N and M entails that the completeness of
Tdis(+,-) cannot be established by the simple technique which we used
to prove Cantor's theorem (the % -categoricity of Tden(-,-)) in Section
2.1.1 and which would also be applied to the three other extensions of
Tden which we considered in the last section.  Nevertheless, Tdis(+,-) is
complete and the same is true of the remaining three extensions of Td i s
which have infinite models, Tdis(-,-), Tdis(-,+) and Tdis(+,+,* ).  But the
proof that they are complete is harder than the Cantor-type proofs for
the corresponding extensions of Tden.  We will give the proof for the
case of Tdis(+,-).  The proofs that the three other theories are complete
are virtually identical.

In presenting the proof that Tdis(+,-) is complete we will proceed as
follows.  We first focus on the concrete task before us.  We show that
any two models of Tdis(+,-) are elementary equivalent.  This argument
will reveal the general features of the method used (that of quantifier
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elimination).  Un the next section we will then describe and discuss the
method of quantifier elimination in general.

Recall the basic architecture of Cantor's proof.  We considered two
models M1= < U1, <1> and M2 = < U2, <2> of Tden(-,-) and
constructed, by going back and forth between the universes U1 and U2,
ever longer matching n-tuples <a1, ..., an> of elements from U1a n d
<b1, ..., bn> of elements from U2, which were order-isomorphic.
Because of the special properties of dense linear orderings it proved to
be always possible to match a new element an+1 chosen from U1 by a
new element bn+1 from U2 which stood in exactly the same order
relations to each of the bi (i = 1, ..., n) as an+1 stood to each of the ai;
and conversely. For models of theories of discrete orderings - among
them the models for Tdis(+,-) - the situation is different.  Here the
"distance" between two points - i.e. the number of points between them
- can be either finite or infinite; and the distance could involve any
finite number n of intermediate points.  The model N is special among
the models of Tden(+,-) in that the distance between two of its
elements is always finite.  But in this respect it is unique. Any model of
Tden(+,-) which is not isomorphic to N will have points that are
infinitely far from each other.  (This is true in particular for the model
we considered above, in which a copy of N is followed by a copy of Z.
In this model there is an infinite distance between any two elements
<0,n> and <1,z>.)

A consequence of this is that when we consider a formula A of our
language and two tuples <a1, ..., an>, <b1, ..., bn> belonging to two
models M1, M2 and ask whether A gets the same truth value in M2
under the assignment provided by <b1, ..., bn> that it gets in M2 under
the assignment provided by <a1, ..., an>, then we will have to take into
account the quantifier complexity of A:  It will depend on this
complexity how similar <a1, ..., an> and <b1, ..., bn> will have to be in
order that we can be certain that they confer upon A the same truth
value in their respective models M1and M2.  A few simple examples will
illustrate this.

First consider a quantifier-free formula, e.g. v1 < v2.  Let M1, M2 be
models of Tdis(+,-) and let  <a1,a2>, <b1,b2> be ordered pairs of
elements of M1 and M2 which are order-isomorphic to each other, i. e.

a1 <M 1 a2 iff b1 <M 2 b2 .  Then clearly M1  (v1 < v2)[a1,a2] iff
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M 2  (v1 < v2)[b1,b2].  The same holds for any other quantifier-free

formulas such as v1 < v2 & v2 < v3, v1 < v2 & (v2 < v3), etc, etc.  This
is just as in the case of dense orderings.

As soon as A contains quantifiers, however, the mere order
isomorphism between <a1, ..., an> and <b1, ..., bn> will no longer

suffice.  For example, let A be the formula ( v2)(v1 < v2 & v2 < v3) .
Suppose that M1and M2 are both the natural number structure N and
that <a1, a2> = <4,7> and <b1,b2> = <8,9>.  Then <a1,a2> and

<b1,b2> are order-isomorphic; yet N  A[a1,a2], while on the other

hand not N  A[b1,b2].  The source of the problem is obvious.  A says
something about the distance between the points represented by its
free variables v1  and v3, viz. that there is at least one point between
them. This is a condition which a mere order isomorphism need not
preserve.  And that is precisely what we see in our example: <a1,a2>
and <b1,b2> are both order-isomorphic, but the point pair <a1 ,a2>
satisfies the condition that there is at least one point between them
whereas the pair <b1 ,b2> does not.  In other words, in order to be sure
that two pairs <a1,a2> and <b1,b2> confer upon A the same truth
value, they must not just be order-isomorphic, but stand in some
tighter relationship, which also involves information about how many
points there are between them.

As we move to formulas A more quantifiers even stronger similarity
relations must hold between <a1,a2> and <b1,b2> to guarantee that
a1and a2 satisfy A in M1 iff b1and b2 satisfy A in M2.  This is because
with more quantifiers we can say more about the number of points
between two given points a1and a2.  For instance, with two quantifiers,
but not with just one, it is possible to say that there are at least two
points between a1 and a2; and so on.  And the same goes, more
generally, for formulas A with free variables x1, ..., xn:  Ever stronger
relations must hold between an n-tuple <a1, ..., an> of elements from
M 1 and an n-tuple <b1, ..., bn> of elements from M2 in order to
guarantee that <a1, ..., an> satisfies A in M1 iff <b1, ..., bn> satisfies A
in M2.

It would be convenient iff we could define a relation between tuples
<a1, ..., an> and <b1, ..., bn> such that any two tuples standing in this
relation will confer the same truth value on all formulas.  But often -
this is true of our present problem but also for many others - there is
no direct way of defining such a single relation; all that can be done is
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to define a hierarchy 1 , 2 , ... of ever tighter relations between n-

tuples so that whenever <a1, ..., an> k <b1, ..., bn>, then <a1, ..., an>
and <b1, ..., bn> confer the same truth values on all formulas whose

quantifier depth is  k. By the quantifier depth of a formula A we
understand the maximal degree of nesting of quantifiers in A.  There is
no particular difficulty in defining this notion for arbitrary formulas.
But it is somewhat more convenient to limit our attention to prenex
formulas.  For a formula A in prenex form the quantiifer depth of A is
simply the number of quantifiers in its quantifier prefix. Since every
formula is logically equivalent to a formula in prenex normal form,
satisfaction preservation of all prenex formulas will entail preservation
of all other formulas.

For the argument below it will be also convenient to asssume a slightly
different form for prenex formulas, one in which the prefix contains
only existential quantifiers but no universal ones.  We can obtain such a
prefix from a standard prefix by replacing every universal quantifier

( vi) in the standard prefix by the equivalent combination ( vi) .  So
the formulas with which we will be concerned will always begin with a
(possibly empty) prefix consisting of existential quantifiers and
negation signs, followed by a quantifier-free formula.  The quantifier

depth  of such a formula is then the number of existential quantifiers in
its prefix.

In (1) we repeat for further reference the basic requirement we have

already stated on the relations k .

(1)  Let M1and M2 be models of Tdis(+,-). And let A be any formula of

quantifier depth  k whose free variables are among x1, ..., xn.
Then for any n-tuples <a1, ..., an> and <b1, ..., bn> of elements

chosen from M1and M2, respectively, such that <a1, ..., an> k
<b1, ..., bn>, M1  A[a1,..,an] iff  M2  A[b1,.., bn]. 

We already know what is required of the relation o, which according

to (1) should guarantee that if <a1, ..., an>  o  <b1, ..., bn>, then
<a1, ..., an> and <b1, ..., bn> satisfy the same formulas of quantifier
depth 0 (i.e. the same quantifier-free formulas). This requires that the
function h, given by the condition: h(ai) = bi, is an order isomorphism
between (the submodels of M1and M2 determined by) {a1, ..., an} and

{b1, ..., bn}, respectively.  We define o accordingly:



6 1

(2)  Let <a1, ..., an>and <b1, ..., bn> be n-tuples of elements chosen
from models M1and M2, respectively. Then

<a1, ..., an> o <b1, ..., bn> iff

the function h given by: "for i = 1,2, .., n, h(ai) = bi" is an order 
isomorphism between the submodels of M1and  M2 whose
universes are }a1, ..., an} and {b1, ..., bn} .

A second requirement on the relations k , which is imposed by the
strategy we will follow to show that two models M1and M2 of Tdis(+,-)

are elementarily equivalent, is that successive relations k and k + 1
stand in the following relation:

( 3 ) Suppose that M1 and M2 are as under (1), that, for
arbitrary number n,<a1,..,an>, <b1,..,bn> are n-tuples of
elements of M1 and elements of  M2, respectively and that

<a1,..,an> k+1 <b1,..,bn>. Then

i. if a is any element of M1, then there is an element b of M2,

such that <a1,..,an,a> k <b1,..,bn,b>.

ii. if b is any element of M2, then there is an element a of M1,

such that <a1,..,an,a> k <b1,..,bn,b>.

From (2) and (3) we can derive that the condition (1) holds for all
formulas of the special prenex form described above, in which a
quantifier-free part is preceded by a string of existential quantifiers and
negations.  We repeat this restricted version of (1) as (1') below. Since
every formula can be transformed into a logically equivalent formula of
this special form, (1') entails (1).

( 1 ' ) Let M1and M2 be models of Tdis(+,-). And let A be any prenex
formula with a prefix consisting of existential quantifiers and

negation signs, that A has quantifier depth  k and that its free
variables are among x1, ..., xn.  Then for any n-tuples <a1, ..., an>
and <b1, ..., bn> of elements chosen from M1and M2,

respectively, such that <a1, ..., an> k <b1, ..., bn> ,

M 1  A[a1,..,an] iff  M2  A[b1,.., bn]. 
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To derive (1') from (2) and (3) we argue by induction on the
complexity of such formulas. The base case is constituted by quantifier
free formulas. Strictly speaking, this reuires an inductive proof in its

own right: First, when <a1, ..., an> o <b1, ..., bn> and A is an atomic
formula - that is, A is either of the form "vi = vj" or of the form
"vi < vj", then obviously A is satisfied by <a1, ..., an> in M1 iff it is
satisfied by <b1, ..., bn> in M2.  The inductive step then consists in
showing that the condition in (1') holds for B and for C then it holds for

B, B & C, and likewise for the other sentence connectives.  But this is
trivial.

The inductive step makes use of (3).  Suppose that (1') holds for

formulas of quantifier depth  k and that A is a formula in our special
prenex form and is of quantifier depth k + 1.  If A begins with a

negation sign - i.e. A is of the form B, where B too has our special
prenex form, then the result will hold for A provided it holds for B.  Let
us assume therefore that A begins with an existential quantifier, i.e. A is

of the form ( x)B.  Suppose then that the free variables of B are among

v1, ..., vn and that <a1, ..., an> k+1 <b1, ..., bn>.  Without loss of
generality we may assume x is the variable vn+1. (We do not really need
this assumption, but it simplifies notation.) Assume that

M 1  A[a1,..,an].  Then there is an element a of M1 such that

M 1  B[a1,..,an,a].  Given (3) we can find an element b in M2 such that

<a1, ..., an,a> k <b1, ..., bn,b>.  By induction hypothesis

M 2  B[b1,..,bn,b].  So it follows that M2  ( x)B[b1,..,bn].  In the same

way we show that if M2  A[b1,..,bn], then M1  A[a1,..,an] .

This concludes the argument that (1) provided that we can define a

sequence of relations o , 1 , 2 ,.. such that o is the relation defined in

(2) and successive relations k , k+1 satisfy (3).  In the present case .
the one concerning the theory Tdis(+,-) - the relations can be given by
independent explicit definitions. (In other applications of the quantifier
elimination method their definition may be more complicat4ed and
require itself an induction on k.)  The definitions are given in (4)

( 4 ) Let M1 and M2 be models of Tdis(+,-).  Let abeg be the first
element of  M1in the sense of its order relation <M 1 - there must
be a unique such element since M1 is a model of Tdis(+,-) - and let
bbeg be the first element of  M2. Let <a1, ..., an> and <b1, ..., bn>
be n-tuples from M1 and M2, respectively.
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Then <a1, ..., an> k <b1, ..., bn> iff the following conditions are
fulfilled:

( i ) <a1, ..., an> and <b1, ..., bn> are order-isomorphic.
(For simplicity we assume, as we have been all along, that their
elements have been arranged "in order of magnitude", i.e.
a1 <M 1 a2, etc. and similarly for the elements of <b1, ..., bn> )

( i i ) For any pair of successive elements ai, ai+1 from the first tuple
and corresponding pair bi, bi+1 from the second we have either
(a) or (b):

( a ) the number of elements) between ai and ai+1in M1 and that

between bi and bi+1 in M2 are both < 2k and they are
identical;

( b ) the number of elements between ai and ai+1in M1and that

between bi and bi+1 in M2 are both  2k.

(iii) For the elements a1 and b1  we have either (c) or (d):

( c ) the number of elements between a1  and abeg and that 

between b1  and bbeg are both < 2k and they are identical;

( d ) number of elements between a1  and abeg and that between

b1  and bbeg are both   2k .

N.B. For the case where k = 0 condition (ii) is vacuous, since the first
possibility they mention - of the distances between ai and ai+1 and

between bi and bi+1 being < 2o - cannot arise.  Similarly condition (ii)
is vacuous, So only (i) matters and thus the specification that (4)

provides of o coincides with that given in (2).

It remains to show that the relations of (4) satisfy (3). Suppose that

<a1, ..., an> k+1 <b1, ..., bn>.  We have to show that for any element a

of M1 there is an element b of M2 such that <a1, ..., an,a> k + 1
<b1, ..., bn,b> and conversely.  we only consider the first half. Let a be
any element of UM 1 .  There are three possibilities to be considered:

( i ) a <M1 a1;
( i i ) ai <M 1 a <M 1 ai+1for some i < r
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(iii) an <M 1 a .

Assume (i).  Let D(abeg,a1) be the number of elements between ab e g

and a1 .  Then either (c) D(abeg,a1) < 2k+1 or (d) D(abeg,a1) 2k+1.
First suppose (c).   Since the number of elements in M2 between bb e g
and b1 , D(bbeg,b1), is the same as D(abeg,a1), we can pick as the b
required by (3) that element of M2 which lies just as many elements
before b1 in M2 as a lies before a1in M1.  Then the distance between b
and b1 is the same as that between a and a1  and the same is true for
the distance between the b and bbeg and the distance between a and

abeg.  So <a1,..,an,a> k <b1,..,bn,b>.

Now suppose that both D(abeg,a1) and D(bbeg,b1) are + 2k+1.  First

suppose that the distance between a and a1 is < 2k.  Then we pick from
M 2 the element b which lies before b1 at just the same distance that a
lies before a1 in M1. This guarantees that there are as many elements
between a and a1 in M1 as there are between b and in b1 in M2.
Moreover, since by assumption the distance between abeg and a1 a n d

that between bbeg and b1 are both + 2k+1 , the distance between ab e g

and a and that between bbeg and b will be both  +  2k.  So again we have

that <a1,..,an,a> k <b1,..,bn,b>.

The second possibility to be considered is that where D(abeg,a) < 2k.
Then we pick the element b of M2 which lies at that same distance from

bbeg.  This time D(abeg,a1) and D(bbeg,b1) are both + 2k . So again

<a1,..,an,a> k <b1,..,bn,b>.

The third possibility we must consider for the position of a before a1  is

that where both D(abeg,a) and D(a,a1) are + 2k.  In this case the fact

that D(abeg,a1) is + 2k+1 guarantees that we can pick an element b

from M2 such that D(bbeg,b) and D(b,b1) are both + 2k. Again

<a1,..,an,a> k <b1,..,bn,b>.

This completes case (i), in which a lies before a1 in M1.  We leave the
other two cases - that where a lies between ai and ai+1 for some i < 1
and that where a lies beyond a - to the reader, and thus reach the end

of the argument that if <a1, ..., an> k+1 <b1, ..., bn>, then for any
choice of an element a from M1 we can make a matching choice of an
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element d from M2 such that <a1,..,an,a> k <b1,..,bn,b>20  and
therewith the proof that definition (4) entails (3). 

We have now proved (1'). One step remains towards the conclusion
that M1 and M2 are elementarily equivalent.  But this is
straightforward. Suppose that A is any sentence and that A' is formula
in our prenex form that is logically equivalent to A.  Then A' may be
assumed to also be a sentence.  Suppose that A' has quantifier depth k.

In order that M1 A' iff M2 A' we need to show that the empty
sequence < > of elements of M1 satisfies A' in M1 iff the empty
sequence < > of elements of M2 satisfies A' in M2.  According to (1')
this will be the case, provided these two sequences stand in the relation

k. But it is obvious from def. (4) that the empty sequences of elements
of M1 and M2 trivially satisfy this requirement.

q.e .d.

We have now proved that any two infinite models of Tdis(+,-) are
elementarily equivalent.  Since Tdis(+,-) only has infinite models,
Tdis(+,-) is complete. The argument is much like the one justifying
Vaught's Test.  (See Ch. 1, Theorem ??.)  Suppose that Tdis(+,-) were
not complete.  Then there would be a sentence A such that neither A

nor A belong to Tdis(+,-).  So both Tdis(+,-) {A} and

Tdis(+,-) { A} are consistent.  So each of them has a model.  Both
models must be infinite.  So, because of the Downward Skolem-
Löwenheim theorem, we may assume that they are both denumerably
infinite. So, since they are both models of Tdis(+,-) , it follows from
what we have just proved that they are elementarily equivalent. This
contradicts the assumption that the first model verifies A and the

second A .

By the same method that we have used to prove that Tdis(+,-) is
complete we can also prove completeness for the three remaining
theories, Tdis(-,+), Tdis(-,-) and Tdis(+,+,* ).  This rounds off our
survey of the complete consistent extensions of Tdis:  There are four
extensions whose models are infinite and denumerably many - the
theories Tdis(+,+,n) - whose models are of cardinality n.  These latter

2 0 N. B. the tuples <a1,..,an ,a> and <b1,..,bn,b>  are not necessarily arranged in
order of magnitude, even if this was true for the tuples <a1,..,an> and <b1,..,bn> ,
since the new elements a and b But of course we can rearrange the elements  of
a1 ,..,an ,a> and <b1 ,..,bn ,b> so that their order in hte tuples reflects there order in
the sense of M1 and M2.
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theories are absolutely categorical - any two models of Tdis(+,+,n) are
isomorphic - whereas the first four are complete but not % -categorical.

Since TL,Tdis is infinite, it follows from Thm. 5 that it is not boolean.

The trouble maker is Tdis(+,+,* ). All other complete extensions of Tdis
are finitely axiomatisable over Tdis (and in fact, since Tdis is finitely
axiomatisable itself, finitely axiomatisable simpliciter).  From this and
the infinity of TL,Tdis we can conclude that the one remaining complete

theory of TL,Tdis, viz. Tdis(+,+,* ), is not finitely axiomatisable.  (This is

a result that we can also easily derive directly, making use of the
particular axioms - those of Tdis(+,+) together with the difference
axioms Dn - which we have given, but we get it from Thm. 5 "for free".

Exercise.  Determine which extension of Tdis is the complement
- Tdis(+,+,* ) of Tdis(+,+,* ) relative to Tdis. (In particular, give an
explicit axiomatisation for - Tdis(+,+,* ).)

The purpose of this section has been two-fold.  On the one hand it is
meant as counterpoint to our investigation of the much simpler lattice
TL,Tden in Section 2.2.2.  As we noted earlier, the lattice TL,Tdis of this

section is still of modest complexity when compared with the Tarski
lattices for most languages and theories. But it is nevertheless
significantly more complex than TL,Tden.  Crucially, TL,Tden is boolean

while TL,Tdis is not.

However, the section also has served a second, more general purpose,
that of introducing the method of Quantifier Elimination.  The general
method is contained in the argument we have given for the inductive
step in the proof of (1') from condition (3).  This argument is fully
general in that it makes no use of any special properties of the models
for Tdis.  To turn that arument into a proof that any two models of Td i s
are elementarily equivalent we needed in addition (i) a definition of the

relations k  together with (ii) a proof that that the relations thus

defined satisfy (3) and (ii) a proof that o  satisfies condition (2) for
quantifier free formulas.  In each application of the method of
Quantifier Elimination (i)-(iii) have to be dealt with anew, in a way
which reflects the special properties of the problem to which it is being
applied. But the general architecture is always the same.  The next
section contains some further general reflections about this method
and some remarks about its history.
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One final remark on the nature of our investigations in the last three
sections (Sections 2.2.1 -2.2.3).  On the one hand these invesitgations
can be seen as a continuation of the exploration of first order theories
of boolean and other lattices which we started in Section 2.1.2.  From
this pointt of view there is no fundamental difference between our
exploration of Tarski and Lindenbaum lattices in the last four sections
and, say, our look at the two boolean algebras of Section 2.1.4.  But
there is also another point of view from which what we have been doing
from Section 2.2 onwards is importantly different from what precedes
it. In these last sections we have been applying the formal tools of
analysis - that of investigating structures as models of first order
theories - to the structure of those tools themselves.  In other words,
here we have one example of the situation described informally in
Sections 1.3.2 and 1.3.3 of Ch. 1: the possibility and potential
usefulness of applying the tools of formal logic to the structures of
formal logic - its expressions, languages and theories - themselves.  As
announced in Ch. 1 we will another instance of this in Ch. 3 when we
develop set theory as a first order theory.  While there are many
important differences between what we will do in Ch. 3 and the
explorations of the last three sectons, they nevertheless have in
common that both show the methods of formal logic can be made into
their own topic.

2.2.4         Why "Quantifier Elimination"?

N.B.  The following section - is mostly of historical interest and can be
skipped without any loss to the substance of these Notes.

The term "quantifier elimination" refers originally to a method which it
describes perfectly:  To show that all sentences A of a given language L
have a certain semantic property which involves truth in certain Models
or classes of models, show that in relation to the models M in question
every sentence A is equivalent to a quantifier-free sentence A', in the

sense that for each such model M we have M A iff M A'.  In the
simplest cases where quantifier elimination is possible in this sense, the
quantifier-free formulas A' are formulas of the very language L one
starts out with.  but very often the method isn't applicable in this
simple form. Quantifier-free equivalents for sentences with quantifiers
can be found, but only in some extension L´ of L.  Typically L' is that
where is a definitional extension of L in the following sense.  Each new
non-logical constant $  of L' is defined by a formula ,$  of L, with as
many free variables as $  has arguments.  Thus, if $ is an n-place
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predicate, then ,$ has the free variables v1,..., vn. (Function constants
present an additional complication, which is not directly relevant here.
So we leave them out of consideration.  If necessary, n-place function
constants can always be "simulated" as n+1-place predicates.)  The
definitions of the new constants of L' provide us with a way of
expanding any model for L to a model for L':  If M = <U,I> is a model for
L, $  a new n-place predicate of L' and ,$ the definition of $ , then the
interpretation function I' of the expansion M' of M will assign $ the set

of all n-tuples <a1,..., an> of elements of M such that M ,$ [a1,..., an] .
This transforms in particular each of the models which determine the
notion of equivalence relevant to the given application into
corresponding L'-models.

The defining formulas ,$  will often contain quantifiers.  When this is so,
the term "quantifier elimination" for the existence, for each sentence A
of L, of a quantifier-free formula in L' is easily somewhat misleading.
for by permitting in the "quantifier-free" formula A' of L' that is
equivalent to A  predicates that are defined by quantified formulas of L
we allow quantification to sneak back in as it were, and A' should be
considered as "quantifier-free" only in an attenuated sense.  In fact,
when we translate A' back into L by replacing all occurrences in it of
new predicates by their definitions in L, then we will in general get a
formula A'' which does contain quantifiers. The point of the method in
these cases is that while A'' does contain quantifiers, it contains them
only in quite special configurations, and this is what makes it (or,
equivalently, the formula A' from which A'' is obtained) behave in ways
that are relevantly  similar to the behaviour of the quantifier-free
formulas of L.  In particular - this is the crucial point here - A'' ought to
behave much like a quantifier-free formula with regard to the questions

of the form: "Does M A''[a1,.., an]?", where M is one of the relevant L-
models and <a1,..., an> an n-tuple of elements from M (assuming that
the free variables of A'' are among v1,.., vn).  For instance, when the
issue is to show that two such models M1, M2 are elementarily

equivalent, then it should be true that M1 A''[a1,.., an] iff M2 
A''[b1,.., bn], where a1,.., an , b1,.., bn are from M1,M2 , respectively,

and <a1,.., an> 0 <b1,.., bn> 0 is some relation of moderate
complexity, and we should be able to prove that.

In fact, the use of quantifier elimination in this sense for the purpose of
proving elementary equivalence may involve much more complicated
arguments than the one that was needed in the proof above to establish
the truth of condition (3).
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The method of quantifier elimination in this form becomes particularly
involved in those cases where it is not only necessary to extend the
language L with which one starts to a larger language L', but where L
must be extended with infinitely many new predicates,  The definitions
of these predicates will necessarily be of increasing complexity, and in
particular of increasing quantifier complexity.2 1

About the simplest illustration of quantifier elimination in the literal
sense of the term concerns the theory Trat, to which we applied the
method of Cantor's proof in Section 2.1.  The simplicity of the proof
that any two denumerable models of this theory are isomorphic is
directly reflected in the ease with which the quantifier elimination
method is applied in this instance.  In particular, it is not necessary in
this case to extend the language {<} of the theory to a larger language.

We begin by considering quantifier-free formulas of L in the variables
v1, ..., vn.  We think of these variables as designating points of some
dense linear order.  Among formulas of this kind there are in particular
those which fully describe the order relations between these points, and
also say which variables are to be seen as designating the same point.
Any formula A of this kind can be written in a form which is the
conjunction of three conjunctions A1, A2, A3, which can be dscribed as
follows.

( i ) A 1 is a conjunction of equations of the form vi = vj (i < j n) .
These give us all combinations of variables vi, vj which, according to
the situation described by A, designate the same point.

( i i ) A 2 is the conjunction of all formulas of the form vi  vj (i < j n )
such that vi = vj is not a conjunct of A1.

(iii) Let x1, ..., xm (m  n) be all those variables vj from {v1, ..., vn}
such that A1 contains no equation of the form vi = vj.  Then A1 is a
conjunction of formulas xi < xj which completely fixes a linear order
between the x's.

It is easy to see (a) that any such conjunction A is consistent with

2 1 If L is finite (i.e. has only finitely many non-logical constants), then only
finitely many non-equivalent predicates of a given arity can be defined in L if we
only consider defining formulas whose quantifier depth does not exceed some
given fintite number k.
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Trat in that we can find a model M for L and objects a1, ..., an of M

such that M Trat and M A[a1, ..., an], and (b)  A is maximal in the
sense that if we take any other quantifier-free formula B of L in v1, ...,
vn , such that B is consistent with Tden(-,-), then either

Trat ( v1)...( vn)(A B) or Trat ( v1)...( vn)(A B); and,
finally, (c) any quantifier-free formula of B L in v1, ..., vn that is
maximal consistent in the sense above is equivalent to an A of the kind
described, i.e. there is an A as described such that

Trat ( v1)...( vn)(A B).

(a), (b) and (c) together entail that any quantifier-free formula B of L in
v1, ..., vn which is consistent with Trat is equivalent modulo T to some

disjunction V i Ai of conjunctions Ai of the described kind:

Trat ( v1)...( vn)(B Vi Ai).

We can generalise to the case of inconsistent formulae B by stipulating

that they are equivalent to some fixed logical contradiction ,

identifying with the "empty disjunction" of formulas.

Now let A be an arbitrary sentence of L in the kind of prenex form used
in Section 2.2.3 - i.e. one whose prefix consists of existential quantifiers
and negations - and let us assume that the matrix B of A is given as a
disjunction V i Ai of maximal conjunctions Ai of the kind we have
described.  Without loss of generality we may assume that the matrix is

immediately preceded by an existential quantifier ( vn).  (In case the
last element of the prefix is a negation sign, this negation can be moved
towards the inside of the matrix formula and the resulting formula
rewritten once more as a disjunction V i Ai.)  We first observe that

( vn) (V i Ai) is logically equivalent to V i ( vn)Ai.  Now consider any
one of the disjuncts Ai.  Let A'i be the formula which we obtain from Ai
by eliminating from it all conjuncts which contain vn.

Claim:  Trat ( vn)Ai   A'i.  First the implication from left to right.

This is a theorem of predicate logic.  For (i) A i  A'i, since in going
from Ai to A'i we have only thrown out conjuncts; (ii) since vn does not
occur in A'i, (i) entails that A'i also follows logically from the existential

quantification ( vn)Ai of Ai.  For the opposite direction we have to
distinguish between several cases.  First, suppose that vn occurs in Ai i n
a conjunct of the form vj = vn. Then vn will occur in Ai only in
conjuncts that have the form of equations. So in this case, adding these
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conjuncts again to A'i and then quantifying existentially over vn yields a
formula which is entailed by A'i, and this formula is (obviously

equivalent to) ( vn)Ai. Second suppose that vn does not occur in Ai in a
conjunct of the form vj = vn.  Then vn will occur in at least one
conjunct involving <.  There are three cases to be considered here:

(i) vn occurs only in conjuncts of the form vn < vj.  Then Ai describes
vn as the first element among its "points". In particular, vn  is described
as lying before the point which is described by A'i as the first of the
points designated by v1, ..., vn-1.  Let vj be the variable (or one of the
variables) designating this first point of the order described by A'i.

Since Trat ( vj)( vn) vn < vj, we also have that

Trat A'i ( vn)Ai.

( i i ) The second possibility is that vn occurs in Ai both in conjuncts of
the form vn < vj and in conjuncts of the form vj < vn.  In that case there
will be two variables vj and vk such that Ai entails that vj, vn and vk a re
adjacent in the order it describes.  This time we make use of the fact

that Trat ( vj)( vk)(vj < vk ( vn)(vj < vn & vn < vk)) to see that

Trat A'i ( vn)Ai.

(iii) The third case is that where Ai only contains conjuncts of the
form vj < vn.  This case is just like case (i).

This competes the argument that

( 7 ) Trat ( vn)Ai A'i .

(7) entails that when we replace ( vn)Ai by A'i in A, we obtain a

sentence which is equivalent to A, but in which the quantifier ( vn) no
longer occurs.  In an analogous way we can eliminate all quantifiers of
A but one.  At this point we have a sentence C equivalent to A modulo

Trat which contains one quantifier ( x), with or without a negation sign
in front of it and some quantifier-free formula D following it in which
the only variable is x.  It is easy to verify by checking the small number

of different forms that D can take that either Trat ( x)D or

Trat ( x)D.  Then we also have: Tden(-,-) C or Trat C. So in

particular we have Trat A or Trat A.  This shows the completeness
of Tden(-,-) and by the same token the fact that modulo it every
formula is equivalent to either a theorem of the theory or a
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contradict ion.
q.e .d.

Evidently this has been a rather fussy proof, with lots of little details
that had to be checked along the way, and far lengthier than Cantor's
proof of the same result presented in Section 2.1. For more
complicated cases, where Cantor's proof can't work, the method
outlined is also much fussier than the one we described in connection
with the extensions of Tdis.  Let us briefly look at the case of Tdis(+,-)
in connection with the present method.  This time we must, as indicated
above, extend L to a larger language L', and in fact to one with infinitely
new predicates.  The following 2-place predicates D r for r = 1, 2, ...will

fit the bill.  Intuitively, D r(x,y) says that x lies before y and that there
are at least r points between them.  It is left to the reader to define
these predicates in L.  (That is, to find formulas Er(x,y) of L with x and y
as free variables whose extension in any model of Tdis(+,-) consists

exactly of the pairs <a,b> such that a and b stand in the relation D r.

With the help of the predicates D r we can also define predicates D= r
which say that between x and y there are exactly r points.  Evidently
D=r(x,y) holds iff D r(x,y) & D r+1(x,y).  For k = 1,2, ... let Lk be the

extension of L with the predicates D=r for r = 1, ..., 2k together with the

predicate D 2k+1.  Suppose that B is a quantifier-free formula in v1, ...,

vn of Lk' and that k'  k.  Then B is equivalent modulo Tdis(+,-) to a
disjunction of conjunctions of literals from Lk.

Now let A be a sentence of L and assume that A is in prenex form with a
prefix consisting of existential quantifiers and negations.  Consider the

innermost quantifier ( vn) of A. Rewrite the matrix of A as a

disjunction Vi Ai of maximal consistent formulas of L.  Again ( vn)Vi Ai
is logically equivalent to V i ( vn)Ai. Consider ( vn)Ai.  Ai is equivalent

to a disjunction V j Aij of maximal consistent formulas of L1.  Let A'ij be
the result of eliminating all conjuncts containing vn from Aij.  It is not

hard to see that Tdis(+,-) ( vn)Ai  V j A'ij.  So we can replace the

part inside A beginning with ( vn) by a quantifier-free formula from L1
in which vn no longer occurs and which is equivalent to this part
modulo Tdis(+,-).  In this way we can remove all the quantifiers from A.
Note, however, that each time we remove a new quantifier the matrix
formula which we remove together with it will belong to one of the
languages Lk and the disjunction replacing it will then belong to the
next language Lk+1.  This recursion is the direct counterpart of the one
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which in our earlier proof of this result made use of the hierarchy of
relations {+k}.

Not very nice proofs.  But they do explain how our earlier, nicer,
method came to its name.

2.3     More about Algebraic Theories

Our only encounter with algebraic languages and theories so far was
with the languages and theories of lattice algebras and boolean algebras
(Llata, Lba, Tlata, Tba; see Sections 2.1.2 and 2.1.3).  One of the points
we stressed about those structures, all of which are lattices, was that
they can be characterised alternatively as algebraic structures,
involving a number of operations with certain equationally definable
properties, or as structures that involve a partial ordering with special
properties.  As a matter of fact this kind of duality between an algebraic
and a relational conception of structure is quite rare, of which the case
of lattices is arguably the most striking example in mathematics and
logic as they are known today.  For most types of relational structures
there seem to exist no algebraic alternatives that provide a significantly
different perspective; and, similarly, no significantly different relational
formulations seem possible for most algebraic structures that play a
prominent part in mathematics.

It should be stressed that these are informal assessments, which it
would be hard to turn into hard-nosed formal claims that it would be
possible to prove or conclusively refute.  For what is it for an
alternative characterisation of a type of structure to be 'significantly'
different?  That seems rather a matter of taste, for which it would be
difficult to find a convincing formal definition.  And that significance is
the crucial notion here follows from the fact that some way of
redefining relational structures in algebraic terms is almost trivially
possible. And the same holds for, conversely, redefining algebraic
structures in relational terms.  As regards the redefinition of algebraic
structure in relational terms we refer to Exercise EA2 at the end of the
Appendix to Ch. 1, where it was shown how each n-place function
constant can be replaced by a corresponding n+1-place relation
constant together with an axiom stating that the relation denoted by the
new constant is functional in its last argument; and further, how each



7 4

formula couched in the original functional vocabulary is to be
translated into a formula couched in the new relational one.

The converse reformulation is slightly more involved.  We know from
set theory that the extension of any n-place relation R - i.e. any set of n-
toples of objects drawn from some domain U - can be turned into the
corresponding characteristic function fR  which maps the tuples
belonging to the extension to one of two special objects - the one which
intuitively speaking signifies 'yes' - and maps the other n-tuples to the
other special object, which intuitively means 'no'. Usually the two
objects chosen for this purpose are the numbers 1 and 0, but of course
that is not essential for the reduction - any two objects will do,
provided that they can be kept suitably distinct from the objects in U.
There are various ways in which distinctness can be secured.  One of
these makes use of a simple technique that has proved useful in formal
logic elsewhere too is to extend the universes of the algebraic
structures M that are to be redescribed in relational terms with a pair
of new objects 1M  and 0M which serve as the 'yes' and the 'no' in the
context of M.  Some care has to be taken to make sure that the
relational translations of the sentences of the original algebraic
language are true in the new extended models M[0M ,1M ] iff the original
sentences were true in the non-extended models M.  But these matters
are essentially trivial.  For details see Exercise ??  of this Chapter.

The types of algebraic structures to which we turn now, groups and
semi-groups, conform to what appears to be the rule in that no
significantly different relational characterisations of these types seem
to exist.  They are also typical of algebraic structures more generally in
that they can be characterised by axioms all of which have the form of
universally quantified equations, just as we found this to be possible in
the case of lattices, distributive lattices and boolean algebras.  In
Universal Algebra - the branch of mathematics which studies algebraic
structures from a general and abstract point of view - types of structure
(i.e. classes of models) that are defined by sets of such equational
axioms are known as varieties.  It is important to keep the distinction
between this notion and the more general one of an axiomatically
definable type of algebraic structure firmly in mind.  In general
axiomatic characterisations of types of algebraic structures may involve
axioms that can be any sentences from the first order language for
which the structures are models.  The equational axiomatisations that
make the characterised model class into a variety constitute a
comparatively small special subclass from the range of all possible first
order axiomatisations.  (Note in this connection that equational axioms
are (i) purely universal sentences, but in addition (ii) even among the
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purely universal sentences they form a specialised subclass.)  It seems
safe to infer that the class of varieties is a correspondingly small
subclass of the class of all axiomatisable structure types.)

We start, mostly as a preamble to our discussion of the Theory of
Groups, with a brief introduction to the Theory of Semi-Groups.  The
notion of a semi-group is simpler and more fundamental than that of a
group, although, as the terminology suggests, the notion of a group
came first.  This is comparable to what can be observed in connection
with orderings, where the notion of a linear ordering was well
understood before the general notion of a partial ordering was properly
articulated and made into the topic of the exploration of a theory - the
Theory of Partial Orders - which subsumes the Theory of Linear Orders
as one of several specialisations (Lattice Theory being another).

2.3.1  The Theory of Semi-Groups

The language of the theory of semi-groups consists of a single 2-place
function constant.  We follow the widely accepted convention of
denoting this constant as a full stop and of writing the terms involving
it in 'infix notation', just as with ordinary multiplication. So the
language, Lsg, is {.}, and the term we get when applying. to, say, the
variables x and y  is written as 'x.y'.

The Theory of Semi-groups, Tsg, is nothing more or less than the theory
of an associative operation.  Thus it consists of all consequences of the
single axiom ASS:

ASS ( x)( y)( z) x.(y.z) = (x.y).z

Associative operations can be found in all kinds of contexts and they
come in a variety of very different forms.  Three salient categories are:

(i) 'arithmetical operations like addition and multiplication, as
operations on a range of different domains: natural numbers,
integers, rational numbers, real numbers, complex numbers.

( i i ) fairly closely related to these, set-theoretical union and
intersection, and more generally supremum and infimum
operations in lattice-like structures.

(iii) 'function application', in the widest sense of the word.  In a sense
this is just one operation.  But it is found in such a wide variety of
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contexts that its instances provide a quite diverse spectrum of
different semi-groups, both conceptually and as regards their
further formal properties.

In (iii) the basic idea is that of a succession of operations which
transform objects of a certain sort into other objects of that sort.  the
objects can be numbers, geometrical figures, linguistic expressions,
computer files or documents, ..  - in fact, they can be data structures of
and kind. And similarly, the operations can be of any kind too,
provided that they return objects of the same sort that they take as
input. All that is required is that these operations can be carried out in
succession, but that is in essence guaranteed by the fact that their
outputs are such that they can serve again as inputs to further
applications of the operations.

Under these conditions it is possible to form complex operations by
combining two operations O1 and O2 into a complex operation O1.O2
which consists in first executing O1 and then applying O2 to the output
that the first operation produced.  That is, for any input x we have
(O1.O2)(x) = O2(O1(x)).  It should be obvious that the 'second order
operation' (= operation on operations), will always be associative: First
executing O1.O2 and then O3 obviously amounts to the same thing as
first executing O1 and then O2.O3; in both cases we get a succession of
first executing O1, then executing O2 and finally executing O3.

More 'mathematically' the second order operator, can be identified
with the operation o of function composition: Let U be any set of 1-
place functions from an 'object set' X into itself. Then for any two
functions f and g from U, we can form the function fog which maps
each object x from X to g(f(x)).  Evidently this is again a function from
X into X. That o is associative follows for the obvious reasons spelled out
above.

The three types of associative operations listed above are distinguished
by additional formal properties.  Arithmetical operations are typically
commutative, ie. they satisfy the commutativity axiom COM.

COM ( x)( y) x.y = y.x

Function composition, in contrast, is in general not commutative.
Consider for instance the functions f(x) = x +1 and g(x) = 2x on the
natural numbers. Then (fog)(1) = g(f(1)) = 2(1+1) = 4, but (gof)(1) =
f(g(1)) = 2 + 1 = 3.  However, while non-commutativity is the rule for
function composition, there do exist (naturally arising) function spaces
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on which composition is commutative.  An example is the set U of all
functions (say, on the natural numbers, but other number sets will do
too here) that map each number onto a certain multiple of it.  That is,
U = {-x.nx: n # %} (where -x.nx is that function f which for any number y
as argument returns the number n.y as value).  On the other hand, in
modern mathematics one studies number systems ('skew number
fields') in which addition and/or multiplication are not commutative.
So commutativity is a property that tends  to hold for semi-groups of
types (i) and (ii) and not to hold for semi-groups of type (iii), but this
is only a matter of tendencies.

A distinction between semi-groups of types (i) and (ii) is that those of
the second type typically satisfy the law of idempotency, given as IDP
below, while those of type normally do not:

IDP ( x) x.x = x

This does not mean that in semi-groups of the first type there are no
elements at all which satisfy the equation x.x = x.  More often than not
such semi-groups have some element that satisfies the equation.  But
these elements are, in case they exist at all, rare, and often they are
unique.  For instance, the additive semi-groups of the natural numbers,
the integers and the reals (i.e. the operation of addition on the natural
numbers, the integers or the reals, respectively) all have exactly one
such element, viz. the number 0.  In the multiplicative groups of
(among other number systems) the reals and the rationals (i.e. the
multiplication operation on the reals and the rationals) there are two
such elements, viz. 0 and 1.

That semi-groups of the first kind contain such elements is closely
connected with another property that singles out a certain subclass of
semi-groups.  This is the property of having an identity. An identity of
semi-group is an element e such that for any element x of the semi-
group x.e = e.x = x.  In additive groups this is the unique element that
satisfies the equation x.x = x, i.e. 0: for any number x, 0 + x = x + 0 = x.
(That an identity satisfies x.x = x follows logically from the definition.)
In the case of multiplicative semi-groups the identity is not 0 but 1.

The existence of an identity is quite common among semi-groups of
each of the three types.  Thus among the salient examples of semi-

groups of type (ii), structures of the form <U, >, where U is some set

of sets and is set-theoretic union, have an identity iff U contains a
bottom element wrt. set-theoretic inclusion, i.e. an element b that is
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included in all other elements of U. For then it will be the case for all x

in U that b x = x b = x.  (A common way for this condition to be

satisfied is when u contains the empty set , which will always be the
bottom element so long as it is present.)

Among semi-groups of type (iii) the existence of an identity is also a
common occurrence.  This will be so in particular when the universe U
of a given semi-group contains the identity function IX  on the
associated object set X, i.e. the function whose domain is X and which
maps each x in X to x.  Obviously we have for any function f in U that IX
of =  f o IX = f.

The existence of an identity is our first property of semi-groups that
cannot be expressed by means of an equational axiom - evidently so,
for we are not dealing with a general condition that all elements of the
structure must satisfy, but an existence claim, to the effect that there is
at least one element that satisfies a certain equational condition.  As

stated this has the form of an -formula; and indeed, in the language
{.} there seems to be no simpler way of stating it.  For the sake of

explicitness we give the formula:

IDE ( y)( x)(y.x = x & x.y = x)

One might wonder if this formulation isn't somewhat redundant.  Do we
really need the conjunction of the two equations y.x = x and x.y = x?
Wouldn't one of those be enough? The answer to this question is
negative. But there are some slight subtleties to the matter, so we will
dwell on it a little.  Let us, just as we have called an element that

satisfies the condition ( x)(y.x = x & x.y = x) an identity, use the terms
left identity and right identity for elements that satisfy the conditions

( x)y.x = x and ( x) x.y = x, respectively; and let us call the statements
that a left, resp. right identity exists, IDEL and IDER:

IDEL ( y)( x) y.x = x

IDER ( y)( x) x.y = x

Evidently an identity is both a left identity and a right identity.  But we
will see in Section ?? that in general a left identity need not be a right
identity (and thus not be an identity) and conversely.  Nor does the
existence of a left identity entail that there is some other element that
is a right identity or vice versa.  That is, in general neither of IDEL and
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IDER entails the other, and so a fortiori neither entails IDE.22  On the
other hand, when a semi-group has both a left identity and a right
identity, then these two elements must be identical, and this element
will thus be an identity. Similarly, any two left identities and any two
right identities must be identical (and so any two identities must be
identical). But of course the identity of two left or two right identities
doesn't entail that they will be identities.

Exercise. a.  Suppose that el and er are a left an right identity of
some semi-group <U,.>.  Show that el  = er.

b . Suppose that e1  and e2  are both left identities of
<U,.>. Show that e1  = e2.

Some semi-groups with an identity are distinguished by a further
property, which makes them into groups . A group is a semi-group with
an identity e in which each element x as an inverse , i.e. an element z
such that x.z = z.x = e.  Expressing this property in our language of
semi-groups, {.}, is cumbersome, since it must incorporate the assertion
that there exists an identity within it.

INV ( y)( x)(y.x = x & x.y = x & ( x)( z)(z.x = y & x.z = y))

Once again the question arises whether we need ther conjunction of the

two conditions in the scope of ( z).  This time the immediate answer is
negative.  But here too there are subtleties that deserve to be pointed
out, and which will emerge in the next section.  So once again we
distinguish, so that we will be in a better position to discuss those when
we come to them, between a left inverse zl of  an element x, which has
the property that zl .x = e and a right inverse zr of  x, which has the
property that x.zr = e.

The answer to the question above is negative in the following precise
sense.  Suppose that a semi-group M = <U,.> has an identity e.  Then  if
every element of M has a left inverse it is also the case that every
element has a right inverse; and conversely,  if every element has a
right inverse, then every element has a left inverse.  Moreover, in either
case the left and right inverse of any element will coincide,.

2 2 When we say that (e.g.) IDEL does not 'entail' IDER, what is meant is that
IDEL doesn't entail IDER within the Theory of Semi-Groups, Tsg. That is, IDER does
not follow logically from the conjunction of IDEL and Tsg's only axiom ASS.
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Consequently if every element has a left inverse, then every element x
has an inverse in the sense of INV (i.e. an element z such that x.z = e &
z.x = e)

The proof of these different claims is not complicated.   First suppose
that every element of M has a left inverse.  Let x be any element of M,
let z be a left inverse of x, i.e. z.x = e.  We must show that x has a rght
inverse.  Let u be a left inverse of z, i.e. u.z = e. Then x = e.x = (u.z).x =
u.(z.x) = u.e = u.  But then x.z = u.z = e, so z is right inverse of x.  This
establishes not only that every element of M has a right inverse, but
that for each x there is an element that is both left and right inverse.  A
parallel argument shows that this conclusion follows equally from the
assumption that every element of M has a right inverse.

We can summarise the upshot of this by observing that relative to the
Theory of Semi-Groups INV is equivalent to each of the two following
sentences INVL and INVR.

INVL ( y)( x)(y.x = x & x.y = x & ( x)( z) z.x = y )

INVR ( y)( x)(y.x = x & x.y = x & ( x)( z) x.z = y )

In thee next section we look at the Theory of Groups. As we have seen
this theory can be axiomatised in the language of semi-groups we have
been using in this section (the language Lsg, or {.}), e.g. by the axioms
ASS and INV.  But the second of these is not in equational form, and it
seems that it cannot be converted into such a form, or be replaced by
one more others of such form that yield the same theorems in
conjunction with ASS - at least not when we stick with the language Lsg.
As we have seen this theory can be axiomatised in the language of semi-
groups we have been using in this section (the language Lsg.  (We are
not giving an actual proof that such a replacement is impossible, and as
far as we know such a proof this not all that easy.)

However, we will see in the next section that it does become possible to
axiomatise the Theory of Groups in equational form if we extend Ls g
with additional non-logical constants.

2.3.2         The Theory of Groups

We have already given one formulation of the first order theory of
groups and thus specified what groups are like.  But, as in the case of
lattices, there are other ways of formalizing the notion, even if in the
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present case the differences aren't quite as dramatic.  As we already
said, the main advantage of the alternative formulation we present
below is that it enables us to state all the axioms as equations. The
comparison between this new axiomatisation and the one given in the
last section is interesting from a general methodological point of view
in that it shows a trade-off of a kind not yet encountered: That between
a parsimonious choice of primitive notions (our language {.} with its
one 2-place function constant) but axioms of a more complicated
structure and on the other hand a richer set of primitives with a
corresponding gain in simplicity as far as teh axioms are concerned.

The section serves to focus on two other issues of general significance.
The first is the question of independence as applied to axiom systems,
or sets of sentences.  Usually when we specify a set of axioms as a way
of characterising a given formal theory, we try to avoid redundancies:
none of the axioms in the set should follow logically from the rest.
However, proving that this desideratum has in fact been satisfied can be
very tricky.  And when there are many axioms, there is a lot of work to
be done, since each axiom requires its own independence proof. For the
axiomatisations of group theory that are considered in this section this
problem is manageable since there are few axioms to deal with.  But the
independence arguments we wil give for them should provide a clear
impression of the general nature of independence proofs and also give
a little taste of why such proofs can be difficult.

The third point of general significance that the section seeks to
illustrate was already brought up in the last section, when we drew
attention to the wide conceptual and formal diversity of semi-groups.
This is also true of groups, and here the value of extracting what is
common to a great diversity of structures by describing them as models
of a single formal theory that covers them all has been of great
importance in the history and current practice of pure and applied
mathemat ics .

A fourth point concerns the special properties of 'equations', that is of
those purely universal sentences in which the quantifier prefix is
followed by a single equation.  Equations, in this sense of the word,
form a kind of closed subsystem of the set of sentences of a given
language L, with their own proof theory and its own special model-
theoretic properties.  This subsystem is known as Equational Logic. A
separate section (Section ??) will be devoted to it.

The axiomatisation of the Theory of Groups we gave in the last section
had to resort to axioms that were not of equational form.  These axioms
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contain existential quantifiers that are needed to express that groups
contain entities with special properties: (i) an identity and (ii) for each
element x an inverse of x.  However, we saw that if such entities exist a
all, then they are unique.  This means that we can also proceed as
follows: We introduce constants in our language to denote these entities
and then give axioms stating that the denotations of those constants
have the required properties.  The constants we need are (i) a o-place
function constant e to denote the group identity and (ii) a 1-place
function constant -1 to denote a function that maps each element to its
inverse.

Thus we are led to the language {., -1, e}, to which we will also refer as

L G1.  {., -1, e} is the group-theoretic vocabulary that is usually treated as
basic in discussions of groups.)

In LG1 the Theory of Groups can be axiomatised with the axioms TG1.A1-
T G 1.A3, which we present both in the standard notation of first order
predicate logic and also in the abridged notation of equational logic, in
which the universal quantifiers are implicit

TG1.A1 ( x) ( y)( z)  (x.y).z  =  x.(y.z ) (x.y).z  =  x.(y.z )

TG1.A2 ( x) x.x-1 = e x.x-1 = e

TG1.A3 ( x) x.e = x x.e = x

But whether we explicitly write the quantifiers of these axioms or not,
they are there, and they are meant as axioms of a theory consisting of
all sentences of LG1 that logically follow from them, and not just those
that are universally quantified equations themselves.  We will see this
presently when we go through a few simple theorems of this theory and
proofs of those from the axioms: some of these theorems do have the
form of equations, but not all of them.

The proofs of the equational theorems that follow make use of notation
that is familiar from the way arguments in universal algebra are often
presented, where all mention of quantifiers is suppressed.  (Where both
premises and conclusions of an argument are in equational form this is
very natural, and hardly needs a justification.  Nevertheless, it is an
interesting, and as it turns out non-trivial, logical question exactly how
this form of derivation relates to standard methods of logical deduction
like those discussed in Ch. 1.  In Section ??, which is devoted to
Equational Logic as an alternative to predicate logic, we will go into this
question in detail.)
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TG1.T1 x-1.x = e

Proof. x .e = x.(x-1.(x-1)-1) = (x.x -1).(x-1)-1 = e.(x-1)-1.
Therefore:

x -1.x = (x-1.x).e = x-1.(x.e) = x-1.(e.(x-1)-1) =

(x -1.e).(x -1)-1 = x-1.(x -1)-1 = e.

TG1.T2 e.x = x

Proof. e.x = (x.x-1).x = x.(x-1.x) =(TG1.T1) x.e = x

TG1.T3 (x-1)-1 = x

Proof. Combine TG1.T2 and the first line of the proof of TG1.T1.

Exercise.  Turn the proofs of TG1.T1 - TG1.T3 into predicate logic
derivations in the formal sense of the definition on p. 5.

Given what was said about groups in the last section, theorems TG1. T 1
and TG1.T2 are a natural complement to axioms TG1.A1 - TG1.A3.  In
fact, when one looks at these axioms without the hindsight that these
theorems provide, the suspicion might easily arise that the axioms are
too weak.  For TG1.A2 only asserts that x-1 ia a right inverse of x, and
T G1.A3 only that e is a right identity.  Is that enough to guarantee that e
is also a left identity and x-1 also a left inverse?  Theorems TG1.T1 and
T G1.T2 tell us that they are.  But that this is so has to do with a subtle
interaction between TG1.A2 and TG1.A3.  We will see in the next section
that when one of TG1.A2 and TG1.A3 is changed into its opposite (i.e.
T G1.A2 into the axiom which says that e is a left identity), then the
axiom system does become too weak.

Exercise.  Prove the following theorems of G1 from its axioms:

( i ) (x.y)-1 = y-1.x- 1

( i i ) x.y = y.x  y-1.x.y = x  y.x.y-1 = x  x.y.x-1 = y 
x-1.y.x = y

(Here "A B C .." is used as shorthand for
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"(A B) & (B C) & (C .. ")

Exercise.  Let "x/y" be short for "x.y-1".  Show:

( i ) e = x/x
( i i ) x -1 = (x/x)/x
(iii) x.y = x/((y/y)/y)

The  next theorems do not have the form of equations:

TG1.T4 ( x)( y)( z)( x.y = z  z.y-1 = x)

Proof. First suppose that x.y = z.  Then z.y-1 = (x.y).y-1 =

x.(y.y-1) = x.e = x.  Conversely, if z.y-1 = x, then

x.y = (z.y-1).y = z.(y-1.y) = z.e = z.

TG1.T5 ( x)( y)( x.y = e  y = x-1)

Proof. Suppose  x.y = e.  Then x-1 = x-1.e = x-1.(x.y) =

(x-1.x).y = e.y = y.

We have now seen two formalisations of the Theory of Groups, one in
the language Lsg and involving the axioms ASS and INV, and one in the
language LG1 and involving the axioms TG1.A1-TG1.A3.  The move from
Lsg to LG1 was motivated by the observation that the existence
statements made by INV provide to be of elements that turn out to be
uniquely characterised by the conditions that IV specifies.  This means
that we could also have proceeded in the same way as we did when

extending the theory of lattices Tlato in the language { } to the theory

in which we have constants to refer to the operations and that Tlato
enables us to define in terms of .  That is, we can (i) extend Lsg to LG 1
(as we have done), and (ii) extend the theory ClLsg({ASS,INV}) to a
theory in LG1 by adding the following two definitions of e and -1 a s
axioms:

(Def.e) ( y)(e = y  ( z) z.y = z)

(Def. -1) ( x)( y)(x-1 = y  x.y = e)

It is not hard to show that this is the same theory as TG1.
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Exercise: Prove this.

The difference with the situation we found to obtain in the case of
lattices is that this time the converse route is not possible: We cannot
formulate the Theory of Groups in the language whose non-logical
constants are just the ones that we added when passing from Lsg to LG1;
no axiomatsaton of the Theory of Groups is possible within the
language {e,-1} .

Exercise: Prove this.  (Hint: there is no way to define the two place
operation, with the help of just the 0-place function e and the 1-place
function -1. )

These formalisations of the Theory of Groups are by no means the only
ones possible.  As a matter of fact, in a strict formal sense the number
of possible formalisations of a theory is always infinite; for any one
formalisation there twill always be infinitely many alternatives,
although as a rule most of these will be uninteresting variants which it
is as pointless to present as they are easy to construct. But often
genuinely different alternatives exist, which cast a different light on
what is being formalised.  The alternative formalisation of lattices as
orderings and as algebras was a particularly striking example of this.
Nothing quite like that compares with it in the case of groups.  But
there is one alternative that is worth mentioning, at least because it
answers a certain formal question that naturally arises in connection
with what we have said above about our two axiomatisations in the
languages Lsg and LG1.  The choice between those was presented as a
kind of trade-off between (i) having just the single function constant,
and (ii) having only axioms in equational form.  The alternative that is
discussed in the following exercise can be seen as combining the
advantages of both.  It uses a single 2-place function constant / and it
only needs equational axioms.  The function / is the 'division operator'
of Group Theory, which can be defined in terms of . and -1 a s :
x/y = x.(y-1) .

Exercise.  Give a complete axiomatisation, all axioms of which are
equations, of the Theory of Groups in the language {/}, where / is the 2-
place operation of group-theoretical division: More precisely, provide
equational axioms A/.1,..,A/.n (for some number n) such that the
theories T1 and T2 defined below are identical.

Definition of T1 and T2:
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Let T/ = Cl{/}({A/.1,..,A/.n}).  Let L' be the language {/, . ,-1,e}.

( a ) T1 is the theory of L' that is obtained by adding to the axioms of
T/ the following definitions of e, -1 and . in terms of /:

( i ) ( x) e = x/x

( i i ) ( x) x-1 = (x/x)/x

(iii) ( x)( y) x.y = x/((y/y)/y)

( b ) T2 is the theory of L' that is obtained by adding to the axioms of
TG1  the following definition of / in terms of . and -1:

( iv) ( x)( y) x/y = x.y- 1

(Solution.  One solution is the following set of axioms A/.1,.,A/.4:

A / . 1 y/y = x/x
A / . 2 y/(y/y) = y y/e = y
A / . 3 (y/y)/(x/y) = y/x = x/x e/(x/y) = y/x
A / . 4 x/(y/z) = (x/((z/z)/z))/y x/(y/z) = (x/(e/z))/y

In the formulations of A/.2-A/.4 on the right, subterms of the form $ /$
have been abbreviated as 'e', in accordance with A/.1.)

2.3.3         I n d e p e n d e n c e

In the introduction to this section we mentioned the question of the
independence  of the members of a given axiom set.  As indicated, it is
generally considered a matter of logical hygiene that the sets of axioms
used to formalise a given structure or concept contain no redundant

axioms.  That is, if G is any such set and A #  G, then it should not be the

case that (G\{A}  A.  If this is not the case, then we say that A is
independent in G; and if all members of G are independent, G is called
an independent set of axioms.

As a matter of fact, all axiom sets presented so far in this chapter have
been independent in the sense just defined.  Showing that this is so,
however, is not trivial.  In general, proving that an axiom set is
independent tends to be not only a fair bit of work - to show that the
set A1, ..., An is independent requires n separate proofs, one for each
Ai - some independence questions can be a real challenge.  Also
independence proofs may provide real insight into what precisely is
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contributed by a given axiom to the given characterisation of the
intended class cof structures that is not contributed by the other
axioms. More about this towards the end of this section.

Here we consider only two of the three independence questions
connected with the axiom set {TG1.A1,TG1.A2,TG1.A3}.  We show the
independence of TG1.A3 from the remaining two axioms explicitly, and
provide a hint for establishing the independence of TG1.A2.  As regards
TG1.A1, the reader is on his own (see Exercise ??) .

First TG1.A3.  Consider the following model M = <U,F> for LG1:

( i ) U = the set of all pairs <i,n>, where i #  Z  (the set of integers)
and n #  N  (the set of natural numbers).

( i i ) F(.) = the function f such that for any <i,n>,<j,m> #  U,
f(<i,n>,<j,m>) = <i+j,m>

(iii) F(e) = <0,0>
( iv) F(-1) = the function g such that for any <i,n> #  U, g(<i,n>) = <-i,0>

Then it is straightforward to verify that TG1.A1 and TG1.A2 hold in M.

But TG1.A3 does not hold, since e.g. <1,1>.e = <1,1>.<0,0> = <1,0) 
<1,1>.

It is easy to turn this construction into a demonstration that the second

axiom is independent of the other two by changing the definition of F(.)
in to

( i i ' ) F'(.) = the function f' such that for any <i,n>,<j,m> #  U,
f'(<i,n>,<j,m>) = <i+j,n>

It is worth noting that while M falsifies TG1.A3 it verifies the
superficially similar sentence

TG1.A3' ( x) e.x = x

Recall that TG1.A3' is nothing other than TG1.T2.  So we have also shown
that TG1.A3 cannot be derived from TG1.A1, TG1.A2 and G1.A3'.
Apparently, then, this sentence is, given TG1.A1 and TG1.A2, genuinely
weaker than TG1.A3, and replacing TG1.A3 by TG1.A3' in the
axiomatisation of TG1 would yield a different, weaker theory.  In the
same vein it can be observed that the modified model M' = <U,F'>
verifies the sentence
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TG1.A2' ( x) x-1.x = e

So replacing TG1.A2 by TG1.A2' while leaving TG1.A1 and TG1.A3 the
same would also lead to a weakening of deductive power.  On the other
hand it is easy to verify that if we replace both TG1.A2 and TG1.A3 by
TG1.A2' and TG1.A3' the result is a theory that is equivalent to TG1.

Exercise:  Show this.

Exercise:  Show that the associativity axiom TG1.A1 is independent of
the axioms TG1.A2 and TG1.A3.

Hint:  1. Consider the model M = <U,F>, where U = the set of the

rational numbers without 0 and let F(.)(r,s) = r/s. Then TG1. A 1
evidently fails.  Choose F(-1) and F(e) so that M verifies TG1.A2 and
TG1.A3.

Other solution. Here is another possibility.  U is the set {0,1,2, ..,n-1}.
F(e) = 0, F(-1)(k) is the unique number m from U such that k + m =

0(mod n ) and F(.) is defined as follows:  (i) F(.)(k,k) = k; (ii) if k  m,
then F(.)(k,m) = k + m (mod n).  Then it is easily verified that (writing
"." instead of "F(.)" and using infix notation) 0.k = k.0 = k and that k.k-

1 = k-1,k = 0.  But in general F(.) will not be associative.  For instance, if
n = 4, then (2.2).3 = 2.3 = 5 (mod 4) = 1, but 2.(2.3) = 2. (5 (mod 4)) =
2.1 = 3.  Note that in this example F(.) is commutative and that
(because of this) not only the axioms TG1.A2 and TG1.A3 are verified,
but also the formulas which we get by switching the arguments of the

left hand term around, i.e. ( x) e.x = x and ( x) x.x-1.x = e.

[End Exercise]

The three independence arguments presented here are comparatively
simple.  They do give insight why each of the three axioms contributes
something that the others do not, but precisely because models that
satisfy all but one of the axioms are comparatively easy to find, the
insight gained from any one such models (and thus from the
independence proof it provides) are limited: Other models might give
additional insights in the contributions of the different axioms in the
set and quite possibly more important ones.



8 9

But in this regard our examples are not representative. In the history of
mathematics and logic certain independence questions have had an
enormous impact. Their solution have led to the discovery of structures
that have proved of lasting importance and to methods of mathematical
reasoning and mathematical construction that subsequently found
many additional applications. Even some attempts at finding a solution
to an independence question that did not answer the question that they
were meant to have led to significant progress in other areas.

Perhaps the most famous example from mathematics id the parallel
postulate from Euclid's axiomatisation of plane geometry, the statement
that for every point p that is not on a straight line l there is exactly one
straight line m that goes through p and is parallel to l.  Ever since Euclid
it was felt that this postulate was less self-evident than Euclid's other
postulates.  Since it was widely thought that Euclidean geometry
described a structure that was in some sense necessary - space just
couldn't have been different from what it is! - and since it was thought
also that since the properties of the structure of space were necessary,
they should be directly accessible to intellectual judgement, the lacking
self-evidence of the parallel postulate was seen as an imperfection of
Euclid's system, and an imperfection that could be removed only by
either finding a more intuitive replacement for it or - even better - to
derive it from Euclid's other postulates.  In the course of the many
centuries during which this was an open question an enormous amount
of mathematical energy and ingenuity must have gone into the project
of deriving the parallel postulate from the other postulates.  Eventually,
in the second half of the 18-th century it dawned on some
mathematicians that the persistent failure to find a proof of the parallel
postulate from the others might have a very simple explanation, viz that
there is no such proof, in other words, that the parallel postulate was
independent from the other postulates. This led to the new and
contrary effort to demonstrate the independence of the parallel
postulate, or, what comes to the same thing, the consistency of the
other postulates with the negation of the parallel postulate. (It no
longer needs to be said here that being a model in which postulates A1,
..., An-1 hold and An doesn't is the same as being a model in which A1,

..., An-1 and A n hold together.) The models of the negation of the
parallel postulate jointly with the other Euclidean postulates - as
described in the work of the Hungarian mathematician Janos Bolyai
(1802-1860), the Russian mathematician Lobachewski (1792-1856) and
the German mathematicians Gauss (1777-1855) and Riemann (1826-
1866) - have done more than anything else to revolutionarise geometry
as mathematical discipline as it in the course of the 19-th century.  And
it has also deeply affected our understanding of the distinction between
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necessary and contingent truth as well as the distinction between
geometry as a conceptual structure (along the lines it was seen by, for
instance, Kant) and geometry as part of the structure of the physical
world.2 3

A second independence problem, which was specific to the
development of mathematical logic in the 20-th century, concerns the
Continuum Hypothesis in Set Theory, the Hypothesis that there are no
sets whose cardinality is intermediate between that of the natural
numbers (the smallest infinite cardinality) and that of the set of real
numbers, which is the same as that of the power set of the set of
natural numbers). As we noted earlier, the Continuum Hypothesis was
formulated by Cantor, the founder of set theory.  Cantor is said to have
worked desperately on a proof of the Continuum Hypothesis from other
set-theoretical principles, whose validity he did not consider in doubt,
and the effort is supposed to have seriously affected his health. His
unsuccessful efforts were followed by those of many others, and among
these efforts were in particular those to derive the Continuum
Hypothesis from the other established set-theoretical axioms e.g. those
of Zermelo-Fraenkel (see Ch. 3).  But in this case too eventually the
suspicion arose that no such derivation could be given, since the
Continuum Hypothesis was in fact independent from the other,
uncontroversial, axioms of set theory. And independence was finally
proved in 1963 by the American mathematician Paul Cohen.  In this
case too the method used to establish independence has proved
immensely fruitful, leading in particular to a series of further
independence results within the realm of set theory.

There is an interesting similarity between these tow cases - the parallel
postulate in geometry and the Continuum Hypothesis in set theory - in
that in both cases a conception of the subject matter as involving
necessary and therefore presumably ultimately self-evident truths
drove scholars to persistent efforts to decide what seemed not self-

2 3 The first to have clearly understood this second disrtinction appears to have
been Gauss , who engaged as early as the first half of the nineteenth century in a
large scale prohect of geodetical measurments in order to determine whether the
physical geometry whose straight lines are the paths of light rays is in fact
Euclidean or not.  (i.e. if light rays conform to the parallel postulate.)  Gauss
suspician of non-Euclidenan character of the genoatryx of light rays was
confirmed only when in the forst quarter of the 20-th century physisicts and
astronomers looked for a experimental confirmation of one of the implications of
Einstein's gedneral Theory of Relativity, which is that gravitation 'bends' the
paths of light rays, so that the geometry they define is - in the presence of
graviational fields, which is always the case in our actual cosmos - non-Eucildean.
Einstein's Theory of General Relativity, it has been sad would not have been
possible without the work of Riemann.
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evident on the bassi of those principles that were considered self-
evident.  One of the general lessons that has been learned from both
efforts is that the line between necessity and contingency is much more
difficult to draw than people seem to have realised through most of the
history of philosophy (and than, in the depth of our hearts, many of us
would still like to believe today); and, connected with that, that we
should not set too much store by our intuitions on  what is 'self-
evident' and what is not.

2.3.4         The Theory of Groups and Group Theory

1 . What has been called the (first order) Theory of Groups here
should not be confused with what is normally understood by 'Group
Theory'. First, the 'mini-theorems' of the Theory of Groups of which we
have given a few examples here bear no comparison with the theorems
about groups that mathematicians find interesting.  But more
fundamentally, those results can as a rule not even be stated within the
first order languages we have been using. For instance, many results in
Group Theory have to do with characterisations of groups in terms of
the kinds of subgroups they have - that is, in our terminology, in terms
of their submodels.  (Note that a submodel of a structure that satisfies
the axioms TG1.A1-TG1.A3 will automatically be itself a model of these
axioms and thus again a group.  (Exercise: Prove this and/or Section ??
below.) To state such a characterisations of a group we need to
quantify over its subgroups and thus over subsets of its universe, and to
do that we need second, not first order logic. So at a minimum we will
need the second order extension of one of our first order languages {.}
or {,.,-1,e}. Also, there are many theorems of Group Theory which
involve reference to natural numbers (e.g. to describe the possible
size(s) of finite groups with certain properties, and/or the sizes of
certain parts of them.  The proofs of such theorems often make use of
quite complicated facts of combinatorial number theory,.  In these
cases formalisation requires a logical vocabulary that includes number-
theoretic notions as well as the group-theoretic ones that are the only
non-logical constants of the language we have used here, and for a
formalisation of the proofs of these statements we will need an
axiomatisation of number theory as well.

All this goes to say that Group Theory as it is practiced by algebraists
involves far more than our 'bare bones' languages provide. Even if such
a language suffices to characterise the general notion of a group, it falls
far short of what is needed to state and proof what a mathematician
wants to know.  This is a somewhat sobering comment on the power of
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first order formalisations, not only of the structures that are the
subject of group Theory, but of most kinds of mathematically
interesting structures generally.

2 . It was pointed out more than once in this Chapter that the point
of many algebraic theories is that their models cover a wide range of
different structures.  This is true in particular of the theory of groups.
The class of all groups shows a great deal of diversity, in the sense that
it contains structures which vary substantially either in their
conception or in their formal properties or both.

The value of an algebraic theory with such coverage is, we have noted,
that the theorems that can be derived from the general theory are
applicable to all the different structures that are among its models. This
is as true of the Theory of Groups as it is of other theories with wide
structure coverage.  But on the other hand the diversity among the
different types of groups is such, and certain types of groups are so
important, that these types have become the subject of a separate
branch of mathematical investigation.  A prominent example of this is
the class of Abelian  or commutative  groups, in which the group

operation . is commutative (i.e. x.y = y.x holds for all elements x,y of
the group).

In this particular case the additional property that singles out the given

class of groups, viz. commutativity of ., can be expressed by a first
order axiom.  But for many other properties that define important
subtypes of groups this is not so.  An example is the notion of a s imple

group , i.e. group that doesn't contain any proper subgroups (i.e. for
which there are no properly included submodels which consist of more
than one element); the notion of a finite group - finiteness cannot be
expressed by a first order axiom -; or the class of all permutat ion

groups, a notion which will be explained below.

To give an impression of how different certain models of the Theory of
Groups can be from each other in origin and/or appearance we remind
the reader of the two types of examples that were mentioned briefly in
the introduction to Section 2.2.1. The first type, it may be recalled,

consists of structures in which the group operation . is one of the
familiar arithmetical operations of addition or multiplication, or some
variant thereof.  One example of this type of groups are: the integers
with the binary operation of addition, the 1-place operation of sign
inversion (i.e. n-1 is the number -n) and the number 0 as e constitute a
group. Similar examples are provided by the rational numbers and the
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real numbers, each with the same operations of addition, sign inversion
and 0.  Closely related examples are the additive groups modulo n,
consisting of the numbers {0,1,..., n} with "+ mod(ulo) n" for the

operation . (where i+j (mod n) is the remainder of i+j after division by
n), "sign inversion modulo n" for the operation -1 (i.e. i-1 = n - i) and
again 0 as e.  Besides these additive groups there are also multiplicative

groups, in which . is multiplication.  One example we have already

encountered: the rational numbers without 0, with multiplication for .,
1/r  for r-1, and 1 for e.  Yet another example is provided by the real
numbers (also without 0) with the usual operations of times,
multiplicative inverse and 1.  There are many more examples of this
general sort, involving either some variant of addition or multiplication
and/or the use of some alternative notion of "number" (complex
numbers, quaternions, etc.).

As a rule groups of this type are commutative, since operations of
addition and multiplication tend to be commutative (though there are
exceptions) .

The second type of group to be mentioned here is that where the

elements of the group are functions, . is the operation of function
composition, -1 is function inverse and e is the identity map.  In order
that these notions are defined for all elements of the structure it is
necessary that all elements (i.e. all functions) have one and the same
domain and range.  Moreover, the requirement that the inverse
operation be everywhere defined entails that all functions are
injections.  Thus a group of this kind will consist of a set of bijections
from some given set X to itself.  Such bijections from X to X are also
known as permutations  of X.

It is easy to verify that any set of permutations from X to X which
includes the identity map on X and is closed under inverses and
function composition forms a group.  (Exercise: Show this.)  Such
groups are called permutation  groups .  Within the class of permutation
groups we still find a remarkable spectrum of variety.  Among the
simplest examples are those groups which consist of all permutations of
some finite set {a1,..., an}.  Evidently, the properties of any such group
are determined entirely by the cardinality of the set - the group of all
permutations of {a1,..., an} and the group of all permutations of {b1,...,
bm } are isomorphic iff n = m.  So it is possible to confine attention to
the full permutation groups of {1,..., n} for the different natural
numbers n.
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Function composition is usually not a commutative operation.  So,
contrary to the groups based on arithmetical operations permutation
groups are hardly ever commutative.

Exercise.  i.   Show this, by defining a permutation group in which

the commutativity law x.y = y.x is invalid.
ii.   What is the smallest number n such that the full

permutation group on {1,..., n} is not commutative?

[To be added to the list of exercises at the end pf Ch. 2]

Exercise:  In Section 2.2.1.1 it was shown that the axiom TG1.A1 is
independent of the axioms TG1.A2 and TG1.A3.  The model discussed in
that exercise did not establish the following stronger independence
result, according to which TG1.A1 is not entailed by the set consisting of
TG1.A2 and TG1.A3 and their "converses" TG1.A2' and TG1.A3':

TG1.A2' x-1.x = e

TG1.A3' e.x = x

One way to get this stronger result is to make use of permutation
models.  Let M = <U,F>, where U is the set of permutations of the set
{1,2, ..., n}, for some n > 2.   F(-1) and F(e) are defined for permutation
groups, i.e. F(-1)(f) is the inverse f-1 of f and F(e) is the identity map.

But we now define F(.) by: F(.)(f,g) = g-1 o f.  Show that in this model
TG1.A2, TG1.A3, TG1.A2' and TG1.A3' all hold, but that TG1.A1 fails.

Exercise:  Missing from the independence proof for the axiom set
{TG1.A1, TG1.A2, TG1.A3} in Section 2.2.1.1 was the independence of
TG1.A2.

To show independence of this axiom from the other two is very easy,
because it is the only axiom that contains the opersation -1.

a . Why? Prove the independence of  TG1.A2.

More interesting is the independence from TG1.A1 and TG1.A3 of the
weaker principles (i) that there is for each x an element y such that
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x.y = e and (ii) that, for ay x,, any two elements y and y' such that x.y =

e and x.y = e are identical:

( i ) ( x)( y) x.y = e

( i i ) ( x)( y)( y')(x.y = e & x.y' = e  y = y')

b . Prove the independence of (i) and of (ii) from TG1.A1 and
TG1.A3.

2.4    Equational Logic.

Equations - purely universal sentences whose matrices are of the form
.  = /, where . and / are terms - have special properties.  First, they allow
for a special method of deduction:  if an equation B follows from
equations A1, ..., An, then this can be shown by deriving B from A1, ...,
A n via special rules, which are designed to fit the special form that
equations have.

Secondly, equations are characterised by special model-theoretic
properties.  These of course include the properties that are shared by
all purely universal sentences (see Ch. 1, Sn 1.5.2). But equations are
distinguished from universal sentences in general by some additional
properties.  As for purely universal sentences in general this fact can be
cast in the mould of a preservation theorem, a theorem first stated and
proved by the American algebraist G. Birkhoff.

These then are the topics of this section.  We will first present the
special deduction system for equations and prove its soundness and
completeness, and then present and prove Birkhoff's Theorem.

Let L = {f1, ..., fk} be an algebraic language, where, for i = 1, ..., k, fi i s
an n(i)-ary function constant.  By an identity of L we understand any

purely universal sentence of the form ( x1)...( xm ) s = t, where s and t
are terms of L and x1,...,xm  are the variables that have occurrences in
at least one of s and t.  We denote the identity

( x1)...( xm ) s = t also as "s  t".

There is a sense in which the identities of L form a "self-contained"
subsystem of the set of all formulae of L:
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Suppose 0  E, where E is an identity and 0  is set of identities.  Then it is
possible to derive E from 0 by means of a set of five inference rules
REref.,..., RErepl., each of which only involves identities.  That is, there
always exists in such a case a derivation of E from 0 which consists of
identities only (and in which each line is either a premise from 0 o r
comes from earlier lines by application of one of the rules).

Here are the rules:

RErefl. t = t  (that is: each identity of the form "t = t",
where t is any term, may be written down as
a new line; thus this rule functions as an
axiom.)

REsym. s = t
t = s

REtrans. r = s, s = t
   r = t

REsubst. Suppose that x1  ,..., xm are the free variables occurring
in the identity s = t and that r1 ,..., rm are terms.  Let s'
be the result of simultaneously substituting the terms
r1,..., rm for the variables x1 ,..., xm in s; and likewise
for t' and t. Then

s = t
s' = t'

N.B.  This rule also covers the case where we substitute
terms for only some of the free variables in s = t (and in
particular the case where we do this for only one
variable).  In such cases we choose for each variable xi
that we want to "leave alone" that variable itself as term
ri.

RErepl. Suppose that s has an occurrence as a subterm in t and
that t' results from t by replacing this occurrence of s in
t by the term s'.  Then
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s = s'
t = t'

A EL Derivation (Equational Logic derivation) from a set of equations 0
in an algebraic language L is a sequence <E1, ..., Ep> of identities of L in
which each line Ei either (i) is a member of 0 , or (ii) results from an
application of RErefl., or (iii) comes from one or more earlier lines by
an application of one of the rules REsym - RErepl..

Exercise.  Show that the proofs of TG1.T1 - TG1.T3 from TG1 can be
turned into derivations of Equational Logic.

Theorem 12  (Completeness Theorem for Equational Logic).

Suppose that L is an algebraic language and that 0  E, where E is an

identity of L and 0  is set of identities of L.  Then 0  eq E
(That is, there is a derivation in Equational Logic of E from 0  in L.)

Proof:   As in the completeness proof for the first order predicate logic
we proceed by contraposition.  Suppose that it is not the case that

0  eq so = to.  We construct a model M such that M  0 but not

M  so = to .  (Recall in this connection that the identities are really

universally quantified formulas.  Thus M  1 means that for all possible
value assignments a to the variables of 1 [[1]]M,a  = 1.  On the other

hand, in order to show that not M  so  = to  it suffices to find one

assignment b  such that [[so = to]]M,b   1.)

Informally, we proceed as follows:  We identify all terms s, t for which
the identity s = t is derivable from 0 .  The (equivalence) classes [s], [t],
...  obtained in this way will be the elements of the universe of M.  We
can then define on this universe the interpretations of the function
constants of L so that the identities in 0  are all universally satisfied in

M. Since it is not the case that M  so = to, so and to will not belong to
the same equivalence class; hence if b  assigns to each of the free

variables of so = to its own equivalence class, then [[so]]M,b  
[[to]]M,b .

Formally:  Let the relation 0  on the terms of L be defined by:

( 1 ) s 0  t iff 0  eq s = t.
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Because of the rules RErefl., REsym. and REtrans. 0 is an equivalence
relation.  So we can form the corresponding equivalence classes [t] 0.

Let UM = {[s] 0: s a term of L}.  Furthermore, in virtue of RErepl., 0  is

a congruence relation with respect to each function constant fn  of L,
that is:

( 2 ) when for i = 1, .., n, si 0  ti, then f(s1, ..., sn) 0 f(t1, ..., tn) .

This means that the following definition of the interpretation fM  of fn

in M is coherent and defines a total function on UM :

( 3 ) <[t1] 0 , .., [tn] 0,[t] 0> # fM  iff 0  eq f(1, .., tn) = t

(As regards totality of fM : EQ1 guarantees that there is at least one term
t such that "f(t1 , .., tn) = t" is derivable, viz. f(1 , .., tn) . )

This completes the definition of M.  To show that M is a countermodel

to the claim that 0   s = t we first establish the following:

( 4 ) Let r be any term of L with variables x1,.., xn and let a  be an
assignment in M such that for j = 1, ..., n, a(xj) = [xj] 0.  Then
[[r]]M,a = [r] 0.

(4) is proved by a simple induction on the complexity of r.

We now show that for each Ei # 0, Ei is true in M.  Suppose that Ei is the
equation si = ti.  Recall that "equations" are really sentences , which are
obtained from the bare equations by universally quantifying over all the
variables occurring in them. So in order that the equation si = ti is true
in M it is necessary and sufficient to show that for arbitrary
assignments a  in M, [si = ti]M,a  = 1.

Assume that x1,.., xn are the variables occurring in si = ti.  Let a  be any
assignment in M.  Suppose that for j = 1, ..., r, a(xj) = [rj] 0 .  Let si' be
the term si[r1 /x1,..., rn /xn] - i.e. s' is the result of simultaneously
substituting the terms rj for the variables xj in s - and similarly for ti
and ti' .

Since si = ti  # 0, we have, trivially, 0  eq si = ti.  So, by the rule REsubst. it

follows that we also have 0  eq si' = ti'.  So
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( 5 ) [si'] 0 = [ti'] 0 .

Let y1,.., ym  be all the variables occurring in si' = ti' and let a'  be an
assignment such that for h = 1, ..., m, a'(yh]) = [yh] 0.  From Lemma 3,
established in connection with the Completeness Proof for Predicate
Logic in Ch. I, we know that:

( 6 ) [[si']]M,a' = [[si]]M,a'',

where a''  = a'[ [[r1]]M , a' /x1,..., [[rn]]M , a' /xn ] .

By (4) we get (i)

( 7 ) [[si']]M,a' = [si'] 0  and [[ti]]M,a' =[ti'] 0.

and (ii)

(8)  [[rj]]M,a' = [rj] 0 , for j = 1,..., n.

From (8) it follows that a'' = a'[ [r1] 0 /x1,..., [rn] 0 /xn ].  Thus a'' a n d
a  coincide on the variables x1,.., xn.  Therefore, since x1,.., xn are all
the (free) variables of si = ti, it follows by Lemma 1 from Part I that

( 9 ) [[si]]M,a  = [si]]M,a'' and [[ti]]M,a  = [ti]]M,a''.

From (5), (6) and (9) we get:

[si]]M,a  = [si]]M,a'' = [[si']]M,a' = [si'] 0 = = [ti'] 0  = [[ti']]M,a' =
[ti]]M,a'' = [ti]]M,a .

This establishes that M  0 .

To see that not M  s = t, it suffices to note that it follows from (4)

above that [[s]]M,b   [[t]]M,b , where b  is an assignment such that
b(wi) = [wi] 0 , for i = 1,..., h, where w1, ..., wh are all the variables
occurring in s = t.  The existence of such assignments entails that the
equational sentence s = t is false in M.

q.e .d.
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It is striking how much simpler this proof is than the Completeness
Proof we gave in Part I.  In a way this should not come as a surprise
since we are dealing with formulas of a comparatively simple logical
structure.  Still, it is to be notes that while the present result is weaker
than the full completeness proof precisely in that it deals with a small
subclass of formulas, it is stronger in that it shows that when G and E
stand in the consequence relation then a proof can be found of a very
special and simple form.  The following Corollary makes this a little
more explicit.

Corollary.  If L is an algebraic language and 0  E, where, as above, E is

an identity of L and 0  is set of equations of L and is the proof relation

of full first order logic, then 0  eq E.

This Corollary follows immediately from the Theorem and the

soundness of the proof relation .   The result is interesting in its own
right insofar as it gives a certain normal form for proofs whose
premises and conclusion all have the simple form of a universally
quantified equation.

(To turn a derivation within Equational Logic into a "simple" proof of
the universal generalisation of the conclusion from the universal
generalisations of the premises is not completely trivial but very nearly
so.  In particular, a little reflection makes clear that one can turn the
proof into (i) a series of applications of UI to the needed premises and
to the identiy axioms; (ii) a series of steps involving MP corresponding
to the successive steps of the given Equational Logic proof; and (iii) UG
on the variables of the conclusion.)

Note also that the present proof yields like the completeness proof we
presented for the full predicate calculus the additional information that
a countermodel never need be more than denumerable in size.  From
the proof we have just gone through this follows from the fact that for
any of the languages L we consider in this script the set of terms is
denumerable.  So a model whose universe consists of equivalence
classes of such terms can be at most denumerable.

It should be noted, though, that in the case of equational logic the
counter models constructed in the completeness proof as we have
presented it here are almost always denumerably infinite.  The reason is
simple and relates to equations of the form vi = vj, with variables on
both sides of =. If any such equation is entailed by a given set of
equations 0 , then this will be true for all of them.  For it is easy to see



1 0 1

that any one entails any other.  So we have only two possibilities as

regards such equations:  (i) for all i,j such that i  j, [vi] 0  [vj] 0, in
which case the model M 0 will be infinite; or (ii) for some i,j such that i

 j, [vi] 0  = [vj] 0,  in which case we have [s] 0  = [t] 0  for all terms s,
t.  In this second case the model M 0  will have a universe consisting of
only one element, viz. the set of all terms of L.

Identities (i.e. equational sentences) differ from purely universal
sentences in general in that they have special preservation properties.
More precisely, we have a preservation theorem for conjunctions of
identities:  A sentence of L is logically equivalent to a conjunction of
identities iff it is preserved under (i) submodels; (ii) homomorphic
images; and (iii) direct products.

Of the three model-theoretic relations that are involved in these
preservation properties the first two -that of a model M being a
submodel oof some other model M' and that of h being a
homomorphism of a model M into a model M' have laready been
defined (the first in Ch. 1 Sn. 1.5.2, Def. 20 and the second in this
Chapter, Sn. 2.1.6, Def. 8).

The direct product M1 M 2 of two models M1 = <U1,F1> and M2 =
<U2,F2> of L is defined as follows:  The universe U of the product is the
set of all ordered pairs <a,b> with a #  U1 and b #  U2; and for any n-
place function constant f, the interpretation F of f is the function
defined as follows:

F(f)(<a1,b1>,.., <an,bn>) = <F1(f)(a1,.., an), F2(f)(b1,.., bn)> .

Def. 11 Let M1 = <U1,F1> and M2 = <U2,F2> be models for the
algebraic language L.  The direct product of M1 and M2 is the model M
= <U,F>, where:

(i)  U  = {<a,b>: a # U1 & b # U2}
(ii) F(f)  = {<<a1,b1>,..,<an,bn>,<F1(f)(a1,.., an), F2(f)(b1,.., bn)>:

   a1,.., an # U1 & b1,.., bn # U2}

The direct product of M1 and M2 is denoted as M1 M 2.

Exercise:  Show that if E is an equation of L,  M is the direct product

M1 M2 of two models M1 and M2 for L, M1 E and M2 E, then
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M E.

Hint. First show, by induction on the complexity of terms t of L,
that for any assignments a  in M1 and b  in M2, the product assignment

a b in M1 M 2 assigns to t in M1 M 2 the value

<[[t]]M 1,a , [[t]]M 2,b>. Here a b is the assignment which assigns to

each variable vi the element <a(vi),b (vi)> of M1 M 2.

Before we turn to the exact formulation and proof of the preservation
result for conjunctions of identities, it will be useful to first make a
general observation about a special type of model for algebraic
languages. These are the so-called term models.  We encountered an
example of such a model in the Completeness Proof for Equational Logic
just given, where we constructed a counter example to the consequence

claim 0  E in the form of a model M whose elements were equivalence
classes of terms.  In general, a term model for an algebraic language L is
a model whose universe consists of equivalence classes of the terms of
L, where these equivalence classes are generated by equivalence
relations which are also congruence relations with respect to all the
function constants of L.

More specifically, given a congruence relation  of the set TeL of all

terms of L, the corresponding model M  will have for its universe the
set {[t]: t # TeL}, where TeL, and as interpretation for any n-place
function constant f of L the function defined by:

fM ([t1] , ..., t[tn] ) = [f(t1, ..., tn)]

The term models for a given algebraic language L are situated between
two extremes.  At the one and of the spectrum we find the so-called
free algebra for the language L. This is the model generated by the
identity relation on the set TeL.  Obviously this is an equivalence
relation and congruence relation wrt to all function constants of L.  Its
equivalence classes are all the singleton sets {t}, where t # TeL.  We

denote this model as Mfr(L). Clearly any other term model M  for L,

generated by some congruence relation , is a homomorphic image of

M fr(L).  For it easy to see that the map {t} [t]  is is homomorpism

from Mfr(L) onto M .  At the other end of the spectrum we find the
model generated by the universal relation UTeL on TeL.  Again, this
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relation is an equivalence relation and congruence relation wrt. the
function constants of L.  The model generated by this relation has for
its universe the singleton set {TeL}, and the interpretation of the
function constants are, of necessity functions which map the one tuple
all of whose members are the one element of this universe to this

element. Since every congruence relation is a refinement of UTeL, the

model just described is a homomorphic image of the model M .

More generally, if 1 and 2 are equivalence and congruence relations

on TeL and 1 2, then M 2 is a homomorphic image of M 1.  For

the map h which maps each element [t] 1 of the universe of M 1 onto

[t] 2 is a homomorphism from M 1 onto M 2.  At the opposite and

from we find the one element term algebra <TeL, F>, where for any fn #
L, F(f) = {<TeL, .., TeL,TeL>} (with <TeL, .., TeL,TeL> the n+1-tuple all of
whose members are TeL).

Given any model M for L we can associate a term model with M in

several ways.  First, we can form the equivalence relation M on the set

of terms of L defined by:  s M t iff M  s  t.  Evidently, the resulting

term model M M  will verify exactly the same equations as M.  But

beyond that it is not so easy to say how M and M M  are related.  A

second method goes as follows. We extend L to a language L+ with

names for each of the objects in UM .  (i.e. L+ = L {ca: a # UM }; cf. the

definition of the diagram of M in Ch. 1.)  Let M+ be the expansion of M
in L+, i.e. caM+ = a for ca # L+\L and otherwise M+ is like M.  Now let

M + be the relation between terms of L+ defined by

s M+ t iff M+  s  t

M + is an equivalence relation on TeL+ and a congruence relation wrt

all function constants of L+.  Thus M M + is a well-defined model for L+.
In this case too an equation of L will be true in the derived term model
iff it is true in the original model M.  Moreover, since for distinct

objects a and b in UM , M+  ca  cb, [ca] M +  [cb] M +.  So the map a

[ca] M + is a 1-1 map into the universe of M M +.  It is easy to verify

that this map is an isomorphism between M and a submodel of M M +,

but in general this will be a proper submodel of M M +.  A third

possibility is to form a model M' M +, whose universe consists of the
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equivalence classes under M + of all the closed  terms of L+.  Here, the

map a [ca] M + is a 1-1 map onto  the universe of M' M + and thus an

isomorphism from M to M' M +.

To conclude these remarks on term models, we recall an important
property concerning the values of terms in term models which we
established and made use of in the Completeness Proof above:

(*) Let M  be a term model for the language L based on the

congruence relation , let t be a term of L, let x1, ..., xn be the

variables occurring in t and let a be an assignment in M

such that for i = 1,.., n, a(xi) = [xi] .  Then [t]M , a = [t] .

As we have seen, (6) can be proved by a simple induction on the
complexity of terms.

We are now ready to prove the mentioned preservation theorem for
equations:

Theorem 13  (Birkhoff)

Let L be an algebraic language.  A sentence A of L is logically equivalent
to a conjunction of identities of L iff (a) A is satisfiable and (b) A is
preserved under (i) submodels; (ii) homomorphic images; and (iii)
direct products.

Proof

The direction from left to right is straightforward. Clearly each
identity is preserved by taking submodels (since identities are purely
universal sentences), direct products (since the matrix of an identity is
an atomic formula); and homomorphic images (since the matrix has the
form of an equation "s = t").  And since the individual identities satisfy
these conditions, the same is obviously true of their conjunctions.
Finally, if the truth of each such conjunction is preserved under the
model relations in question, then the same will be true for any sentence
that is logically equivalent to such a conjunction.

The hard part is (as always with preservation theorems) the
direction from right to left.  Suppose that A is a sentence that is
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preserved under taking submodels, direct products and

homomorphisms.  Let 0  = {E: E is an identity such that A E}.  First we

show that if M 0 A, then 0 A .

To show that 0  A, we have to show that if M is any model of 0 , then M

A. In view of the Completeness Proof we know that it suffices to show
this for denumerable models.  So let M be a denumerable model of 0 .
Let g be an assignment in M which maps the set of variables onto UM .
We extend g to the set of all terms of L by letting g(t) = [[t]]M,g.

Suppose that s and t are two terms of L such that s 0  t.  Then 0  s = t.

So, since M 0, M s = t.  So
[[s = t]]M,g = 1.  So [[s]]M,g = [[t]]M,g.  So the map g from terms t to

elements [[t]]M,g induces a map from the equivalence classes [t] 0

onto the elements of M.  It is also easily verified that this map is a
homorphism.  So, since A is preserved by homomorphisms and by

assumption M 0 A, it follows that M A .

So we conclude that 0  A.  But then there is a finite set of E1, .., En in 0

such that E1 & .. & En A.  So, since on the other hand A Ei for all i (1

 i n), A (E1 & .. & En).

It remains to show that M 0 A.  Suppose not.  Then M 0 A. Let

(M 0)+ be the expansion of M 0 in some language L+ =

L {ca: a # UM 0  } and let D((M 0)+) be the set of (a) all equations s =

t with s, t constant terms of L+  and (b) all negations of such sentences.

Then D((M 0)+) {A} is inconsistent.  For if not, then D((M 0)+) 

{A} has a model.  But this model will be (isomorphic to) an extension of
(M 0)+.  So (M 0)+ will be a submodel of this model and

consequently, because A is preserved by taking submodels, (M 0)+ A .

This contradicts the assumption that M 0 A.  Since D((M 0)+) 

{A} is inconsistent, there are E1, .., Ek, D1, .., Dn in D((M 0)+), where

the Ei are of type (a) and the Dj of type (b) (see the def. of D((M 0 )+) )

a n d

( 1 ) A (E1 & .. & Ek & D1 & . & Dm)
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Since A does not contain any of the constants {ca: a # UM 0} ,

( 2 ) A ( x1)..( xr) (E'1 & .. & E'k & D'1 & . & D'm)

where (i) ca1, ..., car are all the new constants occurring in E1, .. , Ek,
D 1, .., Dm , (ii) x1, ..., xr are r new variables (i.e. variables not occurring
in A or E1, .. , Ek, D1, .., Dm ) and (iii) the E'i and D'j are the result of
replacing in the Ei and Dj the constants cah by the variables xh.

First assume that k = 0 (i.e. all the conjuncts on the right hand side in
(1) are of type (b)):

( 3 ) A ( x1)..( xr) (D'1 & . & D'm)

Consider D'1.  Suppose D'1 is the inequality s1  t1.  We know that the

elements a1, ..., ar of UM 0 satisfy s1  t1 in M 0 . This means that the

identity s1 = t1  does not belong to 0 , for if it did it would be satisfied in

M 0  by all possible combinations of elements of UM 0 .  So it is not

the case that A  s1 = t1.  That is, A is consistent with ( x1)..( xr) s1 

t1.  So there is a model M1 of {A} {( x1)..( xr) s1  t1}.  So there are

objects a11, ..., a1r in UM 1which satisfy s1  t1 in M1.  In the same way

we can find models Mj of {A} {( x1)..( xr) sj  tj} and sequences of

objects aj1, ..., ajr in their universes which satisfy sj  tj, for each of the
remaining disjuncts D'j.  Let M be the direct product of the models Mj
and let for i = 1, ..., r bi = <a1,i, ..., am,i>.  Then (i) since A is preserved
by direct products, A holds in M and (ii) the sequence <b1, ..., br>

simultaneously satisfies all inequalities  s1  t1, ..,  sm   tm  in M.  But
the existence of such a model contradicts (3).

Now assume that k > 0.   Consider E'1. E1 is of the form s1 = t1. Since

(M 0)+ E1, the elements a1, ..., ar of M 0 satisfy the equation s'1 =

t'1 in M 0 . Now let q1, ..., qr, be terms of L such that for i = 1, .., r, qi #

ai.  Then we have, for i = 1, .., r, ai = [qi] 0 .  Let

z1 , ...,  zs be all the variables occurring in q1 , ..., qr, and let b be an

assignment such that for h = 1, ..., s, b(zh) = [zh] 0 .  Then according

to (*), we have for i = 1, ..., r that
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( 4 ) [[qi]]M 0,b = [qi] 0.

Let s''1  be the result of substituting the terms qi for the variables xi in
s'1; in the same way we obtain t''1  from t'1 .  By Lemma 3 of Ch. 1,

( 5 ) [[s''1]]M 0,b = [[s'1]]M 0 ,b',

where b' is the assignment which is like b except that for i = 1, ..., r,
b'(xi) = [[qi]]M 0 ,b ; and similarly for t''1  and t'1 . But according to (4),

[[qi]]M 0,b = [qi] 0 = ai.  So [[s'1]]M 0 ,b' is the value of s'1 i n

M 0 under any assignment which assigns the ai to the xi, and the same

is true for [[t'1]]M 0 ,b'.  Since M 0 s'1 = t'1 [a1, ..., ar], it thus

follows that

( 6 ) [[s''1]]M 0 ,b = [[t''1]]M 0,b.

Now note that the variables in s''1 and t''1  are z1 , ...,  zs.  So we can

apply (*) once more, obtaining that [[s''1]]M 0 ,b = [s''1] 0 and

similarly for t''1 .  So from (6) we conclude that [s''1] 0 = [t''1] 0 , that

is:

( 7 ) s''1  0  t''1 .

But this means that

( 8 ) 0   s''1 =   t''1 .

Since A 0 , A  s''1 =   t''1, that is

( 9 ) A ( z1)..( zs)(s'[qi/xi] = t'[qi/xi])

Now substitute the terms q1 ,..,qr for the corresponding variables x1 ,..,

x r throughout the matrix of the formula on the right of in (2).  This
will turn the conjuncts E'i, D'j into new conjuncts E''i, D''j which are
substitution instances of the E'i and D'j.  From (2) we infer that

(10) A ( z1)..( zs) (E''1 & .. & E''k & D''1 &. & D''m)
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Note further that the argument we have just given for E'1  applies
equally to each of the other E'j (if any) and that the choice of the terms
qi can be the same in each case (i.e. irrespective of which E'j w e
consider.  In other words we have:

( 1 1 ) A  s''j   t''j,  for j = 1, .., k.

Because of (9) we can eliminate the disjunct E''1  from the negated
conjunction.  This reduces (10) to (12)

(12) A ( z1)..( zs) (E''2 & .. & E''k & D''1 &. & D''m)

But because of (11), the same argument applies to each of the other E''i
(i = 2,.., k).  So each of these conjuncts can be removed from (12) and
we end up with a formula of the form (4) with each of the conjuncts
satisfiable in M 0 .  We have already seen that this leads to a

contradict ion.
q .e .d

Exercise.  Let L be the algebraic language consisting of two 1-place
function constants f and g.  Let 0  be the pair of equations {f(x) = x, g(x)
= x}.  Show: there is no single equation E of L which is logically

equivalent to the conjunction ( x)(f(x) = x) & ( x)(g(x) = x).

We conclude this section with the comment which we promised in the
introduction to Section 2.2.  There we noted that formulas that contain
function constants may seem to carry, because of those function
constants, additional quantificational information other than what is
directly visible from the quantifiers that are overtly displayed.  This
extra information becomes explicit, when the formula is translated into
one in which the function constants are replaced by predicates.  In
particular, this translation will normally convert a purely universal
formula into one that is AE.  In the light of this observation it might
seem surprising that the preservation theorem for purely universal
formulas which we proved towards the end of Ch. 1 applies not only to
languages that only have predicates, but also to those some or all of
whose non-logical constants are function constants.  If it is true, one
might ask, that in general a purely universal sentence with function
constants has the force of an AE sentence, how then can it be that such
formulas obey the same model-theoretic restrictions as the "genuinely
purely universal" sentences which consist of a purely universal prefix
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followed by a quantifier-free matrix in which there are no function
symbols?

The explanation of this apparent paradox is that when we are dealing
with a language L which has function constants, the submodel relation
between models for L is subject to restrictions which do not play a role
when we deal with models for languages which only have predicates.
Whenever M = <U, F> is any model for a language without function
constants and U' is a subset of U, then there is always a unique
submodel M' = <U',F'> of M, in which F' assigns to each predicate P of
the language the restriction to U' of the interpretation F(P) assigned to P
in M.  When the language L contains function constants, this no longer
holds in general.  Suppose for instance that L contains the 1-place
function constant f and let M be any model for <U, F> and U' a subset
of U.  In order that there be a submodel M' = <U',F'> of M whose
universe is U' it should be the case that the restriction of F(f) to U'
satisfies the requirements for interpretations of 1-place function
constants, viz that the interpretation is a function from the universe
into itself.  In general this won't be the case, for there may well be
elements a #  U' such that F(f)(a) belongs to U \U'.  In that case the pair
<a,F(f)(a)> will not belong to F'(f), F'(f) will thus only be a partial but
not a total function form U' into U' and thus unsuitable as
interpretation for f.

The upshot of this is that when L contains function constants, then the
submodel relation is much harder to satisfy than it is for pure predicate
languages.  Consequently truth preservation under arbitrary submodels
is a condition that is easier to satisfy for such languages than for pure
predicate languages - since there are fewer submodels, it is easier for a
sentence to have the property that whenever it is true in a given model
it is also true in all its submodels.  In fact, the general validity of
preservation theorem of Ch. shows that the extra quantificational
complexity that formulas may seem to have because of containing
complex terms is "matched" by the special constraints which function
constants impose on the submodel relation.

Arguably this comment would have been more appropriate after the
proof of the preservation theorem in Ch. 1.  But since the general issue
that prompted it was raised only in this chapter, this seemed the next
best place to make the comment.  For the preservation properties of
universally quantified equations are, as Birkhoff's Theorem asserts,
even stricter than those for purely universal formulas - preservation
under formation of submodels being one (but only one) of the
properties that distinguish sentences that are equivalent to a universally
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quantified equation.  Since universally quantified equations are
preserved under submodel formation and since they too will usually
produce additional existential quantifiers when translated into formulas
with predicates, they too give rise to the apparent paradox of which we
have spoken.

2.4.1         U n i f i c a t i o n

A very different conception and use of equations is found in connection
with unification .  Here equations are understood as constraints on a
structure consisting of (presumably) connected objects which are
represented by the variables of a given set E of equations.  Thus the
equations in the set E  are not understood as universally true - i.e. as
universally quantified sentences - but as "locally true" - i.e. as true of
the particular objects which the variables occurring in E represent .
What one is after is a particular set of values for the variables for which
all the equations are satisfied.

In certain situations one moreover wants the simultaneous solution to E
to be "provably correct".  More specifically, what one is looking for is a
way of specifying the values so that the fact that they form a solution to
the equations becomes a fact of pure logic.  There is one salient and
natural way in which this may be accomplished, and it is this:  Let L be
the language of the equations in E and let Mfr(L) be the free algebra for
L. Suppose that x1, ..., xn are the variables occurring in E  and that a is
an assignment in Mfr(L) such that [[E]]M fr(L),a = 1 for all E # E.

Suppose that for i = 1, ..., n, a(xi) = [ri] = {ri}.  It is easy to see that,
supposing that E is the equation s = t, s' is the result of replacing x1, ...,
xn in s by r1, ..., rn and likewise for t' and t, [[E]]M fr(L),a = 1 implies

that the equation s' = t' is a tautology, i.e. s' is the very same term as t';
and thus that s' = t'  is a (trivial) theorem of pure logic.

The problem of finding such a "logically valid" simultaneous solution to
the equations in a given set E in the free algebra for L is known as the
problem of (term )unification .

The problem of unification is usually stated as the question whether a
set of equations has a unifier  (or unifying substitution).  Let us begin by
introducing the relevant notions.
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Def. 12 Let L be an algebraic language, X a set of variables.

i . A substitution on X in L is a function .  with domain X,
which assigns each variable xi in X a term ri of L.

ii. Suppose . is a substitution on X.  There is a standard
extension . ' of . to the set of all variables, defined by

. '(vj) = .(vj), if vj # X

. '(vj) = vj otherwise

Since there is an obvious 1-1 correspondence between
substitutions on subsets X of the set of all variables and
their extensions as just defined, we won't distinguish
between them, using "." both to refer to the substitution
.  on X itself and to its extension . ' .

iii. Let . , / be two substitutions.  By . o /, the composition

of  . and / , we understand the substitution 2  which
assigns to each variable vj the term 2(vj) which we
obtain by simultaneously substituting for the variables
vk occurring in . (vj) the terms /(vk) .

iv. Suppose that E  is a set of equations of L and that .  is a
substitution in L.  Then .  is called a unifier of E iff for

each E # E, E[.], where E[.] is the result of
simultaneously substituting the terms . (vj) for the
variables vj which have free occurrences in E.

The main result about unification is that for finite sets of equations the
problem whether a unifier exists is decidable:  There exists an algorithm
(due to Martelli & Montanari), which will find a unifier in a finite
number of steps if one exists, and will return a negative answer to the
question, when there is no simultaneous solution.   Moreover, the
algorithm returns, in those cases where there is a solution, a so-called
"most general unifier" for the given equation set.

Def. 13 Let E be a set of equations of L and .  a substitution in L.
Then . is called a most general unifier of E  iff (i) . is a unifier of E; and
(ii) for any unifier 2 of E there is a substitution / such that 2 = . o / .

Thm.  14
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i. There exists an algorithm which (i) returns for any finite set of
equations E of any algebraic language L in finitely many steps either a
unifier .  for E or else the answer that no unifier of E  exists.

ii. The unifier . which the algorithm returns when E does admit of a
simultaneous solution is a most general unifier for E .

[Ref.  ??]

N.B.  1.  Note that when  E = {E1, ..., En}, then, if .  is unifier of ,

( x1)...( xk)(E1[.] & ... & En[.]),

where x1, ..., xk are all the variables occurring in (E1[.], ...,  En[.].  This
formulation is especially apt to show how strong a claim unifiability
really is.

2 . The unification problem is special in that it asks for a
substitution which turns all equations in the set into tautologies.  There
are many situations where such a result is stronger than one really
needs.  Rather, what is wanted is a substitution which turns all
equations into theorems of a given theory T:

For all E # E, T E[.]

It should be stressed that with each different T the corresponding
unification problem one is dealing with is a different one; and as a rule
the problems are very different indeed, involving very different
combinatorics, as a function of the axiomatic principles that T includes.
This is so in particular in certain cases where T is itself an equational
theory.  For a few simple examples of such equational theories T the
unification problem has been showed to be undecidable - which is one
indication of how different the problem may become when a non-
tautological theory T is brought into play.

(Two references on Unification: (i) Martelli, A. & U. Montanari.  An
Efficient Unification Algorithm.  ACM Transactrions on Programming
Languages and Systems, April 1982. (ii) Lloyd, J.W., Foundations of

Logic Programming. Springer, 1984)
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2.5     D e f i n i t i o n s .

It is common practice to extend given scientific theories by adding new
notions via definitions.  Sometimes the point of a definition is strictly
one of notational convenience: the defined concept abbreviates a
complicated expression in the "primitive" vocabulary of the theory
(that is, of the vocabulary in which the theory is given initially) and
thus allows simplification of statements which contain this expression
as a part.  In other cases the defined notion has a conceptual
significance of its own, which will make it easier to understand and
handle statements in which it is represented as a unit - i.e. by a single
symbol or term - than they would be if the concept were circumscribed
in the theory's primitive vocabulary.  And in yet other cases the defined
concept may be one that is directly accessible to empirical observation,
and deserve to be made explicit by a separate definition for that reason.
In fact, the method of introducing concepts by definition is so general
and of such methodological importance that most textbooks on logic
and/or scientific methodology devote a separate chapter to it.

Here we will look at issues connected with definitions within the
specific context of theories formalised within first order logic. That
somewhat limits the range of issues that the theory and pactice of
definition give rise to in general. Nevertheless, there remain a number
of useful things to be said and these we will address. (Something that
does not fit within the setting we adopt here is the conceptually
important question of (non-)circularity of definitions. We will have a
few observations about this notion towards the end of the section.)

In relation to first order theories questions of definition arise in two
different settings. The first is that implicit in what was said in the
opening paragraph: We have a theory T of some first order language L
and want to extend T by adding some notion by definition. Formally this
will consist in (i) choosing a new symbol $  for the notion that is to be

added to it, (ii) extending the language L to the language L' = L {$} and
then (iii) extending T to the theory T' of L' which is obtained by adding
the definition of $ to T and then closing under logical consequence in
L'. This is what might be called the external  perspective on  definition.

But questions of definition can also be raised from a theory-internal

prespective. Suppose again that T is a theory of L but now $ is a non-
logical constant of L. We can then ask the question whether $ could not
be defined within T in terms of its remaining vocabulary: Is there a
definition D of $ in terms of the remaining vocabulary which (i) is a
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theorem of T and (ii) will give us back all of T when combined with the
reduction T' of T to the language L' = L\{$} (i.e. the theory which
consists of all theorems of T that belong to L')? Or - to put the question
a little more informally - could we not eliminate all statements
involving $  from T and then restore them again to T by adding D?

In order to state this second question with the necessary precision we
need to first have a clearer notion of what a "definition" is. We just
spoke of "adding a definition of $" to some first order theory.  That
implies that the defintion in question must be a first order sentence,
which we can add to a theory as an additional axiom. But which
sentences should qualify as possible definitions of some non-logical
constant $? What do we, or should we, expect of a sentence that is to
serve as a definition? There are two criteria that, as the result of
discussions of the purpose and form of definitions that stretched over
centuries, have emerged as the central functional requirements. These
are :

(i) conservativity

a n d

(ii) determination .

( i ) Conservativity is a notion that does not only arise in connection
with definitions. Its general context is that of a theory T of some
language L and an extension T' of T whose language is some extension L'
of L. T' is called a conservative  extension of T iff T' coincides with T as
far as L is concerned: if A is a sentence of L, then A is a theorem of T' iff
it is a theorem of T.

The notion of conservativity as definability constraint involves a
straightforward application of the "conservative extension" relation.
Intuitively, the constraint is that adding a definition D of a new notion $
to a theory T should not introduce new information that is expressible
in the primitive vocabulary L of T. The formal expression of this
requirement is as follows: every sentence A of L that is a theorem of the

theory T' = ClL'(T {D}) (where as before L' is the language L {$}) is
already a theorem of L; or, put in terms of the notion just introduced:
T' is a conservative extension of T.

( i i ) Determination is the principle that a definition D of $ should fully
determine the extension of $ when the extensions of the notions in
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terms of which D defines $ are given. The formal characterisation of
this condition is model-theoretic: Let T and T' be as under (i) and let M
= <U,F> be a model for L that is a model of T. Then there should be one
and only one way to expand M to a model M' = <U,F'> for the language

L' = L {$} that is a model of M'. That is, there ought to be only one way
of extending F to an interpretation function F' of the non-logical
constants of L', i.e. only one way of adding an interpretation F'($ ) for $
which verifies all the additional theorems of T' (including, in particular,
the new "axiom" D)

Of these two criteria determination is the stronger one; it entails
conservativity. For supppose that T, T', L and L' are as above and that D
satisfies determination of $ in relation to T. That is:

( 3 ) For every model M of T there is one and only one expansion M' of
M to L' which is a model of T'.

To show that T' = ClL'(T {D}) is a conservative extension of T assume

that (3) holds and that A is a sentence of L such that T' A. We must

show that T A. Suppose that it is not the case that T A, Then T {

A} consistent. Let M be a model of T { A}. Then there will be no
expansion M' of M that is a model of T'. For every such expansion will

verify A, while A is a theorem of T'.2 4

With this we are now in a position to address the question what form a
definition should have in order that the mentioned criteria are satisfied.
Since determination entails conservativity, it suffices to consider just
determinat ion.

Within formal logic we find two different forms of definitions which
both satisfy determination. For the first of these, known as explicit

definition , this is almost trivial. For the second, definition by recursion,
- also called "definition by induction", or "recursive definition" or
"inductive definition" - determination isn't quite as obvious, but even
for this type of definition it is relatively easy to see that all the familiar

2 4 It is natural to ask whether conservativity in its turn entails determination.
As it stands, I so not know the answer to this question. (I suspect the answer must
be known but i haven't done the extensive literatire check need to find out
whether this is so.) my hunch is that the entailment in this direction does not
hold. it may fold under certain restrictions, but I have no clear idea what these
might be either.
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instances do satisfy determination.  In this section we will only consider
explicit definitions.2 5

Explicit definitions are universally quantified biconditionals in which an
atomic formula involving the symbol that is being defined stands to the

left of and its definition - some formula A of the language in which
the new symbol is being defined - to its right. (The left hand side and
the right hand side are often referred to as the def in iendum  and the
definiens  of the given definition.) Exactly what this comes to still
depends on what type of symbol $ - or, more accurately: what type of
non-logical constant $ - is being defined. If $ is an n-place predicate P,
then an explicit definition for $ in  a language L has the form specified in
( 4 )

(4) ( x1)...( xn)(P(x1,.., xn) A(x1,.., xn)),

where x1,.., xn are n distinct variables and A is a formula of L not
containing P whose only free variabes are x1,.., xn.

Explicit definitions of function constants are essentially of the same
form, except that the atomic formula on the left reflects the fact that
we are dealing with a function constant rather than a predicate
constant. The form of an explicit definition for an n-place function
constant is given in (5).

( 5 ) ( x1)...( xn)( xn+1)(f(x,.,xn) = xn+1  A(x1,.., xn,xn+1)),

where x1,.,xn, xn+1 are n + 1 distinct variables and A is a formula
of L not containing f whose only free variabes are x1,.., xn+1.

It is easy to see that sentences of the form (4) sastisfy determination.
Suppose again that T is a theory of L, that P does not belong to L and

that we form the theory T' = ClL'(T {D}) of the language L' = L {P},
where D has the form given in (4). Let M = <U,F> be a model of T. The
right hand side A of D has for its extension the set [[A]]M  in M, where
[[A]]M = {<u1,.., un>: for i = 1,..,n, ui # U & [[A]]M[u1,.,un] = 1}.
Let M' = <U,F'> be the expansion of M to L' defined by F' =

2 5 Examples of recursive definitions will be encountered in the next section,
where we deal with the axiomatisation of natural number arithmetic. In chapter 3
recusive definitions will be discussed in greater depth; there we will in particular
look at the systematic connections that exist between recursive and explicit
de f in i t ions .
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F {<P,[[A]]M>}. It is easily verified that M' T'. (This follows from the

fact that on the one hand M' T, while on the other the choice of F'(P)

guarantees that M' D.) This establishes that there is at least one
expansion of M which verifies T'. Secondly, suppose that M'' = <U,F''> is

another expansion of M such that M'' T'. Then in particular M'' D .
This means that for every n-tuple <u1,.., un> of elements of U,
[[P(x1,.,xn)]]M''[u1,.., un] = 1 iff [[A]]M''[u1,.., un] = 1.

In other words, [[P(x1,.,xn)]]M'' = [[A]]M'', where

[[P(x1,.,xn)]]M'' = {<u1,.., un>: ui..un # U & [[P(x1,.,xn)]]M[u1,.., un] = 1}

a n d

[[A]]M'' = {<u1,.., un>: ui # U for i = 1,..,n & [[A]]M[u1,.., un] = 1}.

But the first of these two sets is nothing other than F''(P) and the
second set equals [[A]]M . This entails that [[P(x1,.,xn)]]M'' = [[A]]M =

[[P(x1,.,xn)]]M' and thus that M'' = M'.

The case of (5) is a little more complicated. A definition D of the form
(5) does not automatically guarantee determination, because the form
of D imposes certain constraints on the semantics of its definiens A. D
says that A(x1,.., xn,xn+1) is equivalent to a statement of the form
"f(x1,.., xn) = xn+1". This means that in any model M' of D there will
have to be for any n-tuple <u1,.,un> of elements of the unviverse
exactly one un+1 such that [[A]]M'[u1,..,un,un+1] = 1. This means that
the correspnding "unique value" condition (6) for A will be a theorem
of T', whether or not it is a theorem of T.

( 6 ) ( x1)...( xn)( y)(A(x1,.., xn,y) & ( y')A(x1,.., xn,y) y' = y),

So if T' is to be a conservative extension of T, then (6) should be a
theorem of T to begin with.

The upshot of this is that an explicit definition D of a function constant
is acceptable as an addition to a theory T only if T already entails the
corresponding unique value condition (6) for its definiens A. For only
then will the addition of D be conservative. However, when this
condition is fulfilled, then the addition of D will not only satisfy
conservativity but also determination. (The argument is the same as for
explicit definitions of predicates.)
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The general moral of this discussion is that sentences of the form (4)
and, with the qualifications just noted, also those of the form (5) satisfy
the requirements we laid down for good definitions. This is consistent
with the almost universal practice to cast definitions of new symbols in
these particular forms.2 6

This concludes our discussion of the external perspective on the
question what constitutes a proper definition, and we now turn to the
internal perspective. In discussing the questions that this perspective
gives rise to we follow the tradition in that we assume the notion of an
explicit definition, as specified in (4) and (5), as our syntactic
characterisation of proper definitions.

Suppose that T is a theory of the language L and that $ is a non-logical
constant of L. We already stated what it means for $  to count as
definable within T: there has to be some definition D of $ in the

language L' = L\{$}) such that T = ClL(T' {D}), where T' = T {A: A #
L'}. Now that we have adopted a specific syntactic characterisation of
definitions we can turn this notion of definability into a strictly formal
characterisat ion:

( 7 ) Let T be a theory of a first order language L and $  a non-logical 

constant of L. Let L' = L\{$} and T' = T {A: A is a sentence of L'}.
Then $ is explicitly definable in T iff there exists an explicit 

definition D of $ in L' such that T = ClL(T' {D}).

We have already seen that when $ is explicitly definable in T, then $ i s
also implicitly definable in T, where implicit definability is
characterised model-theoretically as in (8).

( 8 ) Let T, L, $ , L' and T' as in (7). Then $ is implicitly definable in T iff
the following condition holds:

Every model M' of T' can be expanded in one and only one way to
a model M of T

It is an interesting fact that the converse of this implication - that
implicit definability entails explicit definability - also holds. This result

2 6 Recursive definitions are found almost exclusively within mathematics,
something that has to do with the circumstance that they are suitable for domains
that have the special "recursive" structure that such definitions presuppose.
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differs from the statement that explicit definability entails implicit
definability in that it depends on specific properties of first order
predicate logic and is not generalisable to other logical formalisms
(such as, for instance, higher order predicate logic). The result is
known as Beth's Definability Theorem, after the Dutch logician E.W.
Beth (1908-1964) who formulated and proved the theorem. To do
justice to its importance we state Beth' Theorem  once more, as a
separate theorem with its own number.

Theorem  15 (Beth's Definability Theorem)

Let L be a language of first order logic, $  a non-logical constant of
L and T a theory of L. If $  is implicitly definable in T, then $  is
explicitly definable in T.

The proof of Beth's Theorem that we will present here is not the proof
which Beth gave himself.  But it is, I believe, the most popular proof of
the theorem today.  It makes use of another important theorem abolut
first order logic, the so-called "Craig Interpolation Lemma". Craig
proved this theorem on the way towards some other result in proof
theory in which he was interested ar that point, hence the name
"Interpolation Lemma".  But it states a proposition which has come to
be recognised as a salient fact about first order predicate logic in its
own right.  As in the case of Beth's Definability Theorem, there are
other logical formalisms than first order logic for which the
Interpolation Lemma does not hold, and in fact, validity of the Lemma
has become (like the validity of Beth's Theorem) an important property
in terms of which logical formalisms are classified.  (Satisfying Craig's
Lemma can be seen as a certain kind of well-behavedness for formal
systems.)

The Interpolation Lemma says that if A and B are sentences of first

order logic and A  B, then there is a sentence C in the comon

vocabulary of A and B such that A  C and C  B.  We can roughly
paraphrase this as: That which is responsible for the fact that A is
logically at least as strong as B can be articulated in just the
terminology that is common to them both.  A formal statement of the
Interpolation Lemma is given as Theorem 16.

Theorem 16  (Craig's Interpolation Lemma).

Suppose that A is a sentence belonging to some first order language L1,
B a sentence belonging to some first order language L2 and that L1 and L2

are compatible in that L1 and L2 assign the same signature to the
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symbols they have in common. We denote the language whose non-

logical constants are those common to L1 and L2 as L. Suppose that A 

B.  Then there is a sentence C belonging to L such that A  C and

C  B.

The Interpolation Lemma can be proved quite easily on the basis of the
completeness proof for first order logic that is given in the Appendix to
Ch. 1. A proof of the Interpolation Lemma along those lines is given at
the end of that Appendix. Here we will, as last item of this section,
present a proof in which the same construction is used that is central to
the completeness proof given in the main body of the text of Ch. 1 (see
Section 1.2). This proof has an interest in its own right as a further
application of the method used to prove completeness there, but it is
more complicated than the one from the Appendix. (The central idea of
this latter proof can be grasped immediately, although its technical
details take up a certain amount of space.)

Proof of Beth's Theorem.

Beth's Theorem holds for arbitrary non-logical constants $ . However,
we will first give the proof for the case where $  is an n-place predicate
P. After completion of that proof we will then show how the case where
$  is a function constant can be reduced to the case where $  is a
predicate .

Suppose that L, T and $ are as in the statement of the Theorem and that
$ is implicitly definable in T. Further assume that $ is an n-place
predicate P, that L' = L\{P} and that T' is the theory of L' defined by:

T' = T {A: A is a sentence of L}. Let P1 and P2 be symbols not occurring
in L and let L1 and L2 be the languages which result when we add,
respectively, P1 and P2 as n-place predicates to L'. Let T1 be the theory of
L1 which we get by replacing P in all theorems of T everywhere by P1,
and let, analogously, T2. be the theory of L2 which we get by replacing P

in T everywhere by P2. Let T3 be the theory CNL3(T1 T2) in the language

L3 = L1 L2. Then the following sentence (1) is a theorem of T3:

( x1) .. ( xn) (P1(x1, .. , xn)  P2(x1, .. , xn) ) ( 1 )

That (1) is a theorem of T3 can be seen as follows.  Suppose that M3 is
any model of T3.  Let M1 be the reduction of M3 to L1, M2 the reduction
of M3 to L2 and M' the reduction of M3 to L'.  Then M1 is a model of T1,
M 2 is a model of T2 and M' is a model of T'.  Since by assumption P is
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implicitly defined in T, the same is evidently true of P1 in relation to T1

and of P2 in relation to T2.  Since P1 is implicitly defined in T1, there is
exactly one expansion M1' of M' which is a model of T1. So M1' = M1,
which means that the extension of P1 in M1' is the same as it is in M1.
Since T2 is just like T1 except for renaming of the predicate P1 as P2, the
unique expansion M2' of M to L2 that is a model of T2 will assign to P2

exactly the same extension as M1' assigns to P1.  And, as before, the
extension of P2 in M2' is the same as the extension of P2 in M2.  So all
these extensions are the same and in particular the extension of P1 in M1

is the same as the extension of P2 in M2.  As these are also the respective
extensions of P1 and P2 in M3, P1 and P2 have the same extension in M3.
So it follows that (1) holds in M3.  Since this is true for arbitrary models
M 3 of T3, (1) is a logical consequence of T3.

Since T3  (1), we also have T3  (2), where (2) is the result of dropping
the universal quantifiers of (1) and replacing the variables x1,.., xn by
fresh individual constants c1,.., cn, which do not belong to L':

P1(c1,.,cn)  P2(c1,.,cn) ( 2 )

Since T3 = CNL3(T1 T2) and T3  (2), there are finitely many sentences
D 11,.., D1m from T1 and there are finitely many sentences D21, .., D2 n

from T2 such that

{D11,.,D1n,  D21,.,D2m} P1(c1,.,cn)  P2(c1,.,cn). ( 3 )

We can choose the sentences D11,..,D1n, D21,..,D2m  in such a way that n =
m and that D2i is the result of replacing P1 in D1i by P2. Forming the
conjunction D1 of the D1i and the conjunction D2 of the D1i we get

D 1 & D2   P1(c1,.,cn)  P2(c1,.,cn) ( 4 )

a n d

  D2  = D1 [P2/ P1]. ( 5 )

(4) entails (6):

D 1 & P1(c1,.,cn)  D2  P2(c1,.,cn) ( 6 )

Note that in (6) the formula to the left of  belongs to L'1 and the

formula to its right belongs to L'2, where L'1 = L1  {c1,.,cn }, and
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similarly for L'2.  So the Craig Interpolation Lemma applies:  There is a

sentence C from the common language L' = L  {c1,., cn} such that

D1 & P1(c1,.,cn) C   ( 7 )

a n d

C  D2  P2(c1,.,cn). ( 8 )

Since C does not contain any occurrences of P2, the proof of

D 2  P2(c1,.,cn) from C will turn into a proof of D1  P1(c1,.,cn) from C
when we replace all occurrences of P2 by P1.  So we have

C  D1  P1(c1,.,cn), or, equivalently: ( 9 )

D1  C P1(c1,.,cn), ( 1 0 )

Also, (7) can be turned into 

D1  P1(c1,.,cn) C , ( 1 1 )

and (10) and (11) give us

D1  P1(c1,..,cn) C . ( 1 2 )

Since D1 is a sentence from L1, it does not contain any of the constants
c1,..,cn.  So (12) entails:

D 1  ( x1)..( xn) (P1(x1,.,xn) C'), ( 1 3 )

where C' is the formula of L which we get by replacing the occurrences
of c1,.,cn in C by the variables x1,.,xn.  Replacing P1 in (13) throughout
by P gives us

 D  ( x1) .. ( xn) (P(x1,.,xn) C'), ( 1 4 )

where D is a sentence from T' and C'' is a formula from L.  So

T'  ( x1) .. ( xn) (P(x1,..,xn) C') ( 1 5 )

which shows that P is explicitly definable in T'. q .e .d.
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This concludes the proof for the case where $  is a predicate. Suppose
now that $ is an n-place function constant f. We can reduce this case to
the case where $  is a predicate by replacing f by an n+1-place predicate
P, where "P(x1,.,xn,xn+1)" expresses that f(x1,.,xn) = xn+1. Let P be a

symbol not occurring in L and let 'L be the language (L\{f})  {P}.
Corresponding to each model M = <U,F> for L there is a model
'M = <U,'F> for 'L, where for any n+1-tuple <u1,.,un,un+1> of elements of
U, ('F(P))(<u1,.,un,un+1>) = 1 iff (F(f))(<u1,.,un>) = un+1. Conversely, for
any model 'M for 'L there is a model M for L such that 'M corresponds
to M in the manner indicated.

Let + be the translation function from L to 'L defined in Exercise EA2 of
the Appendix to Ch. 1. +  translates terms /  into formulas /+(y) and

formulas A of L into formulas A+ of 'L. As shown in EA2, + has the
property that for any model M for L, corresponding model 'M for 'L and
assignment a  in M, [[/+(y)]]'M,a = 1 iff [[/]]M,a = a(y) and [[A+]]'M,a =
[[A]]M,a.

Let 'T be the deductive closure of the set of + -translations of the
sentences in T: 'T = Cl'L({A+: A # T}). Then it follows from the above

remarks about + that for any model M for L we have M T iff 'M 'T,
where 'M is the 'L-model corresponding to M. Moreover, the

"reduction" of T to L' = L\{f} - i.e. the theory T' = T {A: A is a sentence
of L'} - is the same as the "reduction" of 'T to L'. (Note that the language
L' can also be written as 'L\{P}.) From these observations we can infer
that P is implicitly definable in 'T. For suppose that M' is a model of T'.
Then there is by assumption a unique way to expand M' to a model M of
T. It follows from what we have said that the model 'M for 'L
coresponding to M is a model of 'T. So there exists an expansion of M'
to a model of 'T. Moreover, if there were two different expansions 'M1
and 'M2 of M' that were both models of 'T, then the corresponding
models M1 and M2 for L would be also different and they would be
expansions of M' that would be both models of T, which would
contradict the assumption that f is implicitly definable in T.

Since P is implicitly definable in 'T we can apply Beth's Theorem for the
case of predicates and obtain as theorem of 'T an explicit definition for
P of the form given in (16).

 ( x1) .. ( xn)( xn+1)(P(x1,.,xn,xn+1)  A ) ( 1 6 )

where A is a formula of the language L'.
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At this point we must refer once more to the properties of the
translation function + . One further property of + is that the formula
(f(x1,.,xn) = xn+1)+  is logically equivalent to the formula P(x1,.,xn,xn+1)
and that this equivalence is preserved by logical operations which
combine these atomic formulas with each other and with formulas from
L' (which are not affected by +). This entails that (16) is logically
equivalent to the + -translation of (19).

 ( x1) .. ( xn)( xn+1)(f(x1,.,xn) = xn+1   A ) ( 1 7 )

So since (16) is a theorem of 'T, (17) is a theorem of T.

This concludes the proof of Beth's Theorem.
q.e .d.

There is a striking similarity between Beth's Definability Theorem and
the Correctness-and-Completeness Theorem for first order predicate
logic.  Each theorem states an equivalence between (i) a syntactic and
(ii) a semantic condition, and in each case the one condition is
existential and the other universal. In our original formulation of the
(Correctness and) Completeness Theorem the syntactic condition is
existential - there exists a proof of B from the premises A1, .., An -
and the semantic condition universal - every  model which verifies
A 1, .., An also verifies B. Similarly, in the case of Beth's Theorem the
syntactic condition - explicit definability, i.e. the existence of an explicit
definition of $  which is a theorem of T - is existential and the semantic
condition - implicit definability, the unique expandability of every
model of T' to a model of T - is universal. But we can also turn things
around by taking contrapositives. The two conditions connected by the
Completeness Theorem are then an existential semantic condition -
there exists a model which verifies A1, .., An but fails to verify B and
a universal syntactic condition - no  formally correct proof is a proof of
B from  A1, .., An. Similarly, taking contrapositives in the case of Beth's
Theorem turns it into an equivalence statement between an existential
semantic condition - there is a model of T' that either cannot be
expanded to a model of T at all or else can be expanded to a model of T
in more than one way - and a universal syntactic condition - no  explicit
definition of $  is a theorem of T.

When the Correctness-and-Completeness Theorem is stated as the
equivalence between the negated conditions mentioned above - there
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exists a "countermodel", in which A1, .., An are true and B is false iff
there is no derivation of B from A1, ..,An -, then the hard part
(completeness) is to prove that non-existence of a proof of B from A1,
.., An entails the existence of a countermodel. The converse - that the
existence of a countermodel entails that there is no proof of B from A1,
.., An; in other words, the correctness of the given proof procedure - is
generally easier (although how easy will depend somewhat on the proof
procedure for which correctness and completeness are being proved).
In the case of Beth's Theorem the difference between the two directions
is even more striking. When there is a model of T' which either has no
expansion or else more than one expansion to a model of T, then
obviously it cannot be the case that T contains an explicit definition of
$ as a theorem. It was Beth's striking accomplishment to succeed in
proving the converse of that.

In fact, the easy direction of the equivalence between implicit and
explicit definition had been known for many years before Beth proved
his Theorem. And it was one half of that easy direction - that the non-
existence of an explicit definition of $  in T can be established by finding
a model of T' that can be expanded in more than one way to a model of
T - which had gained currency under its own name, viz. as the "Method
of Padoa", after the Italian mathematician Alessandro Padoa (1868-
1937). It was by pursuing the question whether Padoa's Method was a
necessary as well as a sufficient condition for the non-existence of an
explicit edfinition of $  in T that Beth was led to the proof of his
definability theorem.

Internal definability questions - Is, for given T and $ # LT, $  definable in
T? - are sometimes easy to answer, but they can also be very hard.
Examples of fairly easy questions of this kind we have observed earlier
in this Chapter in connection with the Theory of Boolean Lattices and
the Theory of Algebras. In the theory Tbla of Boolean Algebras given in
Section 2.1.3 the operation 3 is definable in terms of ( and - and,
conversely, ( is definable in terms of 3 and -. To show this is
straightforward since in this case explicit definitions are easy to find: 3
is definable in Tbla in terms of ( and - by the definition

( x)( y)( z)(x 3 y = z z = -(-x 3 -y)) and ( is similarly definable in
terms of 3 and - by a definition that is the "dual" of the one just given
(i.e. one whose definiens is obtained by replacing in that of the given
definition ( everywhere by 3 and 3 everywhere by ( ). We also saw that
- is definable in Tbla in terms of (, 3, 0 and 1, viz. by the definition

( x)( y)(-x  = y (x ( y = 1 & x 3 y = 0)).
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In fact, there are even stronger definability results in this case: (i) the
complement operation - is definable just in terms of 3 , for instance by
the definition

( 2 0 ) ( x)( y)(-x  = y (x 3 y = 0 & ( z)(x 3 z = 0  y 3 z = z)))

where "a 3 b = 0" is short for: "( u)(( v)(u 3 v = u) & a 3 b = u)"

and (ii) - is definable just in terms of ( , for instance by the definition

( 2 1 ) ( x)( y)(-x  = y (x ( y = 1 & ( z)(x ( z = 1  y ( z = z))).

(where "a ( b = 1" is a similar abrreeviation as "a 3 b = 0")

The reason why (20) is a proper definition of - in Tbla is that it is one
of the theorems of Tbla that for each x there is among the elements y
such that x 3 y = 0 a unique largest one. Likewise, (21) is a proper
definition of - in Tbla because Tbla has the theorem that for each x
there is a unique smallest element y such that x ( y = 1.

For the same reason the pseudo-complement - of pseudo-

complemented lattices is definable in terms of , , 0 and 1. (See
Section 2.2.1) For recall that one of the axioms of the theory of pseudo-
complemented lattices says that for each x there is a unique largest y
such that x 3 y = 0. But when the uniqueness requirement is dropped,
the possibility of defining "-" in terms of these operations also
disappears. More precisely, let T be the theory of the language

{ , ,0,1,-} which we get by adding to the axioms of Tlata the following
sentence, which says that the meet of x and -x is always equal to the
minimal element 0:

( 2 1 ) ( x) x  -x =0

In this theory  there is no longer any guarantee that -x is unique and so

there is no hope of defining - in terms of { , ,0,1}.
That - is no longer definable can be seen as follows. Let V =

<U, , ,0 ,1> be the lattice whose universe U consists of the elements
{0 ,1 ,a} and the infinite set of elements {bn: n # N}, where 1 is as always
the largest and 0 the smallest element of the lattice and where the

operations  and are fixed by: (i) for all n, a bn = 1  and a bn =
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0 , and (ii) for all n, m such that n " m, bn  bm  = bm  and bn  bm  =
bn.   Evidently V is a model of the theory T' consisting of those

theorems of T that are expressible in the language { , ,0,1}. We can
extend V to a model of T in several ways by adding an extension for -.
That is, we can choose FV (-) to be any of the following functions -n o n
U. The functions -n all coincide insofar as (i) -n(0) = 1, (ii) -n(1) = 0
and (iii) for all m, -n(bm ) = a . But they differ from each other in the
values they return for the argument a : for each n, -n(a ) = bn. It is easily
seen that each function -n yields a model of T when added to the model
V of T'. So there is more than one way to expand V to a model of T.

Note that this argument is an application of Padoa's Method. In fact, to
reach the conclusion that - is not definable in T it suffices to consider
just two of the functions -n, e.g. -0 and -1.

In the discussion above we have repeatedly used the phrase "$  is
definable in T in terms of ...", where the ... mention some of the other
non-logical constants of LT, but not necessarily all of them. We have so
far only used this turn of phrase in connection with explicit definitions,
and there it is immediately clear what is meant: a definition in which
the definiens A contains only those non-logical constants that are
mentioned in the dot part ...); thus $ isn't merely claimed to be
definable in the language L \ {$}, but in the sublanguage L' of L \ {$}
which consists just of the symbols mentioned in the dor part. It is
straightforward to also extend the characterisation of implicit
definability to this more general case. All we need to do is to restrict
the earlier characterisation of implicit definability to the sub-theories
T' and T'' of T in the sublanguages L' and L'', where L' is the sublanguage
just mentioned and L'' = L' ( {$}. To be precise, the characterisation of
implicit definability of $ in T in terms of the non-logical constants of L'
now takes the following form:

( 2 2 ) Let T be a theory of the language L. Let $ be a non-logical constant

of T, let L'  L\{$} and let L'' = L' ( {$}. Let T' = T {A: A is a

sentence of L'} and T'' = T {A: A is a sentence of L''}.
Then $ is said to be implicitly definable in T in terms of L' iff
for each model M' of T' there is a unique expansion M'' of M' that
is a model of T''.

It is left as an exercise to the reader to show that the corresponding
version of Beth's Theorem holds:
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( 2 3 ) Let T, L and L' as in (22). If $ is implicitly definable in T in terms of
L', then there exists an explicit definition of $ in terms of L' which
is a theorem of T.

These generalised characterisations of implicit and explicit definability
are convenient in particular in connection with a kind of application
which we haven't yet mentioned, but of which there are many instances
of the greatest importance. In such applications the focus is on
particular structures - or, more precisely, on the descriptions of those
structures in particular logical languages. Relevant examples that we
have already entcountered are the structure of the rational numbers as
described in the language {<}, and the Tarski Lattices for particular first

order languages L as described in the language { , ,0,1,-}.

Given a particular structure and a particular language in which it is
described we can ask questions about the definability "within the given
structure" of some of the notions represented in the describing
language in terms of one or more of the others. Such questions can be
phrased as definability questions of the kind we have been asking so
far, i.e. as questions about the definability in a first order theory T of
one non-logical constant $ from the language of T, LT, in terms of
certain others. More specifically, they are questions of the form given
in (24), where S  is the structure in question, Th(S) is the set of all
sentences of LT that are true in S and L' is some sublanguage of  LT \{$} .

( 2 4 ) Is $ definable in the theory Th(S) in terms of the non-logical
constants of L'?

In the next section we will study two structures that are at the very
centre of mathematics. The first of these is "natural number
arithmetic", i.e. the structure consisting of the natural numbers with
the number null, the successor function S (where S(n) = n+1) and the
operations of addition and multiplication; more explicitly, we will study
the theory of natural number arithmetic as a theory of first order
predicate logic formulated in the "language of Peano Arithmetic" - the
first order language LPA = {0,S,+,.}, where 0 is an individual constant, S
a 1-place function constant and + and . are 2-place function constants.
The second structure is that of real number arithmetic, i.e. the
structure of the real numbers described in the first order language
{+,.,<,0,1}, where + and . are 2-place function constants, < is a 2-place
predicate constant and 0 and 1 are individual constants. About these
and some other, related structures a range of questions of the general
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form (24) can be asked - some easy, some hard and some with answers
that have important further consequences.

The "Non-Circularity Requirement"

In the opening paragraphs of this section we promised a few words on
the notion of definitional circularity. Many philosophical discussions of
definitions make a big thing out of circularity, as something that is bad
and should be avoided at all cost. Informally speaking, the basic cocern
is something like this: Suppose you define a concept C in terms of
certain other concepts C1, ..., Cn. Suppose moreover that at the same
time you define one of the Ci in terms of some further concepts one of
which is C. That wouldn't be right, as the second definition would in all
likelihood defeat the purpose of the first definition. For suppose you
want to use the first definition to determine whether some given
entities fall under C; then there is good chance that that will lead you
consider whether certain entities, and quite possibly the same ones, fall
under Ci. But to determine that you will, in all likelihood, be led to
apply the second definition and that may get you involved in turn in
questions about what falls under C; in particular, it may lead you back
to the very same question that you started with.

We noted that circularity isn't really a topic that can be properly dealt
with within the setting we have adopted - that of fully articulated
theories formalised within first order logic. The difficulty can be
illustrated at the hand of a very simple example. Consider the theory

Tlin of arbitrary non-trivial linear orderings in the language {<, }

according to which < and stand in the familiar relation of a strict
linear ordering and the corresponding weak ordering. We can
axiomatise this theory by means of the axioms L1-L3 of Section 1.2.1
together with the sentences (25.i) and (25.ii).

( 2 5 ) i. ( x)( y) x   y

ii. ( x)( y)(x y (x = y v x < y))

Among the theorems of Tlin we find on the one hand the definition

(25.ii) of in terms of < and on the other - this is just as trivial to show

- the definition (26) of < in terms of .

( 2 6 ) ( x)( y)(x < y (x y & x  y))
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An obvious implication of this result is that for any given structure S

which involves some linear ordering of its universe the weak ordering 

of the universe of S can be defined in terms of the strict ordering <  in
the sense that (25.i) will be a theorem of the theory Th(S) for any first

order language which includes the predicate symbols < and  and where

these symbols are interpreted in S  as < and . Conversely, in the same

sense of 'define' < can be defined in S  in terms of .

To repeat: can be defined for such structures in terms of < and < in

terms of . Does this mean that there is any circularity involved, of a
sort that should be cause for worry? The answer would seem to be an

obvious "no". You can define  in terms of < or you can define < in

terms of ; either is fine. What you cannot do, of course, is at the same

time "define  in terms of < and < in terms of " - not at least if that
were to mean that on the one hand you formulate the theory of linear
orderings as one which uses < as "primitive" - i.e. as a theory in the

language {<} - and then add  as a defined concept (by extending the

language {<} to {<, } and adding, say, definition (25.ii) as a new axiom)

- and also formulate the theory as a theory in the language { } and then
extend that theory  with a definition of < (such as (26)). You have to
make a choice: either formulate your theory in the language {<} and

then, if you wish, add by definition, or else formulate it in the

language { } and then, if you wish, add a definition for <.

Surely the warning to avoid circularity can't be a warning against
anything as obviously impossible as constructing a formal theory T
whose language LT is different from what it is. But then, what are the
dangers of which we are being warned? To answer this it is important to
realise that theory development is in general a very complex and
protracted process, which typically runs through a number of
successive stages. First, a body of data whose internal connections will
often be quite poorly understood at hte outset must be structured into
an organic, explanatory whole - into a "theory", in other words - and an
essential part of that is to design the concepts in terms of which the
central principles of the theory are to be stated. Exactly what these
concepts stand for need not be fully clear from the start; often their
true meaning will reveal itself only gradually, as the principles which
make use of them become more firmly entrenched and their
implications better understood (in particular those which link them to
the data). Among the means of concept clarification that can be helpful
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during this stage of theory development are definitions of one concept
in terms of some of the others.27 And such definitions may be useful
even if some of the other concepts occurring in the definiens are still in
need of further clarification in their turn. If, however, one then
attempts to clarify one of those other concepts by means of a definition
that employs the original concept C in its definiens, then that is a sign
that something has gone awry. Trying to back a given definition of C
with a further definition that makes use of C is a bit like putting up one
piece of real estate as collateral when acquiring another, and then
offering the second one as a collateral in an attempt to refinance the
first. In business this is regarded as a form of fraud. Circular definitions
won't land you in jail, but they too are violations of sound general
principles and ought to be be avoided.

2 7 It is a remarkable fact that progress can be made in this way at all.
Philosophers call this the "Paradox of Analysis": If we understand a conecpt C well
enough to be able to judge a proposed definition as a correct definition of C, then
how can that definition tell us anything about C that we didn't know already?
There are, it would seem, just two possibilities: either we didn't know everything
that the definition tells us, but then we are not in a position to recognise the
definition as correct; or else we did already know all that it tells us, but then the
definition cannot tell us anything about C that is really new to us; the best that it
could do would be to give us something that we knew already in a different form.
And yet it is undeniable that "explanatory" definitions - definitions of concepts we
already have that seem right to us and that nonetheless reveal something new
about the concepts they define - do play a sginificant part in theory development,
and in concept formation generally.

How can a definition ever be explanatory in this sense? There are no easy answers
to this question. But I think it is intuitively clear that any satisfactory answer
must have to do in some essential way with the nature of human cognition.
A person's thoughts form a complex web of propositional representations in
which concepts are the principal building blocks. At the same time some of these
concepts are linked to the external world by complex application criteria - criteria
that determine for at least some real world entities that they belong to the
extension of the concept, and for certain others that they do not, and which also
enable us to recognise when this to the case. However, much of this - propositional
representations as well as linking criteria - can be implicit knowledge: we can
apply the criteria without being able to articulate them and we can draw
inferences from the network of representations without necessarily being able to
name or state all those parts of the network that serve as premises to the
inference. Definitions which purport to reduce one concept to a number of others
are among the most effective prompts for dragging to the surface of our
awareness connections between two or more concepts that up to then were just
implicit knowledge. In this way something that was known to us already in some
hidden and nebulous way can acquire a new quality - become a "clear and distinct
idea", to use Descartes' phrase. This may give us on the one hand the sense that we
are learning something new while at the same time we can perceive that "new"
piece of knowledge  as agreeing with the implicit knowledge we already had
As I said, this isn't much of an answer. But I think it indicates the direction in
which we should look for one.
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It doesn't follow from what has just been said that definitional
circularity is a trap that it is easy to fall into.  But it doesn't follow
either that it is harmless altogether. There are at least two concomitant
factors that contribute to the danger of being caught in it. First,
definitional circles can be more concealed than they are in the simple
case I have mentioned - they may involve not just two, but three
definitions (D1 defines C with the help of C', D2 C' with the help of C''
and D3 C'' with the help of C) or even more than three. At a stage
where one is still struggling for a better grasp of each of these concepts
it is perfectly possible - and legitimiate - for all three definitions to be
on the drawing board, each indicating a possible avenue of conceptual
clarification. In this context the non-circularity principle can be seen as
urging that a choice between those definitions will have to be made
eventually: At least one of the definitions will have to be abandoned.

A second contributing factor is that theory development, and the
conceptual analysis that is almost always an indispensable part of it in
its earlier stages, is usually not a one-person enterprise but one that
involves a group of investigators or even a whole scientific community.
Different members of the group or community may come up with
different definitions for different concepts. Taken together these
definitions may well contain loops that no one member of the group or
community is aware of; or else, individual members may not even be
much concerned by such loops even if they see them, since they feel no
commitment to one or more of the definitions involved. Once again, as
a temporary state of affairs during the exploratory stage of theory
development this situation need not be particularly objectionable. But,
of course, by the time the theory has reached its definitive form all
loops will have had to be eliminated.

When conceptual clarification has progressed to the point where logical
formalisation becomes a meaningful option the explorations and
debates that can lead to definitional circularity will normally have come
to an end.  At that point the hardest conceptual work that goes into
developing the given theory will have been done as well. But this does
not mean that logical formalisation should be seen as little more than a
logician's pass time, from which nothing of substance can be learned
that could not have been gathered just as easily from the theory before
it is formalised. Within mathematics formalisation has led to numerous
results that are not just of interest to formal logicians but are
considered important by the community of mathematicians who deal
with the branch of mathematics to which the given theory belongs, and
who may have no particular interest in formal logic as such. Within the
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empirical sciences formalisation has led to many important new
insights too. Perhaps the single most important advance that has been
achieved in this way within the general domain of empirical sicence is
the formalisation of the concept of probability by Kolmogorov (1903-
1987) (About the Analytical Methods of Probability Theory, 1831).
Probability has become a central concept in all the empirical sciences,
since it enters almost invariably in evaluating the truth or tenability of
scientific hypotheses in the light of relevant data. Kolmogorov's
axiomatisation has given us an understanding of the essentials of
probability that, it seems fair to say, could not have been reached in
any other way.

Proof of the Craig Interpolation Lemma.

Our last act in this section is the promised proof of the Craig
Interpolation Lemma. (We remind the reader: an alternative proof can
be found in the Appendix to Ch. 1.)

Proof of the Craig Interpolation Lemma.

Let A and B are as in the statement of the Interpolation Lemma and

suppose that there is no C of L such that A  C and C  B.  We extend L
to a language L' by adding an infinite sequence {ci}i # N of new constants.
Similarly we extend, by adding this same set of constants, L1 to L'1 and
L 2 to L'2.  Let {Di+1} i # N be an infinite sequence of sentences such that (i)
the even-numbered sentences D2i constitute a complete enumeration of
the set of all sentences of L'1 and the odd-numbered sentences D2i+1 a
complete enumeration of the set of all sentences of L'1.  We proceed in
a way reminiscent of the completeness theorem, extending once more
given consistent sets in an infinite number of steps to maximal
consistent sets.   However this time we extend two sets in tandem and it
is not just the consistency of the individual sets that we are interested
in, but a kind of mutual consistency between them.  More precisely, we
generate two infinite sequences, a sequence {4 1i}  i #  N of finite but
growing sets of sentences from L'1 and a sequence {4 2i}  i # N of finite but
growing sets of sentences from L'2.  At each stage the pair
<  41i,, 41i> is "compatible modulo L' " in the following sense:

( 1 ) there is no sentence C of L' such that (i) 4 1i  C and

(ii) 42i C.
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Note that if (1) holds, then both 4 1i and 4 2i are consistent.  For suppose

e.g. that 41i were inconsistent.  Then 41i L', where L'  is some logical
contradiction of L'; but then we would also have

42i L', which would contradict (1).  Consistency of 42i is entailed for
the same reason.

Our initial sets are singletons: 41o  = {A} and 42o  = {  B}, and our first
task is to verify that these two satisfy (1).  This, however, follows
directly from the reductio assumption we have made about A and B.

The construction of the sequences {4 ji} proceeds as follows: At the even
steps 2.i we operate on the set 4 1,2.i and at the odd steps 2.i + 1 we
operate on the set 4 2,2.i+1.  We will state the rules according to which the
sets are modified only for the even steps.  The case for the odd steps is
entirely symmetric.

Step 2.i:

Consider D2.i.  (i) When (1) holds for 41,2.i  U {D2.i} and 42,2.i, then we
add D2.i to 41,2.i , and, as in the Completeness Proof, we
add, in case D2.i is an existential sentence

( vi)E, then we also add a "witness sentence"
E[ck/ vi], where ck is a constant which does not occur
in either 4 1,2.i or 4 2,2.i.  Much as in the case of the
Completeness Proof we can show that (1) is preserved
also in the case where 41,2.i+1 =

41,2.i  {D2.i, E[ck/ vi]}, given that it holds for the pair
<41,2.i , 42,2.i>.

( i i ) When (1) does not hold for 41,2.i  {D2.i} and 42,2.i,

then we add D2.i to 41,2.i: 41,2.i+1 = 41,2.i  {  D2.i,}.

We need to show that in each of the three cases condition (1) is
preserved.  Case (i) is automatic in case D2.i is not an existential

sentence.  Suppose instead that D2.i is the sentence ( v i)E.  In that case

is 41,2.i+1 = 41,2.i  {( vi)E,E[ck/ vi]}, with ck a constant not previously
used. Suppose that (1) fails for 41,2.i+1 and 42,2.i+1 = 42,2.i.  Then there is a
sentence C of L' such that

( 2 ) ( i ) 41,2.i  {( vi)E,E[ck/ vi]}  C,  and

( i i ) 42,2.i C
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From (2.i) we get that there is a sentence G #  4 1,2.i such that

( 3 ) {G, ( vi)E}  E[ck/ vi] C(ck)

(Here we have made explicit that C may contain the constant ck. )

Since ck does not occur in {G, ( vi)E}, (3) entails

(4) {G, ( vi)E} ( vi)(E C(vi)/ck)), and from this

(5) {G, ( vi)E} ( vi)E ( vi)C(vi)/ck),

(5) evidently entails

( 6 ) {G, ( vi)E} ( vi)C(vi)/ck).

On the other hand, since does not contain ck, (2,ii) entails

( 7 ) 42,2.i ( v i) C(vi)/ck),  and thus

( 8 ) 42,2.i ( vi) C(vi)/ck).

Thus ( v i) C(vi)/ck) is a sentence of L' which is provable from 4 1,2.i,
while its negation is provable from 4 2,2.i. This contradicts the
assumption that (1) holds for 4 1,2.i and 4 2,2.i.

Case (ii) is also somewhat different from the corresponding argument
in the completeness proof. The argument now takes the following form.

Suppose that (1) fails for 41,2.i  {  D2.i} and 42,2.i.  Then

( 9 ) there is a sentence C of L' such that 41,2.i  {  D2.i} C and

42,2.i  C.

Recall, however, that in this case we also have a failure of (1) for the

pair <41,2.i  {D2.i,}, 42,2.i>.  So

( 1 0 ) there is a C' of L' such that 41,2.i  {D2.i} C' and 42,2.i  C'.
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(9) and (10) entail on the one hand that 42,2.i  C and 42,2.i  C' and

thus that 42,2.i  (C v C').  On the other hand 41,2.i  { D2.i} C entails

41,2.i   D2.i C v C') and 41,2.i  {D2.i} C' entails

41,2.i  D2.i C v C').

These last two consequence relations jointly entail

41,2.i  (D2.i v  D2.i) C v C') and thus also 41,2.i C v C').  So there is a

sentence C'' of L' (viz. C v C') such that 41,2.i C''  and

42,2.i  C''.  So (1) fails for the pair <41,2.i , 42,2.i>, contrary to
assumption.

We now form 41 = {41i} i # N and 42 = {42i} i # N.  Much as in the proof
of the Completeness Theorem, we can show that (1) holds for the pair
<41, 42>.  This entails, as we have seen, that 41 is a maximal consistent
theory of L'1 and that 4 2 is a maximal consistent theory of L'2.  So, again
as in the Completeness Proof, we can convert 4 1 into a model M1 for the
language L'1 which verifies precisely the sentences of 4 1, and 4 2 into a
model M2 for the language L'2 which verifies precisely the sentences of
42.  We note the following:  M1 and M2 have the same universe.  For
recall that if we proceed as in the Completeness Proof, then the
universe U1 of M1 consists of equivalence classes [ci] 1, where ci is one

of the new constants of L' and 1 is the relation which holds between
constants ci and cj iff the sentence ci = cj belongs to 4 1.  Similarly, the
universe U2 of M2 consists of equivalence classes [ci] 2, where ci is one

of the new constants of L' and 2 is the relation which holds between
constants ci and cj iff the sentence ci = cj belongs to 4 2.  It is to be
stressed that in the present construction we take the elements of the
universes U1 and U2 to consist solely  of the new constants
ci #  L' \L. (This means that we need a separate clause to deterine the

denotations of the individual constants c # L1  L2.  But this is
unproblematic.  For instance, assume that c #  L1.  Then there is a

constant ci # L'\L such that ci = c # 4 1, i.e. c 1 c i.  In this case we can

unambiguously stipulate that cM 1 = [ci] 1.)  This entails that the two

universes are in fact identical, since the relations 1 and 2 coincide.

To see this, suppose for instance that ci 1 c j.  Then
ci = cj # 41.  But then also ci = cj # 42.  For if not, then, by maximality of

4 2, ci  cj # 4 2. But then there would be a sentence C of L' (viz. ci = cj) ,

such that 41  C and 42  C.  So (1) would fail for <41, 42>, which we
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know already that (1) holds for these sets.  Since ci = cj #  4 2, ci 2 c j.  In

the same way we show that if ci 2 c j, then ci 1 c j.

Not only do M1 and M2 have the same universes, they also assign the
same interpretations to each of the non-logical constants of L'.  For the
new constants ci this is immediate:  [ci]M 1 is the equivalence class

[ci] 1 and [ci]M 2 is the equivalence class [ci] 2, but these equivalence

classes are the same.  Now consider any non-logical constant $  of L. Let
us for simplicity assume that $  is a 1-place predicate P.  From the
construction of M1 we know that the extension of P in M1, [P]M 1,

consists of those equivalence classes [ci] 1 such that the sentence P(ci)

# 41.  And by the same token, [ci] 2 # [P]M 1 iff the sentence P(ci) # 42.

But again we can infer from the fact that (1) holds for <4 1, 4 2> that
P(ci) # 41 iff P(ci) # 42.  For if not then we would have, say, P(ci) # 41 and

 P(ci) # 42, so P(ci) would be a sentence C of L' contradicting (1).  For
non-logical constants of other types the argument is analogous.

We thus conclude that the reduction of M1 to L' is identical with the
reduction of M2 to L'.  This means that we can form the common
expansion M3 of M1 and M2 in that we add to their common reduction
(i) the interpretations in M1 of the non-logical constants of L1\L and
(ii) the interpretations in M2 of the non-logical constants of L2\L.  Since
M 1 is the reduction of M3 to L'1, A, which is a sentence of L'1, will have
the same truth value in M3 as in M1.  So A is true in M3.  An analogous

argument shows that B is true in M3. But this contradicts the

assumption that A  B.     q.e.d.

2.6.  Formalisations of Arithmetic

The first theory we looked at in this chapter aimed at giving as accurate
a description as possible of one particular structure, viz. the ordering
of the rationals.  In that case our effort was as successful as a first
order description of an infinite structure can be: the theory Trat we
formulated proved to be not only complete - in the sense that it
captured as theorems all that can be said truly about that structure in
the given first order language {<} in which Trat was formulated - it even
proved to be categorical in the cardinality of the target structure; every
countably infinite model of Trat, we found, is isomorphic to the
ordering structure of the rationals.
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The theories we have been looking at since then - lattices, distributive
lattices, boolean algebras, groups - have for the most part been
incomplete, and they were meant to be that. The aim of those theories
was to capture what is common to a whole range of similar but non-
identical structures, many of which differ from each other in ways that
can actually be expressed in the language of the theory.  In such cases
the common core - the theory which consists of all sentences of the
given language that are true in all the structures - is necessarily
incomplete. It was only in a few cases - when we considered the
theories of some particular orderings such as the ordering of the
integers and that of the natural numbers or the theories of the Tarski
Lattices of particular first order languages - that we were confronted
once again with questions of the form: "What is the theory of this

particular structure?

In this section we will focus once again on axiomatisation tasks
connected with particular structures.  We will be concerned with
axiomatisations of two structures that occupy a central place in both
pure and applied mathematics: (i) the structure of 'natural number
arithmetic', i.e. the structure consisting of the natural numbers with the
arithmetical operations + and . ; and (ii) the structure of 'real number
arithmetic', i.e. the structure of the real numbers, also with the
arithmetical operations + and . .  The main results about
axiomatisability of these two strutures are strikingly different, and at
first sight they seem to contradict each other. The axiomatisation we
will give for arithnmetic on the natural numbers will be, like any other
axiomatisation for natural number arithmetic, incomplete and
undecidable; these are the famous incompleteness and undecidability
results for natural number arithmetic that we owe to Gödel. (Gödel's
resuts will not be proved in this chapter). On the other hand, the
axioms that we will give for arithmetic on the real numbers provide us
with a complete axiomatisation of this kind of artihmetic. (For this
result an explicit proof will be given here.)

How can this be, one might be tempted to ask? For it would seem
obvious that airhtmetic on the real numbers is much richer than
arithmetic on the natural numbers? and that the first includes the
second as a part (and as a comparatively small and simple part at that).
To put this intuition into a more concrete form:  Couldn't one
determine whether any arbitrary statement of natural number
arithmetic is true by interpreting it as a statement of real number
arithmetic (which speaks only of a small part of the real numbers, viz.
the natural numbers) and then either derive or else refute this
statement (as a statemrent about the reals) from our complete axiom
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system for real number arithmetic?  That would give as a decision
method for number-theoretic truth; but that, Gödel proved, cannot be.
The just mentioned results about natural and real number arithmetic
thus entail that tstatements about antural number arithmetic cannot be
interpreted as statements about the arithmetic of the real numbers. But
why not? One of our tasks in this chapter will be to elucidate this
apparent contradition.

2.6.1   The Natural Numbers and Peano Arithmetic.

The arithmetical structure N  of the natural numbers consists of the
numbers 0,1,2, ... ad infinitum, with the familiar operations of addition
and multiplication.  Our task in this subsection is to describe this
structure by means of a first order theory.

Our first decision is to choose a suitable language.  As we have seen
repeatedly in this chapter, there usually is a certain freedom regarding
this choice: We can choose one set of 'primitives' and then define the
missing members of some other set in terms of them, or we can choose
the other set and use those to define the missing members of the first
set.  Also it is not always desirable to keep the set of primitives as small
as possible; it can be more perspicuous to choose a larger set, some
members of which could also be defined in terms of the others and thus
could have been dispensed with in principle.

This is the case for the language we will adopt for the description of  N .
With the help of the operations + and . we can, given the right axioms,
define a number of other notions, such as that of the number 0 (the
unique number x with the property that for any number y, y + x = y);

the number 1 (the unique number y such that y  y = y); the successor
function S, which assigns to each number the next one after it (this is
the function which maps each number x onto x + 1), and the relation <

(which holds between x and y iff there is number z  0 such that
y = x + z).  So none of these are absolutely indispensable.  However, it
has become standard practice to include both the constant 0 and the
successor function S among the non-logical constants of the language
of natural number arithmetic. Quite often the relation < is included as
well, but we won't do that here. So the language LPA in which we will
describe N  has besides the 2-place function constants + and . the
individual constant 0 and the 1-place function constant S, and that is it:
LPA = {0,S,+,.}.
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In the literature on formal natural number arithmetic the following
axiom set has gained wide currency.  It is known as '(First Order) Peano
Arithmetic', after the Italian mathematician Giuseppe Peano (1958-
1932), who first formulated a set of axioms much like these.  We refer
to the theory axiomatised by PA1-PA7 simply as 'PA'.

PA1. ( x) (x  0   ( y) x = Sy)2 8

PA2. ( x)( y) (Sx = Sy   x = y)

PA3. ( x) x + 0 = x

PA4. ( x)( y) x + Sy = S(x + y) )

PA5. ( x)  x . 0 = 0

PA6. ( x)( y) (x . Sy = (x . y) + x)

PA7. ( y1)..( yn)((A[0/x] & ( x)(A   A[S(x)/x]))  ( x)A),
where y1, .., yn are all the variables other than x which have
free occurrences in A.

The rationale behind these axioms is as follows.  The first two concern
only the constant 0 and the function S and say that 0 is the only
element that is not in the range of S and that S is 1-1.  These axioms
guarantee that 0 is the first of an infinite series of elements 0, S0, SS0,
.. all of which are different from each other, and thus that all models of
the axioms will be infinite. The next four axioms 'recursively define' the
operations of addition and multiplication - PA3 and PA4 do this for +,
PA5 and PA6 build on this definition in the recursive definition for . .
The specifications of these axioms can be regarded as recursive
definitions in that they specify an algorithm for computing the results
of these operations, reducing all instances ultimately of cases involving
0.  Thus PA3 and PA4 define n + m for any two numbers n and m, by
reducing the result via n + (m-1), n + (m-2), .... eventually to n + 0.
Likewise for PA5, PA6 and the terms 'n.m'.

This leaves PA7.  Here, for the first time, we are dealing not with a
single axiom, but with an axiom schema, which can be instantiated to
an infinite number of different axioms by substituting different
formulas of LPA for the schematic letter A. The idea behind this schema
is the following.  The structure of the natural numbers makes it
possible to prove that all natural numbers have a certain property P by
mathematical induction: Show (i) that 0 has P and (ii) that for any

2 8 Where there is no danger of confusion we will wríte 'St' instead of 'S(t)'.
Note that in the literature one often uses a prime ' instead of S.  Thus one writes ' t'
' instead of 'S(t)'. Thus, in partocular the term " 0' " will be a term denoting the
number 1.
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number x that has P Sx also has P.  That it follows from (i) and (ii) that
every natural number must have P can be argued in a number of
different (if fairly closely similar) ways.  One informal argument goes
like this: (i) tells us that 0 has P.  From this and one application of (ii),
taking x to be 0, we get that 1 has P.  From this and a second application
of (ii), now taking x to be 1, we get that 2 has P, and so forth.  In this
way we eventually reach every number n and establish that n has P.

Peano recognised that the Principle of Induction - that (i) and (ii)
suffice to show that all numbers have P irrespective of what P may be -
is one of the central characteristics of the natural number system.  And
he made it into the corner stone of his axiomatisation of N .  PA7' states
this principle with the force he intended it to have, but in the notation
of formal logic as we know it today.

PA7' ( P)(P(0) & ( x)(P(x) P(Sx)) ( x)P(x))

The problem with (1) is that it is not a formula of first order logic. It
isn't because it quantifies over the predicate symbol P.  This means that
P is a predicate variable and predicate variables are not part of first
order logic.  They are part of what is called 'Second Order Logic', a very
powerful extension of First Order Logic in which we can quantify not
only over individuals but also over sets of individuals. Second Order
Logic has formal properties that are very different from those of First
Order Logic.

We can use PA7' to obtain an axiomatisation of N  within second order
logic in which the other axioms are PA1-PA6.  In one sense this axiom
system is the perfect answer to our desire for an exhaustive description
of the properties of N .  For it has the property that any model of it is
isomorphic to N .  To see that this is so, we first need to make explicit
what is meant by a predicate quantification like that in PA7'.  The
standard semantics of quantifications over predicate variables is that
for any set X of individuals of the model M in which the formula
containing the quantification is evaluated there is a predicate that can
be a value for the variable and which has X as its extension in M.  This
means that predicate quantification comes to the same thing as
quantification over sets, more precisely: over arbitrary subsets of the
universe of the model.  In particular, PA7' can be stated equivalently in
the form PA7''.

PA7'' ( X)(0 # X & ( x)(x # X Sx # X) ( x) x # X)
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Given this interpretation of the quantification in PA7', we can argue as
follows.  Let M = <U,F> and M' = <U',F'> be two models of
{PA1-PA6, PA7'}.  Consider the universe U of M.  It contains denotations
in M of all the terms 0, S0, SS0, .. of LPA.  (We will refer to these terms
as the numerals  of LPA. Thus a numeral is a term in which the constant
0 is preceded by some number n of occurrences of the function

constant S, where n 0.) Let us denote the element of U that is denoted
in M by the term 'S...S0', in which '0' is preceded by n occurrences of
'S', as nM . Let NM  be the set of all u #  U that are denotations of
numerals :

N M  = {u # U: u = nM for some natural number n}

(= {u # U: there is numeral 5 of such that u = [[5]]M } )

Then NM is the extension in M of a possible value for the predicate
variable P in PA7'.  It is clear that when P ia assigned this extension in M,

then the formulas P(0) and ( x)(P(x) P(Sx)), which form the
antecedent of the conditional in PA7', are satisfied in M.  So it follows

that the consequent of the conditional is satisfied as well, i.e. ( x)P(x).
But that means that every element of the model belongs to NM and thus
is the denotation of some numeral.

This argument is just as applicable to M', so its universe too consists of
all and only the elements that are denotations of numerals. Given this it
is easy to define an isomorphism h from M onto M': for every numeral
5 , h([[5]]M ) = [[5]]M' .  (It follows from the argument above that h is
well-defined and onto, from PA1 and PA2 that h is 1-1, from the
definition of 'numeral' that h preserves S and from PA3-PA6 that h
preserves + and . .)

This means that the theory PA2 axiomatised by {PA1-PA6, PA7'} is
semantically complete: For any sentence A of LPA we have either

PA2  A or PA2 A. (For either N  A, but then, since all models of PA2

are isomorphic to N, for all M such that M  PA2, M  A; or else N  A ,

and so for all M such that M  PA2, M  A.  But unfortunately this is not
much help in deciding which sentences are true in N and which are
false.  For second order Logic has no complete proof procedure - there
is no completeness result for Second Order Logic comparable to the
completeness of First Order Logic we proved in Ch. 1.  In fact, it follows
from Gödel's Incompleteness Theorems that there can be no sound and
complete proof procedure for second Order Logic, for then we would
have a decision procedure for natural number arithmetic: to decide
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whether a sentence A is true or false in N , launch a simultaneous search

for a proof of A from PA2 and a proof of A from PA2 and go on until
one or the other is found; this must happen at some point in a

systematic proof search, since one of A and A must be derivable from

PA2.  But what Gödel proved is that there cannot be such a decision
procedure .

PA7' is thus too much of a good thing.  If we want to stay within First
Order Logic, which does have completeness, the best we can do is to
save from PA7' as much as can be expressed in first order terms.
Presumably PA7 is the best one can do towards this end (though it
seems hard to turn this intuition into a well-defined statement that we
might be able to demonstrate formally).  PA7 saves from PA7' all those
cases in which the value of the predicate variable P is a property that is
defined by some formula A(x) of the language LPA.  We write 'A(x)' to
indicate that we think of x as the 'predicate bearer': A(x) is to be
understood as the predicate that is true of an individual d in a model M

iff M A(x)[d]. This means that the interesting cases are those where A
has free occurrences of x.  (If x does not occur free in A, then the
'predicate' A is either true of all individuals in the model or else of
none.) On the other hand we allow A to have other free variables
besides x.  This form of PA7 is more comprehensive and thus gives a
stronger axiom system.  In some inductive proofs this extra strength is
actually needed and in many others, where it could strictly speaking be
avoided, it can be quite convenient. We will see an example of this in
our sample derivation below.

To prove general properties of the natural numbers from the Peano
axioms almost always involves induction, and thus an appeal to one or
more instances of PA7.  As an example we derive the 'commutative law

for +', i.e. the sentence ( x)( y) y + x = x + y.  This is a very simple
statement, which most people - and in particular non-mathematicians -
would be inclined to think hardly worth attention.  But even the
derivation of this intuitively simple law takes some doing.

The strategy we will follow is the following.  We will apply induction to

the property that is expressed by the formula A(x) ( y) x + y = y + x.
That is, we use the following instance of PA7:

(( y) 0 + y = y + 0  & ( x)(( y) x + y = y + x   ( y) Sx + y = y + Sx))

 ( x)( y) x + y = y + x   ( 1 )
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To derive the consequent ( x)( y) x + y = y + x of (1) we must prove
the two conjuncts that make up its antecedent. We begin with the first
conjunct :

( y) 0 + y = y + 0 ( 2 )

According to PA3 y + 0 = y.  But how do we prove that 0 + y = y?  This
requires another induction, this time wrt. y.  To this end we use the
following instance of PA7.  (Of course this involves renaming variables,
but we know we can always do that in the sense that every sentence
logically entails all of its alphabetic variants. See Section 1.2.? of Ch. 1)

0 + 0 = 0 + 0 & ( y)(0 + y = y + 0  0 + Sy = Sy + 0)  

( y) 0 + y = y + 0 ( 3 )

To prove the antecedent of (3) first observe that its first conjunct - 0 +
0 = 0 + 0 - is a logical truth.  To prove the second conjunct,

( y)(0 + y = y + 0  0 + Sy = Sy + 0), ( 4 )

assume that 0 + y = y + 0.  We must show that 0 + Sy = Sy + 0.  We
argue as follows. 0 + Sy =(PA4) S(0 + y) =(Ass) S(y + 0) =(PA3) Sy

=(PA3) Sy + 0.  This shows that 0 + y = y + 0  0 + Sy = Sy + 0 and so by
Universal Generalisation we get (4).  From (3) and (4) we get (2) by
M.P.

We now turn to the second conjunct of (1):

( x)(( y) x + y = y + x   ( y) Sx + y = y + Sx) ( 5 )

Suppose that

( x)(( y) x + y = y + x ( 6 )

We must derive from this

( y) Sx + y = y + Sx ( 7 )

Take any y.  By PA4 we have y + Sx = S(y + x), which by assumption (6)
equals S(x + y), which by another application of PA4 equals x + Sy.  But
unfortunately y + Sx =  x + Sy is not what we want; what we want is
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y + Sx = Sx + y.  There is nothing for it but to prove the missing
equality, x + Sy = Sx + y, separately, and that requires yet another
induct ion.

In other words we must prove

( x)( y) x + Sy = Sx + y ( 8 )

It is now convenient to take some arbitrary x and prove by induction
t h a t

( y) x + Sy = Sx + y ( 9 )

This requires another induction and thus another instance of PA7, to
wit

( x)((x + S0 = Sx + 0 & ( y)(x + Sy = Sx + y  x + SSy = Sx + Sy))

( y) x + Sy = Sx + y)29 ( 1 0 )

(10) entails the free variable formula (11)

x + S0 = Sx + 0 & ( y)(x + Sy = Sx + y  x + SSy = Sx + Sy)

( y) x + Sy = Sx + y ( 1 1 )

To prove (9) from (11) we have to prove the antecedent of (11).  Its
first conjunct is straightforward:

x + S0 =(PA4) S(x + 0) =(PA3) Sx =(PA3) Sx + 0

To prove the second conjunct,

( y)(x + Sy = Sx + y  x + SSy = Sx + Sy), ( 1 2 )

assume that x + Sy = Sx + y in order to show that x + SSy = Sx + Sy. We
have:

x + SSy =(PA4) S(x + Sy) =(Ass) S(Sy + x) =(PA4) Sx + Sy

This shows (12). From (12) together with the first conjunct of (11) we
get (9) and from this by Universal Generalisation (8). We already saw

2 9 Here we make use of the strong form of PA7, according to which A(x) may
have free variables other than the "induction variable" x,
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that with the help of (8) we can complete our derivation of (7) from
(6).  This completes the proof of (5) and thus of the second conjunct of
the antecedent of (1). (5) and (2) give us the desired conclusion

( x)( y) y + x = x + y.
q.e .d.

Exercise: Give a complete formal derivation of this result from the
axioms of PA, using the rules of MP and UG, together with the axioms of
predicate logic and previously proved logical theorems.

Exercise:  Prove from PA1-7 the following theorems:

( i ) ( x)( y) (x + y =  y + x)

( i i ) ( x)( y)( z) ((x + y) + z = (x + (y + z))

(iii) ( x)( y) (x . y =  y . x)

( iv) ( x)( y)( z) ((x . y) . z = (x . (y . z))

( v ) ( x)( y)( z) ((x + y) . z = (x . z) + (y . z))

(v i ) ( x)( y) (x = y v ( z)(z  0 & x = y + z) v

( z)(z  0 & y = x + z))

Exercise: In PA we can define the order relation between the natural

numbers by: ( x)( y)(x < y   ( z) x + Sz = y).

( a ) Show that for any numbers n and m, n is less than m (in the

standard sense) iff N  (( z) x + Sz = y)[n,m].

( b ) Interpreting 'x < y' as an abbreviation for '( z) x + Sz = y' prove
that the following are theorems of PA:

( i ) ( x)( y)(x < y (y < x))

( i i ) ( x)( y)( z)(x < y  & y < z x < z)

(iii) ( x)( y)(x < y  v  x = y  v  y < x)

( iv)  ( x)( y)(x < Sy  (x = y  v  x < y))

( v ) ( x)( y)( z)(x < y Sx < Sy)

(vi ) ( x)( y)( z)(x < y   x + z < y + z)
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Induction and Well-Foundedness

The validity of the method of mathematical induction rests on the fact
that the "less than" relation between natural numbers is well- founded .
This means that every non-empty set of natural numbers has a smallest
member, a number such that no other number in the set is less than it.
WF, in which X is assumed to range over subsets of N, expresses this
fact formally.

(WF) ( X) (X   ( z) (z # X & ( u)(u # X  & u  z   (u < z))))3 0

WF entails the Principle of Induction. Consider for instance the 'subsets
of N' version of the principle PA7''.  That PA7'' follows from WF is easy
to show.  Suppose that X is a subset of N such that (i) 0 #  X and (ii)

x)(x # X Sx # X).  Suppose for the sake of arriving at a contradiction
that it is not the case that X = N.  Then the set Y = N\X is non-empty.  So
according to WF Y has a smallest member yo.  Since by assumption

0 #  X, yo  0 . So yo must be a successor, i.e. there must be a number z
such that yo = Sz; obviously this entaikls that z < yo.  Since yo is the
smallest number of Y, z is not a member of Y and therefore a member
of X.  But then by property (ii) of X Sz - i.e. yo - must also be in X and
thus not in Y; and with thia we have our contradiction.

The relation between well-foundedness and the validity of the method
of proof by induction holds more generally.  First, well-foundednes is a
property that can be defined for arbitrary strict partial orderings.

Def. 15  Let <U,< > be a strict partial ordering.
<U,< > is well-founded iff every non-empty subset of U has a
minimal element.  Formally:

      ( X U)(X   ( z) (z # X & ( u)(u # X  & u  z   u < z)))

To this general notion of well-foundedness corresponds a more general
induction principle on partial orderings, As in Def, 15 let  <U,< > be a
strict partial ordering.

(GIP) ( X U)(( x # U)(( y # U)(y < x y # X) x # X) U X)

Prop.  6 GIP holds for all well-founded strict partial orderings.

3 0 For the 'definition' of "<" see the Exercise at the end of the last section.
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Prop. 6 can be proved in the same way as the special case we
considered above where <U, < > was the ordering of the natural
numbers .

The converse of Prop. 6 also holds: If GIP holds for <U,< >, then <U, < >
is well-founded.  The proof is left to the reader.

Well-foundedness is equivalent to the non-existence of infinite
descending chains.  An infinite descending chain in a strict partial
ordering <U,< > is a function f from the set of the natural numbers N
into U such that for all n f(n+1) < f(n). Clearly, well-foundedness of
<U,< > entails the non-existence of such chains.  For if there were such
a chain, then Ran(f) would be a non-empty set without a first element.
Conversely, if <U,< > is without infinite descending chains, then <U,< >
must be well-founded.  For suppose <U,< > were not well-founded.
Then there would be a non-empty subset X of U without a minimal
element. Let xo be any element of X.  We put f(0) = xo.  Since xo is not a
minimal element of X, there is an element x1 in X such that x1 < xo.  Put
f(1) = x1. Since x1 is not minimal, there must be an element x2 in X
such that x2 < x1. So we can put f(2) = x2; and so on ad infinitum.  In
this way we obtain an infinite descending chain f.  (Warning: this
second argument involves the Axiom of Choice.  See Ch. 3 for
discussion.)

Inductive proofs on well-founded partial orderings are very common in
formal logic.  We already encountered many examples of this, in
particular in all those cases where we found it necessary or convenient
to prove results by induction on the complexity of formulas. The partial
order invoked in those proofs is that which holds between two
grammatical expressions whenever the first is a constituent of the
second. That such relations are always well-founded is plain: The easiest
way to see this is to consider a well-formed expression together with all
its syntactic constituents, Obviously there are no infinite descending
chains of expressions, no infinite sequences of expressions in which
each next element is a constituent of the last one.  For each expression
is built from basic expressions in a finite number of steps; so when we
decompose an expression into its constituents, then we will get again to
the bottom also in a finite number of steps.

As an example consider a language L of propositional logic with

propositional constants po, p1, .. and connectives , &, v, , .  The
constituent relation between formulas of this language is of course
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well-known by now, but for present purposes we will define it once
again explicitly.  We do this by first defining the relation of immediate

consti tuency . The immediate constituency relation <ic for formulas of
the given language consists of all pairs of the following forms:

<A, A>, <A, (A & B)>, <B, (A & B)>, <A, (A v B)>, <B, (A v B)>,

<A, (A  B)>, <B, (A  B)>, <A, (A  B)>, <A, (A  B)>,

The general relation of constituency <co , which holds also between A
and B when A is not an immediate constituent of B, but, for instance, an
immediate constituent of an immediate constituent of B, is defined as
the transitive closure of <ic. That is: <co holds between two formulas A
and B iff there is a finite chain of formulas Co = A, C2, ... Cn = B, with n

1, so that for all i, Ci <ic Ci+1.

Let U be the set of all formulas of L. Since <U,<co >is well-founded, we
can use GOP to prove that all formulas in U have a certain property P.
Here is an example of such a property.  Let NPC(A) be the number of
occurrences of propositional constants in A and NBC(A) the number of
occurrences of binary connectives in A. Then P is the property defined
in (1)

NPC(A) = NBC(A) + 1 ( 1 )

To prove that all formulas of L have P, suppose that X is the set of all
formulas in U that have P.  We show that

( A # U)(( B # U)(B <co  A B # X) A # X) ( 2 )

Suppose that A is any formula and that ( B # U)(B <co A B # X).  We
must show that A #  X.  First suppose that A is a propositional constant.
Then NPC(A) = 1 and NBC(A) = 0, so (12) is satisfied and A # X.

Second suppose that A is of the form C. Then C <co A. So C # X and
thus (12) holds for C.  But then clearly (12) also holds for A, since
adding a negation sign changes neither NPC nor NBC.  So A # X.

Finally suppose that A is built from two immediate constituents C and
D, combined via a binary connective.  For instance let A = (C & D).
Then C <coA and D <co A, so by assumption C, D # X and therefore
(12) holds for C and for D.  Furthermore
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NPC(A) = NPC(C) + NPC(D) ( 3 )

a n d

NBC(A) = NBC(C) + NBC(D) + 1 ( 4 )

So NPC(A) = NPC(C) + NPC(D) =(Ind.Hyp.) (NBC(C) + 1) +
(NBC(D) + 1) = (NBC(C) + NBC(D) + 1) + 1 = NBS(A) + 1.

So once more A # X.

This concludes the proof of (2).  With GIP we conclude that X = U, i.e.
that all formulas have the property P and thus satisfy (1).

q.e .d.

Another way to justify the method of proof by induction on well-
founded partial orderings is to reduce it to induction on the natural
numbers via the notion of rank .

Def. 16 (of rank)

Suppose that <U, < > is a well-founded strict partial ordering.  Then we
can assign elements x of U a rank by the following condition::

( i ) If for no y e U, y < x, then rank(x) = 0.

( i i ) Otherwise rank(x) = max({rank(y): y < x}) + 1

In general it is not clear that this will assign a rank to every element of
U. For it is in principle possible that certain elements have 'infinite
rank;. (For details see Ch. 3.).  But in the case considered above, and
similarly for all other cases where we have proved results by induction
on partial orders so far in the Notes, every element of the ordering has
'finite rank', and in that case the interpretation of Def. 16 is
unproblematic, and each element of U is assigned a finite number.

Given that all members of U have finite rank we can prove that all
members of U have a certain property P by using induction over NN   t o
prove the following related property P' of natural numbers n, defined
b y

P'(n) iff ( x # U)(rank(x)  n P(x))
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It is straightforwardly verified that the following two statements are
equivalent:

( i ) The instantiaton of GIP to the set X of all members of U that have
P;

( i i ) The instantiaton of PA7'' to the set X of all n that have P'.

Exercise: Check this for the example discussed above in which P is the
property given by (1).

Extensions of PA and Non-Standard models of Arithemtic

It follows from Gödel's Incompleteness Theorems that PA is essentially
undecidable: every consistent axiomatisable extension of PA is
undecidable.  Exactly what is meant by 'axiomatisable' here is
something that we cannot properly account for with the means
available to us.  (Any account will presuppose a certain amount of
Recursion Theory and as things stand,  Recursion Theory is entirely
missing from these Notes.)  But for what we want to say here it suffices
to note that finitely axiomatisable extensions of PA  - extensions
obtained by adding a finite number of axioms to those of PA - are
axiomatisable extensions in the relevant sense.  So it is true in
particular that all finitely axiomatisable extensions of PA are
undecidable.

This entails that every consistent finitely axiomatisable extension of PA

must be incomplete.  For suppose T = CLLPA(PA {A1,..., An}) were
consistent and complete.  Then we would have the following decision
procedure for T:  for any sentence B of LPA start simultaneously a

search for a derivation of B from T and a search for a derivation of B
from T.  A search for such a derivation can be set up in such a way that
if there exists a derivation, then it will eventually be found: just
enumerate all finite lists of sentences of LPA and check whether they are
correct derivations from T and whether they yield the target sentence
as a theorem. When no finite list is left out by the search, the proof
must be turned up at some point.  Since by assumption T is complete,
there must either exist a derivation from it of B or a derivation from it

of B.  So if both searches are carried out in tandem, then a proof of
one of the two formulas will eventually turn up and that then tells us
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whether B is a theorem of T: It is if the derivation that has been found is
of B itself; it is not if the derivation is of its negation.

The fact that no finitely axiomatisable extension of PA is consistent and
complete, means that the Tarski lattice TLPA,PA is very rich.  On the
other hand, part of it admits of a comparatively simple
characterisation.  Let A1, A2,... be a complete enumeration of all
sentences of LPA. Pick the first sentence A from this list that is neither
provable nor refutable in PA and form the to extensions PA<0> =

CLLPA(PA {A}) and PA<1> = CLLPA(PA { A}).  (From now on we refer
to a sentence that is neither provable nor refutable form a given theory
as independent from T.) Both extensions will be consistent and
incomplete. Consider PA<0>. Since it is incomplete, there will be
sentences that are neither provable nor refutable from it.  Let A<0> be
the first of these in our list. We form the extensions PA<0,0>=

CLLPA(PA<0> {A<0>}) and PA<0,1> = CLLPA(PA<0> { A<0>}) of
PA<0>.  Similarly we can form consistent, but necessarily incomplete

extensions PA<1,0>= CLLPA(PA<1> {A<1>}) and PA<1,1> =

CLLPA(PA<1> { A<1>}) of PA<1>.  Each of these four theories can
then be extended in its turn into a pair of consistent, incomplete and
mutually incompatible theories, and so on.  In this way we obtain an
infinitely branching binary tree all of whose branches are infinite.

Each branch B determines a theory TB consisting of all sentences that
belong to some node of the tree.  (Exercise: prove that TB is a theory.)
Let us denote the successive nodes of B as TB,1, TB,2, .. . It is obvious
that TB is consistent.  For its successive nodes are increasing in strength

- for all n TB,n TB,n+1. So if a contradiction were derivable from TB, it
would be derivable from some TB,n, which is impossible since TB,n i s
consistent.  Second, TB is complete. For let C be any sentence of LPA.
Then C occurs somewhere in our list, say C = Ak. Then during the
construction of the first k nodes TB,1,.., TB,k of B C must have been
considered at least once as a possible candidate for extending the
theory TB,i that was up for extension.  At that point there were two
possibilities (a) C was independent from TB,i.  Then either TB,i+1 =

CLLPA(TB,i {C}) or TB,i+1 = CLLPA(TB,i { C}), so either C or C
belongs to TB. (b) C was not independent from TB,i.  That means that

either C or C belongs to TB,i; so again one of C and C belongs to TB.

Furthermore, it is easy to show (i) that no TB is finitely axiomatisable
over PA - this follows from the fact that the theories are strictly
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increasing in strength - and (ii) that if B and B' are different branches,

then TB TB' - there must be some node T in the tree where B and B'
part company and the two daughters R' and T'' of T that belong to B
and B', respectively, will then differ in that for some sentence C, T'

contains C and T'' C. We conclude that there is a 1-1 correspondence
between the complete consistent extensions of PA and the branches of
our tree.  From this we can infer that the cardinality of the set of all
complete extensions of PA is that of the power set P (N) of the set of
natural numbers N.

So our tree gives a complete description of the complete extensions of
PA.  But it is not by any means an exhaustive representation of TLPA,PA.
For one thing the extensions it represents, by its nodes and by its
branches, are either finitely axiomatisable over PA (the nodes) or else
complete (the branches).  However, there are also many incomplete
extensions of PA that are not finitely axiomatisable.  Also, which finitely
axiomatisable extensions turn up as nodes of the tree depends on the
enumeration A1, A2,.. of the sentences of LPA.  And each enumeration
will leave some of them out.

Exercise: Let the enumeration A1, A2,.. and the tree T of extensions of
PA constructed on the basis of that enumeration be as described above.

( a ) Show that the cardinality of the set of branches of T  is that of the
power set P (N). (Hint: Show that there is a 1-1 correspondence between
the set of branches and the set of all denumerably infinite sequences of
0's and 1's. Note that there is a 1-1 correspondence between the
countable sequences of 0' and 1' on the one hand and the subsets of N
on the other.)

( b ) Show that for every complete and consistent extension T of PA
there is a branch B of T such that T = TB.

( c ) Show that there are incomplete extensions of PA that are not
finitely axiomatisable over PA.

( d ) Show (i) that there are finitely axiomatisable extensions of PA that
do not occur as nodes of T .

The second topic of this section concerns the models of PA. Models of
PA that are not isomorphic to the standard model N  are usually referred
to as non-standard  models. Even when we stay within the realm of the
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denumerably infinite, the variety of models is very great.  First, since PA
is incomplete, many models differ from N in that they do not even
verify the same sentences.  Such models will not be considered here.
Instead we concentrate on non-standard models of the theory Th(N ) ,
consisting of all sentences of LPA that are true in N . Even of such models
there exists a great variety.  (The cardinality of the set of isomorphism
types of denumerable models of Th(N ) is again that of P (N).) Here we
will only show how certain non-standard models of Th(N ) can be
constructed with the comparatively simple methods that are available
to us.

The geneRAL method we will use consists in adding new individual
constants to the first order language of the theory of departure and
adding new sentences involving those constants to the theory.  In the
case at hand the language is LPA and the theory is Th(N ) .

First a matter of terminology.  The numerals of L PA are the terms 0, S0,
SS0, ... - in other words, all terms of the form S...S0 consisting of the
constant '0' preceded by zero or more occurrences of the symbol 'S'.
Note that in the standard model N  every individual is the denotation of

some numeral: If n # N, then n = [[5n]]N , where 5n is the term consisting
of one occurrence of 0 preceded by n occurrences of S.

We begin by adding just a single constant c to LPA, thus obtaining the

language LPA {c}, which we will denote for simplicity as L(c). Let S be

the set Th(N ) together with all sentences of the form c  5 , where 5  is a

numeral of LPA: S = Th(N) {c  5: 5 a numeral of LPA}.  It is easy to
show that S is consistent.  For this it suffices to show that Th(N )

together with any finite subset of {c  5: 5  a numeral of LPA} is
consistent. Sol et S' be such a finite subset. Let k be the largest number
n such that the numeral 5n occurs in the sentences of S'. Expand N to a
model N ' for L(c) by adding that interpretation of c which assigns it as
its denotation the number k+1. Then the sentences of Th(N ) are true in
N ' for the same reason that they are true in N  and the sentences in S'
are true in N ' since the numerals they contain all denote numbers that
are distinct from the denotation of c. So S' has a model and thus is
consistent .

Since S is consistent, S has a model.  And since any model of S will be
infinite - this is because all models of Th(N ) are necessarily infinite - it
has a denumerably infinite model.  Let M be such a model.  Then M is
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not isomorphic to N .  To see this, let us consider what an isomorphism
h from N  into M would have to be like. We begin by observing that
every numeral will denote a unique element of M. We refer to the
denotations of 0, S0, SS0, .., Sn0,.. in M as 0M , 1M , 2M ,., nM ,.. . It is
clear that the number 0, which is the element of N  that is the
denotation in of the constant '0', can only be mapped by h onto the
element 0M  of M. For if h is to be an isomorphism from N to M, then it
must preserve in particular the denotation of '0'. So we have: h(0) =
0M . By the same token, the number 1 can only be mapped onto 1M ,
since 1 and 1M are the denotations in N and M, respectively of the term
'S0'; the same applies for the numbers 2,3,.. and the elements 2M , 3M
of M; and so on ad infinitum.  So we have for every natural number n in
N that h(n) = nM .

This specifies h for all of N.  But the range of h will not consist of all of
M.  For the truth in M of all the sentences in S entails that the
denotation of c is different from all denotations of numerals in M and
thus from all elements in the range of h.  It is not hard to verify that h
is indeed an isomorphism.  (The axioms PA3-PA6 fix the extensions of +
and . in both N  and M in terms of the extensions of 0 and S. So if the
latter are preserved by h, then so are the former.)  But h cannot be
onto M. Since there can be no isomorphism from onto  M, N  and M are
not isomorphic.

It would be natural to try and push this method further to show that
there are more isomorphism types of denumerable models of Th(N )
than the two we have so far identified.  But that is not easy.  Additional
or alternative techniques are needed to make further progress on this
particular question, and many others like that.  We do not pursue this
issue any further here.

2.6.2.        Arithmetic on the Reals.

We now turn to arithmetic of the real numbers.  We mentioned in the
introduction that this arithmetic admits a complete axiomatisation.
Again the choice of a first order language in which the axiomatisation is
to be formulated leaves some latitude.  We follow the standard in
adopting as language the language LRea = {0,1,+,.,<} (where 0 and 1 are
individual constants, + and . are 2-place function constants and < 2-
place predicate).  Let R  be the structure of the real numbers cast in hte
form of a model for the language LRea.  That is, R  = <R,0 ,1 ,+ , . ,< > ,
where R is the set of real numbers and 0 ,1 ,+ , . and < are the number
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zero, the number one, the operations of addition and multiplication on
the reals and the standard ordering of the reals, respectively.

The theory TRea in the language LRea that we will consider is also
standard. Its axioms are REA1-REA18.

REA1. ( x)(x + 0 = x )

REA2. ( x)( y) (x + y =  y + x)

REA3. ( x)( y)( z) ((x + y) + z = (x + (y + z))

REA4. ( x)( y)( z)( x = y + z)

REA5. ( x)  (x . 1 = x)

REA6. ( x)( y) (x . y =  y . x)

REA7. ( x)( y)( z) ((x . y) . z = (x . (y . z))

REA8. ( x)( y)((y  0  ( z)( x = y . z))

REA9. ( x)( y)( z) ((x + y) . z = (x . z) + (y . z))

REA10. ( x)( y)(x < y y < x))

REA11. ( x)( y)( z) (x < y & y <  z x <  z)

REA12 ( x)( y)(x = y  v  x < y  v  y < x)
REA13. 0  <  1

REA14 ( x)( y)( z)(y <  z    x + y  <   x + z)

REA15 ( x)( y)( z)(x < 0  &  y <  z   x . z  <  x . y)

REA16. x)(0 < x     ( z)( x =  z . z))

REA17. ( ao) .. ( a2n+1)( a2n+1  0 

( x)(a2n+1.x2n+1 + a2n.x2n + .. + ao = 0),

for all n, where " xn " is short for x.x. ... .x
(multiplication of x with itself n times)

REA18. ( x1) .. ( xn)(x12 + ... + xn2  -1), for all n

The models of TRea are known among algebraists as real-closed fields.

Note that the last two axioms are, like PA7 in our formalisation of the
arithmetic of the natural numbers, schemata:  They are not single
sentences of the language but infinite collections thereof.  Once again
this is essential; there are no finite axiomatisations of R  in LRea that are
equivalent to the axiomatisation presented.
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As in the case of PA, it is not too difficult to see that all axioms REA1-
REA18 are true in the model R that TRea is meant to describe.  No more
than standard high school knowledge is needed to verify all but REA17.
REA17 expresses the fact, the proof of which requires a certain amount
of algebra, that every polynomial in and 'unknown' x in which the
highest occurring power of x is odd takes on the value 0.  (This has to
do with the fact that such polynomials always become negative for
sufficiently large negative values of x and positive for sufficiently high
positive values of x, together with the Mean Value Theorem for
continuous functions on the reals. We do not go into the details here.)

We noted in Chapter 1 that the set of the real numbers is non-
denumerable: There are as many real numbers as there are sets of
natural numbers. Since TRea is a first order theory, it will also have
denumerable models.  In neither cardinality - that of the reals or that of
the denumerable sets - is TRea categorical.  For the case of the reals
themselves this can be easily shown by the same trick which we used to
show the existence of non-standard models of arithmetic.  The standard
model R  of TRea has a property reminiscent of the property of   N  we
used to show the existence of a non-standard model of Th(N ) and
which is known by the name archemedean  (after the great Greek
mathematician Archimedes.) R  is archemedean in that for every real
number r there is a natural number n such that r < +n, where '+n' is
short for '1 + ... + 1 n times'. i. e. for the term of LRea in which '1' is
followed by n-1 occurrences of '+ 1', and -n is the unique number such
that (-n) + (+n) = 0.  The existence of a non-standard model of TRea,
which is not isomorphic to R , follows from the fact that the following
set S of sentences of the language TRea  {c} is consistent:
S = Th(R)  {+n < c: n # N}.  Clearly no model of S is archemedean. So,
since S has models of any infinite cardinality, it will have a non-
archemedean model M of the same cardinality as R .  M cannot be
isomorphic to R , since the denotation in R of any term +n must be
mapped by any isomorphism h onto the denotation of +n in M.  But that
will mean that no matching element to cM can be found in R . Dor
suppose that h(r) = cM .  Since is archemedean, there is an n such that r
satisfies the formula "x < +n" in  R . But on the other hand the sentence
"+n < c" is true in M. so r stands in the relation <  to the denotation of
+n in R  whereas cM  does not stand in the relation <M  to (+n)M  in M.
Thus h would not preserve <.

A similar argument is also possible for the denumerable case, provided
we can show that TRea has denumerable models that are archemedean.
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This can be done.  But it requires some techniques we haven't
developed.  So we will let this matter rest.

The remainder of this section will be devoted to a proof of the
completeness of TRea. This proof rests in part on deep properties of
real-closed fields and otherwise on general results and arguments in
general Model Theory.  We closely follow the proof presented in
(Hodges, 1993), which has the merit of separating the algebraic and
model-theoretic components of the argument very clearly.

As in (Hodges,1993) we take the following two facts about real-closed
fields for granted. Fact 2 is a 'deep' fact about real closed fields, and an
algebraist would properly argue that that is really the crux of the entire
argument. We also follow Hodges in using sometimes capital letters A,
B, C, .. to denote models.  Given the need that will arise more than once
to talk about three models at once, this is somewhat more perspicuous
than using M, M', M'', .. , as we have done so far.

Fact 1.

Let M be a model of TRea and let p(x, y1,..,yk) be polynomial in x and
the parameters y1,..,yk - i. e. a term of LRea which has occurrences of x

and y1,..,yk (where k 0, so the case without parameters in included)

and which is of the form "an.xn + an-1.xn-1 + .. + ao", where the ai a r e
terms of LRea not containing x - and two elements u1 and u2 of M such

that u1 <M  u2 and M p(u1).p(u2) < 0.  Then there is an element u in M
sich that u1 <M  u <M  u2 a n d

M p(u) = 0.

Fact 2.

Let A be real-closed field, i.e. A is a model for LRea such that

A TRea and C an ordered subfield of A, i.e. a submodel of A which
satisfies the axioms of an ordered field, that is REA1-REA15. Then there
exists an extension of C to a real closed field A' within A that is
'minimal' in the following sense:

( 0 ) C A' A, A' TRea and if B is a model of TRea such that C B ,
then there is an isomorphic embedding f of A' into B which is the
identity on C.

The strategy of the proof is as follows.  We prove that TRea has
Quantifier Elimination (QE) and from this that the theory is complete.
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Def. 17 A theory T of a language L has Quantifier Elimination iff for
every formula A(y1,..,yk) of L there is a quantifier-free formula

B(y1,..,yk) such that T y1 yk A  B).

To prove that T has QE it suffices to show

( 1 ) For every quantifier-free formula B(x,y1,..,yk)of L there is a
quantifier-free formula C(y1,..,yk) such that

T y1 yk x B(x,y1,..,yk)  C(y1,..,yk)).

That (1) entails that T has QE is easily verified.  Let A(y1,..,yk) be as in

Def. 17, and let Q 1x1 Q mxm D(x1,..,xm, y1,..,yk) be a formula in
prenex normal form that is logically equivalent to A, where D is

quantifier free and for each i = 1,.., k, Qi is either  or .   We can of
course always arrange for this to be so, by renaming.) Suppose first

that Qk is .  Then because of (1) there is a quantifier-free formula
D m (x1,..,xm-1, y1,..,yk) so that

(2)  T y1 yk xm)D(x1,.,xm,y1,..,yk)  Dm(x1,.,xm-1,y1,.,yk)).

The equivalence (2) entails that in (3), where we have replaced

xm D(x1,..,xm , y1,..,yk) by Dm (x1,.,xm-1,y1,.,yk) in the normal form for
A:

( 3 ) T Q1x1 Qmxm D(x1,..,xm, y1,..,yk) 

Q1x1 Qmxm-1 Dm(x1,.,xm-1,y1,.,yk)

In case Qm is , we proceed analogously, but making use of the

equivalence between and :  According to (1) there is a quantifier-
free D'm (x1,.,xm-1,y1,.,yk) such that

( 4 ) T y1 yk xm) D(x1,.,xm,y1,..,yk)  D'm(x1,.,xm-1,y1,.,yk)).

So defining Dm(x1,.,xm-1,y1,.,yk) as D'm(x1,.,xm-1,y1,.,yk)), we get

( 5 ) T y1 yk xm)D(x1,.,xm,y1,..,yk)  Dm(x1,.,xm-1,y1,.,yk)).



1 6 0

Again (5) enables us to eliminate the innermost quantifier Q m xm f r o m
the normal form.  In this way we continue until all quantifiers have
been eliminated and we have found a quantifier-free formula
D 1(y1,.,yk) that is provably equivalent in T to the normal form of A and
thus also to A itself.  So T has QE.

Before we go on, here is a brief comment on the two Facts we have
stated. It is important to realise that these are facts about the theory
T Rea: What is claimed here is that the facts hold in any model of TRea,
not just in its standard model, or perhaps one or two other models
familiar from Field Theory as a branch of Analysis or Algebra. Thus
there is an important difference in particular between Fact 1 and the
appeal to the Mean Value Theorem that we made when discussing the
truth of the axioms of TRea in R . The proof we appealed to there can
make use of any acknowledged form of argumentation that
mathematicians as legitimate for proving results about the reals.  Ín
contrast, the claim made by Fact 1 is that there exists a formal
derivation of the fact claimed from TRea - i.e. an axiomatic derivation in
the sense of Ch. 1 or the construction of closed semantic tableau in the
sense of the Appendix to Ch.1. So establishing these facts requires
careful checking that all steps can be justified by the axioms REA1-
REA18.

To prove that TRea has QE we need two intermediate steps.  First we
derive the following two properties of TRea:

( 6 ) Let A, B be models of TRea and that A B. Suppose that
D(x, y1,..,yk) is a quantifier-free formula of and that a1,..,ak are

elements of A. Then if B x D(x, y1,..,yk)[a1,..,ak], also

A x D(x, y1,..,yk)[a1,..,ak].

( 7 ) Suppose that A TRea and C a submodel of A.  Then the condition
of Fact 2 is fulfilled:  There exists an A' such that

( 0 ) C A' A, A' TRea and if B is a model of TRea such that C B ,
then there is an isomorphic embedding of A' into B which is the
identity on C.

Proof of (6)   Suppose that A,B, D are described in (6) and that

B x D(x, y1,..,yk)[a1,..,ak]. We make use of the fact that because we
are dealing with the language and theory of rela-closed fields,
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x D(x, y1,..,yk) can be written in a special form.  First, we note that,
quite generally, D(x, y1,..,yk) can be written in disjunctive normal form
and the existential quantifier then distributed over the disjuncts.  So it
suffices to show that if B verifies on of the disjuncts, then A does too.
Each disjunct will be of the form

( 8 ) x ($1 & .. & $r)

where the $ j are literals of LRea - atomic formulas or negations of
atomic formulas.  Note that atmoic formulas of are either equations .  =
/ or inequalities .  < /, where .  and / are terms of LRea.

Our next observation is that TRea allows us to replace the negations of

atomic formulas by disjunctions of atomic formulas:  (.  = /) is

provably equivalent to .  < / v / < . and (.  < /) to .  = / v / < . .  When
we substitute these disjunctions for the negative literals in (8), we get a

conjunction of disjunctions following the quantifier x This
conjunction can be transformed once more into a disjunctive normal
form and the quantifier distributed once more over the disjuncts so
that we end up with a disjunction of formulas of the form (8) where
now the $ j are all positive literals.

It now helps to think of the terms .  and /  that occur in these atomic
formulas as polynomials in x and to think of the elements a1,..,ak f r o m
A as 'parameters' of these polynomials.  (If we want to be very formal,

we can extend the language LRea to a language L' = LRea {a1,..,ak} ,
where a1,..,ak are new individual constants and expand A and B to
models of L' by adding the specification that ai denotes ai.) This means
that the conjuncts of (8) are either of the form p(x) = q(x) or of the
form p(x) < q(x), where p and q are polynomials in x with coefficients
built from the constants 0,1, a1,..,ak.  As a next step we can, by familiar
algebraic manipulations of which it can easily be seen that they can be
justified in TRea, Transform atomic formulas of the form p(x) = q(x)
into atomic formulas of the form r(x) = 0 (essentially by 'subtracting q
from p or vice versa, though the matter is a little more involved, since
we haven't introduced - as a separate operation into our language, and
similarly reduce formulas of the form p(x) < q(x) to formulas of the
form r(x) > 0.  This turns (8) into a formula of the form:

( 9 ) x (p1(x) = 0 & .. &pm(x) = 0 & pm+1(x) >0  & .. &pr(x) > 0 )
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We now distinguish two cases.  (i) First suppose that there is at least
one non-trivial equation among the conjuncts.  Here 'non-trivial' means
that not every element of A is a solution ot the equation, i.e. every
possible assignment to x verifies the equation in A.  It is a well-known
fact of real-closed fields that if a polynomial equation is non-trivial inm
this sense, then it has only finitely many solutions; moreover, any
solution that exists in a real-closed field that extends A already exists in
A.  (This is really what 'real-closed' means, and it follows directly from
the definitions of the notion that are found in mathematics. if real-
closed fields are defined as the models of TRea, then more work is
necessary here.  of course that work needs to be done one way or
another, for as we remarked above, models of is what we are concerned
with, whatever we choose to call them.  It too belongs to the results
that we are taking for granted here, but that an exhaustive proof would
have to supply.  (As should be intuitively clear, the crucial part in
demonstrating this fact is played by the solution axioms REA17.)

Suppose then that the equation pi(x) = 0 (1  i m) is non-trivial.  Since

by assumption B  (9) there is an element b in B such that

( 1 0 ) B p1(x) = 0 & .. &pm(x) = 0 & pm+1(x) > 0  & .. &pr(x) > 0)[b]

Since b is a solution of  pi(x) = 0 in B b must by the remark above
belong to A.  Furthermore, all the other equations and inequalities of
(9) are also satisfied by b in B and thus, since they are all quantifier-
free, will be equally satisfied by b in A.  So we have

( 1 1 ) A p1(x) = 0 & .. &pm(x) = 0 & pm+1(x) >0  & .. &pr(x) > 0)[b]

From this we can conclude

( 1 2 ) A x p1(x) = 0 & .. &pm(x) = 0 & pm+1(x) > 0  & .. &pr(x) > 0),

which concluds the first case.

The second case is that where there are no non-trivial equations in (9).
In this case, (9) reduces to

( 1 3 ) x (pm+1(x) > 0  & .. &pr(x) > 0 )

We now make use of Fact 1.  Let b1, ... bs be all the solutions of the
equations pm+1(x) = 0, .., pr(x) = 0 in B, given in order of magnitude in
B. (I.e. er have  b1 <B b2,. .)  For the same reason that was mentioned in
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the argument for case (i) all of b1, ... bs belong to A. Moreover, since
these are all the solutions to these equations, there will bee no other
switches from positive(negative to negative/positive values of any of
the polynomials pm+1(x),.., pr(x). Since by assumption B verifies (13),
there is a b in B such that

( 1 4 ) B (pm+1(x) > 0  & .. &pr(x) > 0)[b]

this element b will be situated somewhere with regard to the sequence
of elements b1, ... bs, e.g. between bj and bj+1; that is, bj <B b <B bj+1.
This means that in B b verifies all the inequalities occurring as
conjuncts in (14).  Since b1, ... bs are all the places where any of the
polynomials pm+1(x),.., pr(x) changes sign, the formula (14) will be
satisfied by any element in the interval (bj,bj+1), whether in A or in B.
There must be elements in (bj,bj+1) in A, since the order relation in any
real-closed filed is dense.  (This is yet another thing that must be
derived from TRea, but this is quite straightforward.) Any such element
a will satisfy the formula in (9) in A.  So we get:

( 1 5 ) A ( x (pm+1(x) > 0  & .. &pr(x) > 0)

and so, in the light of the assumptions of case (ii), we have once more
(12) and we are done.

We now proceed to the proof of (7)

Let A and C be as stated in (7).  We must show that there exists A' such
t h a t

( 0 ) C A' A, A' TRea and if B is a model of TRea such that C B ,
then there is an isomorphic embedding of A' into B which is the
identity on C.

This is almost what Fact 2 tells us.  The only difference is that our
assumption is that in the assumption of Fact 2 C is an ordered subfield
of A, whereas what we are given in (7) is only that C is a submodel of A.
To bridge this gap we argue aas follows.  Assume that A,B are models of
TRea and that C is a submodel of both A and B.  Here we must appeal to
another general fact of real-closed fields: There is unique way of
extending C to an ordered subfield C' of A. (C' can be obtained as the
quotient field of C, a familiar construction which among other things
leads to the arithmetical structure of the rationals starting from the
integers.) This minimal field extension of C can be embedded also into
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B, and in fact we may as well assume that C' is within the intersection of
A and B. replacing elements in B by their originals from C' under the
given embedding.  This gives as the situation described in the
assumptions of Fact 2.  So there is a real-closed field A' such that

C C' A' A, such that A' can be embedded into B by a map which
preserves C' and therefore also C.

Our next step is to prove from (6) and (7) the following condition (16):

(16) If A and B are models of TRea, and <a1, ... ak>, <b1, ... bk> are k-
tuples from A and B respectively such that

( i ) (A,a1, ... ak) o (B,b1, ... bk) ,
t h e n

( i i ) (A,a1, ... ak) 1 (B,b1, ... bk)

First we must explain the notation.  For any models A, B for some
language L and tuples <a1, ... ak>, <b1, ... bk> from these models

(A,a1, ... ak) o (B, b1,...bk) means that the tuples satisfy the same

quantifier-free formulas in A and B, respectively; and (A,a1, ... ak) 1
(B, b1,...bk) means that every purely existential formula

x1 xm D(x1,.,xm,y1,..,yk) that is verified by a1, ... ak in A is verified
by b1, ... bk in B.

Proof of (16) from (6) and (7).

Assume that A, B  TRea, (A,<a1, .., ak>) o (B,<b1, .., bk>), and that
D(x1,.,xm ,y1,.,yk)) is a quantifier-free formula of LRea such that

( 1 7 ) A x1 xm D(x1,.,xm,y1,.,yk))[a1, .., ak].

We have to show that

( 1 8 ) B x1 xm D(x1,.,xm,y1,.,yk))[b1, .., bk].

Because of (17) there are elements c1, ... cm  of A such that

( 1 9 ) A D(x1,.,xm,y1,.,yk))[c1, ... cm,a1, .., ak] .

We first show that there exists an elementary extension B1 of B and an
element d1 in B1 such that
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( 2 0 ) (A,c1,a1, .., ak) o (B1,d1,b1, .., bk)

Let 6 (x1,y1,.,yk) be the set of all quantifier-free formulas satisfied by
<c1,a1, .., ak> in A:

( 2 1 ) 6 (x1,y1,.,yk) = {7(x1,y1,.,yk): A  7(x1,y1,.,yk)[c1,a1, .., ak]}

We infer that

(22) For each 7 # 6, A x1 (x1,y1,.,yk)[a1, .., ak].

Consider the subset {a1, .., ak} of UA. Since LRea contains function
constants the restriction of A to {a1, .., ak} will not be a submodel of A.
But we can close {a1, .., ak} under the operations of A and obtain in this
way a (uniquely determined) extension Ao of this restriction which is a

submodel of A. Since by assumption (A,a1, .., ak) o (B1,b1, .., bk), the
b's satisfy the same relations in B as the a's in A.  This remains the case
when we close {b1, .., bk} to a submodel Bo of B.  That is, we can extend

the map (a1, .., ak) | (b1, .., bk)to an isomorphism f from Ao to Bo.  We
can rearrange things so that f becomes the identity function by taking
an isomorphic copy B' of B which contains Ao as a submodel in lieu of
f(Ao). In other words we may assume that Ao is both a submodel of A
and of B'.

We are now in a position to apply (7): There is a model A' of TRea such

that Ao A' A and such that A' has an embedding h in B' which is the

identity on Ao. Since A' A and A' and A are both models of TRea, we
can apply (6) and infer from (22) that,

( 2 3 ) for each 7 # 6, A' x1 (x1,y1,.,yk)[a1, .., ak].

Since h is an embedding of A' in B' which preserves a1, .., ak we can

conclude that for each 7 # 6, B' x1 (x1,y1,.,yk)[a1, .., ak], and since B
is an isomorphic copy of B' under an isomorphism which maps a1, .., ak
onto b1, .., bk, we get (24).

( 2 4 ) for each 7 # 6, B x1 (x1,y1,.,yk)[b1, .., bk].

This entails that there is an elementary extension B1 of B and an
element d1 in B1 such that
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( 2 5 ) B1 6 (x1,y1,.,yk)[d1,b1, .., bk]

(The argument is the same as in the proof of Thm. 8 of Ch. 1:  We
extend the language with names for all elements of B and form the
theory Th'(B) of B in this language. Let 6 (d1,b1,.,bk) be the set of all
sentences 7 (d1,b1,.,bk), where 7 # 6, b1,.,bk are the names in the
extended language for b1, .., bk and d1 is an additional new constant (in
yet a further extension of the language).  It is then easily shown using

(22) that Th'(B)  6 (d1,b1,.,bk) is consistent.  Any model of this set
will be an elementary extension of B in which the sentences of
6 (d1,b1,.,bk) are true.) Let d1 be the denotation of d1 in B1. Then for all

7 # 6 B1 7(x1,y1,.,yk)[d1,b1, .., bk].  So we have (23).)

Since contains all quantifier-free formulas 7 such that A 
7 (x1,y1,.,yk)[c1,a1, .., ak] we have (20).

We can now reiterate the argument above for A and B1. in this way we
obtain an elementary extension B2 of B1 and an element d2 in B2 such

that (A,c1,c2,a1, .., ak) o (B2,d1,d2,b1, .., bk); and, continuing, we
eventually get an elementary extension Bm  of B and d1, .., dm in Bm such
t h a t

( 2 6 ) (A,c1,..,cm ,a1, .., ak) o (Bm ,d1,..,dm ,b1, .., bk)

From (26) and (19) we infer that

( 2 7 ) Bm  D(x1,.,xm,y1,.,yk)[d1,..,dm,b1, .., bk]

So

( 2 8 ) Bm  x1 xm D(x1,.,xm,y1,.,yk)[b1, .., bk]

Since Bm is an elemrntary extension of B and b1, .., bk belong to B we
reach the desired conclusion:

( 2 9 ) B  x1 xm D(x1,.,xm,y1,.,yk)[b1, .., bk].
q.e .d.

We now come to the last step in our proof that TRea has QE. We have
seen that it suffices to show that TRea has the property (1).
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Let D(x,y1,.,yk) be a quantifier-free formula of LRea.  We must show that
there is a quantifier-free formula E(y1,.,yk) such that

( 3 0 ) TRea  y1 yk x D(x,y1,.,yk)  E(y1,.,yk))

Let 6 (y1,.,yk) be the set of all quantifier-free formulas 7 (y1,.,yk) of LR e a

such that TRea  x D(x,y1,.,yk)  7 (y1,.,yk)).  We show that the set

TRea 6 { x D(x,y1,.,yk)} is inconsistent.  Suppose the set was
consistent.  Then there would be a model B of TRea and elements b1,.,bk
of B such that

( 3 1 ) B  6 (y1,.,yk)[b1,.,bk] and B x D(x,y1,.,yk)[b1,.,bk].

Let Dia(B,b1,.,bk) be the set of all  quantifier-free formulas 8(y1,.,yk)

such that B  8(y1,.,yk)[b1,.,bk]. Then TRea Dia(B,b1,.,bk) 

{ x D(x,y1,.,yk)} is inconsistent.  For if the set were consistent, then
there would be a model A of TRea with elements a1,.,ak such that

( 3 2 ) A x D(x,y1,.,yk)[a1,.,ak]

( 3 3 ) A Dia(B,b1,.,bk)[a1,.,ak]

But (33) entails that (A,a1,..,ak) o (B,b1,..,bk). So by (16) and (32), it

follows that B x D(x,y1,.,yk)[b1,.,bk], which contradicts the
assumptions about B.

The inconsistency of TRea Dia(B,b1,.,bk) { x D(x,y1,.,yk)}
entails that there is a finite conjunction 8(y1,.,yk) (= 81(y1,.,yk) & .. &
8 r(y1,.,yk)) of formulas 8 i(y1,.,yk) from Dia(B,b1,.,bk) such that

( 3 4 ) TRea x D(x,y1,.,yk) 8(y1,.,yk)

This means that 8(y1,.,yk) belongs to the set 6 (y1,.,yk).  But according

to (33) B  6 (y1,.,yk)[b1,.,bk], so B  8 (y1,.,yk)[b1,.,bk]. But this is
impossible since on the other hand 8  is a conjunction of members of
Dia(B,b1,.,bk) .

This concludes the argument that TRea 6 { x D(x,y1,.,yk)} is

inconsistent.  From the inconsistency of TRea 6 { x D(x,y1,.,yk)}
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we infer that there is a finite conjunction 7 (y1,.,yk) (= 71(y1,.,yk) & .. &
7 s(y1,.,yk)) of formulas 7 i(y1,.,yk) from 6  such that

( 3 5 ) TRea 7(y1,.,yk) x D(x,y1,.,yk)

Since 7(y1,.,yk) # 6, we also have TRea x D(x,y1,.,yk) 7(y1,.,yk).

So we get

( 3 6 ) TRea y1 yk 7(y1,.,yk) x D(x,y1,.,yk))

which concludes the proof of (1) and thus of the fact that TRea has QE.

q.e .d.

Our only remaining task is to derive the completeness of TRea from the
fact that it has QE.  This is easy. Let a be any sentence of LRea. Then

there is a quantifier-free sentence B of LRea such that TRea A B. We
already saw in the proof of (6) that any atomic formula of LRea can be
transformed into a formulas of a very special form that is provably
equivalent to it in TRea: every such formula is equivalent to a
disjunction V j 1 j of conjunctions 1 j of atomic formulas.  In the present
case, moreover we are dealing with sentences.  That is, our quantifier-
free sentence B can be rewritten as an equivalent disjunction V j 1 j in
which each atomic conjunct of each 1 j is a sentence that is either of the
form .  = /  or of the form .  < / .  The terms .  and /  occurring in these
atomic sentences are all built up form the individual constants 0 and 1
with hte help of the functions constants + and . . It is not hard to verify
that each such term / can be transformed into a 'canonical' term / '
which is either 0 or 1 or a sum of the form 1 + .. + 1 involving two or
more 1's. ('Transformed' in the sense that the equation "/ = / ' " can be
proved from TRea.) it is also straightforward to verify that TRea enables
us to either prove or disprove any equation . ' = / ' and inequality . ' < / ' ,
when . ' and / ' are both canonical.

This means that TRea will either prove or refute B. TRea will prove B iff
there is at least one disjunct 1 j of its rewritten form V j 1 j such that TR e a

proves every conjunct of 1 j. Otherwise TRea refutes V j 1 j, and with it B.
The same is true for the sentence A we started with.  So TRea either
proves or refutes every sentence from LRea.

q.e .d.
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In the introduction to Section 2.6 we remarked on the intuitively
paradoxical result that the arithmetic of the reals admit formalisation
as a complete and decidable explicitly axiomatised theory, whereas the
arithmetic of the natural numbers does not.  Now that we have shown
the first of these two facts at the hand of the the theory TRea is, the
paradox may seem even more striking.  it is true that the axioms of
T Rea is that capture the behaviour of the operations + and . are quite
different from those of PA.  The latter cannot be used here, since -
obviously- there is no way of reducing what happens when these
operations are applied to numbers other than the natural numbers
recursively to what happens when one of the arguments is 0. But on the
other hand, it is not hard to see that the axioms of TRea force the
behaviour of + and . on the natural numbers to be the way that PA
describes them.  Specifically, let M be any model of TRea and let NM  be
the set of all elements of UM  that are the denotations of some closed
canonical term / ' of LRea.  Then the submodel N M of M with universe NM

will be isomorphic to the standard model N of PA. This might suggest
that it should be possible to translate every sentence A from the
language of PA into a sentence A' of LRea which talks only about the
submodels N M of models M of TRea.  However, that would give us a
method to check for any A whether or not it is true in N and that is
precisely what Gödel proved to be impossible.

What then is wrong with the suggestion?  The answer is - and must be -
that we cannot translate sentences from Peano Arithmetic intoi
sentences of LRea that 'speak only about the submodels N M . And that in
turn implies that there can be no formula N(x) of LRea that defines the
set of natural numbers in TRea, in the sense that

( 3 7 ) For all models M of TRea, NM = {d # UM: M  N(x)[d]}.

Exercise: Show that if there were a formula N(x) satisfying (39), then it
would be possible to define a translation function tr from LPA to LR e a

such that for every sentence A of LRea N  A iff TRea tr(A).

That the set of natural numbers cannot be defined in TRea in spite of
the fact that in every model M of the theory it consists (modulo
isomorphism) of precisely the denotations in M of canonical closed
terms of LRea, is itself a surprising result, which has to do with deep
properties of real-closed fields.  (It is a result that is entailed by Gödel's
Incompleteness Theorems and the completeness of but it does not in
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any direct and obvious way entail one of those two results given the
o the r . )

That the undefinability of the natural numbers within TRea is connected
with special properties of real-closed fields is indicated by the fact that
arithmetic on the rational numbers is crucially different in this respect.
It is possible to give a (necessarily incomplete) axiomatisation TQ  of the
arithmetic of the rational numbers - for instance in the language LRea -
and to define a formula N(x) such that (39) holds for models of TQ :

( 3 8 ) For all models M of TQ, NM = {d # UM: M  N(x)[d]}.

(This quite difficult result is due to (Robinson, 1949).)

(38) entails that TQ  must be undecidable and incomplete, just as PA and
all its axiomatisable extensions.
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2.2.6.        Rooted Feature Structures.

Let A be a set. An n-ary feature structure relative to  A is an algebra S =
<U, f1,.., fn>, consisting of a universe  U and n partial unary functions
f1 ,.., fn  over U such that

(i)   no feature fi is defined on any element of U that belongs 
to A

The elements of U  A are called the atoms of S.  We refer to the
members of U \ A as the variables  of S. S is said to be finite whenever U
is finite. Sometimes we will refer to the elements of U also as nodes .

We will be especially interested in rooted n-ary feature structures.
Suppose that  <U, f1,.., fn> is an n-ary feature structure relative to A, u
#  U and u has the property:

(*) for each v #  U, v  u, there is a composition f1o ....ofj of 

features such that u =  f1 o ....ofj(uo) and for each r = 1,...,k t h e r e

is an i n such that fr = fi (In other words, each element v of U can be
reached from u via a "feature path").

Then u is called aroot of <U, f1,.., fn>.  By a rooted n-ary feature

structure relative to A we understand an n+2-tuple <U, u, f1,.., fn>
such that <U, f1,.., fn> is an n-ary feature structure relative to A and u
is a root of <U, f1,.., fn> .

The relation "v can be reached from u' via some feature path" where u,
v are elements of the universe U of a feature structure, is clearly a
transitive relation.  We denote this relation as <S.  S is called well-

founded   if <S is irreflexive (or "has no loops", as it is also put).  Well-
founded feature structures are also called unfolded .  A well-founded
feature structure S is called a feature tree if for no u, u' #  U there are
distinct paths f1o ....ofj and g1o ....ogk such that u = f1o ....ofj(u') = g1o

....og k (u ' ) .

For any rooted feature structure S = <U, u, f1,.., fn> and any v #  U, let

S v (the restriction of S to  v) be the rooted structure <U', v, f '1 ,.., f 'n>
where U' consists of all w #  U such that there is a path from v to w and
for i = 1, ..., n  f 'i is the restriction of fi to U' - i.e. for any v #  U' f 'i(v) =
fi(v), provided fi(v) is defined, and f 'i is undefined otherwise.  (It is
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easily verified that <U', f '1 ,.., f 'n> is an n-ary feature structure relative
to A and that v is a root of the structure <U', f '1 ,.., f 'n> . )

Notation:  It is common in the feature structure literature to write
"u'f1 ....fj in stead of f1 o ....ofj(u) .

Often the root uo of a feature structure S is the unique element of S
which satisfies condition (iv).  But this need not be so.  It is not so, for
instance, for the 1-ary structure So = < {1,2}, 1, f1>, where f1 is the
function {<1,2>, <2,1>}.  So can be graphically represented as follows:

     f1

1     2

     f1

Here not only 1 but also 2 satisfies condition (*) of definition of rooted
feature structures; so < {1,2}, 2, f1> is a rooted feature structure as
well.

Note however that if <U, u, f1,.., fn> is well-founded, then u will always
be the unique element satisfying (*). (Show this!). So every well-
founded rooted feature structure has a unique root.

The first language we choose to describe n-ary feature structures is Ln =
{F1, .. , Fn, At}, where the Fi (i = 1, ... ,n) are "partial one-place
functors" and At (for "Atom"!) is a one-place predicate.  (Partial one-
place functors are really two-place predicate constants that are
consistently interpreted as partial one-place functions; given this
interpretative convention, it is possible to adopt a functor-like notation
for them; see below.) An n-ary feature structure S =
<U, f1,.., fn> relative to A can be regarded as a model <U,F>  for Ln,

where F(At) = U  A and F(Fi) = fi.

Exercise:    Formulate sentences of Ln which describe the following
feature structures up to isomorphism. (Letters in the first half of the
alphabet denote atoms - i.e. elements of A - letters in the second half
denote variables.)

Often feature structures are described with the help of languages L'n , B
that are minor variants of the languages Ln.  The languages L'n,B differ
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from their counterparts Ln in that they have, in lieu of the 1-place
predicate At, a set B of individual constants.  We will assume that these
sets B are subsets of some given set of "canonical names" of the
members of A.  That is, each constant in B is taken to denote that atom
in A of which it is the canonical name.  It will be harmless, and simplify
matters, to assume that the elements of A act as their own canonical
names, so that B is simply a subset of A.

Exercise.  For each of the feature structures of the last exercise, give a
uniquely identifying description of it by a sentence belonging to some
appropriate language L'n,B.

As is always the case for finite structures, every finite n-ary feature
structure can be uniquely described in Ln up to isomorphism.  The
same is true for models for Ln which consist of finite sets of disjoint
finite feature structures. Unique characterization up to isomorphism is
not possible, however, for "universal models" of finite feature
structures, models for Ln in which all and only the finite feature
structures are represented.  Let us have a closer look at such models.

To define such a universal model we have to confine the universes of
the feature structures it contains to some given set V.  We assume that
V is denumerably infinite.  An easy set-theoretical argument shows that
the set S (V) of all finite n-ary feature structures whose universes are
included in V is also denumerable.  To build a model in which all the
finite n-ary feature structures are represented we have to proceed
carefully.  We cannot simply form the union of the structures in S(V) ,
for then the elements in V would have to do multiple duty and that
would lead to conflicts; for instance, an element u would have to act in
one complex structure as a node on which the feature f1, say, is
defined and in some other feature structure as a node on which f1 is
not defined.  Clearly we cannot have it both ways.

To avoid this difficulty we can proceed in one of two ways.  The first
way is to make the variable parts of the universes of all the represented
finite structures disjoint.  Note that S (V) contains many copies of what
is intuitively just one feature structure.  We can get rid of such spurious
duplication by forming equivalence classes of ismorphic structures.
Since the set of equivalence classes is again denumerable, it can be
enumerated.  Using this enumeration we can then replace each
equivalence type in turn by an instance Si = <Ui,F i> of it such that the
"non-atomic part" Ui\A of Ui consists of elements of V\A that do not
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occur in any of the instances chosen for the equivalence types which, in
the enumeration, occur before it.  In this way we obtain representatives
of all the equivalence types no two of which share any variables (i.e.
elements that do not belong to A).  We can now form the model M1( V )

= <U,F> as the union of all the Si: U = Ui Ui  and F  (Fj) = Ui Fi(Fj).

Exercise:  Check whether the sentences you formulated in the two
preceding exercises are true in M1(V).  If not, then formulate other
sentences which also describe the given graphs up to isomorphism and
which are true in M1(V).

Just as one can construct a universal model of all finite n-ary feature
structures we can also construct, by the same method, a universal
model for all finite n-ary rooted feature structures.

The second way of constructing a universal model works smoothly only
for rooted structures <U, uo , f1,.., fn> with distinguished root uo .  This
time we let the finite n-ary rooted feature structures themselves be the
elements  of the model.  On this universe we must define interpretations
of At and of the features Fi.  We take as interpretation of At the set of
all feature structures that consist of single atoms, i.e. all structures

<{a}, F> such that a # A and F(At)  = F(F1)  =  F(F2)  = ... = .  (Note that
there is an obvious bijection between this interpretation of At and A.)
Furthermore, we define F  (Fj) as follows.  We put F  (Fj) = the set of all
pairs < S, S'> such that S = <U, uo, f1,.., fn>,  S' = <U', u'o , f '1 ,.., f 'n> ,

u'o  #  U and S' = S u'o .  We refer to the model thus constructed as
M2(V).

It is easy to see that neither the model M1(V) nor the model M2(V) is
identified up to isomorphism by the set of sentences true in it.  The
reason is a quite general one:  If a first order theory has models of
arbitrarily large finite size, it also has infinite models.  By the same
token, the sentences that are true in a model in which there are objects
of any finite size (no matter how large), will also have models in which
there are besides these finite objects also infinite objects which can be
regarded as "limits" of chains of ever larger finite ones.

The proof of this fact rests on the compactness of first order logic.  We
consider the model M1(V).  We extend Ln to a new language Ln' by
adding a new individual constant c and Th(M1(V)) to a new theory Th'
by adding an infinite collection of sentences which together express
that c is the root of an infinite feature structure.  There are many
different ways in which we can do this.  Perhaps the simplest way is to
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state that c is the root of an infinite path consisting exclusively of
applications of the feature f1.   That is, Th' =  Th(M1(V)) U {An}n  # %,
where An is the sentence

( x) (f1 o f1 o ... o f1(c) = x).  Clearly Th' is consistent.  For let G be a
finite subset of Th'.  Then G is consistent.  For among the sentences An
that it contains there is one with highest index, say Ano.  This sentence
will entail all other sentences An in the set.  It is clear, however that
A no is true in the model M for Ln' which we get by adding to M1(V) an
interpretation for c which makes c denote a feature structure that has
an f1-path of length at least no.  In this model all sentences from G
which belong to h(M1(V)) will be true as well.  So G is satisfiable.  By
compactness Th' is satisfiable.  So it has a model M'.  In this model the
denotation of c will be the root of an infinite f1-path.
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Exercises Ch. 2.

1 . a . Let {}  be the language {} which has no non-logical constants,
and let T be any complete consistent theory of {} .
Show that T is !-categorical for every cardinality !  (both finite 
and infinite)

b . Give a complete description of the complete theories of {}.
Which of these are finitely axiomatisable?

c. Show that for any first order language L there are complete
theories of L that have infinite models and that are ! -categorical
for all infintie cardinals ! .

Moreover, how that there  are such theories that finitely
axiomatisable whenever L is finite.

2 . Let L = {P}, where P is a 1-place predicate.

a . Define countably many complete theories of L that only have
infinite models and that are categorical for all infinite
cardinalities.

b . Specify a complete theory of L that is % -categorical but not 
! -categorical for uncountable cardinals ! .

Hint : One can express, by means of an infinite number of axioms
of L, that (i) the extension of P is infinite, and (ii) that the
complement of P's extension (the set of individuals that do not
satisfy P) is also infinite.  It is easy to show (i) that this theory has
infinite models; (ii) that any model of it is infinite; (iii) that any
two countable models of the theory are isomorphic; and (ii) that 
for any uncountable cardinality !  there are models of the 
theory of cardinality ! which are not isomorphic. (N.B. follows
from the fact that M is a model of the theory and |UM | is
uncountable, then the extension of P in M could be either
countable or uncountable.)

c . Let L' = {R}, where R is a 2-place predicate.

Define countably many complete theories of L' that only have
infinite models and that are % -categorical but not !-
categorical for uncountable cardinals ! .
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3 . Show that the theory Trat is not categorical for uncountable
cardinalities.

Hint: In view of Morley's Theorem it suffices to show this for just
one uncounbtable carfinality. Choose the cardinality 2%  of the set
R  of real numbers.
Compare the following two models for the language {<}:

M 1 = <R,<R>, where <R is the standard ordering of R .

M 2 = <Q R ,<'>, where Q  is the set of rational numbers and <' i s

the "alphabetic ordering of Q R induced by the standard
orderings of Q and R " - that is, for q,q' #  Q and r,r' #  R  <q,r> <'
<q',r'> iff (i) q <Q  q' or (ii) q = q' and r <R  r'.
It follows from general facts of set theory that M2 has cardinality 
2%  and thus that M1 and M1 are of the same uncountable
cardinality.
Show that M1 and M1 are not isomorphic.

4 . Let DS(T,L) be the lattice of all extensions of a given theory T of a
some 1-st order language L.

Show: If DS(T,L) is a boolean algebra, then DS(T,L) is finite.

5 . (Stone Representation Theorem for Boolean Lattices.)

Let BL = <U, > be any boolean lattice.  For each b # U, let

Ib = {d # U: d b}.  (Ib is called the prime ideal determined by b.)

Show that BL is isomorphic to the structure <U', >, where

U' = {Ib: b # U} and  is set-theoretical inclusion.

N.B. The intuitive significance of Stone's Representation Theorem
is that all different types of boolean lattices (and thus also all
types of all boolean algebras) are realised by set-theoretical
structures, whose universe consists of subsets of some given set
and in which lattice relation is set-theoretic inclusion.

(This is the purport of all representation theorems in
mathematics: Every structure satisfying some general
requirements (such as that of being a model of a given set of
axioms) is isomorphic to - and thus can be "represented" as - a
structure of some special form.)
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6 . Show that 0 and S are definable within PA in terms of +.

7 . Show that S is not definable within PA in terms of . (multiplic.).

(N.B. intuitively this means: the successor operation on the
natural numbers is not definable within PA just with the help of
multiplication.)

Hint: Let TPA,{ .} be the set of all sentences from the sublanguage
{.} of LPA that are theorems of PA.

i. Show that any denumerable model M of TPA,{ .} is isomorphic
to the model N { .} = <N,.N>, where .N  is the multiplication operator
from the standard model N of arithmetic.

To show this, first observe that "the number zero" and  "the
number one" are definable in PA from . alone (i.e. we can define
in terms of . the predicate "is equal to the number zero" and the
predicate "is equal to the number one"); and further that with .
we can also define the predicate "is a prime". Once this has been
established it is easily seen that among the things that TPA,{ .} 
asserts is that there are infinitely many primes and that these are
all different from both zero and one. This means that
denumerable model M of TPA,{ .} has a unique zero, a unique one
and infinitely distinct primes. it is then easy to show that any
bijection between the primes of M and the primes of the standard
model of arithmetic N is an isomorphism between M and the
model N{.}.

ii. Show that (i) entails the non-definability of S in TPA,{.}.

8 . Let L be the language (0, S}, with 0 a 0-place function constant and
S a 1-place  dunction constant.  Let T be the L-theory that is
axiomatised by the set { A1,A2}, where:

A1 := ( x)(x 0  ( y)(x = Sy))

A2 := ( x)( y)(S(x) = S(y)  x = y)

Let N  be the L-model <N, I>, where:

( i ) N is the set of natural numbers;
( i i ) I(0) = 0 (i.e. I(0) is the number zero);  and
(iii) for every natural number nm I(S)(n) = n+1.
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Evidently N  is a model of T.

Show:  There exist countably infinite models of T that are not
isomorphic to N  .

9 . Let L be the language {0, 1, S, P}, where 0 and 1 are individual 
constants and S and P are 2-place predicate constants.  LetT be the
theory of L that is axiomatised by the following set of axioms:

A1. ( x)( y) z)(S(x,y) & S(x, z)  y = z)

A2. ( x)( y) z)(S(y,x) & S(z, x)  y = z)

A3. ( x)(( y)(S(x,y))  x 1 )

A4. ( x)(( y)(S(y,x))  x 0 )

A5. ( x)( y) z)(P(x,y) & P(x, z)  y = z)

A6. ( x)( y) z)(P(y,x) & P(z, x)  y = z)

A7. ( x)(( y)(P(x,y))  x 0 )

A8. ( x)(( y)(P(y,x))  x 1 )

A9. ( x)(x 1  ( y)(S(x,y) & P(y,x))) &

( x)(x 0  ( y)(P(x,y) & S(y,x)))

(Intuitively the conent of T as as follows:

(i) (A1 -A4) say that S sdenotes a partial 1-1 function, such that
all elements of the universe U except for 1 belong to its 
domain and all elements of U except for 0 belong to its 
range;

(ii) (A5-A8) say that the same applies to P, except that in this 
case it is 0 that is missing from the domain and 1 that is 
missing from the range.

(iii) (A9) says that the function from U\{0} onto U\{1} that is 
denoted by P is the inverse of the function from U\{1} onto 
U\{0} that is denoted by S.)

1.  Show that T has an infirnite model and that all models of T
are infinite.
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2 . The constants 0, 1, P are all definable in T using just the
constant S.  (That is, for each of these three constants there
is an explicit definition in which the only non-logical
constant appearing on the right hand side is S.)

Give explicit definitions for 0, 1 and P in terms of S in T.

1 0 . Let L be the language {=, <, I, 0,S}, in which < is a 2-place
predicate, I a 1-place predicate, 0 an individual constant and S a
2-place predicate.  Let T be the theory of L that is axiomatised as
follows:

A1  x y (x < y  y < x)

A2 x y z (x < y & y < z x < z)

A3 9x y (x < y v x = y v  y < x)

A4 x y (x < y z (x < z & z < y)
A5 I(0)

A6 x y (S(x,y)   I(x) & I(y))

A7 x y z ( S(x,y) & S(x,z)  y = z)

A8 x y z ( S(x,z) & S(y,z)  x = y)

A9 x y (S(x,y)    x < y)

It is easily verified that T holds in the following model Mo:

(i) the universe of Mo is the set Q of rational numbers; 
(ii) <M o  is the "less than"-relation between rational numbers;
(iii) IM o  is the set of integers;
( iv) 0M o  is the number zero; and
(v) SM o  is the successor relation between integers.

Show that there is apart from Mo at least one ohter countable
infinite model of T which is not isomorphic to Mo .

1 1 . Let LPA (= {0, s, +, .}) be the language of Peano Arithmetic. Let  L1
be the extension LPA {c1,P} of LPA where c1 is an individual
constant and P a 2-place predicatem and let  L2 be the extension

L1 {c2} of L1 where c2 is an individual constant . (So L1 =
{0, s, +, ., <, c1} and L2 = {{0, s, +, ., <, c1, c2}.)

Let T1 = Cl(PA    {( x)( y)(x < y  ( z)( z 0 & x + z = y)} 
      {0 < c1, S0 < c1, SS0 < c1, ...}).



1 8 1

Let T2 = T1  U {c1 < c2, Sc1 < c2, SSc1 < c2, ...}.  and let M1 be 
any model of T1.

Show that M1 dcan be expanded to a model M2 of T2 by adding a
suitable interpretation of the constant c2 .

1 2 . Let L be the language {<}, where< is a 2-place predicate constant

and öet L' = L {S}, with S a 1-place function constant.  Let T' be 
the theory CnL'({A.1, ..., A.4}), where:

A.1 ( x)( y) (x < y  (y < x))

A.2 ( x)( y)( z) ((x < y & y < z)   x < z)

A.3 ( x)( y) (x < y  v  x = y  v  y < x )

A.4 ( x)(x < S(x) &  ( z)(x < z  (S(x) < z  v  S(x) = z)))

Show that S is definable in T' (i.e. in terms of <).

1 3 . Deduce the fllowing statement from the axioms PA1-PA7:

( x)( ( y)(x = 2.y)    ( y)(x = 2.y + 1) )

1 4 . a . We extend the language of arithmetic LPA with a new 1-place

predicate G to the language L' = LPA  {G} and extend the theory
PA to a theory T' of L' by adding as a new axiom the following
definition D of G in terms of +:

( D ) ( x)(G(x)  ( y)( x = y + y))

(Intuitively D says that G denotes the property "is an even
number" . )

Show that the sentence ( x)(G(x) v G(S(x))) is derivable from T'.

b . This time we extend LPA with a new 2-place predicate < to

the language L'' = LPA  {<} and extend PA to a theory T'' of L'' by
adding as a new axiom the following definition D' of < in terms of
+ and 0:

(D ' ) ( x)( y)( x < y  ( z)(z  0 & z + x = y))
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Show that the sentence (1) is deducible from T''.

( 1 ) ( x)( y)( x < y  x  y)

(Hint: One way to show this is to prove first that  (1) is 
equivalent to (2)

( 2 ) ( x)( v)( x + Sv    0)

(Intuitively D says that G denotes the property "is an even
number" . )

Show that the sentence ( x)(G(x) v G(S(x))) is derivable from T'.

b . This time we extend LPA with a new 2-place predicate < to

the language L'' = LPA  {<} and extend PA to a theory T'' of L'' by
adding as a new axiom the following definition D' of < in terms of
+ and 0:

(D ' ) ( x)( y)( x < y  ( z)(z  0 & z + x = y))

Show that the sentence (1) is deducible from T''.

( 1 ) ( x)( y)( x < y  x  y)

(Hint: One way to show this is to prove first that  (1) is 
equivalent to (2)

( 2 ) ( x)( v)( x + Sv    0)

and then to prove (2) be mathematical induction.)

1 5 . Let L and L' be languages of first order logic and let T and T' be
theories of L and L', repsectively. Let I be a function from the sentences
of L to the sentences of L'. (We may call such a function I a "translation"
from L to L'.) We say that I interprets T in T' iff for every sentence A of

L such that T  A, T'  I(A). Second, let I be a set of translation finctions
from l to L'. Then we say that T is interpretable in T' relative to I iff
there is an I in I which interprets T in T'. i
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Let now T be the theory od stron partial orderings in the language L =
{<}, whose axioms are

( x)( y)( x < y   y < x )

( x)( y)( z)( x < y &  y < z  x <  z)

We can interpret T in the theory  PA formulated in the language LPA of
Section 2.6.1  by means of the function I which is "based on" the
following definition of "<" in LPA:

(D<) ( x)( y)(x < y  ( z)(z  0 & x + z = y))

Here, when we say that I is "based on" (D<) what we mean is that for
any sentence A of L, I(A) is the sentence which we get by replacing each
subformula "u < w" of A by the right hand side of (D<), replacing x by u
and v by w (and if necessary renaming z in order to avoid variable
clashes).

Show that I interprets T in PA (and therewith that T is interpretable in
PA relative to the set of all translations from L into LPA that are based
on possible definitions of "<" in LPA).

1 6 . Let T be a theory of some first order language L and let $ be a non-
logical constant of L. Let D be the set of all possible explicit definitions
of $ in terms of the remaining vocabulary of L. (That is, if $ is an n-
place predicate P, then D will be the set of all sentences of the form

( v1)..( vn)(P(v1,.,vn) A), where A is a formula of L \{$} in which
only  v1,.,, vn may have free occurrences; and if $ is an n-place function

constant f, then D is the set of all formulas ( v1)..( vn)(f(v1,.,vn) =

vn+1 A), where A is a formula of L \{$} in which the only free
occurrences are of the variables v1 ,.,, vn+1. )
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Let I be the set of all translations of L into L \{$} that are based on
definitions in D, where for a definjition d #  D with right hand side Ad
the translation Id  based on d is the one which replaces in any formula B
of L all occurrences of atomic formulas involving $ by the
corresponding instantiations of Ad. (See also the previous exercise.)

Let T' be the theory T {C: C is a sentence of L \{$}}

Show: T is interpretable in T relative to I iff $  is definable in T.
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Lösungen von einigen Aufgaben.

9 .  Wir bezeichnen das zu beweisende Theorem

( x)( ( y)(x = 2.y)    ( y)(x = 2.y + 1) )  als (*).

Wir verfahren nach Induktion und zeigen (*) indem wir zeigen:

(**) ( y)(0 = 2.y)    ( y)(0 = 2.y + 1)

(***)  (( y)(x = 2.y)    ( y)(x = 2.y + 1)) 

( y)(Sx = 2.y)    ( y)(Sx = 2.y + 1))

(**): Einerseits haben wir PA  0 = 2.0. Also auch PA  ( y)(0 = 2.y).  

Andererseits gilt: PA    ( y)(0 = 2.y + 1).  Denn nehmen wir an,

dass ( y)(0 = 2.y + 1), dann gibt es ein y, so daß 0 = S(2.y), was 
dem PA-Axiom widerspricht, dass 0 nicht von der Form Sx ist.

(***): Nehmen wir an: (( y)(x = 2.y)    ( y)(x = 2.y + 1)).  
Dann gilt also entweder

(i)  ( y)(x = 2.y) &  ( y)(x = 2.y + 1)    oder

(ii)  ( y)(x = 2.y) & ( y)(x = 2.y + 1)

Im ersten Fall gibt es ein n, so daß x = 2.n.  Also gilt Sx = S(2.n) = 

2.n + 1 und deshalb auch ( y)(Sx = 2.y + 1).  Wäre es der Fall, daß

( y)(Sx = 2.y), so gäbe es ein n, so daß Sx = 2.n.  Offenbar kann n
nicht gleich 0 sein. Also ist n = Sm für irgendein m.  Dann aber
Sx = 2. Sm = Sm.2 = Sm + Sm = S(Sm + m). Also ist x = Sm + m =

m + m + 1 = m.2 + 1 = 2.m + 1. Also ( y)(x = 2.y + 1), was dem 
zweiten Konjunkt in (i) widerspricht.  Also führt die Annahme,

d a ß

( y)(Sx = 2.y) zu einem Widerspruch.  Somit haben wir 

( y)(Sx = 2.y + 1) & ( y)(Sx = 2.y) und damit

( y)(Sx = 2.y + 1) ( y)(Sx = 2.y).

Der zweite Fall, (ii), erledigt sich ähnlich.

ii. Zu zeigen:

( x)( y)(Sx . Sx = (x . x) + y   ( u)(y = 2.u) )
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(Intuitiv besagt diese Formel, daß die Differenz zwischen zwei 
aufeinanderfolgenden Quadraten immer eine ungrade zahl ist.)  
Wir agumentieren wie folgt:

Sx . Sx = (Sx . x)  + Sx = (x . Sx) + Sx = ((x . .x ) + x) + x + 1 
= (x . .x ) + (x + x + 1) = (x . .x ) + (2..x + 1).  Also, wenn 

Sx . Sx = (x . x) + y, dann ist y = 2..x + 1. (Siehe unten!).  

Wenn aber  y = 2..x + 1, dann gilt auch ( u)(y = 2.u + 1). 

Dann gilt aber nach (i), daß  ( u)(y = 2.u).

(Wir haben hier von dem Prinzip Gebrauch gemacht, nach dem
aus  x + y = x + z folgt, daß y = z.  Dieses Prinzip läßt sich leicht nach 

Induktion beweisen:

(i) Wenn o + y = o + z, dann natürlich y = z.
(ii)  Wenn gilt, dass (a) wenn x + y = x + z, dann y = z, dann gilt 

auch, dass (b) wenn Sx + y = Sx + z, dann y = z.  Denn sei
Sx + y = Sx + z.  Dann y + Sx = S(y + x) = z + Sx = S(z + x).

Dann aber y + x = z + x.  Also x + y = x + z und nach 
Induktionshypothese y = z.)
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Chapter III  Set Theory as a Theory of First Order Predicate

Logic .

Here is an appealing and apparently clear picture of the "universe of all

sets":  Suppose that a set A of "individuals" or "Urelements" is given.

Then we can form sets from those individuals; these will be subsets of

A.  We can then form sets of which these subsets of A are in turn

members;. In fact, it seems reasonable to hold that we can form not

only such sets, but also sets which consist partly of subsets of A and

partly of members of A; the sets which have only individuals as

members and those which have only sets of individuals as members are

special cases of this more general category.  Having formed this second

tier of sets we can then proceed to form a third tier, a collection of sets

the members of which may be individuals, sets of individuals and sets

which themselves count sets of individuals among their members.

Carrying on in this manner ad infinitum we run through the so-called

"cumulative hierarchy (of sets)".  The structure which results in this

way is the subject of the theory of sets.  It is this structure that any

axiomatic set theory should try to capture.

It isn't quite right to speak of the  structure of set theory.  For what the

iterative process of forming sets produces evidently depends on the set

A with which we start.  But among the many different hierarchies which

are generated by different sets of Urelements there is one that is

special.  This is the hierachy which results when we start with nothing,

so to speak, i.e. when we begin with the empty set.  It may not be

immediately obvious that this will get us anything at all, but only a little

reflection shows that it does.  All that needs to be acknowledged is that

the empty set is fit to act as a member of other sets.  Once we accept

this, we see that there is at least one other set besides the empty set,

viz. the set whose only member is the empty set.  (Clearly this set is

different from the empty set, for it does have a member, whereas the

empty set itself has none.)  As soon as we have these two sets, it is

possible to form more sets, e.g. the set which has both these two sets as

members, etc.  In fact, even if we start with the empty set of

individuals, iterated set formation leads eventually to an unimaginably

huge universe, and one that is certainly big enough to model any

abstract structure - such as that of the real numbers, or of all functions

from real numbers to real numbers, etc., etc. - that pure mathematics

and the sciences which use mathematics as a tool ever made a topic of

investigation.  Because it gives us enough for these purposes, while on

the other hand it apparently does without "extra-logical" assumptions

(it does not involve the assumption of any "Urelements", which are

themselves not sets), the hierarchy which starts from the empty set has
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become the preferred object of study within mathematical logic.  It is

this structure that is usually referred to as the cumulative hierarchy.

The cumulative hierarchy, then, is that structure which we get when,

starting from the empty set, we generate sets by the iterative procedure

just sketched and carrying on "ad infinitum", as we just put it.  But

what is "ad infinitum"?  It may be that what is meant by this appwars

reasonably clear at first.  But upon reflection the illusion of clarity

quickly evaporates. The infinite, in all its different manifestations, is

one of the trickiest abstract concepts there are, and this applies to the

phrase "ad infinitum", as it figures in our informal description of the

cumulative hierarchy, no less than to any other manifestation of it.

Set Theory was invented in large part to analyse the concept of infinity,

and to develop systematic means of studying and describing its

different manifestations in different contexts.  Because of this it is in

the curious situation that what it has to say about infinity is

constitutive of the very structure of which it is meant to provide an

accurate description.  As a result there is, from the perspective we

adopted in Ch. 2 a certain kind of circularity here, which is unlike

anything we have found in connection with other theories discussed

there that aim at the description of a single structure, such as the

theory of the order of the rationals, or Peano Arithmetic, or the Theory

of Real Closed Fields.  In all those cases there was a well-defined, and

independently definable, structure against which the axioms of the

theory could be checked, so that various well-defined questions can be

raised about the relation beteen structure and theory, e.g. whether the

theory gives a complete, or a categorical characterisation of the

structure. (And as we saw it is often possible, if rarely simple to answer

such questions.)

Set Theory is different in this respect.  The very question what the

structure is like that it is its purpose to describe cannot be detached

from the description that the theory itself provides; for part of what

the theory asserts is what iteration of a given operation or set of

operations ad infinitum comes to, and thus what the structure is that is

the result of such an iteration ad infinitum.

One of the striking discoveries about infinity - which stood, one might

say, at the cradle of Set Theory as we know it today - was that it comes

in different 'degrees', or 'sizes'.  As we noted in Ch. 1, Cantor. the

founder of modern set Theory, showed that the power set P (X) of a set

X is of higher cardinality than X itself.  This is true for any set X
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whatever, and so in particular when X is infinite.  Consequently each

infinite set X is the starting point of an unbounded sequence X, P (X),

P (P (X)),.. of sets of ever larger infinite cardinality.  But havin

established that there is a multiplicity of different infinities, the set

theorist sees himself confronted with further questions, concerning (a)

the extent and (b) the structure of this multiplicity.  Two such

questions have dominated Set Theory for most of its history: (i) How

many different sizes of infinity - how many 'cardinalites' - are there

altogether? and (ii) are there any sets X whose cardinality |X| is between

that of the set N of the natural numbers and that of its power set P ( N ) ?

(This second question is known as the issue of the Cont inuum

Hypothesis . The Continuum Hypothesis (CH) is the statement that there

are no such sets X:  ( X)(|N| < |X| < |P(N)|).)

The investigations concerning the CH can be divided into three phases.

At first, the goal was simply to decide whether or not the Continuum

Hypothesis is true.  This is the way Cantor, the one who introduced the

issue of of the CH into Set Theory, understood it.  (Cantor seems to

have worked on this problem relentlessnly and the strain caused by his

failure to settle the matter is said to have contributed to his eventual

mental breakdown.) The second phase set in after, in the early parts of

the 20-th Century, Set Theory had been formalised and characterised as

a formal theory, given by a certain set of axioms.  At that point the

problem of the CH took on a correspondingly formal complexion:  Can

the CH be either proved or refuted from the axioms of formal Set

Theory1?  This question was settled in two stages.  First Gödel proved in

1940 that CH is consistent with formal Set Theory, and thus that the

axioms do not refute it.  Then, in 1963, Cohen proved that CH is

independent of this system, i.e. that it cannot be proved from its

axioms either.

Cohen's result was not only the conclusion of the second phase, but

also the point of departure for the third. This phase (which continues

to the present day and will quite possibly never be concluded) is

characterised by the search for new set-theoretical principles which

settle the CH one way or the other, and which at the same time can be

argued to be true on independent, intuitively persuasive grounds.

1 The formalisation of Set Theory didn't lead to just one set of axioms.
However, it became clear fairly soon that the major proposals do not differ from
each other as far as CH is concerned.  So we can, without serious distortion to what
actually happened, describe this phase in the history of  Chas the question
whether CH can be either proved or refuted from one of these axiomatic theories,
viz from the theory ZF, or 'Zermelo-Fraenkel',which will be presented in this
Chap te r .
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Though a number of formal results were achieved in the aftermath of

Cohen's result, involving new axioms which settle the CH one way or

thev other, none of the new axioms that were proposed seem to qualify

as unequivocally true.  So, from a conceptual point of view the CH is na

open question to this day

For our present purposes the first question - What is the total range of

infinite cardinalities? - is of more immediate importance.  Work on this

question has taken on a flavour much like that connected with CH:

Various axioms have been proposed, each of which tells us something

about the range of infinite cardinalities.  Most of these axioms are

'Large Cardinal Axioms', which when added to ZF guarantee the

existence of cardinalities larger then any that can be proved to exist

without them.  But the conceptual difficulty connected with these

results is much like the one we just mentioned in connection with CH:

In general it is difficult to persuade oneself that the proposed axioms

must be true.

Connected with the question how large infinities can get is the question

what should be understood by the phrase 'ad infinitum'.  Even the

multiplicity of cardinalites that is guaranteed by ZF by itself (i.e.

without the addition of any further axioms) implies that many different

answers are possible in principle here.  One possible interpretation of

ad infinitum is that "iteration ad infinitum" should be understood as

iteration going up to the first, or 'lowest', degree of infinity, viz. that of

denumerably infinity.  The structure which is obtained by iterating,

starting from the empty set, the set-forming operations up to this first

level of infinity is known as the Hierarchy of Hereditarily Finite Sets.  It

goes by this name because all its elements are sets that are hereditarily

finite  in the sense that (a) they are finite themselves, and (b) their

members are also finite sets, and likewise for the members of those

members, and so on all the way down.  It is clear, however, that this is

not  the structure that the axioms of Set Theory should try to capture.

It is of the essence of the "real" structure of sets that some of the sets

in it are inifinite.  Since the Hierarchy of Hereditarily Finite Sets doesn't

contain any such sets, not even the set of natural numbers, it cannot be

the the one we are after.

Even apart from this consideration, the Hierarchy of Hereditarily Finite

Sets should not qualify as the structure that Set Theory should describe

on the grounds that what we intuitively want  is the structure which

results from iterating the set-forming operations through all  infinite

cardinalities; teh itereation shouldn't be stopped at any earier stage,
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and stopping at the very first opportunity that offers itself is about as

far removed from this general desideratum as possible

As we already noted, there is no way to determine the properties of the

full structure of sets completely independently of what Set Theory says,

for it is the theory which asserts how large and complex sets can

become.  In the light of all the work that has been donme on the

question of large c ardinals there has been a growing impression that

what can be said about this must to some extent remain a matter of

stipulation.  The upshot of this is that there may be no one 'true'

structure of sets and therefore possibly also no one correct axiomatic

set theory.  The second question is complicated, however, by the c

ircumstance that axiomatic set theories like the Theory of Zermelo-

Fraenkel, or 'ZF', which we will present below, admit of so-called 'inner

models' - structures which satisfy all the axioms of the theory but

which are obtained be iterating the set formation operations only up to

the cardinality of some set whose existence the axioms enable us to

prove.2  For this reason the quest for th right axiomatisation of Set

Theory does not stand or fall with the quest for the true 'set-theoretical

universe ' .

Not only are first order axiomatic set theories like ZF exceptional from

the perspective adopted in Ch. 2, they also hold a unique position

within the landscape of logic, mathematics and the exact sciences in a

different sense.  As we noted in the Interlude on Set Theory in Ch.1, Set

Theory is indispensible in the formalisation of mathematics.  As we also

noted there, the insight that it is needed for this purpose is certainly

not self-evident; and as things actually happened, it was something that

was learned the hard way:  The insight emerged when Russell detected

the error which had slipped into Frege's attempt to reduce arithmetic

to 'pure logic' and which Russell exposed in the form of  what has come

to be known as 'Russell's Paradox'.

2 This sounds paradoxical, for how can a structure which verifies all the
axioms of the theory fail to contain sets that the theory claims to exist?  The
answer is that an inner model will in general not only lack the sets which would
be reached only by carrying the iteration beyond the point where th inner model
is reached, but also many of the functions which establish 1-1 correspondences
between sets that are part of the inner model.  This makes it possible for sets in the
inner model to appear from a perspective internal to the inner model as if they
had a larger cardinality than they can do from the external perspective of
'reality', - the functions that would establish them as being of the same cardinality
as certain other sets of the internal model (and thus as having no larger
cardinality than these), simply are not around.
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The need for set-theoretical principles arises in the formalisation of any

part of mathematics or science.  It arises in particular in the

formalisation of parts of metamathematics , i.e. of the discipline which

deals with the general properties (such as completeness , consistency,

soundness, compactness, etc.) of logical systems like the predicate

calculus.  And it is especially in such formalisations that the conceptual

implications of its use are most important.  For the point of such

formalisations is to make certain that the general framework of

mathematics and science does indeed have the general poperties of

soundness and consistency which we attribute to it. 3

When Set Theory is used as metatheory in formalisation, and especially

in its role as metatheory in the formalisation of parts of metamathe-

matics, it is of the outmost importance that its principles be

ascertainable as true.  For this reason formalisations in

metamathematics should try to make as parsimonious a use of set-

theoretic principles as possible, and to employ only those whose

3 To give an idea of what formalisations of parts of metamathematics come to,
here is an outline of the formalisation of the very first results we proved in Ch. 1,
the soundness and completeness of first order logic.  The formalisation of these
results will involve, first, formal definitions within the language of ZF of the
syntax, model theory and proof theory of first order predicate logic.  This means
that the languages of predicate logic, their symbols, formulas, and derivations as
well as the models for those languages and the sequencs of formulas that
constiotute correct derivations, are represented as set-theoretic objects, and that
soundness and completeness are formulated as statements - pertaining to those
objects - in the language of set-theory.  Second, the proofs of soundness and
completeness can then be turned into formal axiomatic derivations - in the sense
defined in CH.1, Sn 1 - from the axioms of set theory together with the mentioned
def in i t ions .

Note that such attemtps at providing additional support for the soundness of our
general logical framework are affected by an ineliminable element of ciruclarity.
For the fact that the soundness theorem can be demonstrated in the form of a
formal derivation provides support for its being true only to the extent that the
formal method of derivationthat is used in the demonstration can be trusted.  But
that is precisely the issue that the soundness proof is trying to establish.  It sould
be noted that this circularity will be there independently of whether the
formalisation of axioms of set-theory.  These only add a further element of
uncertainty insofar as there can be any doubt about the i r  truth.

Of special significance is the fact that Set Theory is needed in the formalisation of
the metamathematics of Set Theory itself.  Here Set Theory plays the double role of
object of investigation on the one hand and formalism within which the
formalisation is being carried out on the other.  This double role has given rise to
forms of argumentation in which systermatic switches are made back-and-forth
between the system as object- and as metaformalism.
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validity is beyond controversy.  As we will see, the axioms of ZF enjoy a

coniderable degree of intuitive plausibility, though even among them it

is possible to make out some differences in the kind or degree of self-

evidence that attaches to them.

As a matter of fact the set-theoretical principles that are needed to

formalise the more elementary parts of metamathematics (including all

the results that were presented in Chs. 1 and 2) seem to be self-evident

to a remarkable extent.  Even if the combination of these principles

with those of pure logic does go beyond what we now consider to be

within the scope of pure logic, this does not seem to seriously affect

the central purpose of the formalisation of metamathematics - to

provide a proper foundation of scientific thought and reasoning.

Set Theory, then, can be seen as occupying a position halfway between

logic and mathematics.  On the one hand it seems to be about some

particular matehamatical structure or structures, and as such it is on a

par with other branches of mathematics.  But on the other hand its

central concepts, and the analyses of them that it has provided, come

as close to what we would consider 'pure logic' as anything that doesn't

actually lie squarely within it.

2 . The Axioms of Set Theory.

In order to state the axioms of ZF we must first decide on a first order

language in which they are to be expressed.  We start with the

assumption that this language has only one non-logical constant, the 2-

place predicate ! , which designates the relation that holds between x

and y when x is a member, or element, of the set y.  As we go along, we

will extend this language with new vocabulary, but always giving explicit

definitions for the new notions in terms of the original ! .  Thus each

time a new predicate or function symbol is added to the language, the

theory we are building is extended through the addition of a

corresponding definition.  As we have seen in Section 2.3, these

additions always yield conservative extensions, which do not increase

the set of theorems expressible in the original vocabulary {!} .

The first principle that an axiomatic theory of sets should make explicit

is the one which states what makes for the identity of a set.  The

principle we adopt, and which is in a sense definitory of the concept of

set, is the principle of extensionality, according to which two sets are

identical if and only if they have the same members:
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SA 1. ( x)( y) (x = y  ( z)(z ! x  z ! y))

The next three axioms tell us something about how to make new sets

out of given sets.  They testify to the possibility of forming pairs ,

unions  and power sets, respectively

SA 2. ( x)( y)( z)( u)(u ! z    (u = x  v  u = y))

SA 3. ( x)( z)( u)(u ! z    ( v)(v ! x  &  u ! v))

SA 4. ( x)( z)( u)(u ! z   ( v)(v ! u  v ! x))

It is customary to denote the sets whose existence is asserted in SA2-

SA4 as {x,y},  (x) and P  (x).  Instead of ' (x)' and 'P  (x)' we also write

' x' and 'P  x'. {x} is short for {x,x},

N.B. these 'notational conventions' are our first examples of the

mentioned practice in Set Theory to extend the language of set theory

with new non-logical constants and the theory of set theory with

axioms that have the form of explicit definitions for those constants.

For instance, SA2 garantees the existence of an unordered pair for any

two entities x and y, and it is easy to see that this pair is also unique.

(This follows from the Extensionality Axiom SA1.)  In other words the

axioms so far adopted entail the following theorem:

( 1 ) ( x)( y)( z)(( u)(u ! z    (u = x  v  u = y)) &

    ( z')(( u)(u !  z'    (u = x  v  u = y)) z' = z)))

As we saw in Ch.2, (1) is the necessary and sufficient condition in order

that adding the following definition (2) of the function constant {-,-} to

any theory containing the axioms SA1 - SA2 yields a conservative

extension.

( 2 ) ( x)( y)( z)(z = {x,y} ( u)(u ! z    (u = x  v  u = y)))

The same comment applies to the introduction of   and P.

The next addition to our axiomatic theory is meant to capture the

Comprehension Principle, the principle that for every property there

exists a set which consists of just those entities which have the property

(cf. Sn. 1.3.1).  Here we encounter two difficulties.  One of them is the

problem that in this categorical form the Comprehension Principle

cannot be true.  (This is what Russell discovered when reading the ms.
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of Frege's Grundgesetze der Arithmetik and explained in terms of

'Russell Paradox'.)  So the best we can hope for is to adopt the principle

in some weaker form.

In fact, there are two weakened versions of the Comprehension

Principle which play a part in modern set theory.  The first of these is

due to Zermelo and the second to Fraenkel.  Although the first version

is logically entailed by the second, and thus the second sufficient by

itself, we follow tradition in presenting both.

The first version is known as the Aussonderungsaxiom .  This principle

says that for any property P and any set x we can form the set of those

members of x which have P.  (That this is indeed a (weak) version of

the Comprehension Principle follows if we assume that for each set

there is the corresponding property of being a member of that set.  For

in that case we can form the complex property of (i) satisfying p and

(ii) being a member of x; the set of all things satisfying this complex

property is then the set which the Aussonderungsaxiom postulates for P

and x.)

In trying to state the Aussonderungsaxiom within our language {!} we

encounter the second problem.  Since we are working within first order

logic, we do not have the means of quantifying over properties, and so

wwe must make do with those properties which can be expressed

within our language.  So, just as for the Principle of Mathematical

Induction in our formulation or Peano Arithmetic in Ch. 2, the best we

can do is to specify the Aussonderungs-principle in the form of an

axiom schema, i.e. as an infinite set of axioms, one for each formula

A(u) of the language.  As in the case of the Induction Schema PA7, we

allow additional free variables y1,.., yn in A.  Thus the

Aussonderungsaxiom takes the form given in SA5.4

SA 5. ( x)( y1)...( yn)( z)( u)(u ! z    (u ! x & A(y1,..,yn,u)))

4 One might have thought that in the case of Set Theory there is no need to
opt for an axiom schema:  Instead of adopting an axiom for each formula A could
we not quantify over sets, since sets are after all what Set Theory is about?
Unfortunately this will not do.  The claim - which would correspond to the
categorical form of the Comprehension Principle - that for any set p there is a set
z consisting of the members of p is a tautology; and the principle - corresponding
to the Aussonderungsprinzip - that for any sets x and p there is a set z consisting
of the members of x which are also members of p, while not actually tautologous,
only asserts that the intersecion of two sets exists.  This proves to be much weaker
than the claim made by SA5 that every describable subset of a given set x exists.
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Note that SA5. entails the existence of the intersection x y of two sets

x and y.  We obtain x y by applying SA5. to the formula 'u ! y'.  It is

easily seen, moreover, that (4) satisfies the conditions for a definition

of a 2-place function constant, and thus that we can extend our theory

conservatively by adopting this defintion.  (From now on we will adopt

new vocabulary without making an explicit note that doing so is correct

when this is obvious and/or the notation is familiar from informal

treatments of Set Theory. )

( 4 ) ( x)( y)( z)( u)(u ! z    (u ! x & u ! y)))

The restriction which SA5 imposes on the Comprehension Principle is

too severe and a set theory powerful enough to serve as framework for

the formalization of mathematics and other areas of knowledge and

reasoning needs something stronger.  More specifically, we need a

principle with the power to yield sets which are not subsets of sets that

have already been constructed. The principle that has been adopted to

this end, known as the "Replacement Principle"5, is that the range of a

function whose domain is a set is a set too.  The Replacement principle

too is a weakened version of the Comprehension Principle and one that

(for all we know) is consistent.

In the formalisation of the Replacement Principle we have to deal with

the same difficulty that we encountered in connection with the

Aussonderungsaxiom.  To state the principle we must speak about

functions.  But what is a function?  Within set theory it is common to

identify a function with its "course of values", i.e. with the set of all

ordered pairs <a,b>, where a is an argument of the function and b is

the corresponding value.  Thus functions are sets, and if we make the

usual identification of the ordered pair <a,b> with the unordered pair

construct {{a}, {a,b}}, then functions are sets which are built out of

their arguments and values by means that are entirely within the set

formation repertoire we have already accepted in that it is entailed by

the axioms SA1-SA5 already adopted.

If we were to formulate the Replacement Principle as involving

functions in this sense, then we wouldn't get any sets whose existence

cannot be proved from SA1-SA5.  For suppose f is any function in this

sense, i.e. a function-representing set of ordered pairs.  Then the

existence of a set consisting of the range of f is secured in any case by

5 The replacement Axiom is the axiom of ZF that is due to Fraenkel.  It is also
sometimes referred to as"Fraenkel's Axiom".



1 1

SA5, viz as the set of all u such that u ! x and A, where x is the set f

and A(v) is the formula ( z)( v)(z ! f & z = <v,u>).  The existence of x

is guranteed by SA3.

In order to get a version that enables to infer the existence of

something whose existence isn't ascertainable in any case, we must

once more make use of what can be described in our language of

axiomatic set theory.  This time what we want are descriptions of

functions.  That is, we need formulas A(u,v) with two free variables u

and v, u for the argument of the function and v for the corresponding

value.  As in the case of SA5 we allow additional free variables y1,.., yn
in A.

This time we must be careful to make sure that our axiom schema does

not overgenerate.  If we allow aribitrary formulas A(u,v), then we are

back at the contradiction that comes with the Comprehension Principle

(e.g. by using for A(u,v) the formula '(u = u & v !  v)'.  In order to

avoid this we must restrict the A's that are permissible in the schema,

to those which are 'functional for arguments which belong to the given

set x':

( 3 ) ( u)( v1)( v2)(u ! x & A(y1,,yn,u,v1) & A(y1,,yn,u,v2)  v1= v2))

Restricting the instances of A in the sense of (3) we obtain SA6 as

formulation of the Replacement Schema

SA 6. ( x)( y1)..( yn)(( u)( v1)( v2)(u ! x & A(y1,,yn,u,v1) & 

        A(y1,,yn,u,v2)  v1 = v2))

( z)( v)( v ! z  ( u) (u ! x & A(y1,,yn,u,v))))

The axioms we have formulated so far represent a powerful set of

principles to generate new sets from old ones.  However, most of this

power becomes relevant only when the sets involved are infinite.

Generation of finite sets (more precsiely: the hereditarily finite sets)

can be accomplished just with the axioms of pair formation and union,

SA2 and SA3.  However, there is nothing in the axioms we have so far

adopted which entails the existence of any infinite set.  One way in

which this can be shown is to note that one the models for these

axioms is the one we get when we iterate the operation O(x)   x   P  x

an infinite number of times, but stop at the first opportunity.  As we

observed earlier, the elements of this model are the hereditarily finite

sets and it is straightforward to show that this is a model of SA1-SA6
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So we need a further axiom - an "Axiom of Infinity" - to guarantee the

existence of infinite sets.  Interestingly, we need to postulate the

existence of only one infinite set, for once such a set has been given,

the axioms we have adopted generate a large (in fact, dazzlingly large)

multitude of such sets.6  There is a large number if different ways in

which this requirement could be fulfilled.  The form in which the axiom

is usually giv en is as the claim that there is a set which (i) contains the

empty set and (ii) contains for each of its members w  also the

'successor' of w, i.e. the set w  {w}.

SA 7 ( y)(  ! y  &  ( w) (w ! y   (w  {w}) ! y))

It should be intuitively clear that any set y which (i) contains  and (ii)

contains w  {w} whenever it contains w must be infinite.  In fact, we

can prove that the sets  ,  { },  { }  {  { }}, ... are all

members of such a y and also that they are all distinct from each other.

In this way we can show that y has more elements than any finite

number n.

It is easy to show that among the sets y which satisfy conditions (i) and

(ii) there must be a minimal one.  Let y1 be any set satisfying (i) and

(ii).  If there is any other set y2 which also satisfies these conditions,

then the intersection y1 y2 satisfies the conditions as well.  So the

smallest subset of y1 which satisfies the conditions will necessarily be

the smallest such set in absolute terms.  Let S be the set of all subsets y

of y1 such that (i)   ! y  and (ii) ( w) (w ! y   (w  {w}) ! y) and let

yo be the set defined by

( v)( v ! yo   (v ! y1 & ( y) (y ! S   v ! y)))

Then clearly yo satisfies (i) and (ii) and furthermore yo y for every

subset y of y1 satisfying (i) and (ii).7  So yo is indeed the smallest set

with these properties.  An informal argument shows that yo consists

just of the sets (= "0"),  { } (= "1"),  { }  {  { }} (= "2"),.. .

6 The need to postulate the existence of an infinite set was one of the
disappointments of the so-called 'logicist programme', of which both Frege and
Russell were advocates, to reduce mathematics to logic.  It is hard too accept the
existence of infinite sets as a principle that is valied for logical reasons.
7 Here of course "yo y" is short for "( z) (z ! yo   z ! y)".
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It should be clear that the set yo  is uniquely determined by the

conditions we have used to define it.  yo is usually referred to as "" " .

The set " plays a pivotal role in Set Theory. We will soon meet it again

when we will develop the concept of an ordinal. " will be the first

transfinite ordinal.

We are now in a position to give an impression of the importance of

SA6.  Given the existence of " we can of course prove, using SA2 and

SA3, that the sets "  {"} (= "" + 1"), ("  {"})  {"  {"}} (= "" + 2"),

" +3, etc. exist as well.  These sets form another infinite sequence, and

it seesm reasonable to assume that this sequence too has a 'limit', just

as the sequence 0, 1, 2, ...  has the limit " .  But it is only with the help

of SA6. that can show that this limiting set actually exists.

The argument goes as follows.  Let A(x,y) be the formula:

(x =  & y = ") v (( u)(x = u  {u} & ( w) (A(u,w) y = w  {w}))

It is easy to show that for all n ! ", (i) ( v) A(n,v) and

(ii) ( v) ( w)(A(n,v) & (A(n,w) v = w).  To see this it is enough to

observe that (a)  is a set n satisfying (i) and (ii) and (b) if any set n

satisfies (i) and (ii), then so does n  {n}.  Since "  is by definition the

smallest set S with the properties that ! S and that whenever n ! S then

n  {n} ! S, it follows that all members of "  satisfy (i) and (ii).  To show

(a) and (b) we proceed as follows.  First, it is clear that there is exactly

one set v such that A( ,v), viz. " . for when n = only the first disjunct

of A is relevant. So (a) holds. Second, suppose that n satisfies (i) and

(ii).  Let y be the unique v such that A(n,v).  To see that n  {n} also

satisfies (i) and (ii), note that now only the second disjunct of A is

relevant.  But from the second disjunct of A it is obvious that there is

exactly one z such that A(n  {n}, z), viz. the set y  {y}.

This shows that for all n ! " there is exactly one w such that A(n,w).  So

we can apply SA6. with "  for x and the given formula A.  The resulting

instance of SA6. allows us to conclude that there is a set S which

contains the sets ""+ n" for all n ! ".

The Axioms SA1-SA7 make up what is often identified as "Zermelo-

Fraenkel Set Theory" or ZF, after Ernst zermelo and Abraham Fraenkel,
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the two mathematicians who were responsible for its formulation.8

Often one adds to this system two additional axioms.  The first seems to

be evidently true of the structure of all sets as we intuit it, and so

should, from our perspective, be included.  This axiom expresses the

idea that all sets are "built up from below".  The idea is that when you

take any set and try to make your way down to its "foundation" - by

taking a member of the set, then a member of this member, then a

member of that member, etc. - you must come to an end after a finite

number of steps: There are no inifinite descending '!-sequences ' .

That the following axiom expresses this intuition is not immediately

obvious.:

SA 8. ( x) (x    ( y)(y ! x & y x = ))

In fact, that SA8 does indeed prevent the existence of any infinite chain

of sets sn such that for all n sn+1 !  sn , is quite involved and exploits

deduction strategies that are specific to formal set theory and that it

would carry us too far at this point to explain in sufficient detail.

Sometimes one distinguishes explicitly between the theory axiomatised

by SA1-SA7 ("ZF without Foundation“) and the one axiomatised by SA1-

SA8 ("ZF with Foundation").  We will assume that SA8 is part of what we

call ZF.

The last axiom - the Axiom of Choice (AC) - is generally regarded as

more difficult to justify on intuitive grounds than those we have already

considered.  For this reason it is usually not considered as an integral

part of ZF as such.  But it has a reasonable degree of plausibility

nonetheless, and it entails a large number of important set-theoretic

results which cannot be proved without it.  For this reason it has

become standard practice to distinguish between ZF with and without

AC.  (The combination wird usually denoted as ZF+AC.)

The Axiom of Choice can be formulated in an astoundingly large

number of different ways, some of which are very different from each

other.  But all of them can be shown equivalent on the basis of the

axioms SA1 - SA7, so which formulation one chooses doesn't really

matter in the end.  In its perhaps most familiar form the axiom says

that for any set x whose members are non-empty sets there exists a

8 Fraenkel's only contribution to ZF is the Replacemernt Schema.  We have
just had a glimpse of the importance of this axiom, and we will soon have plenty of
additional evidence.  In fact the role of SA6 within ZF is so crucial, that it fully
justifies the inclusion of Fraenkel's name in the designation of the theory.
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function f with domain x which selects for each y in x a value f(y) that

is an element of x.  Note well that in this case the function which the AC

asserts to exist is a function in the sense of set-theoretic object, i.e. a

set of ordered pairs.

SA 9. ( x) (( y) (y ! x  y  ) ( f)(function(f) & Dom(f) = x &

      ( y) (y ! x  f(y) ! y))9

Experience with the theory ZF has shown that essentially all the

theorems of set theory that have been proved by methods accepterd

within mathematics can be formulated and formally derived within it.

As an example, consider Cantor's Theorem, according to which there

exists no injection of the power set P (x) of a given set x into x.

Cantor's Theorem asserts that there exists no function of a certain

kind.  This involves quantification over functions.  Since in ZF we can

quantify only over sets we must once again make use of the set-

theoretical concept of a function according to which it is a set of

ordered pairs. Thus we come to the following formal statement (4) of

the theorem.

( 4 ) ( x) ( f)(Dom(f) = P(x) & Ran(f) x )

(Here "Dom(f) = P (x)" is to be understood as in the explanation of SA9.

and "Ran(f) x" is short for ( v)( u) <u,v> ! f  v ! x) ).

Within ZF the proof of Cantor's Theorem goes roughly as follows.

Suppose that f were an injection of P (x) into x, for some set x.   Let S be

the set of all u ! P (x) such that (f(u) !  u) - formally:

( 5 ) ( u)( u ! S    u ! P(x) & (f(u) ! u) .

That this set exists follows from SA5, taking P (x) as x and (f(u) ! u) as

A(u).  But now we can prove:  f(S) ! S   (f(S) ! S).  Since this is a

contradiction, the assumption that there exist x and f as hypothesized

has been refuted; thus Cantor's Theorem has been proved.

9 The part beginning with "( f)" would, in basic notation, be:

( f)(( u)(u !  f  ( v)( w)(v ! x & u = <v,w> ) &

( y) (y ! x  ( w)(<v,w> ! f & w ! y)))
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This 'proof' of Cantor's Theorem looks superficially very much like the

proof that was presented in Ch. 1.  But there is a difference of purport.

The argument we have just presented is to be seen as an outline of what

can be turned into a formal (i.e. axiomatic) derivation of the formal

statement of Cantor's Theorem from the Axioms of ZF.

It should be emphasised that all proofs offered in this chapter should

be understood in this way; they are all sketches of proofs that can be

implemented as axiomatic derivations from ZF.  In practice it hardly

ever makes sense to carry out such derivations in full detail.  Such

derivations tend to conceal the ideas on which the proof is based

behind a welter of formally necessary but intuitively trivial inference

steps with which the intuitive ideas have next to nothing to do.

# #

Since ZF is a first order theory, it is subject to all the general results

that apply to such theories.  In particular, it is subject to the downward

Skolem-Löwenheim Theorem.  In the case of set theory this seems

particularly puzzling.  For suppose that ZF is consistent.  (This is

something we cannot prove. But now, after many decades of intimate

experience with the theory which should have given much opportunit

which should have given much opportunity to discover an

inconsistency if indeed there was one, it seems very unlikely that the

theory would be inconsistent after all.)  Then ZF has a model (which, as

can easily be shown, must be infinite) and so by Skolem-Löwenheim it

must have a denumerable model - M, say.  Clearly M is not the intended

model of ZF.  For the "real" structure of all sets is surely non-

denumerable.  For one thing, any model of ZF must, in view of the

axiom of infinity, have a set """ and this set will be infinite, since it

contains each of the sets  ,  { },  { }  {  { }}, ... and such

sets will also be elements of the model and will all be distinct.  But

when " belongs to the model, then so does P (" ) and this set is, by

Cantor's Theorem, non-denumerable.  In other words, there should be

non-denumerably many elements in the model which all stand in the ! #

relation to P (" ).  But how can that be if M is only denumerable?

The paradox dissolves when we reflect on the exact meaning of Cantor's

Theorem in the ZF formulation given above.  In this formulation the

theorem says that there is no "functional" set of ordered pairs which

maps P (" )1-to-1 into " .  But does this really mean that P (" ) is non-

denumerable?  Well, it wouldn't if there weren't all that many functions

within the model M, so that even if P (" ) is denumerable from an
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external point of view, this fact could not be established within M for

lack of the right function.

The existence of such models as M is thus no contradiction after all.  It

isn't a contradiction, because the axioms of ZF, while truly asserting the

existence of such infinite sets as " , do not succeed in truly asserting the

existence of non-denumerably infinite powersets, such as P (" ).  A

denumerable set may behave, from the internal perspective of a given

model, as non-denumerable simply because there are too few functions

to expose it as a "fake non-denumerable" set, even though from an

external perspective that is what it is, since an injection of it into "

does in fact exist.

Ordinals and Cardinals

We now proceed to develop the basics of an important part of set

theory, the theory of ordinals and cardinals.  We follow the now

generally adopted approach originally due to Von Neumann.

Both the notion of an ordinal and that of a cardinal were invented by

Cantor, as part of his attempts to develop a general consistent theory of

infinite sets.  Cantor was interested in particular in distinguishing

between different kinds of infinity, something for which Cantor's

Theorem provides the basis:  The power set of any infinite set is x of a

different, "higher" degree of infinity than is x itself.  This distinction

gives rise to the notion of cardinality  and of cardinal number.  Two sets

have the same cardinality iff they can be injected into each other.  Thus

a set and its power set are always of distinct cardinality.  Cantor then

tried to develop a notion of cardinal number such that two sets have

the same cardinal number iff they have the same cardinality.

Cantor also developed a more fine-grained method of counting infinite

sets, which applies directly only to sets whose members are given in

some order.  The members of such sets would then be each assigned an

ordinal number, and the set as a whole would be assigned the first

ordinal number after all those assigned to members in it.  Thus ordinal

numbers were meant to be used as means of "counting" infinite sets in

much the same ways as the natural numbers are used to count finite

sets.  This role that ordinal numbers were meant to play led to the idea

that the class of all ordinals can be generated by the same kind of

iterative procedure that is also assumed to generate the stucture of all

sets:  Each ordinal x gives rise to a next ordinal, the successor  of x; and

whenever a certain unbounded family of ordinals has been constructed,

the limit of this family will once again be an ordinal, the first ordinal
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after all the members of the family.  The problem with such an

inductive characterization of the generation process is that it is not

quite clear how far it goes.  For it is clear that not every unbounded

family of ordinals will have an ordinal as limit.  In particular the family

of all ordinals - which is unbounded, as for each ordinal there is also its

successor - cannot have such a limit.  For if $  were this ordinal, then $

would be a member of the family of all ordninals and so would its

successor.  But then $  would not come after all ordinals in the family:

contradict ion.

So, for which unbounded families of ordinals may it be assumed that

limits exist?  There seems no easy answer to this question.  However,

Von Neumann came up with a very ingenious solution, which consists in

giving an explicit definition of a concept of "ordinal number", which

apparently satisfies all the intuitive requirements that Cantor and the

set theorists coming after him demanded of it.  In this definition the

successor of an ordinal x is defined by the operation we have already

encountered a number of times, viz. as x  {x}.  Von Neumann's explicit

definition of the property of being an ordinal identifies the ordinals

with those sets which are (i) linearly ordered by !  and (ii) are transitive

- a transitive set being one which has the property that the members of

its members are also members of it.  Here is the formal definition:

Definition. A set x is an ordinal iff

( i ) x is linearly ordered by ! , i.e. we have for all 

members u, v, w of x:

(a) (u ! v & v ! w)    u ! w

( b ) u ! v  v  u = yv v  v ! u

( i i ) x is transitive, i.e. for any y and z such that y !  x 

and z ! y, we have z ! x.1 0

10 In the version of ZF we have presented here, in which the well-
foundedness axiom SA8 is one of the axioms, this definition is adequate in the
sense that oit supports all the theorems about ordinaly which follow.  There also
developments of set theory in which well-foundedness is not taken for granted -
that is, SA8 is not adopted aas an axiom, or at least not from the outset.  Withn such
a weaker set-theory it is still possible to develop the theory of the ordinals on the
basis of an explicit defintion, but now this definition must include the clause that
an ordinal x is a set of sets which is well-ordered by !  - that is: if x is not empty,
then there is a member of x which contains no member of x.  (Exercise: Check that
with this extra clause in the definition of 'ordinal' all the proofs which follow can
be carried out without the use of SA8)



1 9

We write "Ord(x)" to express that x is an ordinal.

We can prove, in the order in which they are listed, the following

theorems about ordinals:

Theorem O1. Ord( ); Ord({ }); Ord({ ,{ }}); etc.

Theorem O2. ( x)(Ord(x)  Ord(x  {x}))

Proof. Suppose that Ord(x).  So x is transitive and linearly ordered

by !.  We must show (i) that x  {x} is linearly ordered by ! and (ii) that

x U {x} is transitive.  (ia).  Let u, v, w ! x  {x} such that u ! v ! w.  When

u, v, w ! x, then u ! w, since Ord(x).  If u = x or v = x then we have a

violation of axiom SA 8.  So the only remaining possibility is that where

u, v ! x and w = x.  But then again u ! w. (ib)  Suppose that u, w ! x  {x}.

We want to show that  u ! w   v  u = w   v   w ! u.  If u, w ! x , this follows

from the fact that Ord(x).  If u = x  & w = x then u = w; if u ! x & w = x,

then u ! w; if w ! x & u = x, then w ! u.  (ii) Let u ! w ! x  {x}.  We want

to show that u ! x  {x}.  If w ! x , then u ! x because x is transitive, so u

! x  {x}. If w = x, then again u ! x and so u ! x  {x}.

Theorem O3. ( x)(Ord(x)  ( y)(y ! x  Ord(y))

Proof:  Exercise

Theorem O4. ( x)( y)((Ord(x) & Ord(y))  (x ! y  v  x = y

   v  y ! x))      (1)

Proof. Suppose the theorem does not hold.  Then there is a

counterexample to (1), i.e. there are x, y such that

( 2 ) (Ord(x) & Ord(y)) & (x ! y)  &  x  y  & (y ! x).

With regard to x there are two possibilities: (a) there is no x' ! x such

that (2) holds with x' for x and some y' or other for y. (b) there exists

such an x'.  In this second case we can form the set of all those x' ! x for

which there is a y' so that x' and y' satisfy (2).  Since this set is by
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assumption non-empty, it has by SA8, a member xo whose intersection

with the set is empty.  For this xo we are then in case (a).   Having thus

obtained a minimal xo we can now also find a minimal yo among the y

which jointly with xo provide a counterexample to (1).  Now let u be

any member of xo.  Then, since Ord(xo), Ord(u).  Since also Ord(yo)

and xo, yo form a minimal counterexample to (1), we have: u ! yo  v  u

= yo  v  yo ! u.  When    u = yo  v  yo ! u, then  yo ! xo, contrary to

assumption.  So u ! yo.  Since this holds for arbitrary u ! xo, we have

( 3 ) ( u)(u ! xo  u ! yo)

Now let w be any member of yo.  Then as above we infer from

minimality of yo that w ! xo  v  w = xo  v  xo ! w, and, again as above,

that of these three possibilities only w ! xo is a live option.  So we get

( 4 ) ( w)(w ! xo  w ! yo)

From (3) and (4) we get by extensionality: xo = yo, which contradicts

the assumption that xo , yo  satisfy (2).  So (1) holds without exception.

Theorem O5. ( x)(( y)((y ! x  Ord(y))  Ord( x ) )

Proof: Exercise.

Theorem O6. Ord(" )

Proof. The strategy we will follow is to show that (a) all members

of "  are ordinals and (b) that "  = U" . Since by Theorem O5 and (a)

Ord(U" ), (b) completes the proof.

( a ) Let S be the set of all x ! " such that Ord(x).  (This set exists in

virtue of SA5.)  It is easy to show that S satisfies the conditions (i) ! S

and (ii) ( w)(w ! S  w  {w} ! S).  So, since "  is the smallest set

satisfying these conditions, "  S.  This concludes the proof of (a).

( b ) First suppose that u  !  " .  Then u  {u} !  " .  so there is a y such

that u  ! y  !  " .  So u  !  " .  To show that "  "  we proceed as under

(a):  Let S' be the set of all x in "  such that ( w)(w ! x  w  ! ").  Again

we can show that S' satisfies the two conditions (i) and (ii) mentioned

under (a).  So "  S'.  So if u  ! y  !  ", then u  !  ".  %ow suppose that
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u  !  " .  Then for some y, u ! y ! " . So u  !  " .

"  is our first example of an ordinal which is unbounded, in the set that

for each x ! " there is a y ! " such that x ! y.  Such ordinals are also

called limit ordinals.  If an ordinal is not a limit ordinal. it is, according

to Thm O7 below, always of the form w  {w}.  Such ordinals are called

successor ordinals:

Definition. LimOrd(x) iff Ord(x) & x   & ( w)(w ! x  ( v)( w ! v 

               & v ! x))

SuccOrd(x) iff Ord(x) & ( v)( x = v  {v})

Theorem O7. If Ord(x), then either (i) x = or (ii) SuccOrd(x) or 

(iii) LimOrd(x).

Proof: Exercise.

We already showed that with the help of SA7 we can prove the

existence of the limit of the ordinals " , " + 1, " + 2, ...  (This is the

ordinal we denoted as " + " .)  In fact, SA7 makes it possible to prove

the existence of a huge, barely surveyable, spectrum of limit ordinals

beyond " .  Nevertheless, all ordinals that can be obtained by such

methods are denumerable, i.e. stand in one-one correspondence with " .

To prove the existence of non-denumerable ordinals we have to appeal

to a principle of a very different sort, which is implicit in the Axiom of

Choice SA9.  To establish this principle, the so-called Well-ordering

Theorem, we need another, equally fundamental result, known as the

Recursion Theorem.

The Recursion Theorem says, roughly, that recursive definitions along

the ordinals constitute a valid means of defining functions.  The

theorem can be stated in a variety of ways.  The one chosen here is

inspired partly by the specific use to which we will put the theorem

below.

In order to facilitate the statement of the theorem and the formulation

of its proof, we introduce two notatonal devices.  The first is a matter

of strightforward definition.  It will be conventient to have a compact

notaton for the restriction of a function f to a certain set X.  This

restriction is the function whose domain is the intersection of X with

the domain of f and which assigns to the arguments in its domain the
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same values as f.  To indicate restriction we use the symbol " ".  Thus

"f X" stands for the set of all pairs <x, y> such that <x, y> ! f and x ! X.

The second bit of notation is a little more involved and needs to be

handled with more care.  One of the most common devices in natural

language is the definite dscriptive term, such as "the King of France" or

"the smallest perfect number" or "the empty set".  The semantics of

such terms is apparently that they denote the unique thing satisfying

their descriptive content (i.e. the property expressed by their common

noun phrase), provided there is just one such thing; but when there is

no such thing, or if there is more than one, then there seems to be

something wrong with the description - it is no longer clear what the

description denotes; arguably it doesn't denote anything.  Because of

the danger of denotation failure, the device of definite description

isoften excluded from the notational repertoire of formal logic, a policy

which we have been following here too.  But sometimes the device is

handy and allows for more perspicuous formulas than would be

availableotherwise.  And since that will be the case in the Recursion

Theorem to be stated presently, we introduce the device now.

For any variable x and formula A (typically, with free occurrences of

the variable x, though strictly speaking we do not need to make this

restriction) let "(Tx)A" stand for the unique x such that A(x).  We will

use this expression as a term, i.e. as occupying argument positions of

predicates.  Thus we will write for instance "P(c, (Tx)A)" to express the

proposition that c stands in the relation P to the unique x such that A.

However, we will only do so in contexts in which the unique existence

of such an x is guaranteed, i.e. where the formula

(*) ( x) (A(x) & ( y) (A(y) x = y))

holds.  Note that where this conditon is fulfilled we can eliminate every

occurrence of (Tx)A using notaton we already have.  For instance, "

P(c, (Tx)A)

can then be rewritten as

( x) (A(x) & ( y) (A(y) x = y) & P(c, x)).

When the formula in which the term "(Tx) A" occurs is complex, there

are usually a numer of different ways in which its elimination might be

carried out.  For instance, we might get rid of the term from the
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sentence P(c, (Tx)A) either by placing the quantificational complex

inside the scope of or outside it, getting, respectively, (a) and (b):

( a ) ( x) (A(x) & ( y) (A(y) x = y) & P(c, x)).

( b ) ( x) (A(x) & ( y) (A(y) x = y) & P(c, x)).

But under the required conditions (i.e. that (*) holds) such alternative

eliminations are provably equivalent.

Exercise.  Show that

(*)   ( (a)  (b) )

Equipped with these additrional means of notation we return to the

Recursion Theorem.  Suppose we want to define a function f(& , x1,...,

xn), where & ranges over an ordinal ' and the xi over some set X, and

that we want to do this by (i) specifying, for arbitrary x1,..., xn ! X, the

values of f(0, x1,..., xn); (ii) specifying for arbitrary x1,..., xn ! X and

successor ordinal &  + 1 ! ' , the values of f(&  + 1, x1,..., xn) on the basis

of those of f(& , x1,..., xn); and (iii) specifying  for arbitrary x1,..., xn ! X

and limit ordinals (  ! ' , the values of f(( , x1,..., xn) on the basis of the

set of all f() , x1,..., xn)  with ) ( , (  and x1,..., xn.  Then a function f

satisfying just those stipulations will indeed exist.  (In fact, the proof of

the theorem indicates a method for constructing an explicit definition

of this function and prove of this definition that it is a proper defnition

in the sense that it is satisfied by exactly one object, which satisdfies

the imposed criteria.  But this is an further aspect of the Recursion

Theorem that we will notgo into here.)

More precisely, let A(x1,..., xn, y) be a formula which is "functional in

y" provided the x1,..., xn are taken from X1,..., Xn, i.e.

( 1 ) ( x1)( x2)..( xn)( y)( z)(x1 ! X1 & ...& xn ! Xn  

(A(x1,..., xn, y) & A(x1,..., xn, z)  y = z) )

Similarly, let B(x1,..., xn, u, v, y) and C(x1,..., xn, u, v, y) be formulas

which express a functional dependency of y on any x1,..., xn ! X 1,..., Xn,

arbitrary u and &  ! ':

( 2 ) ( x1)( x2)..( xn)( u)( &)( y)( z)(x1 ! X1 &..& xn ! Xn &
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&  +1 ! '   (B(x1,...,xn,u, &  +1, y) & B(x1,...,xn,u,&  +1, z)  y = z))

( 3 ) ( x1)( x2)..( xn)( u)( ()( y)( z)(x1 ! X1 &..& xn ! Xn &  ( ! '

& limord(()   (C(x1,...,xn, u, ( , y) & C(x1,..., xn, u, ( , z)  y = z))

Then there is a unique function f which is defined on the X1,..., Xn and

and which, for arbitrary x1 ! X1,. .., xn ! Xn, and )  +1, (  ! '  satisfies the

following three conditions:

( i ) f(0, x1,..., xn)  =  Ty A(x1,..., xn, y)

( i i ) f()  +1, x1,..., xn)  =  Ty B(x1,...,xn, f ()+1), ) , y)

(iii) f(( , x1,..., xn)  =  Ty C(x1,...,xn,f ( , (� , y)

Proof of the Recursion Theorem:

We begin by proving that

(*) For fixed x1 ! X1,. .., xn ! Xn  there exists a function f{x1,..., xn} 

defined on '  such that the clauses (i), (ii) and (iii) hold for the

given x1,..., xn and arbitrary )  +1, (  ! ' .

(We omit the subscript {x1,..., xn} for ease of notation).

We prove by induction on ordinals ) < '  the following statement:

( 4 ) ( 1 ) There exists exactly one function f)  with domain equal 

to ) + 1 and which, for ordinals belonging to )  + 1 

satisfies the clauses (i), (ii), (iii); and

( 2 ) whenever * < ) , then f* f) .

We consider the three cases (a) )  = 0; (b) )  = &  +1; and (c) )  = ( , where

limord(( )

( a ) Let

( 5 ) f0  = {<0, Ty A(x1,..., xn, y)>}.

It is easy to verify that (4.1) and (4.2) are both satisfied.

( b ) Assume (4) for ordinals <  &  +1.  Let

( 6 ) f&+1   =   f& U {< & + 1, Ty B(x1,..., xn, f&, & +1, y) >}.
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It is easy to see that f&+1 satisfies the conditions (i)-(iii).  To see that it

is the only such function, suppose there are two such functions, g and

g'.  Then for some ) ,  g())    g'()).  Let * be the smallest such ) .  If * < &

+1 then g (*  +1)    g' (*  +1).  But it is easy to verify that both g (*  +1)

and g' (*  +1) are functions with domain *  +1 which satisfy conditions

(i)-(iii).  So by induction hypothesis they are both identical to f* , and

so must be identical to each other: contradiction.  The remaining

possibility is that * = &  +1.  But then g (*  +1) = g' (*  +1) =  f& .  Since g

and g' also satisfy clause (ii) for the case where )  = & , it is easily

verified that they are both equal to f&+1 as defined in (6).

Finally, let * be any ordinal < &  +1.  Since f (*  +1) has domain *  +1 and

evidently satisfies (i)-(iii), it follows by induction that

( 7 ) f* = f (* +1)  f&+1.

(c)  Let ( be a limit ordinal < ' and assume (4) for all ordinals < ( .  We

p u t

( 8 ) f(   =   )<( f
)   {< (, Ty C(x1,..., xn, )<( f

), (, y) >}.

Note that since for all * < ) < (, f*  f),  )<( f
)   is a function.  So f(  is a

function too.  Again it is easy to verify that this function satisfies (i)-

(iii), that its domain is (  +1.  To show that it is the only function with

these properties and that for ) < ( , f)  f( , one proceeds as under (b).

To obtain the existence of a function f defined on X1 ...  Xn ' which

satisfies (i) - (iii) for arbitrary x1 ! X 1,..., xn ! X n, and arbitrary &  ! ', we

observe that we could have proceeded just as well in the proof just

given by adding at each stage pairs of the forms (5), (6) and (8),

resepctively for all possible combinations of x1 ! X1,..., xn ! Xn.  It is

easily seen that the above proof goes through essentially unchanged.

The recursion Theorem enables us to assert the existence of, among

many other things, certain "arithmetical" operations on ordinals, in

particular ordinal addition and multiplication.  That is, for any ordinal '

there are 2-place functions +' and .' defined on '   '   such that the

following holds for ordinals &, ) < ' :

(i+ ) & +' 0 = &
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(ii+) & +' ()+1) = (&+' )) +1

(iii+) & +' (() = ) ! ( (&+' ))

( i .) & .' 0 = 0

(ii .) & .' ()+1) = (& .' )) + &

(iii .) & .' (() = ) ! ( (&.' ))

For finite ordinals these operations are just the addition and

multiplication familiar from ordinary artihmetic.  To be precise, +'   is

the set of all triples <<n,m>, n + m>, where n and m are finite ordinals

and "+"  is the operation of ordinary arithmetical addition on the

natural numbers (which according to the set-theoretical perspective

just are the finite ordinals); and similarly for .' . However, for infinite

ordinals the operations behave in a way which is quite surprising for

someone used to the "plus" and "times" on the natural numbers.  For

instance, neither additoion nor multiplication are in general

commutative.  This is a consequence of a kind of absorption that

happens when the left argument the operation is much smaller than its

right argument.  Thus we have in particular:

(OA.1) If n is finite and & is infinite, then

( i ) n + &  = &

( i i ) n . &  = &

So we have for instance: 1 + "  = " and 2 . "  = " ; and since "  "  + 1 and

"   " . 2, the commutative laws "&  + )  = )  + &" and "&  . )  = ) . &" and

are not generally valid.

Exercise:  prove (OA.1) and the inequalities following it.

On the other hand the associative laws hold without exception:

(OA.2) ( i ) (&  + )) + ' = & + () + ')

( i i ) (&  . ) ) . '  = & . ()  . ')

Exercise:  Of the following two putative laws one is generally valid while

the other is not.  Prove the validity of the valid one and give a counter-

example to the other one:

(OA.3) ( i ) (&  + )) . ' = (&  . ') + ()  . ')

( i i ) & . ()  + ') = (&  . )) + (&  . ')
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Well-Foundedness and the Well-Ordering Theorem.

The next important theorem we need to establish is the so-called Well-

ordering Theorem, which asserts that every set can be put into a 1-1

correspondence with some ordinal.  We can also express this using the

term equipollent .

Def.  Let X and Y be sets.  X and Y are equipollent iff there exists a

bijection from X to Y.

So we can also express the Well-ordering Theorem by saying that every

set is equipollent with some ordinal.

The Well-ordering Theorem implies - and this is what has given it its

name - that every set X can be well-ordered, i.e. that there exists for X a

binary relation (i.e. a set of ordered pairs) R which (i) is transitive, (ii)

asymmetric and (iii) has the property that for every non-empty subset

Y of X there is a y ! Y such that for all z ! Y, if z  y then yRz.  (N.B  a

relation R with these three properties is in particular linear, i.e. for

each x, y in the field of R, we have xRy  v  x = y  v  yRx.  Show this.)  For

evidently the correspondence between X and some ordinal entails the

existence of such a well-ordering.  (Exercise: Show this.)

Well-ordering Theorem.

Every set X is equipollent to some ordinal.

Proof.  Let X be any set.  If X is the empty set there is nothing to prove.

So we assume that X is non-empty.  We proceed as follows.  We

consider the set R of all well-orderings of subsets of X.  (That this set

exists is easily seen.  For each well-ordering of a subset of X is a set of

ordered pairs of members of X.  Since the ordered pairs of members of

X form a definable subset Z of P (P (X)), the set of all well-orderings of

subsets of X is a subset of P (Z).) Moreover, this subset is definable (by

the three properties (i), (ii), (iii) mentoned in the definition of well-

ordering above).  So R is a set.)

We first show that each such well-ordering R determines a unique order

preserving map from R onto some ordinal &R, i.e. a unique 1-1 function

fR onto &R such that for all x, y in the field of R, xRy iff fR(x) ! fR(y).

We argue as follows. Let Y be the field of R.  For each y ! Y understand
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by the R-initial segment of Y determined by y that subset Z of Y which

consists of y and all z !  Y such that z R y. It is enough to show that for

each y !  Y there exists a unique order-preserving map fy from the R-

initial segment determined by y onto some ordinal &y and that

moreover the fy are nested, i.e. that if z R y, then fz  fy .  (For either

there is an R-last element u in Y, in which case Y is identical with the R-

initial segment of Y determined by u; or else there is no last element,

but then the union of all the functions fy for y !  Y will be, since the fy
are nested, an order-preserving map from Y onto the union of the &y. )

Suppose there is a y for which there is no fy as described. Then, since R

is a well-ordering, there is a R-first such y.  Either this y has an

immediate R-predecessor z in Y.  But then there is a unique order-

preserving map fz from the segment determined by z onto some

ordinal &z.  So if fy = fz U {<y, &z>}, then fy is a unique order-

preserving map from the segment determined by y onto &z +1.  If y

does not have an immediate R-predecessor, then we put fy = U zRy fz  U

{<y, UzRy &z>}.  Again we conclude, now also using the nestedness of

the fz, that fy  is a unique order-preserving map from the segment

determined by y to some ordinal.  So in both cases we get a

contradict ion.

Let ' = UR ! R &R.  We now make use of the Axiom of Choice, assuming

that there exists a function g defined on the set of non-empty subsets

of X such that for any such subset Z, g(Z) ! Z.  We also use the

Recursion Theorem.  This allows us to assert that there exists a function

f defined on ' + 1 which satisfies the following clauses:

( i ) f(0)  =  g(X)

( i i ) f(&+1)  =  g(X - Ran(f (&+1)), if X - Ran(f (&+1)  

X otherwise;

(iii) f(( )  =  g(X - Ran(U)<( f ))), if Y - Ran(U)<( f ))   

X otherwise.

Note that once f(& ) = X then this will remain so for )  > &  - i.e. we also

have f()) = X.  For "f(&) = X" means that all of X has been exhausted by

the time we reach & (i.e. X f & ).  Moreover, for each & such that f(& ) 

X the relation R&  defined by:

<u,v> ! R&  iff there are * , )  such that * < ) , f(*) = u and f()) = v
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 is a well-ordering and & is the ordinal & (R& ) corresponding to this well-

ordering in the sense of the first part of the proof.  Therefore & ! '.  So

f(') = X and consequently the first ordinal )  such that  f()) = X belongs

to ' + 1.  But this means that X - Ran(f )) is empty. So f )  is a 1-1 map

from ) onto X. q.e .d.

The Well-ordering Theorem makes it possible to compare all sets

according to size, in the following sense.  For each set X let |X| denote

the smallest ordinal & such that & is equipollent with X.  Since any two

ordinals &, ) are comparable as to size - we have either & ! ) or & = ) or

) ! & - the relation "X < Y" defined by

X < Y iff |X|  ! |Y|

is a strict linear order on the totality of all sets.  |X|  is also called t h e

cardinality of X, or the cardinal of X.  And by a cardinal, orcardinal

number , we understand any ordinal that is equal to its own cardinality,

i.e. any ordinal &  such that & = |& |.  Note that every finite ordinal is also

a cardinal, but that among the infinite ordinals cardinals are extremely

rare.  For instance, " is a cardinal, but " + 1 , " + 2,..., " + " , " .3, ... " ." ,

... are all of the same cardinality as "  and thus are not cardinals.

Nevertheless we do know that there are also larger cardinals than " .

For according to Cantor's Theorem no set is equipollent with its power

set.  So in particular the cardinal number of P(" ) - it is often referred to

as "beth1" - is different from, and thus is larger than, " ; and the

cardinal of the power set of the power set of "  is bigger than and so

forth.  But how much bigger is beth1 than "?  In particular, is it the

next cardinal after or are there other cardinals in between?  This

question, which was already raised by Cantor, can be said to have been

the single most important question in set theory since Cantor,

Dedekind and others first laid its foundations in the second half of the

nineteenth century.  (Cantor himself is said to have worked on this

question with such desperation that it led, or at any rate significantly

contributed, to a condition of clinical depression)  The hypothesis that

beth1 is the first cardinal after "  is known as the Cont inuum

Hypothesis .  (It is called this because, as can be shown without too

much difficulty, is also the cardinality of the "mathematical

continuum", i.e. of the set of all real numbers.)  After many fruitless

attempts to prove the Continuum Hypothesis (from the Axioms of ZF,

or from other, intuitively plausible axioms), Gödel succeeded in 1940

to prove at least that the Hypothesis was consistent with ZF (in fact,



3 0

with a somewhat stronger theory known after its architects as "Gödel-

Bernays")  It was not until 1961 that Paul Cohen showed that the

Continuum Hypothesis is independent from ZF, i.e. that its negation is

consistent with ZF.  Since then various attempts have been made to

think of intuitively valid principles which would settle the question,

even if the search for such principles has produced many  intreresting

results about ZF and its possible models.

With the cardinal numbers comes a "cardinal arithmetic" which must

be sharply distinguished form the ordinal artithmetic mentioned

earlier.  We give just two operations here, cardinal addition, + , and

cardinal multiplication, :

For any cardinals +, µ

(1) + +  µ  = |X  Y|, where X and Y are any sets such that |X{ = +, 

      |Y| = µ and X  Y =  .

( 2 ) +  µ  = |X . Y|, where X and Y are any sets such that |X{ = + 

       and |Y| = µ

Some results about cardinal arithmetic:

( 3 ) For arbitrary cardinals + and µ

( i ) + + µ  = µ + +

( i i ) +  µ  = µ  +

( 4 ) For all infinite cardinals µ  and arbitrary cardinals +

( i ) if +  µ then + +  µ  = µ

( i i ) if X is a set of cardinality  µ and for each x ! X, x is of 

cardinality  µ, then x!X x has cardinality  µ.

 (5) if +  µ, then +  µ  = µ

Of these only (3), (4) and (5) deserve careful attention.  The other

properties are left as exercises.  We begin with the comparatively

simple (3).

Our proof of (3) is based on the following three observations.  The first

is:
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( 6 ) Every cardinal is a limit ordinal.

(Exercise:  Prove this.)

The second observation is closely related to the second:

( 7 ) Every infinite ordinal &  can be written in exactly one way as t h e

ordinal sum ( + n of a limit ordinal ( and a finite ordinal n.

(7) is proved by an easy induction on ordinals.  For &  = 0 the assertion

is trivial.  Suppose that &  = ) +1 and (6) holds for ) .  Then there are

unique (  and n such that )  = ( + n.  Then clearly &  = ( + (n+1).

Moreover, if &  = ) +1 for some other pair of a limit ordinal  µ and a

finite ordinal m, then (i), as & is a successor ordinal, m = k + 1 for

some finite ordinal k.  But then )  = µ +k.  Since by assumption the

decomposition of is unique, µ = ( and k = n.  Finally assume that & is a

limit ordinal.  Then obviously

&  = & +0.  Moreover, if for any (  and n,  &  = ( + n, then n = 0; for

otherwise & would be a successor ordinal.  So & = ( + 0 = ( .

The third observation requires the following definition.  For any limit

ordinal (  let the  " -sequence generated by (  be the set

{( + n}n ! ".  We denote this set as $ ((). Note that if ( , µ are distinct

limit ordinals, then $ (() $ (µ) = 0.  Using this notion, we claim:

( 8 ) For every limit ordinal ( ,

( i ) ( = "  ) ! Z $()),

where Z is the set of limit ordinals < ( .

(8) is fairly obvious:  The members of a limit ordinal are either limit

ordinals or successor ordinals.  Clearly every limit ordinal is the only

limit ordinal in its " -sequence, all the other members of the sequence

being successor ordinals.  The limit of the sequence is again a limit

ordinal.  The successor ordinals, moreover, are, according to (7), all of

the form µ + n , where µ  is a limit ordinal and n is some finite ordinal >

0. So it should be evident that the right hand side of (i) exhausts ( .

Now let X and Y be a pair of disjoint sets of cardinal ( and let f and g be

bijections from X and Y to ( , respectively. These functions assign

edach member x of X and each member y of Y unique ordinals &x a n d

&y belonging to ( .  By (7) these ordinals have unique representations &x



3 2

= µx  + nx and &y = µy  + ny. We must construct a bijection of X  Y to ( .

The trick is to map X onto the "even" members of (  and Y onto the

"odd" members.  That is, we let h be the function which maps each x ! X

to the ordinal µx  + 2.nx and each y ! Y  to the ordinal µy  + (2.ny + 1).  It

should be obvious (i) (using (7)) that h is a 1-1 and (ii) (using (8)) that

h is onto ( .

(4) and (5) are proved together.  In the proof we make use of the fairly

obvious inequality:

( 9 ) if X is a set of cardinality  + and for each x ! X, x is of cardinality

 µ, then | x!X x| has cardinality  |+ . µ |.

(Exercise:  Prove this)

We prove by induction on infinite cardinals µ  that whenever + is a

cardinal   µ, then +  µ  = µ .  We distinguish between three cases; (a) µ  =

" ; (b) µ  = ++ , where ++ is the first cardinal after + ; (c) µ  is a limit

cardinal, i.e. for each cardinal +  < µ  we also have ++  < µ .  Case (a) is left

as an exercise.  We consider case (b).  Let X be the set of all limit

ordinals between +  and ++ .  X is well-ordered by !  and so there is a

(unique) ordinal ) and 1-1 !-preserving map fX  from )  onto X.  Using

the Axiom of Choice (henceforth: AC) we assume that h is a function

defined on all subsets Y of µ  such that |µ - Y|  = +  which assigns to each

such Y a subset h(Y) of µ - Y of cardinality +. Similarly, using AC

together with the Induction Hypothesis, we assume that bi is a function

which assigns to any pair <Y,Z> of subsets of µ  both of which are of

cardinality +  a bijection bi(Y,Z) from Y to Z.  For any ordinals *, ' such

that *  < ' let [* , ') be the set of all ordinals & such that *  & < '.

We define the function g by recursion on )  as follows:

( i ) g ( 0 )   =   bi( fX(0) . fX(0),  fX(0) )

( i i ) g(&+1) =   g(&)  bi( ((fX(& +1) . [fX(&), fX(& +1)) 

       ([fX(&), fX(& +1)) . fX(& +1))) , h(Ran(g(&)) )

(ii i) g(()    =   *<( g(*)

With regard to (ii) it is important to note that the two arguments of bi

are indeed both of cardinality +  and that if g(& ) is a bijection between

fX (& ) fX (& ) and some subset of µ , then g(&  +1) is a bijection between
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fX(&  +1) fX(&  +1) and some subset of µ .  With regard to (iii) we may

note that g(() is a bijection from fX (() fX (() to some subset of µ o f

cardinality + .  The conclusion that the range of g(( ) is of cardinality +

we use the Induction Hypothesis together with (9).

It is easily seen that, as &<) fX(&) = µ , g is a bijection from µ  µ  to

some subset of µ .  It follows that µ  µ  and µ are equipollent.

The proof for case (c) is similar to that for case (b).  This time let X be

the set of all infinite cardinals < µ .  Let fX  and )  be defined as before.  It

is easily verified that )  µ.  Let h be a function which asigns to pair

consisting of a subset Y of µ  with |Y|  < µ and an infinite cardinal & < µ a

subset of µ  - Y of cardinality & , and let bi be a function which assigns to

each pair of sets Y, Z of the same cardinality & < µ  a 1-1 map bi(Y, Z)

from Y onto Z.  (Again the existence of such a function is entailed by

the Induction Hypothesis.) This time let g be the function with domain

) defined by the clauses (i) and (iii) above together with the clause

( i i ' ) g(& +1) =   g(&)  bi( ((fX(& +1) . [fX(&), fX(& +1)) 

([fX(&), fX(& +1)) . fX(& +1))) , h(Ran(g(&)), fX(& +1))

It is easy to verify that in (ii') both arguments of bi are of cardinality

fX (& +1) and thus that if g(& ) is a 1-1 function from fX (& )  fX (& ) to

some subset of µ  (of cardinality fX (& )), then g(& +1) is a 1-1 function

from fX(&  +1)  fX(&  +1) to some subset of µ  (of cardinality fX(&  +1)

).  With regard to (iii) note that since ( < )  µ, |( | < µ . So, using (9) we

can once again conclude that the range of *<( g(*) has a cardinality

not greater than the maximum of |( | and fX (( ) and thus of cardinality <

µ.

The set-theoretical results we have mentoned here are only a small

excerpt from the vast stock of theorems of this theory (some of them

extremely difficult) that are known.  Our selection has been governed

primarily by the need to provide a certain impression of the two

principal ways of "counting the infinite" which set theory has made

precise and which are associated with the concepts of ordinal  and

cardinal , respectively.  More specifically - and this is true in partiuclar

for the last few results - we have aimed at providing the set-theoretical

underpinnings for the following "converse" of the Downward Skolem-

Löwenheim Theorem, which was preeented on p. .  This converse, the
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"Upward Skolem-Löwenheim Theorem", says that if a set of sentences ,

has a denumerably infinite model, then for every infinite cardinal

+, , has a model whose universe is of cardinality + .

Theorem. (Upward Skolem-Löwenheim Theorem.)

Let ,  be a set of sentence of some language L, let M be a model for L

such that |UM | = "  and M  , .  Let k be any infinite cardinal > " .  Then

there exists a model M' such that M  ,  and |UM | = + .

Proof.  The proof is similar to that of the Completeness Theorem.  Let

, , M and +  be as in the statement of the theorem.  To show that , has a

model M' of cardinality +  we extend L to the language L' by adding to it

a set of cardinality +  of new individual constants.  We shall show

presently that the sentences of L' can be enumerated in a sequence the

length of which is exactly + .  (To be precise, that there exists a 1-1

function from +  to the set of sentences of L'.)  But before we do this, a

remark is in order about "languages" with a non-denumerably infinite

vocabulary.  So far we have considered only languages whose

voacabulary was at most denumerable.  Even a denumerably infinite, as

opposed to a finite, vocabulary may perhaps seem a little

counterintuitive from the perspective of our experience with actual

languages.  For the vocabularies of those languages, as normally

understood, do appear to be finite.  However, it is clear how a

denumerbly inifinite vocabulary can be "simulated" with the help of a

finite number of signs.  As an eaxmple we may consider the vocabulary

consisting of all numerals , i.e. all canonical names of natural numbers.

Our standard decimal notation provides such names as combinations of

the ten signs "0", "1", ... , "9".  Alternatively, we can use, as numeral for

the number n, the complex sign consisting of a "0" followed by n "1"s.

But a non-denumerable vocabulary cannot be simulated in this way, for

the  set of all finite sequences over some finite "aphabet" of signs will

always be denumerable.  (Exercise:  Show this.)  So the concept of a

language with a non-denumerable vocabulary is an abstraction, or

extrapolation, from our intuitive concpet of a language in a way that

languages with denumeranbly infinite vocabularies are not.  So what

should we understand by such a non-denumerable language?

To focus on this question, we should be clear of the kind of abstraction

involved in the notion of a non-denumerable set - such as. for instance,

the cardinal + .   The existence of such sets follows from our axioms of

set theory; and set theory offers various constructs to form non-
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denumerable sets out of others (as well, of course, as out of

denumerable sets). But obviously we are never in a position to actually

display or enumerate such a set explicitly - that is precisely what the

term "non-denumerable" conveys.  In the light of these considerations

it is reasonable to see non-denumerable languages also as set-

theoretical constructs, or, more accurately, to see the sentences and

other well-formed expressons of such languages as constructs from

finite subsets of their non-denumerable vocabularies.  But in what

sense can a well-formed expression of a language L - i.e. a sequence of

"words" of L, i.e. of items from L's vocabulary - be a set-theoretic

object?  The natural answer to this question would seem to be:  To the

extent that sequences are, or can be considered, set-theoretical objects.

So what is a sequence in the set-theoretical sense?  Set Theory suggests

two possible asnwers to this question.  According to the first answer a

sequence of two elements will be an ordered pair-  thus <a,b> is the

sequence consistingof the elements a and b.  Similarly a sequence

consisting of three elements, a, b and c, say, will be a triple, e.g. the

pair consisting of <a,b> and c: <<a,b>,c>, etc.  The second answ<er is

that a sequence is a functon the domain of which is an ordinal, and

whose values are the members of the sequence.  Thus the sequence

consisting of a and b is the function {<0,a>,<{0},b>}, or {<0,a>,<1,b>} -

a function the domain of which is the ordinal 2 (i.e. the set {0,{0}}).

Similarly the sequence consisting of a,b and c is the function

{<0,a>,<1,b>, <2,c>}, etc.  This second notion of sequence has the

advantages that it can be defined once and for all by a single, simple,

explicit definition and (ii) that it generalizes straightforwardly to the

infinite: a sequence in this sense can be finite or infinite according as

the ordinal that is its domain is finite or infinite.

Adopting this second notion of sequence, we come to the following

characterization of non-denumerable languages.  As before a language L

is a function from symbols to signatures (see p. 1), where the

possibility that the domain of L is non-denumerable is explicitly

included.  The terms and sentences of L are then finite sequences of

members of the domain of L, where "sequence" is to be understood in

the set-theoretical sense just indicated, which satisfy the clauses (i) and

(ii) of the definition of term  and the clauses (i)-(v) of the definition of

formula  on p.1.

Now that we have made precise what should be understood by the

language L' and its terms and sentences, we return to the proof of our

theorem.  We first divide the set C of new constants into two sets C1

and C2 , each of cardinality k. Let , ' = ,   { (c = c'): c and c' are
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distinct constants in C1}.  It is easily seen that , ' is consistent.  For let A

be a finite subset of , '.  A will consist of some finite subset of ,

together with finitely many sentences of the form " (c = c')".  In the

model M the former are true by assumption.  Moreover, since UM  is

infinite, it is possible to chose distinct denotations in UM  for each of

the finitely many new constants that occur in sentences in , ' of the

second kind.

We now come to the point where we need some of the cardinal

arithmetic we have presented here and all that was required to get that

far.  It is clear that the cardinality of the sentences of L' is at least + , for

even the sentences which have the form "c = co", where co is some

particular new constant and c is any new constant, already has

cardinality + .  But is the set of sentences of L' exactly  of cardinality +?

To see that this is so, we first observe that the set of symbols of L' has

cardinality + .  This follows directly from (3) on p.44.  Our second

observation is that for each n the set of n-place sequences of members

of L' has cardinality + .  For n = 1 this is obvious. Suppose the claim is

true for n = m.  To see that it is then also true for n = m + 1, note that

every m+1-place sequence of members of L' is decomposable, in a

unique way, into (i) an m-place sequence of members of L' and (ii) a

member of L'.  Thus the set of all m+1-place sequences is equipollent

with the cardinal product of the cardinal of the set of m-place

sequences and the cardinality of L'.  By induction hypothesis this is

equal to + . + , which according to (4) on p. 44 is equal to + .  Our last

observation is that the set of all finite sequences of members of L' has

cardinality + .  This follows from the fact that this set can be written as

n  ! " Xn, where for n = 1,2,...  Xn is the set of all n-place sequences of

members of L'.  It follows from (5) on p. 44 that this set is again of

cardinality + .  Since teh set of sentences of L' is a subset of this set, its

cardinaltity is at most + .  We already know that its cardinality is at least

+ .  So it is exactly + .

From here on the proof closely follows the completeness proof we gave

earlier.  Let {A)}) ! + be an enumeration of length + of all the sentences

of L'.  We use this enumeration to construct a sequence {,)}) ! + o f

extensions of , '.  As in the completeness proof, the union ,+ of this

sequence will determine a model M' of , ' and this M' will be the model

we are looking for.  We define by means of the clauses:
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( i ) ,0      =      , '

(a)  ,)  {A)}, provided ,)  {A)} is 

consistent and A)  is not of the form ( vj) B

(i i ) ,)+1  =   (b)   ,)  {A), B(c/vj}, provided ,)  {A)} is 

consistent, A)  is of the form ( vj)B and c is a 

constant from C2 which occurs neither in ,)  

nor in A) .

(c)   ,), provided ,) U {A)} is 

inconsistent .

(ii i) ,(     =       ) ! ( ,)

Note (i) that for all ) ! + there is a c not occurring in ,)  or A) .  For only

|) | new constants can have been introduced into ,) and only finitely

many such constants can occur in A) .  Since there are +  new constants

in all and |) | < + , it follows that there are still +  constants left.  Note (ii)

that by the Recursion Theorem the clauses (i)-(iii) define a function

defined on + .  The range of this function is a set and so is its union.

Call this union ,+ .

As in the completeness proof one shows that ,+  is consistent and

complete in L'.  Also, defining once more the relation  between

individual constants of L' by:

c  c'  iffdef the sentence c = c' belongs to ,+

we show as before that is an equivalence relation and that whenever

c  c' and P(t1,.., c,..,tn) ! ,+ , then P(t1,.., c',..,tn) ! ,+ .

Moreover, since for any pair c, c' of distinct new constants the

sentence (c = c') belongs to , all new constants belong to distinct

equivalence classes under .  So, if we define the model M' in the same

way as in the completeness proof, then |UM' | = + .  As before one shows

that for every sentence A in ,+ , M  A.
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The Interpretation of Number Theory in Set Theory.

It is common to think of the members of the set " as the "natural

numbers".  "   has a number of properties that suggest such an

identification.  For instance, as we have seen, "  is linearly ordered by !

and this order has the same structure as the set on natural numbers:

(i) it begins with the empty set (which it is therefore natural to identify

with the number 0), (ii) has the property that each "number" n has an

immediate successor n U {n}, as well as, if it is different from , an

immediate predecessor, and (iii) it runs on forever.  However, a proper

identification of " with the natural numbers requires that we interpret

all operations and relations of number theory as operations and

relations on " , and in such way that number-theoretic laws turn into

theorems of set theory.

In this section we formulate such an interpretation of number theory

within set theory. It will have the property that for any theorem of our

axiom system of Peano arithmetic the interpretation of that theorem (a

sentence in the language of set theory) will be a theorem of the set-

theoretical axioms SA1 - SA7.

Before we do this, we will define in more general terms the notion of an

interpretation of a theory T1, formulated in a first order language L1,

within a second theory T2, formulated within a first order language L2.

Any such interpretation will be based on interpretations of all the non-

logical constants of L1 by formulae of L2.  For instance, if R is a 2-place

relation of L1, then an interpretation of R in L2 will take the form of an

L2 formula AR(v1, v2) in which v1 and v2 are the only free variables.

An example which we have encountered already in a somewhat

different context is the interpretation of the relation of the theory of

Boolean lattices in terms of the operation U of Boolean Algebras.  We

can interpret the theory of Boolean lattices within the theory of

Boolean Algebras by interpreting by means of the formula v1 v2 =

v2.

For function constants of L1 the matter is a little more complicated.

Since function constants form terms, and not formulas, interpreting an

L1 function by means of an L2 formula makes no direct sense; rather

the interpreting formula should be thought of as interpreting certain

atomic formulae in which the function constant occurs.  For instance,

an interpretation of the theory of Boolean Algebras within the theory of

Boolean lattices must be based on, among other things, an

interpretation of the2-place function constant U.  This interpretation is
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to be understood as the interpretation of the atomic formula   v1  v2
= v3.  A natural choice (also encountered earlier) would be the formula

( 1 ) v1  v3 & v2  v3 & ( v4)(v1  v4 & v2  v4  v3  v4)

In general, to interpret an n-place function constant we need an n+1-

place formula AC (v1, ... ,vn,vn+1).  Note well that in order that for

A C (v1, ... ,vn,vn+1) to be suitable as the intepration of an n-place

function constant, the last argument most be functional in the first n

arguments, that is, we must have that for all relevant values of the

ariables the following open formula is satisfied:

( 2 ) AC(v1, ... ,vn,y) & AC(v1, ... ,vn,z)   y = z

In general, interpretation of T1 within T2 involves yet another L2

formula, viz one which demarcates the universe of T1 within the

universe of T2.  The case before us, the interpretation of number

theory within set theory, is an example.  It is only the members of "

that are to be the "natural numbers" in our interpretation, not the

entire universe - consisting of all sets - that our set theory talks about.

The interpretation of the "universe of T1" is a formula AU (v1) with

only v1 free.  In the interpretation of Peano Arithmetic within ZF this

formula should of course say that v1 belongs to " .  We will give this

formula as "v1 ! ""; but of course, if the target language of our

interpretation is our original, "minimal" language of set theory whose

only non-logical constant is ! , then this formula must be seen as

abbreviation of a much more complicated formula from which the "" "

has been eliminated, using the defintions by means of which it was

in t roduced.

Intuitively, AU (v1) should define a non-empty universe, i.e. the

sentence ( v1)AU (v1) ought to be true.  As for the unique condition on

interpretations for function constants, we will impose this condition

when we wil need it.

These preliminaries should suffice to make sense of the following

definition:

Def. 1  Let L1 and L2 be first order languages.  A translation base for

interpreting L1 in L2 is a pair consisting of (i) a formula AU(v1) of L2

with only v1 free and (ii) a function which maps each non-logical

constant C of L1 onto a formula AC(v1, ... ,vk) of L2 in which v1, ... ,vk
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are the only free variables and where (a) if C is an n-ary predicate

constant, then k = n and (b) if C is an n-ary function constant, then

k = n+1.

Each translation base for interpreting L1 in L2 induces a function which

maps arbitrary formulas of L1 onto formulas of L2, so that in particular

sentences form L1 turn into sentences of L2.  In case L2 has only

predicate, but no function constants, the translation is quite

straightforward: Basically all one needs to do to translate any formula B

of L1 is to replace each atomic subformula P(x1, ... ,xk) by AP(v1, ...

,vk) (making sure to rename bound variables where necessary).  But

when L1 contains function constants the matter is more complicated.

For how are we to translate an atomic formula P(t1 , ... ,tk) where all or

some of the ti are terms other than variables. To see what the problem

is, consider once more the above interpretation of the union operation

of the language of Boolean Algebras given in (1).  Suppose we want to

translate the formula

( 3 ) (x  y) z =  x  y z).

Here we have a predication involving the special predicate symbol =

and two complex terms.  Since (1) applies directly only to atomic

formulas of the form x  y = z, there is no direct way in which it can

be applied to (3).  One way in which we can make it apply is to rewrite

(3) into an equivalent formula in which all atomic subformulas are of

the form to which (1) can be applied directly:

 (4) (3)    

( u)(u  = x   y & u  z =  x  y z))        

( u)( v)(u  =  x  y & v = y z &  u z =  x   v)  

( u)( v)( w)(u  = x  y & v = y z & w =  x   v & u z =  w)

The last formula of (4) can now be translated by replacing its atomic

formulas with suitable variants of (1).

An alternative way of dealing with this problem is to associate with

each term t a formula At(v1) of L2 which represents t in the sense that,

intuitively speaking, it is satisfied uniquely by the "value of the

intrerpretation of t"; thus At(v1) serves as the translation of the

formula t = v1.  As can be seen from Definition 2 below, the definition

of At(v1) has teh reduction illustrated in (4) built into it.
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Def. 2  Let T1 be a theory of the first order language L1 and T2 a theory

of the first order language L2.  Let < AU , I> be a translation base for

interpreting L1 in L2.

1 . < AU, I> is suitable according to T2 iff

( i ) T2 ( v1)AU(v1)

( i i ) For each n-place function constant F of L1

( 5 ) T2 ( v1) .. ( vn)( y)( z)(AC(v1, ... ,vn,y) &

AC(v1, ... ,vn,z)    y = z)

2 . Suppose that  < AU , I> is suitable for T2.  The interpretations o f

terms and formulas of L1 in L2 based on < AU, I> are defined as follows:

1.  Terms .    For each term t the interpretation of t based on

< AU, I> is the formula At(v1) defined as follows

i. If t is the variable x, then At(v1) is v1 = x

ii. If t is the term F((t1 , ... ,tn ), then At(v1) is the formula

( x1).. ( xn)(At1(x1) & .. & Atn(xn) & AF(x1, ... ,xn,v1) )

2.  Formulas.  For each formula B the interpretation of B based 

    on < AU, I>, I*(B), is defined by:

i. I*(P(t1, ... ,tn))  =

( x1)..( xn)(At1(x1) & .. & Atn(xn) & AP(x1, ... ,xn) )

ii. I*( B) = I*( B); I*(B & C) = I*(B) & I*(C); I*(B v C) = I(B) `

v I*(C); I*(B  C) = I*(B)  I*(C); I*(B  C) = I*(B)  

I*(C);

(iii) I*(( vi)B) = ( vi)(AU(vi)   I*(B));

I*(( vi)B) =  ( vi)(AU(vi) &  I*(B))

3. The translation base  <AU , I> is an interpretation of T1 within 

T2  iff  (i)  <AU , I> is suitable according to T2;  and

  (ii) For any sentence B of L1, if T1 B, then T2 

I*(B).

N.B. If T1 is given by a set of axioms, then to check that 3.ii. is satisfied

it suffices that each of these axioms translates into a theorem of T2.
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We now turn to the interpretation of Peano Arithmetic in ZF Set Theory.

After the general foundations we have just discussed, this is now quite

straightforward.  All we need to do is define a translation base for

interpreting the language LPA into the language of set theory {!}, and

then check that it satisfies the conditions (i) and (ii) of Def. 3.2.

In defining the translation base, we will continue with the convenient

device of specifying the interpretations of the non-logical constants of

Peano Arithmetic in the definitionally extended language of set theory

we have been using.  As with the formula

v1 ! " , an interpretation in the language {!} can be obtained from the

fomula thus specified by elimination of the defined function constants

and predicates.

The interpretation of the constants = and S is straightforward.  But

those of + and . require some thought.  What needs to be done is to

mimick the recursive defintions of + and . given by the Peano axioms

PA3- PA6.  We accomplish this by using the familiar trick of quantifying

over finite functions which encode initial segments of the relevant

recursion.  Thus the interpretation of + has the following form.

( 6 ) ( f)(Fn(f) & Dom(f) = v2  {v2} &  f( ) = v1 & ( n)(n !  v2  

f(n {n}) = f(n) {f(n)}) & f(v2) =  v3)

The function f defined in the quantifier-free part of (6) is intuitively the

function which assigns to each of the numbers n from 0 to v2 as values

the numbers v1  + n.  This has the effect that in particular v3  is the

number v1 + v2 .  The interpretation of . is constructed along the same

lines; the formula looks a little more complicated because the recursive

clause for . makes use of +.

Def. 3   Translation Base for interpreting Peano Arithmetic in ZF:

( i ) AU(v1)  :=   v1 ! "

( i i ) I(0)   :=   v1  = 

(iii) I(S)  := v2  = v1  {v1}

( iv) I(+)   := ( f)(Fn(f) & Dom(f) = v2  {v2} &  f( ) = v1 & 

( n)(n !  v2  f(n {n}) = f(n) {f(n)}) & 

f(v2) =  v3)



4 3

( iv) I( .)   := ( f)(Fn(f) & Dom(f) = v2  {v2} &  f( ) =  & 

( n)(n !  v2  I(+)( f(n), n, f(n {n})) & 

f(v2) =  v3)

Theorem.  The translation base of Def. 3 is an interpretation of 

Peano Arithmetic within ZF, in the sense of Def. 2.3.

# #

Let us call an interpretation of T1 within T2 absolute  iff the first

member of its translation base (i.e. the formula AU (v1) ) is true of all

things in the "universe of T2", that is, if T2 ( v1)AU (v1).  The

situation where there is an absolute interpretation of T1 in T2 can also

be described as follows:  For each non-logical constant C of T1 there is

an explicit definition BC of C in T2, such that, if T2 is the theory in the

language L2 L1 which we obtain by adding all these definitions to T2,

then T2' T1 .

An important relationship between theories T1 and T2 is when each is

absolutely interpretable within the other.  In such a situation T1 and T2

can be regarded as different formalizations of the same "conceptual

structure" - whether one starts from the notions that are primitive in

T1 (i.e. the non-logical constants of L1)  or from those that are

primitive in T2, the other notions can always be obtained from these by

explicit definition so that the axioms of the other theory become

theorems of the first.  A very simple (and quite uninteresting) example

is provided by the theory of partial order, which can be formulated

either in the language {<} with the axioms PO1 and PO2 above - let this

theory be TPO1 - or in the language { }, with the axioms (PO1')

( x)( y) z)(x  y & y  z  x  z) and (PO2') ( x)( y)(x  y & y  x

x= y) - let this theory be TPO2.  Then TPO1 is absolutely interpretable

wihin TPO2 and TPO2 is absolutely interpretable within TPO1.

Exercise.  Prove this by formulating definitions of   in TPO1 and < in

TPO2 and then showing that each definition turns the axioms of one

theory into theorems of the other.

A more interesting example is provided by the theory of groups.  The

formalization that we gave here, with .  and -1 as primitives, constitutes

only one of many possibilities.  Another version one often encounters

in the literature starts with . and e as primitives and takes as axioms
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(for instance) (i) ( x)(x . e = x); (ii) ( x)(e . x = x). (iii) ( x)( y)( z ) (

(x . y) . z = x . (y . z) ); (iv) ( x)( y)(x . y = e).

It is not hard to show that (i) - (iv) entail that the y of (iv) is unique.

(Argument:  Suppose that x . y = e and that y . u = e.  Then x  =  x . e  =

x . (y . u)  =  (x . y) . u  =  e . u  =  u.  So y . x =  y . u = e.  Now

suppose that y and z are both such that x . y = e and x . z = e.  Then y

=  y . e  = y . (x . z )  =  (y . x) . z  =  e . z  =  z.)  So we may define

( x)( y) ( x -1 = y    x . y = e).  it is eaasy to check that with this

definiton all axioms of the version of group theory given in the text

follow from (i) - (iv) above.

Exercise.  It is also possible to formulate the theory of groups with just

one 2-place operation / as primitive.  Intuitively x/y means the same as

x . y-1.

(i) Show that if we add to our original formulation of the theory of

groups (8) as additional axiom, then the sentences (9) - (12) are

derivable as theorems

( 8 ) ( x)( y)( z)(x / y = z   z = x . y -1)

( 9 ) ( x)( y)( x/x  =  y/y)

( 1 0 ) ( x)( y)( x  =  x/(y/y) )

( 1 1 ) ( x)( y)( (x/x)/(x/y)  =  y/x )

( 1 2 ) ( x) ( y) ( z)((x/y)/z  =  x/(z/((y/y)/y)) )

(ii)  Let TG' be the theory given by (9) - (12). Show that the formulas

(13) - (15) are definitions in TG' (i.e. show that the relevant existence

and uniqueness conditions for the definientia of (13) - (15) are

theorems of TG')

( 1 3 ) ( z)(e = z  ( y)(z = y/y))

( 1 4 ) ( x)( y)(x -1 = y y = e/x))

( 1 5 ) ( x)( y)( z)(x . y = z  z = x/y -1) )

(iii) Show that all axioms of our original formulations of the theory of

groups are derivable from (9) - (15).


