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Abstract This paper develops a metaphysically flexible theory of quantification
broad enough to incorporate many distinct theories of objects. Quite different,
mutually incompatible conceptions of the nature of objects and of reference find rep-
resentation within it. Some conceptions yield classical first-order logic; some yield
weaker logics. Yet others yield notions of validity that are proper extensions of
classical logic.
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Since Quine declared that ‘to be is to be a value of a variable’ [9], philosophers
and logicians have recognized an intimate connection between quantification and
ontology. Most directly, they have seen the quantificational structure of a theory as
revealing its ontological commitments. This presupposes an objectual interpretation
of the quantifiers, according to which ∀xA is true iff every object in the domain
satisfies A.

But many philosophers have also seen the logic of quantification as cloaking a
theory of objects. Intuitionists, for example, have felt compelled to rewrite the seman-
tics of quantification (and other logical operators) to accord with their nonclassical
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conception of the objects of mathematics. Free logic and substitutional quantification
have similarly arisen from, inter alia, ontological concerns.

In this paper we develop a theory of quantification broad enough to incorporate
many distinct theories of objects. We do not want to claim that the theory is onto-
logically neutral in any absolute sense. But quite different, mutually incompatible
conceptions of the nature of objects and of reference find representation within it.
Some conceptions yield classical first-order logic; some yield weaker logics. Yet
others yield notions of validity that are proper extensions of classical logic.

The conceptions we investigate share a broadly constructivist outlook: they see the
domain of objects under discussion as constructed in stages. They interpret the quan-
tifiers as ranging over a domain of constructible objects. Being a value of a variable,
in these conceptions, has a determinate and unified meaning: being constructible.
They construe the existential and universal quantifiers as duals. In this respect they
differ from intuitionistic logic, which from this perspective treats the universal quan-
tifier as ranging over constructible objects but the existential quantifier as ranging
over those already constructed.1

Thinking of a domain as constructed stage-by-stage has appeal in a variety of
contexts, including:

– Mathematics. We might think of mathematical objects—e.g., natural numbers,
real numbers, sets—as constructed stage-by-stage by way of mental activ-
ity, proofs, the specification of algorithms, or other methods. We might also
view abstraction as proceeding stage-by-stage to construct abstract objects by a
process akin to Fine’s procedural postulation [5].

– Fiction. We might think of works of fiction as constructing fictional objects, both
by introducing characters as the fiction proceeds and then also by specifying
more and more information about them.

– Discourse interpretation. The same is true of discourse in general. We can think
of a discourse as introducing entities—discourse referents [6, 7]—and specifying
information about them. The information is initially partial, as is the domain of
discourse referents, but it typically grows as the discourse proceeds.

There are two kinds of motivation for a characterization of quantifiers in terms of
parametric substitution:

(i) the intuition (already spoken of above) that the quantifiers range over a growing,
gradually unfolding universe; and

(ii) the ‘nominalist’ conception of quantification according to which a quantified
statement is true just in case all its substitution results are true (i.e. those state-

1Constructivists generally count an existential sentence true if an object satisfying the corresponding open
sentence has been constructed—or if an algorithm for constructing it has been specified. That suggests dis-
tinct interpretations of the stage-by-stage constructions we model in this paper; we might classify objects
for the construction of which an algorithm has been specified at a given stage as available at that stage or
as available only at some future stage.
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ments that result from substituting constants in the statement for the variable
bound by the quantifier).

A genuinely nominalist conception of a substitutional definition of the quantifiers
should be neutral on the question whether the substituted constants actually denote
objects or play a merely nominal part, as ‘potential designators,’ whose logical and
semantic role does not depend on whether they actually designate something or not;
or, a third possibility, constants might be seen as designators of objects in statu
nascendi—a bit like pouches of marsupials, the contents of which develop stage by
stage into mature objects. There is much more to say about this second aspect of
parametric substitution than we do in this paper.

It has become common practice within model-theoretic semantics to state the
truth-conditions of quantified formulae in substitutional terms, assuming that every
object in the model has a name. In the formal developments which take up the bulk of
this paper we have found this technical ploy convenient and have adopted it partly for
this reason. But the ploy is compatible with many different conceptions of reference
and existence—conceptions that are to be made formally explicit through assump-
tions about the nature and structure of the parametric models in terms of which our
account of quantification is formulated. As we define them, our parametric models
are partially ordered sets of diagrams, where diagrams are (as standardly in model
theory) functions from atomic sentences to truth values. Different conceptions of
reference and ontology take the form of different assumptions about the nature of
these diagrams and of structural conditions that are implied by these assumptions.
For instance, on one assumption, diagrams are determined by sets of objects together
with assignments of extensions to the predicates of the language on these sets and
denotations to its constants; on another the role of the constants occurring in the
atomic sentences for which a diagram is defined would be exhausted by what can be
said about the truth values of the sentences involving them. But these are just two
from an open-ended set of possibilities.

In Section 1 we distinguish minervan from marsupial conceptions of the nature of
objects and proper-name conceptions from demonstrative conceptions of the nature
of reference. In Section 2 we define parametric models and a variety of constraints
on them that result from combinations of those conceptions that affect the logic of
constructible domains. Models reflecting a minervan conception of objects together
with a proper-name conception of reference are, under natural and specifiable condi-
tions, strong nets; those reflecting a marsupial conception of objects together with a
demonstrative conception of reference are, again under natural and specifiable con-
ditions, weak nets. Open models are a special case of the latter in which the only
constraint on constructibility is logical consistency. In Section 3 we investigate the
resulting logics, showing that strong and weak nets generate classical logic while
open models have decidable ∀∃ theories. Section 4 deals with the logic of the class of
all parametric models. It formulates an axiomatization of this non-classical logic, for
which completeness is proved by an adaptation of the method of semantic tableaux
to the structure of parametric models.
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1 Conceptions of Objects and Reference

Constructivist conceptions of arithmetic, such as Brouwer’s, have it that the natural
numbers are never all present at a single stage of construction. Nevertheless, each
new number is, as soon as it is constructed, ‘fully there’: Its position in the number
sequence and its arithmetical properties are completely fixed.

But thinking of a domain as constructed in stages does not require that, even within
arithmetic. Consider, for instance, the number π as defined in terms of a construc-
tively specified sequence of rational numbers, e.g., by an effective rule for calculating
the successive digits of its decimal expansion. We might see the successive results
of this calculation as providing partial information about π , and regard π itself as
emerging only gradually, with properties that grow more definite as the calculation
progresses. Thus, the construction of a domain of reals containing π would involve,
first, an act of introducing, at some given stage s, π as the number determined by the
given rule of calculation, and then, at the stages following s, the steps involved in car-
rying out its calculation according to the rule. So treated, π is not ‘fully there’ when
it appears on the scene. Rather its characteristics unfold gradually as the calculation
determines its decimal expansion with ever greater precision.

For a different type of example, consider domains of fictional objects. Most fic-
tional individuals develop as the work of fiction to which they belong unfolds. The
work of fiction determines what is true of each fictional entity it creates. Conse-
quently, fictional entities are seldom if ever fully determinate, in the sense that all
predicates in principle applicable to the general kinds they instantiate are either def-
initely true or definitely false of them. Many properties of a fictional object are
determined only as the work progresses, and well after the entity is first introduced.
This phenomenon of gradual determination is especially noteworthy in connection
with literary works that comprise several volumes, the earlier of which have appeared
when later volumes are still to be written.

Constructions that produce new elements that are complete as soon as they emerge
are minervan constructions. Constructions that produce entities that are fledgling at
first and have to be nurtured to maturity as the structure unfolds we call marsupial.2

Each conception of objects sees the quantifiers as ranging over a domain existing
only as the virtual limit of a hierarchy of approximating stages. At any stage of the

2Some approaches to real number theory yield a hierarchy of stages that fits neither the minervan nor
the marsupial conception. The entities that make up the finite stages of this hierarchy are not the real
numbers themselves. Each such segment has a transitional status; at the next stage it is replaced by a
couple of smaller segments, which it yields by division and which classify the potential reals more finely.
The real numbers themselves are not entities at any finite stage, but have the status of limits that can be
approximated by sequences of segments that delimit them ever more closely. Constructions of this kind,
which produce at each stage classifications of the targeted entities that are subsequently replaced by finer
classifications, we call amoebic. The reals are not the only ontological category for which an ‘amoebic’
conception makes sense. Another candidate is a constructivist version of the bundle theory of objects, for
example, which might construe objects as infinite limits of finite bundles of properties. Vague boundaries
might be understood as infinite limits of precisifications. Quantities might be understood as infinite limits
of measurements. In all such cases, we would have to extend the theory we present here to incorporate
transfinite limits among its methods of construction.
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progression, only part of the domain has been created. When we try to evaluate at
such a stage a statement containing quantifiers, we should take into account not only
what has been constructed but also what may be constructed at later stages.

Thus, suppose we have reached some stage of the construction, and ask, with
respect to it, whether an existential sentence ∃xϕ is true. The answer is ‘yes’ if there
is some later stage of the construction at which there is an object satisfying ϕ, or, on
a substitutional interpretation, if there is a name c available at that stage such that
(ϕ)c/x is true there. Similarly, ∀xϕ should be true at a stage s iff, for any later stage s′
and object a to be found there, a satisfies ϕ(x) at s′, or, on a substitutional approach,
iff ϕ(c) is true at all later stages for all names c available at those stages.

These considerations lead us to the following preliminary definitions. A paramet-
ric structure for a first-order language L is a partially ordered set of ‘stages,’ where
each stage involves a certain collection of objects and determines whether they sat-
isfy the predicates of L. For a sentence of the form ∃xϕ to be true at a stage s of a
parametric structure, it is necessary and sufficient that there be some ‘later’ stage s′
such that ϕ has a true substitution instance at s′.

When a parametric structure represents a purely minervan construction, it is plau-
sible to assume that each stage settles all questions of predication involving predicates
of L and objects available at that stage. Thus, each stage determines what in the
model theory of first-order predicate logic is called a (complete) diagram, i.e., a valu-
ation of the atomic sentences of some given language. A parametric structure for L is
bivalent iff all its stages are complete diagrams for L. Parametric structures adequate
to minervan constructions, then, are bivalent.

If the domain is generated by a nonminervan construction, the assumption that the
stages of the parametric structure determine complete diagrams may no longer be
tenable. The objects such constructions yield may be more or less indeterminate at
birth. So, in particular, questions of predication involving the predicates of L may be
settled not when the objects enter the structure but only at some later stage. Thus, the
stages of such a structure cannot be expected to determine bivalent first-order models
for L. In general, the models will be partial.

Nonbivalent structures have great formal and philosophical interest, but present a
host of technical complications which we want to set aside here. (Because we shall
limit ourselves to discussing bivalent structures, we shall drop the qualification ‘biva-
lent’ from now on.) We limit attention to bivalent models, not merely to simplify our
results, but to isolate a particular kind of partiality. Parametric structures are partial
in at least two respects. They may, at a given stage, convey only partial information
about the objects present at that stage. But they may also convey partial information
about the domain as a whole, by including only a proper subset of it. It is the nature
of this second respect in which the structures are partial—that in which a stage of
construction reveals the domain only partially because it covers only some part of the
domain—that we will be investigating in this paper.

Parametric structures with a supreme stage—i.e., a stage which includes all
others—behave essentially like classical models. The parametric truth definition pro-
duces exactly the same set of true sentences as the classical definition when it
is applied directly to the supreme stage. But parametric structures need not have
supreme stages. They need not even have maximal stages, i.e., stages not properly
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included in any others. For example, a parametric structure may reflect the construc-
tion of the natural numbers by having an increasing sequence of finite stages, but no
infinite stage.

Many applications give rise to parametric structures that have a minimal stage. In
particular, there are many for which the minimal stage is empty: The construction that
the parametric structure reflects starts out with nothing, introducing elements only as
it unfolds. Here the initial stage is not just minimal in the weak sense that no other
stage in the structure is properly included in it, but also in the strong sense that it is
included in every other stage. Clearly a parametric structure can have no more than
one stage that is minimal in the strong sense. If a parametric structure has a unique
strongly minimal stage, we refer to that stage as its core. From a formal perspective,
parametric models without a core do not add much of interest to what can be learned
from models with a core. We therefore assume all our parametric models to have a
core.

The second distinction we wish to stress is that between proper-name conceptions
and demonstrative conceptions of reference. In natural language, proper names act as
persistent labels of the objects they denote. Demonstratives, in contrast, are not tied
to particular objects once and for all, but can designate different objects on different
occasions of use. We can think of the relation holding between the constants of L and
the parametrically represented objects they denote in terms of either paradigm. On the
proper-name conception, names are anchored to particular objects; each name serves
as a tag designating a single object throughout the stages of a parametric structure.
Each constant designates the same object at each stage at which it exists. Replacing
constants with constants in a discourse, by means of a bijective map, would in general
alter the content of that discourse: after the replacement, the discourse would speak
about different objects.

On the demonstrative conception, in contrast, constants function as ‘pegs’ on
which assertions hang predicates [8]. There is no reason to expect that a constant
should name the same entity in different stages of a structure, or, conversely, that an
object should retain the same ‘designator’ throughout the different stages of the struc-
ture that contain the object. The objects designated by c1, c2, etc., at a stage might just
as well have been named by c′

1, c
′
2, etc. Substituting constants for constants, again

bijectively, should on this conception leave the content of a discourse unchanged.
Parametric structures adequate to the demonstrative conception are purely qualita-
tive. They can be expected to be invariant under permutations of constants, in the
sense that any possible stage obtainable by bijectively replacing the constants in a
stage of the structure also belongs to the structure.

Suppose that M is a parametric structure for a growing domain D of individuals
and that the constant c acts as a demonstrative in M in that it refers to the object
a of D at stage s1 and to a different object b at stage s2. Then, analyzing ∃xRcx

as true at stage s1 in M iff there is some later stage s2 at which Rcc′ is true for
some constant c′, we may find ourselves compelled to pronounce ∃xRcx true at s1
because, at s2, where c denotes b, R holds between b and some other object, even
though a is nowhere R-related to any object whatever. Clearly this would be wrong.
So, demonstratively referring constants should as a rule be shunned in parametric
analyses of quantification.
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In one type of situation, however, the demonstrative conception seems adequate.
Sometimes the identity of the objects available at any stage of domain formation
depends exclusively on their properties and on their relations to one another. Any two
objects a and b that occur at a given stage and are indistinguishable in these terms
cannot really be distinguished at all (much as two elementary particles that follow the
Bose-Einstein statistics and have identical quantum numbers are indistinguishable).
If a later stage has two objects a′ and b′, both of which share all the characteristics of
a and b, but which nevertheless can be distinguished—say, by bearing incompatible
relations to some third object—there is no way of telling whether a′ is a and b′ b or
vice versa.

When identity is thus strictly qualitative, proper names are inappropriate; they
would risk endowing their referents with a spurious cross-stage identity. The only
proper role for constants in the stages of parametric structures which represent such
domains is to provide stage-bound ‘pegs’ on which the predicates expressing the
relevant properties and relations can be hung.

We have discussed two ‘dimensions’ along which the intuitions underlying a para-
metric approach to quantification may vary: (1) the nature of the entities that are
spoken about in the components of a parametric structure; and (2) the reference rela-
tion between constants and the entities they designate. Since variations along these
dimensions seem to some extent independent, a parametric approach may be based
on many distinct combinations of motivations and conceptions. Hence, most ques-
tions arising from the parametric treatment of quantifiers require unraveling into a
number of strands before their philosophical significance becomes fully transparent.
In what follows we address only a fraction of these questions. We hope that the issues
we have chosen to address may stimulate others to deepen, refine and extend the
results reported here.

2 Definitions and Constraints

The languages we study in this paper are all languages of first-order predicate logic.
We will restrict ourselves to languages containing only predicates and individual con-
stants, but lacking identity and function constants. Various notions of identity can
be defined in the different parametric logics we will develop. But this is a topic for
exploration beyond the present paper.

2.1 Definitions

Each language L we consider will have: (i) an infinite set of variables x1, x2, x3, ....
(ii) the logical constants ¬, →, ∀, (iii) a set of predicates, PredL, each with its own
-arity i > 0 (so, to be exact, PredL is a function from symbols to positive integers);
(iv) a set ConL of individual constants c1, c2, c3, ....3

3Our languages are without predicates of -arity 0; that is, they are without propositional constants. This
restriction has been imposed merely for convenience: excluding propositional constants simplifies both the
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Formulae, sentences and atomic formulae of L are defined as usual. By a basic
formula of L we understand a formula that is either atomic or the negation of an
atomic formula. The logical operators ∧, ∨, ↔ and ∃ are defined as usual in terms
of ¬, →, ∀. This is legitimate in view of our bivalence assumption—the restric-
tion to parametric models whose stages are diagrams, in which the truth values of
all atomic sentences about objects that belong to the stage are decided. As will be
made explicit in the definition below of truth for parametric models, this restric-
tion entails that the propositional part of all the parametric logics we will consider
is classical. Sometimes we will proceed as if ∧, ∨, ↔ and ∃ are primitives of L.
In that case their definitions will play the role of axioms, rather than prescrip-
tions for converting formulas with occurrences of ∧, ∨, ↔ or ∃ into the canonical
notation that does not include these symbols. We allow for variation in the set
of non-logical constants and identify each language that results from the choice
of a set of nonlogical constants with that set; this enables us to talk about lan-
guages as set-theoretic objects. For instance, L1 ∩ L2 is that language L such that
PredL = PredL1 ∩PredL2 and ConL = ConL1 ∩ConL2. If L is a language and
C a set of individual constants, then L(C) is the language L′ that is like L except that
ConL′ = ConL ∪ C.

We assume a proper class V of entities to be used as individual constants
that is disjoint from the languages L for which we formulate our theorems. The
proofs of these theorems, however, will involve ‘mixed’ languages, which are
the result of extending the language L referred to in the theorem with constants
from V .

A valuation for L is a function from atomic sentences of L into {0, 1}, where 1
stands for truth and 0 for falsehood. So, when ConL is empty, the only valuation for
L is the empty set. (Recall that L has no propositional constants.) Each valuation W

uniquely determines the smallest language for which it is a valuation. We refer to
this language, L(W), as the language of W . A valuation W is called a diagram iff
its domain consists of all atomic sentences of the language L(W). (Thus a diagram
is a valuation that is ‘complete’ for its own language.) From now on D, D′, D1, etc.,
always stand for diagrams. Whenever D ⊆ D′, D′ extends D. Note that if a diagram
D′ properly extends a diagram D, then L(D) ⊂ L(D′). If ConL(D′) = ConL(D)∪
C, and D′ extends D, then we write D ⊆C D′. (We write D ⊆c D′ instead of
D ⊆{c} D′, and ConD rather than ConL(D).) For any diagram D and language L,
there is a unique diagram D′ ⊆ D whose language is L(D) ∩ L. We denote this
diagram asD � L. We sometimes writeD(c1, ..., cn) to indicate that {c1, ..., cn} is the
set ConD. For any terms t1, ..., tnD(t1, ..., tn) is the ‘diagram’ which assigns to any
atomic formula ϕ(t1/c1, ..., tn/cn) the same truth value that D(c1, ..., cn) assigns to
ϕ. Let f be a function from constants to constants such that the domain of f includes
ConD. By f (ϕ) we understand the formula resulting from replacing each constant
ci in ϕ by f (ci), and by f (D) we understand the diagram such that, for every atomic
sentence ϕ of L, f (D)(f (ϕ)) = D(ϕ). If f is a one-one function from ConD1 onto

formulation of a number of our theorems and often also their proofs. Not surprisingly, our results can be
generalized to languages with propositional constants, albeit at the cost of a certain amount of extra work.
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ConD2, we say that D1 and D2 are equivalent modulo f (in symbols, D1 ≈f D2)
iff D2 = f (D1).

Let L be a language and U a subset of V . A parametric model M for L and U

is a set of diagrams such that (i) for each diagram D ∈ M , ConD ⊆ ConL ∪ U ;
(ii) there is exactly one diagram D0(M) ∈ M , M’s core, whose language is L; (iii)
the core of M is included in every member of M . By a parametric model for L we
understand a parametric model for L and some subset U of V . Any parametric model
M for L uniquely determines a particular strongly minimal set UM such that M is a
parametric model for L and U , namely, the set

⋃{ConD : D ∈ M}. Throughout this
paper we shall exclude the trivial parametric model ∅; doing so simplifies the logic
of the quantifiers without sacrificing anything significant.

Let M be a parametric model for some language L and let D be an element of M .
The truth value of a sentence ϕ of L(D) at D in M , written �ϕ�D,M , is defined as
follows:

(2.1) If ϕ is atomic, then �ϕ�D,M = D(ϕ).
(2.2) �¬ϕ�D,M = 1 iff �ϕ�D,M = 0, and �¬ϕ�D,M = 0 otherwise.
(2.3) �ϕ → ψ�D,M = 1 iff �ϕ�D,M = 0 or �ψ�D,M = 1; otherwise, �ϕ →

ψ�D,M = 0.
(2.4) �∀xiϕ�D,M = 1 iff ∀D′ ∈ M∀c ∈ ConD′(D ⊆ D′ → �(ϕ)c/xi�D′,M = 1);

otherwise, �∀xiϕ�D,M = 0.4

This is entirely standard, except for the quantificational clause. (2.4) specifies that
a universal sentence is true at a diagram in a model just in case all its instances are
true at all extensions of that diagram in the model.

By the standard definition of the existential quantifier, we can convert (2.4) into a
clause for existentially quantified sentences:

(2.5) �∃xiϕ�D,M = 1 iff ∃D′ ∈ M∃c ∈ ConD′(D ⊆ D′ ∧ �(ϕ)c/xi�D′,M = 1);
otherwise, �∃xiϕ�D,M = 0.

An existential sentence is true at a diagram in a model, then, just in case an instance
of it is true in an extension of that diagram in the model. The existential and universal
quantifiers are duals; this differentiates our approach from an intuitionistic one, in
which the existential clause would contain not an extension D′ of D but D itself.

The truth value of a sentence ϕ of L in M , �ϕ�M , is by definition �ϕ�D0(M),M . ϕ
is valid iff ϕ is true in every parametric model for L. The set of all sentences true in
M is T h(M), the theory of M . We shall often write D |=M ϕ in lieu of �ϕ�D,M = 1,
and D |=/ M ϕ in lieu of �ϕ�D,M = 0. Similarly M |= ϕ (M |=/ ϕ) are alternative
notations for �ϕ�M = 1(0). Note that, if D, D′ ∈ M and D ⊆ D′, D |=M ∀xϕ only
if D′ |=M ∀xϕ, and D′ |=M ∃xϕ only if D |=M ∃xϕ. Let ϕ be a sentence and Γ be a
set of sentences of L. Then ϕ is a parametric consequence of Γ , in symbols Γ |= ϕ,
iff for all parametric models M , if for all ψ ∈ Γ �ψ�M = 1, then �ϕ�M = 1. ϕ is
(parametrically) valid iff ∅ |= ϕ.

4The substitution of a term t for all free occurrences of a variable x in a formula ϕ will be denoted either
as (ϕ)t/x or as [ϕ]t/x, depending on which notation seems more perspicuous in any given context.
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2.2 Constraints on Parametric Models

The constants in parametric models may refer in the manner of demonstratives or
proper names. The following two ways of deriving a parametric model from a stan-
dard classical model reflect these two conceptions of reference. Let M = < A, F >

be a classical model for a language L without individual constants. (A is the uni-
verse ofM, and F its assignment function.) First, let U be a subset of V of the same
cardinality as A, and let f be a one-one map between A and U . For any a ∈ A,
think of f (a) as the name of a. Given this naming function, we can associate with
M a parametric model M∗(M) as follows: Let D be the f -diagram of M, that is,
the function assigning truth to all and only atomic sentences P(f (a1), ..., f (an))

for a1, ..., an ∈ A such that M |= P(x1, ..., xn)(a1, ..., an). (That is, M satisfies
P(x1, ..., xn) under an assignment that assigns the ai to the xi). LetM∗(M) be the set
of all diagrams included in D whose language includes L. The constants in M∗(M)

are attached to the objects they name in a manner that exemplifies the proper-name
conception.

There is also a way to obtain a parametric model fromM that reflects the demon-
strative conception. Let U ′ be any subset of V of cardinality greater than or equal
to that of A. Intuitively, U ′ is to provide a set of constants each of which can name
any element in A. The parametric model M∗∗(M) derived from M that reflects this
intuition can be defined as follows. Let B be any subset of A and f be any injec-
tion of B into U ′. Let the diagram D(M, B, f ) determined by M, B and f be the
function assigning truth to all and only atomic sentences P(f (b1), ..., f (bn)) for
b1, ..., bn ∈ B such that M |= P(x1, ..., xn)(b1, ..., bn). M∗∗(M) is to be the set of
all diagrams D(M, B, f ) for B ⊆ A and f an injection of B into U ′.

In general, M∗(M) and M∗∗(M) are not equivalent. In fact, T h(M∗(M)) is
exactly the classical theory ofM, while T h(M∗∗(M)) can be very different.5

The first of these two parametric models has properties distinctive of models repre-
senting a minervan domain and reflecting the proper-name conception of designation:
any two diagrams of the structure must be compatible. If, however, the naming pro-
cedures associated with different stages of a structure allow using the same constant
(i.e., the same symbol) to designate distinct elements of the domain, then the derived
parametric model may contain diagrams that are formally inconsistent with each

5For an example let L be the language {R, S}, where R and S are 2-place predicates, and letM be a model
for L with universe A = {a1, a2, b1, b2} in which [[R]]M = {< a1, b1 >} and [[S]]M = {< a2, b2 >}.
In M the sentence ∃x(∃yRxy ∧ ∃zSxz) is clearly false. But in M∗∗(M) this sentence is true. For let
B0, B1, B2 be the sets {a1}, {a1, b1}, {a2, b2}, and let f0, f1, f2 be the functions with domains B0, B1,
B2, respectively, and defined by: f0(a1) = c1; f1(a1) = c1, f1(b1) = c2; f2(a2) = c1, f2(b2) = c2. Then
the pairs (B0, f0), (B1, f1) and (B2, f2) determine the diagrams D0, D1, D2 of M∗∗(M) given by: (i)
Di(Rc1c1) = Di(Sc1c1) = 0 for i = 0, 1, 2; (ii) D1(Rc1c2) = 1; D1(Rc2c1) = D1(Rc2c2) = D1(Sc1c2)

= D1(Sc2c2) = D1(Sc2c1) = 0; (iii) D2(Rc1c2) = 1; D2(Rc2c1) = D2(Rc2c2) = D2(Sc1c2) = D2(Sc2c2)

= D2(Sc2c1) = 0. Since D0 ⊆ D1 and D0 ⊆ D2, the sentence ∃yRc1y ∧ ∃zRc1z is true in M∗∗(M) at
diagram D0. So, the sentence ∃x(∃yRxy ∧ ∃zRxz) is true in M∗∗(M) at its empty core. This example
also confirms the informal observation we made earlier that the demonstrative conception of reference
poorly fits the minervan conception of objects if demonstrative designators for these objects are used in a
substitution-based definition of truth.
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other. This situation can also arise on the marsupial conception, irrespective of the
naming procedures used. A marsupial object introduced at stage s might develop in
incompatible ways and thus give rise to incompatible extensions of the diagram asso-
ciated with s. But if the properties of each object are fully determined as soon as it
enters the stage, and if the name it receives there remains its name at all later stages,
this cannot happen; all diagrams must be compatible.

The model M∗(M) derived from M by the first method has this property. In
fact, for any two diagrams D1 and D2 in M∗(M) there is a diagram D3 in M∗(M)

such that D1 ⊆ D3 and D2 ⊆ D3. We call any parametric model that satisfies this
condition a strong net.6

It might be thought harmless to assume that every parametric model has the prop-
erty of reductive completeness: a model M for L is reductively complete iff, for every
D ∈ M and every language L′ such that L ⊆ L′ ⊆ L(D), D � L′ ∈ M . Indeed, this
seems natural if we adopt the proper-name conception of constants and view objects
as fully defined in advance. A problem arises, however, if we try to describe the nat-
ural numbers with 0 and successor function S by a parametric model based on the
demonstrative conception of constants (as might be suggested by a reading of [1], for
example), even if each diagram in the model represents an initial segment of the nat-
ural numbers. For suppose that M has a diagram representing the segment <0, 1, 2>

in which 0, 1, and 2 are named by the constants c0, c1, c2, respectively; and that there
is also a diagram D′ ∈ M representing <0, 1, 2, 3> in which c0 names 0, c1 names
1, and c2 names the number 3. Then D ⊆ D′, and so both ∃x(Sc0x ∧ Sxc2) and
∃x∃y(Sc0x ∧ Sxy ∧ Syc2) will be true in M at D. The set-theoretic inclusion rela-
tion between diagrams no longer establishes that the including diagram extends the
information in the included diagram.

2.3 The Demonstrative Conception

We now consider some properties of parametric models that are plausible on the
demonstrative conception, which implies that each constant can be used to name any
object whatever. This suggests that a parametric model that realizes all possibilities
should, for each collection of objects about which it speaks, and each sufficiently
large collection of constants, contain a diagram in which these constants name the
objects in any permutation. On the demonstrative conception, the relation between a
term c and its designatum is nonpersistent; its significance is limited to a particular
stage. In fact, that this term is used to designate the object at this stage rather than
some other should be seen as accidental and semantically unimportant. The choice
of designators occurring in a diagram is irrelevant to the information it conveys; any
diagram obtained by replacing the designators on a one-to-one basis by others would

6Not all parametric models reflecting both the proper-name and minervan conceptions are strong nets. The
process of stage development may be nondeterministic; the emergence of new objects of one kind—that
is, satisfying one set of predicates—may prevent the emergence of individuals of some other kind. Thus,
among the diagrams of a parametric model there may be some including objects of the first kind and some
including objects of the second kind, but none including objects of both kinds.
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carry the same information and, by considerations of symmetry, should have an equal
right to be part of a parametric model reflecting the demonstrative conception. We
can make this principle structurally explicit by stipulating that a parametric structure
based on the demonstrative conception be closed under such replacements. Thus, for
instance, such a parametric model M should satisfy the following property, which
we refer to as closure under permutation: if D ∈ M and f is a permutation of
ConD, then M also contains the diagram D′ such that, for any ψ in the domain of
D, D′(f (ψ)) = D(ψ).

Another formal property of parametric models apparently entailed by the infor-
mal considerations above is the universal understudy property, so-called because, in
parametric models with this property, any group of constants not already in a dia-
gram may be made to play the roles of a group of that diagram’s constants. In this
sense, any constant in the universe of the model but playing no role in a diagram may
serve as ‘understudy’ for any constant that is playing a role in that diagram. (The
‘roles’ here are the satisfactional roles of [4]: maps from atomic formulae with one
free variable x into {0, 1}.)

Let M be a parametric model. M has the universal understudy property iff the
following holds for arbitrary diagrams D1, D2, D3 ∈ M such that D1 ⊆ D3, D1 ≈f

D2 for some f , and |UM −ConD2| ≥ |ConD3−ConD1|: IfC is any set of constants
included in UM disjoint from ConD2 and g any one-one function from ConD3 −
ConD1 onto C, there is a diagram D4 ∈ M such that D3 ≈f ∪g D4 and D2 ⊆ D4.

Of some technical importance is the question whether a parametric model may
contain diagrams that exhaust the stock of its constants. In some special cases, it
seems intuitively clear that no such diagram should exist: for instance, when we think
of the natural numbers as given by a parametric structure, each component of which
contains only finitely many. There are also parametric models in which a diagram
exhausting the set of constants does exist. But the clear examples of this, such as the
parametric model derived from a classical model in the manner described in the first
paragraph of 2.1, are of little interest. Moreover, these models easily convert into
elementarily equivalent structures without a diagram exhausting the set of constants.
Since working with parametric models from which such exhaustive diagrams are
absent turns out to have considerable practical advantage, we shall concentrate on
parametric models that possess this feature in a strong form. We say that a parametric
model M has an inexhaustible set of constants iff for each D1, D2 ∈ M there is a
subsetC ofUM such thatC∩ConD1 = ∅ and |C| = |ConD2|. Given our assumption
that M �= ∅, this condition implies the ‘weaker’ property that, for all D ∈ M , there
is a c ∈ UM such that c /∈ ConD. Note that the same argument also leads to the
slightly stronger conclusion that if D ∈ M and n is a natural number, then there is a
set C ⊆ UM disjoint from ConD which has cardinality n.

If M has an inexhaustible set of constants and possesses the universal understudy
property, then it also has another property, the existential understudy property. If a
parametric model has this property, each collection of constants playing roles in a
diagram has a team of ‘understudies,’ not contained in the diagram, who can take over
the roles played by members of the collection. More formally, M has the existential
understudy property iff the following holds for arbitrary diagrams D1, D2, D3 ∈ M

such that D1 ⊆ D2, D1 ⊆ D3: there exists a set C′ ⊆ UM such that C′ ∩ (ConD3 −



Quantifiers Defined by Parametric Extensions

ConD1) = ∅, a one-one function f from ConD2 − ConD1 onto C′ and a diagram
D4 ∈ M such that D2 ≈g D4 where g is the union of f and the identity function on
ConD1.

To verify that, if M has an inexhaustible set of constants and possesses the univer-
sal understudy property, it also has the existential understudy property, assume the
antecedent. Let D1, D2, D3 ∈ M , where D1 ⊆ D2 and D1 ⊆ D3. By inexhaustibil-
ity, there is a set C ⊆ UM such that C ∩ ConD3 = ∅ and |C| = |ConD2|. There is
thus a subsetC′ ⊆ C such that |C′| = |ConD2−ConD1| andC′∩ConD1 = ∅. Since
C′ ⊆ C, C′ ∩ (ConD3 − ConD1) = ∅. And, since |C′| = |ConD2 − ConD1|, there
is a one-one function f from ConD2 − ConD1 onto C′. Note that D1 ≈i D1, where
i is the identity map on ConD1. By the universal understudy property (reading ‘D1’
and ‘D2’ for ‘D2’ and ‘D3’, respectively), there is a D4 ∈ M such that D2 ≈g D4
and D1 ⊆ D4, where g = f ∪ i. Thus, M has the existential understudy property.

Also, ifM has the universal and existential understudy properties and has an empty
core, then M is closed under permutation. For suppose that M has both understudy
properties and that ∅ ∈ M . Let D ∈ M and let h permute ConD. By the existential
understudy property, there is a set C′ ⊆ UM such that C′ ∩ ConD = ∅, a one-one
function g (viz., h ◦ f −1) from ConD onto C′, and a diagram D′′ ∈ M such that
D ≈f D′′. By the universal understudy property (reading ‘∅’ for ‘D1’ and ‘D2’,
and ‘D′′’ for ‘D3’), for any one-one function g′ from ConD′′ onto ConD there is a
D′ ∈ M such that D′′ ≈g′ D′. This is true in particular for the function g = f −1 ◦ h.
So let D′ be such that D′′ ≈g D′. Then ConD′ = ConD. If ψ is any atomic sentence
of L(D), then D(ψ) = D′′(f (ψ)) = D′(h(f −1(f (ψ)))) = D′(h(ψ)). So, D′ ∈ M .
It follows that M is closed under permutation.

2.4 The Marsupial Conception

Our discussion of the example of successor arithmetic shows that it would be wrong
to postulate in general that parametric models are reductively complete. Nevertheless,
reductively complete models constitute a conceptually and mathematically important
class. Reductive completeness is plausible, for instance, if we think of the domain of
discourse of any given diagram D as consisting of entities that are determined just
to the extent that their properties and mutual relations are defined in D and that can
be specified more precisely in any way compatible with D. Against this background
reductive completeness can be understood as saying that a set of objects which has
reached a given degree of specificity (given by diagram D) could have reached this
stage via an intermediate stage characterized by the properties and relations of some
proper sublanguage L′ of the language of D. Another principle that is compatible
with the general idea of entities developing gradually into more definite ‘contours’
is that a set of entities that has reached a certain degree of specificity, given by a
diagram D of a model M , may develop further in any way compatible with what is
determined about it in D and that that can be made explicit with the linguistic means
available in M . Formally this principle is captured in (2.6).

(2.6) WheneverD1, D2 ∈ M andD3 is a diagram such thatD1 ⊆ D3 andL(D3) ⊆
L(D2), then D3 ∈ M .
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Among the parametric models that satisfy (2.6) there are the so-called openmodels
[3]. Open models are the topic of Section 3.3.

As we have seen, strong nets seem to reflect the proper-name conception of con-
stants and the minervan conception of objects. There is a slightly weaker property
the motivation for which is not tied to these two conceptions, and which will also be
important in the formal developments below. A parametric model M is a weak net iff,
whenever D1, D2 ∈ M and D1 � (L(D1) ∩ L(D2)) = D2 � (L(D1) ∩ L(D2)), there
is a D3 ∈ M such that D1 ∪ D2 ⊆ D3. Weak nets capture the idea that the presence
of some objects can never be a reason for preventing others from being added: if we
start out with a given collection of objects A, and extend this collection on the one
hand to A ∪ B and on the other to the collection A ∪ C, then, since the presence of
the objects in B cannot impede the addition of the objects in C, it must be possible
to add the elements of both B and C to A all at once.

So far we have analyzed the quantifiers by considering, when evaluating a quan-
tified sentence at a diagram D of a parametric model M , all extensions of D in M .
A variant of this analysis is to consider extensions of D by just one constant. For the
universal quantifier, this leads to the alternative truth clause:

(2.7) �∀xiϕ�D,M = 1 iff ∀D′ ∈ M∀c ∈ ConD′(D ⊆c D′ → �(ϕ)c/xi�D′,M = 1);
otherwise, �∀xiϕ�D,M = 0.

The two clauses (2.4) and (2.7) do not, in general, produce the same results. By
restricting the quantifier on the right to one-element extensions of D we make it
easier for the universal sentence on the left to come out true at D than it is according
to (2.4). In the next section, however, we find special conditions under which the two
clauses become interchangeable.

3 The Logic of Parametric Substitution

Which sentences of a first-order language L are parametrically valid? That is, which
sentences are true in all parametric models for L? As we will show in Section 4, the
set of parametrically valid sentences is a proper subset of the classically valid sen-
tences of L. However, in a great many special cases, where the parametric models are
assumed to satisfy some further conditions, the corresponding set of parametrically
valid sentences will include all classically valid sentences. In fact, in some cases, it
will properly include them.

3.1 Strong Nets

We begin by considering parametric models based on the minervan view of objects
and the proper-name conception of constants. Among the parametric models reflect-
ing these two conceptions there are in particular the strong nets—those models in
which different extensions of a given diagram are always compatible with each other,
to the point of being both included in a diagram that also belongs to the model. In
what comes next we focus on strong nets.
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Our first theorem asserts that, if a parametric model M is a strong net, then it
verifies all theorems of classical logic.

Theorem 1 Suppose M , a parametric model for L, is a strong net. Then T h(M)

includes every sentence of L that is classically valid.

To establish Theorem 1, we first prove the following lemma:

Lemma 2 Suppose M , a parametric model for L, is a strong net. Then, for any
sentence ϕ of L and diagrams D1, D2 ∈ M , if L(ϕ) ⊆ L(D1) and D1 ⊆ D2, then
D1 |=M ϕ iff D2 |=M ϕ.

Proof We proceed by induction on the complexity of ϕ to show that whenever D1
and D2 of M are such that D1 ⊆ D2 and L(ϕ) ⊆ L(D1), then D1 |=M ϕ iff
D2 |=M ϕ. The only interesting cases are those where ϕ begins with a quantifier.
We only consider the one where the quantifier is existential. Let ϕ be of the form
∃xψ(x, c). Suppose first thatD1 |=M ϕ. Then for someD3 ⊇ D1, and some constant
c0 ∈ L(D3), D3 |=M ψ(c0, c). Since M is a strong net, there is a D4 in M such
that D2 ⊆ D4 and D3 ⊆ D4. So, by the induction hypothesis, D3 |=M ψ(c0, c)
implies thatD4 |=M ψ(c0, c). SinceD2 ⊆ D4, it follows thatD2 |=M ϕ. Conversely,
suppose that D2 |=M ϕ. Then, for some D3 such that D2 ⊆ D3 and c0 ∈ L(D3),
D3 |=M ψ(c0, c). Since D1 ⊆ D3, D1 |=M ϕ.

To prove the theorem, let M be a strong net. We shall show that all axioms of an
axiomatization of the predicate calculus are true in M , and that the inference rules
of this axiomatization preserve truth in M . We use Quine’s axiomatization in [10],
eliminating the rule of substitution in favor of a schematic presentation, so that modus
ponens is its only rule of inference. That this rule preserves truth in M is obvious
from the truth definition.

So, it suffices to check that each axiom is true in M . (We already noted that the
propositional logic of all parametric models we consider in this paper is classical.)
We need consider only the axioms that concern quantification. The system contains
two types of these (its primitives include only the universal quantifier):

(3.1) All closures of formulae of the form ∀xϕ → ϕy/x (y free for x in ϕ);
(3.2) All closures of formulae of the form ∀x(ϕ → ψ) → (ϕ → ∀xψ) (where x

is not free in ϕ).

For (3.1), let D1 be a diagram in M . D1 |=M ∀z∀y(∀xϕ(x, z) → ϕ(y, z)) iff, for
every D2 ∈ M such that D1 ⊆ D2 and every c1, c2 ∈ L(D2),

(3.3) D2 |=M ∀xϕ(x, c1) → ϕ(c2, c1).

(3.3) is true iff either D2 |=/ M ∀xϕ(x, c1) or D2 |=M ϕ(c2, c1). Suppose D2 |=M

∀xϕ(x, c1). Then, for all D3 ∈ M such that D2 ⊆ D3 and c3 ∈ L(D3), D3 |=M

ϕ(c3, c1). Since D2 ⊆ D2 and c2 ∈ L(D2), it follows that D2 |=M ϕ(c2, c1). So
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(3.3) holds for D2. Since this is so for all D2 ⊃ D1, (3.1) holds at D1. (Note that this
result holds for all parametric models, not just for strong nets.)

For (3.2), D1 |=M ∀z(∀x(ϕ(z) → ψ(x, z)) → (ϕ(z) → ∀xψ(x, z))) iff, for all
D2 ∈ M such that D1 ⊆ D2 and all c2 ∈ L(D2)

(3.3.1) if D2 |=M ∀x(ϕ(c2) → ψ(x, c2)) then D2 |=M ϕ(c2) → ∀xψ(x, c2).

This is true iff whenever D2 |=M ϕ(c2) and D2 |=M ∀x(ϕ(c2) → ψ(x, c2)) then
D2 |=M ∀xψ(x, c2). Suppose D2 |=M ϕ(c2) and D2 |=M ∀x(ϕ(c2) → ψ(x, c2));
then for all D3 ∈ M such that D2 ⊆ D3 and all c3 ∈ L(D3) D3 |=M ϕ(c2) →
ψ(c3, c2). Since D2 |=M ϕ(c2), and M is a strong net, it follows from Lemma 2
that D3 |=M ϕ(c2). So D3 |=M ψ(c3, c2). Since this holds for arbitrary choice of
D3 ⊇ D2 and c3 ∈ L(D3), D2 |=M ∀xψ(x, c2). This establishes that (3.3.1) holds
for D2. Since this applies to all D2 ⊇ D1, (3.1) holds at D1.

In Section 2.2, we defined a construction associating a parametric model M∗(M)

with any classical model M. Two observations that we made in connection with that
construction are repeated here as Theorem 3 and Theorem 4:

Theorem 3 T h(M∗(M)) = T h(M).

Theorem 4 M∗(M) is a strong net.

Combining Theorems 3 and 4 with Theorem 1, we obtain:

Theorem 5 Let K be the class of all parametric models that are strong nets. Then
T h(K) is the set of theorems of classical first-order logic.

3.2 Weak Nets

Weak nets do not always include all theorems of classical logic within their theories.
However, if a weak net also has the understudy properties, then its theory is again
always classical. To prove this, we first show the following lemmas.

Lemma 6 Suppose that M is a parametric model with an inexhaustible set of con-
stants and the universal understudy property, D ∈ M , f is a one-one function from
ConD into UM and f (D) ∈ M . Then, for any sentence ϕ of L(D), D |=M ϕ iff
f (D) |=M f (ϕ).

Proof By induction on the complexity of ϕ. Assume that D, f are as in the statement
of the lemma. The only interesting cases are those where ϕ begins with a quantifier;
we consider only the existential quantifier. Suppose ϕ has the form ∃xψ(x). Assume
first that D |=M ϕ. Then there is a subset C of UM , a c ∈ C ∪ ConD and a D′ ∈
M such that D ⊆C D′ and D′ |=M ψ(c). Since M has an inexhaustible set of
constants, |UM − Conf (D)| ≥ |ConD′ − ConD|. So, there is a set C′ ⊆ UM

such that Conf (D) ∩ C′ = ∅ and a one-one function g from ConD′ − ConD onto
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C′. By the universal understudy property, there is a diagram D′′ ∈ M such that
D′′ = (f ∪ g)(D′). Since f ∪ g is a one-to-one correspondence between D′ and D′′,
we have, by the induction hypothesis, that D′ |=M ψ(c) iff D′′ |=M (f ∪ g)(ψ(c)).
But (f ∪ g)(ψ(c)) = (f (ψ))(c′), where c′ = (f ∪ g)(c). So, since D′ |=M ψ(c),
D′′ |=M f (ψ)(c′). Since f (D) ⊆ (f ∪ g)(D′) = D′′, f (D) |=M ∃xf (ψ(x)),
i.e., f (D) |=M f (ϕ). In the same way we can show that if f (D) |=M f (ϕ), then
D |=M ϕ. The other cases of the induction are straightforward.

Lemma 7 Suppose M is a weak net and has the understudy properties. Then, for
any D1, D2 ∈ M such that D1 ⊆ D2, and every sentence ϕ of L(D1), D1 |=M ϕ iff
D2 |=M ϕ.

Proof By induction on the complexity of ϕ. We consider only the case where ϕ is
∃xψ(x). Suppose D1 |=M ϕ. Then, for some D3 ∈ M such that D1 ⊆ D3 and
some constant c3 ∈ L(D3), D3 |=M ψ(c3). Let C be the set (ConD3 − ConD1) ∩
(ConD2 − ConD1). Since M has the existential understudy property, there is a set
C′ ⊆ UM such that C′ is disjoint from ConD2 and there is a one-one map f from C

onto C′ such that f (D3) ∈ M . By lemma 6, f (D3) |=M ψ(f (c3)). Since, moreover,
D2 � L(D1) = f (D3) � L(D1) = D1, there exists, because M is a weak net, a
diagram D4 ∈ M such that D2 ⊆ D4 and f (D3) ⊆ D4. By the induction hypothesis,
D4 |=M ψ(f (c3)) and so D2 |=M ∃xψ(x). The converse follows quickly from (2.5),
the recursion clause for ∃ in the truth definition.

Theorem 8 Suppose that M is a weak net and has the understudy properties. Then,
for each sentence ϕ of L(M) that is a theorem of classical first-order logic, M |= ϕ.

Proof Like that for Theorem 1, with Lemma 7 replacing Lemma 2.

3.3 Open Models

An open model is a parametric model satisfying (2.6). We can approximate the idea
behind (2.6)—of a model for a language L in which all possibilities are realized—
without running afoul of the set-theoretic paradoxes by considering parametric
models containing all diagrams up to some fixed infinite cardinality κ . Once κ and
a set W of cardinality κ , which is to serve as inexhaustible supply of individual con-
stants and therefore must be disjoint from the set of expressions of L, have been
chosen, that determines the open model modulo a choice for the model’s core. For-
mally, let κ and W be as indicated, let C be a subset of W with | C |< κ and let D

be a diagram for the language L(C). Then the open model of cardinality κ for W and
D, Oκ,W,D , is the set {D′ ⊇ D : ∃U(ConD ⊆ U ⊆ W∧ | U |< κ ∧ ConD = U)}.

Since every constant in W occurs in some diagrams of Oκ,W,D , W can be recov-
ered from Oκ,W,D . Likewise the core D is recoverable from Oκ,W,D . So if O is
any open model of cardinality κ , we can refer to the set W and the core D such
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that O is the open model of cardinality κ for W and D as ‘WO ’ and ‘DO ’, respec-
tively. It should be clear that when W and W ′ are two sets of cardinality κ , such
that ConD ⊆ W ∩ W ′, then Oκ,W,D and Oκ,W ′,D are isomorphic (in the intuitively
obvious sense) and thus assign the same truth values to all sentences of L. For our
purposes any two such models can be identified. So, we will treat this isomorphism
class as if it were a single model. We assume that a representative of each isomor-
phism class has been selected, without bothering to make the selection procedure
explicit, and refer to these models as the open model for L of cardinality κ with core
D, for any possible choice of L, κ , and D.

Among the open models there are in particular those where the language L is
without individual constants and the model’s core is the empty diagram ∅. We refer
to the (isomorphism class of the) model Oκ,W,∅ (where W is some set of cardinality
κ disjoint from L) as the open model of cardinality κ . The results we will prove
in this section are formulated for such models, but generalizations to models with
non-empty cores are possible.

The main (and probably not surprising) upshot of our formal results is that all
open models O for a given language L determine the same theory T h(O). Moreover,
this theory is decidable. It can be characterized axiomatically in quite simple terms.
That the size of κ does not make a difference to T h(O) has to do with the fact that
for open models the quantifier clauses (2.4) and (2.7) are equivalent. (See lemma 11
below.) This means that, once again, we can use (2.7) when applying the method
of proof by induction on the syntactic complexity of formulas of L. And that in its
turn means that the truth values of any sentence φ in an open model O (at its empty
core) will be fully determined by those diagrams of O that each involve only a finite
number of individual constants. It is this feature—that only diagrams with finitely
many constants are required to determine the truth value of a sentence at ∅—that is
at the heart of the proof of Theorem 13, according to which the theory of an open
model is decidable; and it is equally crucial to the proof of Theorem 14, according
to which T h(O) has a comparatively simple axiomatization, consisting entirely of
∀∃-sentences.7

Theorem 9 is a preparation for the more telling results that follow.

Theorem 9 Let O be an open model of infinite cardinality κ . Then (i) O is a
weak net; (ii) O has the universal understudy property; (iii) O has the existential
understudy property; and (iv) O is reductively complete.

Proof Let O be an open model of infinite cardinality κ . (i) Let D1, D2 ∈ O and
suppose that D1 � (L(D1) ∩ L(D2)) = D2 � (L(D1) ∩ L(D2)). Then D1 ∪ D2 is
a well-defined function. Moreover, because κ ≥ ℵ0, |ConD1 ∪ ConD2| < κ . Let

7Note that the simplicity of the axioms that can be used to axiomatize T h(O) does not by itself entail
the decidability of T h(O), since the only sets of such simple axioms for T h(O) might not themselves
be decidable. We return to this point below when proving T h(O)’s decidability. We thank an anonymous
reviewer for suggesting that we bring forward to its present location the point that the class of ∀∃-formulas
of predicate logic should not be confused with the decidability of ∀∃ theories.
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L′ = L ∪ ConD1 ∪ ConD2. We have to show that O contains a diagram D3 for the
language L′ such that D1 ∪ D2 ⊆ D3. We define D3 as follows:

(a) if ϕ is an atomic sentence of L(D1) ∪ L(D2), then D3(ϕ) = (D1 ∪ D2)(ϕ);
(b) if ϕ is an atomic sentence of L′ \ (L(D1) ∪ L(D2)), then D3(ϕ) = 0.

It is easy to check that D3 is a diagram for the language L′ and that D1∪D2 ⊆ D3.
By the definition of ‘open model of cardinality κ ,’ D3 ∈ O.

(ii) Let D1, D2, D3 ∈ O be such that D1 ⊆ D3, D1 ≈f D2 for some one-
one function f , D3 is f -invariant, |UO − ConD2| ≥ |ConD3 − ConD1|, and g a
one-one function from ConD3 − ConD1 onto a set of constants C ⊆ UO disjoint
from ConD2. Since |ConD3 − ConD1| < κ , |C| < κ . Also, |ConD2| < κ; so
|the range of (f ∪ g)| = |ConD2 ∪ C| < κ . Let D4 be the diagram defined by
D4(P (c′

1, ..., c
′
n)) = D3(P (c1, ..., cn)), where c1, ..., cn are any constants in ConD3

such that for i ∈ {1, ..., n}, c′
i = (f ∪ g)(ci). Note that the definition of c′

1 is proper.
It is also easy to see that, since D1 ≈f D2, D2 ⊆ D4 and, finally, that D3 ≈f ∪g

D4, and so, by the definition of ‘open model,’ D4 ∈ O. This shows that O has
the universal understudy property. (iii) That O also has the existential understudy
property follows from (ii) together with the fact that it has an inexhaustible set of
constants. (iv) Obvious.

In view of Theorem 8, Theorem 9 yields the following corollary:

Theorem 10 Let O be an open model for some language L of infinite cardinality κ .
Then T h(O) is a first-order theory of L.

The following lemma is needed for a general characterization of the logic of open
models of infinite cardinality κ .

Lemma 11 If a parametric model M is reductively complete and satisfies:

(3.4) If D1 ⊆ D2 and ϕ ∈ L(D1), then D1 |=M ϕ iff D2 |=M ϕ,

then the two truth definitions involving quantifier clauses (2.4) and (2.7) are equiva-
lent onM . That is, where |=′ is like |= except that (2.7) replaces (2.4): for anyD ∈ M

and ϕ in L(D), D |=M ϕ iff D |=′
M ϕ.

The intuitive meaning of Lemma 11 can be described as follows: In parametric
models that are reductively complete and satisfy (3.4), any object c that is found in
any diagram D′ ⊇ D is also found in some diagram D′′ ⊇ D that is obtained by
adding just c to D, and with the same properties and standing in the same relations
to objects in D as it does in D′. That is, in such models, the introduction of a new
object never depends on the introduction of other objects; whenever it is possible to
introduce a set of new objects, it is also possible to introduce them one by one.

Proof Suppose that M is reductively complete and satisfies (3.4). Again we proceed
by induction on the complexity of ϕ and consider only the case where ϕ has the form
∃xψ(x). Suppose first that D |=M ϕ. Then there is a D′ ∈ M such that D ⊆ D′
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and a c ∈ ConD′ such that D′ |=M ψ(c). Since M is reductively complete, there
is a D′′ ∈ M such that D ⊆c D′′ and D′′ ⊆ D′. Since M satisfies (3.4), D′′ |=M

ψ(c). By inductive hypothesis, D′′ |=′
M ψ(c), so by clause (2.8), D |=′

M ∃xψ(x).
Conversely, suppose that D |=′

M ∃xψ(x). Then there is a constant c and a D′ ∈ M

such that D ⊆c D′ and D′ |=′
M ψ(c). By inductive hypothesis, D′ |=M ψ(c). So, by

clause (2.5), D |=M ∃xψ(x).

We have seen that open models of infinite cardinality κ are weak nets, are
reductively complete, have an inexhaustible set of constants and have the universal
understudy property. So, it follows by Lemmas 6, 7, and 11 that the two truth defini-
tions represented by |= and |=′ coincide on such models. Henceforth in this section
we write |= even though we will often make use of the truth clause (2.7) rather than
(2.4) or (2.5) in arguments that some quantified formula holds at some diagram of
some open model.

The main results concerning open models are Theorems 12, 13, and 14 below.

Theorem 12 Suppose that L does not contain any individual constants, and let O

be an open model for L of infinite cardinality κ . Then T h(O) is decidable.

The notation for the fully general method of the proof of this theorem is cumber-
some, but we think that an example should suffice. Consider the simple quantified
sentence ∀x∃yRxy belonging to the language {R}. According to the parametric truth
definition applied to an open model O for {R} of infinite cardinality this is equivalent
to

(3.5) (∀c)(∀D ⊇c ∅)(∃c′)(∃D′ ⊇c′ D)(D′ |=O Rcc′).8

Since O has the universal understudy property, we may replace this by the equivalent

(3.6) (∀D ⊇c1 ∅)(∃c′)(∃D′ ⊇c′ D)(D′ |=O Rc1c
′), where c1 is some arbitrarily

chosen constant from the set WO .

There are just two diagrams in the language {R, c1}, namely D1 defined by
D1(Rc1c1) = 1 and D2 defined by D2(Rc1c1) = 0. So, (3.6) is equivalent to a
conjunction

(3.7) (∃c′)(∃D′ ⊇c′ D1)(D
′ |=O Rc1c

′) ∧ (∃c′)(∃D′ ⊇c′ D2)(D
′ |=O Rc1c

′)

The first conjunct of (3.7) can be rewritten as a disjunction between the case where
the constant c′ is different from c1 and that where it is c1.

(3.9) (∃c′)(c′ �= c1∧(∃D′ ⊇c′ D1)(D
′ |=O Rc1c

′)) ∨ (∃D′)(D′ ⊇c1 D1∧D′ |=O

Rc1c1).

Since c1 belongs to ConD1, the condition ‘D′ ⊇c1 D1’ that is part of the sec-
ond disjunct of (3.9) says that D′ is the same as D1. So the second disjunct can be

8Note that the condition ‘c′ �= c’ means that c′ and c are distinct symbols. It does not mean that they have
distinct denotations.
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replaced by D1 |=O Rc1c1, which we know to be the case. So we can conclude that
(3.9) as a whole is true.

The second conjunct of (3.7) can be rewritten in analogous way to the first
conjunct as in (3.10).

(3.10) (∃c′)(c′ �= c1 ∧ (∃D′ ⊇c′ D1,2)(D
′ |=O Rc1c

′)) ∨ (∃D′)(D′ ⊇c1 D2 ∧
D′ |=O Rc1c1).

Here the second disjunct is false. But the first disjunct can be rewritten as a dis-
junction of statements about particular small finite diagrams. Note that because of
of the universal understudy property the first disjunct of (3.10) can be replaced by
(3.11):

(3.11) (∃D′ ⊇c2 D2)(D
′ |=O Rc1c2),

where c2 is some particular constant distinct from c1. (3.11) is equivalent to the dis-
junction in (3.12) of statements about the eight diagrams with Domain {c1, c2} that
extend D2—let us call them D2.1, D2.2, ..., D2.8—and differ from each other in the
truth values they assign to the atomic sentences Rc1c2, Rc2c1, Rc2c2. Since O is an
open model, each of these diagrams belongs to O.

(3.12)
∨

i=1,...,8 D2.i |=O Rc1c2.

It is obvious that (3.12) is decidable: we can obviously write out the finite truth
table of each of the diagrams D2.i and check whether it assigns 1 or 0 to the atomic
sentence Rc1c2 in question. (In this case it is obvious that there is at least one D2.i
that verifies Rc1c2 and thus that (3.12) is true. So the result of the above procedure
is that ∀x∃yRxy is true in O.)

The general moral of this example is that the question whether a complex sentence
is true or false in an open model O can be rewritten into some kind of Boolean com-
bination of statements of the truth of atomic sentences in finite diagrams that can be
identified in terms of the truth values they assign to atomic sentences, so that the truth
values of the atomic sentences in question in those diagrams can be simply read off
from the tables that identify the diagrams. The decidability of the boolean combina-
tion of these statements then follows from the decidability of classical propositional
calculus. (It should also be clear that the size of L does not impose an essential
restriction. The argument applied to ∀x∃yRxy is easily modified so that it applies to
sentences of other languages with a finite set of predicates. And even if L is infinite
any sentence ϕ ofLwill contain only a finite number of predicates and thus be treated as
a sentence of the language L(ϕ) which contains just the predicates that occur in ϕ.)

Theorem 13 Suppose that L does not contain any individual constants and that O

is an open model for L of infinite cardinality κ . Then T h(O) is an ∀∃ theory. More
exactly, T h(O) is axiomatized by an axiomatization of first-order logic together with
the set A(O) of all sentences of the form

∀x1, ..., ∀xn∃y1, ..., ymF(x, y),

where (i) n ≥ 0, (ii) m ≥ 1, (iii) F(x, y) is a classically consistent conjunction
of basic formulae built from predicates of L and variables from the list x1, ..., xn,
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y1, ..., ym, and (iv) in each conjunct of F(x, y) there is at least one occurrence of a
variable yi (i = 1, ..., m).

Proof We begin by assuming that L has only finitely many predicates. First we show
that all sentences in A(O) are true in O. Let ∀x∃yF(x, y) be a member of A(O). By
assumption, F(x, y) is a conjunction

∧
i=1,...,k pi(βi(x, y)) of formulae pi(βi(x, y)),

where, for each i, βi is an atomic formula in the predicates of L and the vari-
ables x1, ..., xn, y1, ..., ym and pi(βi(x, y)) is either βi(x, y) or ¬βi(x, y), and where,
moreover, each βi contains at least one occurrence of a variable yj (1 ≤ j ≤ m). To
establish |=O ∀x∃y ∧

pi(βi(x, y)), we must show that, for all c1, ..., cn ∈ UO and
D ⊇{c1,...,cn} ∅, D |=O ∃y∧

(pi(βi(x, y)))c1/x1...cn/xn. This is the case provided
that there are, for each such D, c′

1, ..., c
′
m ∈ UO , a D′ ∈ O such that D′ ⊇{c′

1,...,c
′
m} D

and

(3.23) D′ |=O

∧
(pi(βi(x, y)))c1/x1...cn/xn, c

′
1/y1...c

′
m/ym.

Suppose D is any diagram in the language L ∪ {c1, ..., cn}. We must show that
there is a diagram D′ ∈ O in the language L ∪ {c1, ..., cn, c

′
1, ..., c

′
m} such that

(a) D ⊆ D′ and (b) for each conjunct pi(βi(x, y))c1/x1 ... cn/xn, c
′
1/y1 ... c′

m/ym

of the formula in (3.23), D′((pi(βi(x, y))c1/x1 ... cn/xn, c
′
1/y1 ... c′

m/ym) = 1 if
pi(βi(x, y)) = βi(x, y), and D′((pi(βi(x, y)))c1/x1 ... cn/xn, c

′
1/y1 ... c

′
m/ym) = 0

if pi(βi(x, y)) = ¬βi(x, y). To see that such a diagram exists, note that each of the
formulae (βi(x, y))c1/x1 ... cn/xn, c

′
1/y1 ... c′

m/ym contains at least one occurrence
of one of the constants c′

1, ..., c
′
m. This means that nothing is said in D about the pred-

ication βi(x, y)))c/x, c′/y. So we can stipulate the value of D′(βi(x, y)c/x, c′/y) in
accordance with the polarity pi of βi . Evidently there exists a D′ extending D that
satisfies all these stipulations. This shows that ∀x∃yF(x, y) holds in O at its empty
core (and thus is true in O).

Therefore the requirements under (ii) are all independent of the condition (a) that
D ⊆ D′. So, there exists a D′ satisfying both (a) and (b). Furthermore, as {c1, ...,
cn, c

′
1, ..., c

′
m} ⊆ UO and O is an open model of infinite cardinality κ , D′ ∈ O. Note

that, since O satisfies (3.4), if ϕ is an axiom of A(O) and D is any member of O,
then D |=O ϕ.

To show that A(O) yields all sentences in T h(O) we argue as follows. For
any diagram D in the language L′ = L ∪ {c1, ..., cm} and variables x1, ..., xm,
let

∧
D(x1, ..., xm) be the result of (c) forming the conjunction of all atomic sen-

tences ψ in L′ such that D(ψ) = 1 and all negations of such sentences ψ such
that D(ψ) = 0; and (d) substituting in this conjunction xi for ci(i = 1, ..., m). In
case D = ∅, we stipulate that

∧
D(x1, ..., xm) is some fixed tautology � of the

language L. (Note that when L is finite and has no individual constants, then any
diagram for L

⋃ {c1, ..., cn} is finite, so
∧

D is a formula of (finitary) first-order
logic.)

Similarly, for any sentence ϕ of L′, let ϕ(x1, ..., xm) be the result of replacing the
ci by the xi . Then, for any such D and ϕ, we claim that

(3.24) D |= ϕ iff A(O) � ∀x(∧D(x1, ..., xm) → ϕ(x1, ..., xm)).
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(3.24) is proved by induction on the complexity of ϕ. Taking the special case where
m = 0, so that L = L′ and D = ∅, we get the conclusion of the theorem: |=O ϕ iff
A(O) � � → ϕ iff A(O) � ϕ.

First observe that for each D ∈ O the set of sentences ϕ of L(D) such that
D |=O ϕ is a first-order theory. This follows from the fact that Theorem 10 applies
to the model O � {D′ ∈ O : D ⊆ D′}. Consequently, it will suffice to prove
(3.24) for all sentences ϕ in prenex form. We prove this restricted version of (3.24)
by induction on the complexity of ϕ. First, let ϕ be quantifier-free. Then, if D |= ϕ,∧

D(x1, ..., xm) → ϕ(x1, ..., xm) has the form of a classical tautology. So, obvi-
ously, since our ∀∃ theory is a theory of classical logic, (3.24) holds in the left-to-right
direction. It also holds from right to left. For, as we already saw, all the axioms of
A(O) are true in O at D. Moreover, truth in O at D is preserved by the inference
rules of first-order logic. So, if A(O) � ∀x(∧ D(x1, ..., xm) → ϕ(x1, ..., xm)), then
D |=O ∀x(∧D(x1, ..., xm) → ϕ(x1, ..., xm)). So, D |=O

∧
D → ϕ. But evidently

D |=O

∧
D. Therefore, D |=O ϕ.

The inductive step we shall consider is that where ϕ is ∃yψ(c1, ..., cm, y). Assume
first that D(c1, ..., cm) |=O ϕ. Then there is a constant cm+1 and a D′ such that
D ⊆cm+1 D′ and D′ |=O ψ(c1, ..., cm, cm+1). So, by induction hypothesis and
classical quantification theory,

(3.25) A(O) � ∀x, y(
∧

D′(x1, ..., xm, y) → ψ(x1, ..., xm, y)).
∧

D′(x1, ..., xm, y) can be written as a conjunction δ1(x1, ..., xm)∧δ2(x1, ..., xm, y),
where each conjunct of δ2 contains at least one occurrence of y. Clearly δ2 is a
consistent conjunction of basic formulae. So, ∀x∃yδ2(x, y) is an axiom of our axiom-
atization; hence, A(O) � ∀x∃yδ2(x, y). Thus, A(O) � ∀x(δ1(x) → (δ1(x) ∧
∃yδ2(x, y))). But δ1(x) is just

∧
D(x1, ..., xm). So,

(3.26) A(O) � ∀x(∧ D(x) → ∃y
∧

D′(x, y)).

(3.25) and (3.26) give

(3.27) A(O) � ∀x(∧ D(x) → ∃yψ(x, y)).

Conversely, suppose that D |=/ O ϕ(c1, ..., cm). Then D |=O ∀yψ∗(c1, ..., cm, y),
where ψ∗ is the prenex formula equivalent to ¬ψ (obtained by, say, working
the outer negation sign all the way in). So, for each Di such that D ⊆cm+1

Di , Di |=O ψ∗(c1, ..., cm, cm+1). Therefore, by induction hypothesis, A(O) �
∀x, y(

∧
Di(x1, ..., xm, y) → ψ∗(x1, ..., xm, y)) for each such Di . But clearly

(3.28) A(O) � ∀x, y(
∧

D(x) → ∨
i

∧
Di(x, y))9

So, A(O) � ∀x, y(
∧

D(x) → ψ∗(x, y)), and consequently A(O) � ∀x(∧D(x) →
¬∃yψ(x, y)). Suppose that A(O) � ∀x(∧D(x) → ∃yψ(x, y)). Then by classical
logic A(O) � ∀x(∧D(x) → (∃yψ(x, y)∧¬∃yψ(x, y))). So A(O) � ∀x¬ ∧

D(x)

9In fact this is a theorem of ordinary predicate logic. Note that the formula is meaningful, since there are
only finitely many extensions Di that are diagrams for the language L

⋃{c1, ..., cm}. So ∨
i

∧
Di(x, y) is

a finite disjunction.
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and thus A(O) � ¬∃ x
∧

D(x). But, by the first half of the proof, for every sentence
ϑ derivable from A(O) and every diagram D′ of O, D′ |=O ϑ . So, we conclude
that D |=O ¬∃ x

∧
D(x). But evidently D |=O ∃x∧

D(x), which entails that
D |=/ O¬∃ x

∧
D(x). So by reductio we conclude that A(O) � ∀x(∧D(x) →

∃yψ(x, y)).
This completes the proof of (3.25) for the case that L has finitely many predicates.

When L has a denumerably infinite number of predicates, then L is the union
⋃

n Ln

of languages Ln each of which has finitely many predicates and where, for each n,
Ln ⊂ Ln+1. It is easy to see that the union of the axiom sets A(Ln) for n = 1, 2, ...
axiomatizes T h(O) where O is an open model for L. Evidently the axioms in this
union are all of the required form. This concludes the proof of Theorem 13.

Let L be a language with finitely many predicates and no individual constants and
suppose that M is any parametric model for L that shares some of the chief properties
of open models: in particular, suppose M is a weak net, has an inexhaustible set of
constants, is reductively complete and has the universal understudy property. Then,
according to Theorem 8, T h(M) contains all of first-order logic. Moreover, it is easy
to see that T h(M) is axiomatized by the set A(M), consisting of

(e) all axioms of the form ∀x(∧ D(x) → ∃y
∧

D′(x, y)), where for some
c1, ..., cm, cm+1, D(c1, ..., cm), D′(c1, ..., cm, cm+1) ∈ M and D ⊆cm+1 D′; and

(f) all axioms of the form ∀x, y(
∧

D(x) → ∨
i

∧
Di(x, y)), where for

some c1, ..., cm, cm+1, D(c1, ..., cm) ∈ M and D1(c1, ..., cm, cm+1), ...,
Dn(c1, ..., cm, cm+1) are all the Di ∈ M such that D ⊆cm+1 Di .10

We summarize this result as

Theorem 14 Suppose that M is a parametric model for a language L with finitely
many predicates and no individual constants and that M is a weak net, has an inex-
haustible set of constants, is reductively complete and has the universal understudy
property. Then T h(M) is the first-order theory axiomatized by the axioms of forms
(e) and (f) above.

The proof of Theorem 14 is completely analogous to that of Theorem 13. We
remark that, although A(M) will in general be more comprehensive than the special
set A(O) we defined in connection with Theorem 13, it remains true that A(M) is
a set of axioms all of which are of ∀∃ form. (Purely universal formulas can also be
regarded as (degenerate) instances of this form.) Note also that Theorem 14 entails
that the axiomatization we have proposed for the theory of open models with empty
core can be simplified somewhat: we can make do with those axioms of the form
∀x1, ..., ∀xn∃y1, ..., ymF(x, y) in which m = 1 (i.e. those in which the initial univer-
sal quantifiers are followed by a single existential quantifier). Inspection of the proof
of Theorem 13 shows that it goes through also when we impose this restriction on
the form of the axioms of A(O).

10Note that because of the properties of M the choice of constants here is immaterial.
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If M is not reductively complete but satisfies the other conditions mentioned in
Theorem 14, then in general no simple axiomatization results for T h(M) seem to
be forthcoming. However, an axiomatization similar to the one given in Theorem
14 can be formulated for the case where reductive completeness is replaced by the
following weaker condition: there is a fixed natural number k such that, whenever
D, D′ ∈ M and D ⊆ D′, there is for each c ∈ ConD′ − ConD a D′′ ∈ M such
that D ⊆ D′′ ⊆ D′, c ∈ ConD′′, and |ConD′′| ≤ |ConD| + k. The quantifier over
y in the axioms ∀x, y(D(x) → ∨

i Di(x, y)) then has to be replaced by a string of k

quantifiers over distinct variables y1, ..., yk .
Returning to the preconditions of Theorem 14, note that even if T h(M) is axiom-

atized by a set of ∀∃-formulae, this does not entail that the theory is decidable or
even that it is recursively enumerable. (Even a theory axiomatized by atomic sen-
tences need not be r.e.; it will be if and only if the specified axiom set is.) Suppose
that M satisfies the hypothesis of Theorem 14. Since T h(M) is a complete first-
order theory, it will be decidable iff A(M) is recursively enumerable. The recursive
enumerability of A(M) can be restated as follows. We can associate with M a func-
tion fM defined on the finite diagrams D(c1, ..., cm) in M , which assigns to each
such diagram the set of diagrams D′(c1, ..., cm, cm+1) such that for some constant
c′
m+1D

′(c1, ..., cm, c′
m+1) ∈ M . Because of the special properties of M , this set is

finite and independent of the choice of constants. (That is, if D(c1, ..., cm) ∈ M and
c′
1, ..., c

′
m is some other m-place sequence of constants, then D(c′

1, ..., c
′
m) will also

belong to M; and, likewise, the set of diagrams D′(c′
1, ..., c

′
m, cm+1) that makes up

the f -value f (D(c′
1, ..., c

′
m)) is independent of the choice of c′

1, ..., c
′
m, cm+1.) That

the f -values are finite sets follows from the fact that the arguments of f are finite
diagrams and that the diagrams in f -values extend the f -arguments with just one
constant.

The connection between the decidability of T h(M) and f is stated in Theorem 15.

Theorem 15 T h(M) is decidable iff the graph of f is recursively enumerable.

Proof It is convenient to assume that x1, ..., xm, xm+1 is a fixed enumeration
of the variables of L and to recast f in the form of a function f ′ which is
defined on the set of those finite ‘diagrams’ D(x1, ..., xm), such that for some
c1, ..., cmD(c1, ..., cm) ∈ M and which assigns to each such ‘diagram’ the finite set
of ‘diagrams’ D′(x1, ..., xm, xm+1) such that D′(c′

1, ..., c
′
m, c′

m+1) ∈ M for some c′
1,

..., c′
m, c′

m+1. (The remarks above about invariance of M under replacement of con-
stants guarantee that f ′ is well-defined and that its graph is r.e. iff the graph of f

is.)
First, assume that the graph of f ′ is recursively enumerable. Suppose ϕ is a

sentence of the form (e) specified in the paragraph above Theorem 14; that is, ϕ

is of the form ∀x(∧D(x) → ∃y
∧

D′(x, y)). The set of axioms of T h(M) of
this form is enumerated by f ′ in the following way: whenever f ′ generates a pair
< D(x1, ...xm), {D1(x1, ...xm, xm+1), ..., Dn(x1, ...xm, xm+1)} > and D′ is among
the D1, ..., Dn, then ϕ is registered as one of the axioms; formulas ϕ such that
D′ /∈ {D1(x1, ...xm, xm+1), ..., Dn(x1, ...xm, xm+1)} will be registered at no point
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and thus not be included in the list. As regards formulae of the form (f): these are
included in the enumeration of the axioms of T h(M) iff and when the enumeration
of the graph of f ′ yields the pair < D(x1, ...xm), {D1(x1, ... xm, xm+1), ..., Dn(x1,

... xm, xm+1)} >. Since T h(M) is a complete theory, the recursive enumerability of
an axiomatization of it entails its decidability.

For the converse assume that T h(M) is decidable. To generate the graph of f ′
we proceed as follows. Let D(x) be any finite ‘diagram’ of L. We consider all sen-
tences of the form (f) ∀x, y(

∧
D(x) → ∨

i

∧
Di(x, y)) for the givenD and arbitrary

disjunctions
∨

i

∧
Di(x, y), in which the Di are ‘diagrams’ for L. Since T h(M) is

decidable, we can generate it recursively. Suppose that in the course of generation
we hit upon a sentence of the form (f). Then we know that f ′(D) is included in the
set of D′ that occur among the disjuncts of

∨
i

∧
Di(x, y)). But since this last set is

finite, there is only a finite number of sentences of form (f) such that the set of con-
junctions

∧
D′(x, y) that occur as disjuncts of their consequents is included within

the set of disjuncts
∧

Di(x, y) in the sentence that has just been generated. (Since
that set is finite, it has only finitely many subsets.) We can check for each of these
finitely many sentences whether or not it also belongs to T h(M). Among these sen-
tences there will be one for which the set of ‘diagrams’ D′ occurring as disjuncts in
its consequent is minimal (i.e., is included in the sets of disjuncts that make up the
consequents of all the other sentences of this form that are true in M; we leave the
proof of this to the reader). This sentence will define the value of f ′(D): f ′(D) is
the set of ‘diagrams’ D′(x, y) occurring as disjuncts in its consequent. In this way
we can generate the graph of f ′, and from that the graph of f .

An obvious consequence of Theorem 15 is that when f is a recursive function,
then T h(M) is decidable. (If f is recursive, then its graph is r.e.)

All the results of this section show (in their different ways) the simplicity of the
first-order theories of parametric models that satisfy enough closure and uniformity
conditions.

4 The Class of all Parametric Models

In this section we deal with the notions of validity and logical consequence with
respect to the class of all parametric models. As we remarked earlier, these notions
are weaker than their classical counterparts, in the sense that fewer formulae are valid,
and (with only marginal exceptions) fewer formulae are logical consequences of any
given formula set. Since our treatment of the sentential connectives is classical, the
parametric and classical notions of validity and consequence coincide for quantifier-
free formulae. But in the realm of quantification there are important differences. For
instance, none of the following classical theorems are valid parametrically:

(4.1) ∀x(ϕ → ψ) → (ϕ → ∀xψ), where x is not free in ϕ. (Quine’s axiom schema
(3.2) above)

(4.2) (ϕ → ∀xψ) → ∀x(ϕ → ψ), where x is not free in ϕ. (The converse of (4.1))
(4.3) ∃x∀yϕ → ∀y∃xϕ
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(4.4) (∃xϕ ∧ ∃yψ) → ∃x∃y(ϕ ∧ ψ), where x does not occur in ψ and y does not
occur in ϕ)

(4.5) ∀x∀y(ϕ ∨ ψ) → (∀xϕ ∨ ∀yψ), where x does not occur in ψ and y does not
occur in ϕ)

In general, formulas that Quine calls ‘rules of passage’ are not parametrically
valid.

It may be instructive to see in concreto why these schemata are not parametrically
valid. For example, consider (4.1)’s instance:

(4.6) ∀x(∃yPy → Px) → (∃yPy → ∀xPx)

Let us assume that the language L, for which we define a parametric model in which
(4.6) fails, is as small as it can be if it is to have (4.6) as one of its sentences; in
other words, the only nonlogical constant of L is the 1-place predicate P . Let M

be the parametric model {D0, D1, D2} where D0 = ∅, D1 is a diagram such that
ConD1 = {c1} and D1(P c1) = 0, and D2 is a diagram such that ConD2 = {c2} and
D2(P c2) = 1. Then �∀x(∃yPy → Px)�D0,M = 1. For it is true for Di(i = 0, 1, 2)
that, for any constant c′ in ConDi , �∃yPy → Pc′�Di,M = 1. (For i = 0 this is true
vacuously, since ConD0 = ∅; for i = 1 it is true since �∃yPy�D1,M = 0; and for
i = 2 it is true because �Pc2�D2,M = 1.) Also, �∃yPy�D0,M = 1, in view of the
fact that D0 ⊆ D2, and that �Pc2�D2,M = 1. But �∀xPx�D0,M = 0 in view of the
fact that �Pc1�D1,M = 0. So �(4.6)�D0,M = 0. We leave it to the reader to construct
counterexamples to (4.2)-(4.5).

An axiomatization of parametric validity should involve a combination of

– Some complete axiomatization of classical sentential logic, and
– Some set of axioms and rules that, when joined with that axiomatization, give

a weaker system of proof than classical quantification theory, and which, in
particular, do not yield any of (4.1)-(4.5) as theorems.

Our choice of axiomatization has been guided, first, by the advantages of genuinely
axiomatic systems (i.e., systems which consist mostly of axioms and have only a
few simple inference rules) when it comes to proving soundness and completeness,
and, second, by the desire that it should be easy to compare our system to familiar
axiomatizations of classical predicate logic. This has led us to adopt for our present
purpose a system the inference rules of which are Modus Ponens (MP) and Universal
Generalization (UG).

Including UG entails that proofs in general consist not only of sentences (i.e.,
closed formulae) but also of formulae with free variables; this happens even in cases
where the theorem to be proved itself is without free variables. We thus need a def-
inition of validity that applies to open as well as closed formulae. To this end we
generalize the definition of parametric validity we gave earlier in the way suggested
by UG: the validity of an open formula is equivalent to that of its universal closure. A
formula ϕ is parametrically valid iff for every parametric model M , diagram D ∈ M

and function f such that Domf includes the set of variables with free occurrences
in ϕ and Ranf is a set of constants included in ConD, �f (ϕ)�D,M = 1 (where f (ϕ)

is the result of replacing each free occurrence of any variable x in ϕ by the constant
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f (x)). Likewise we say that the formula ϕ is a parametric consequence of a set of
formulae Γ iff for every parametric model M , diagram D ∈ M and function f such
that Domf includes the set of variables with free occurrences in ϕ and the formulae
in Γ , if �f (ψ)�D,M = 1 for every formula ψ in Γ , then �(f (ϕ)�D,M = 1. Note that
in order to show that a formula ϕ is parametrically valid it is enough to show that for
every model M and c1, ..., cn ∈ D0(M), D0(M) |=M ϕ(c1/x1, ..., cn/xn). This fol-
lows from the fact that if D is any diagram of M , then M ′ = {D′ ∈ M : D ⊆ D′} is
a parametric model with core D and, for each ϕ ∈ L(D), D |=M ′ ϕ iff D |=M ϕ.

The axiom system we have chosen is formulated, for convenience, for languages
containing all the familiar logical operators (¬, →, ∧, ∨, ↔, ∀, ∃) as primitives. Let
L be such a language.11 The system, A, has, in addition to the rules

MP

�A ϕ

�A ϕ → ψ

�A ψ

UG

�A (ϕ)y/x, where y does not occur inϕ,

�A ∀xϕ

all formulae (with or without free variables) that instantiate one of the following
axiom schemata:

1. The following complete set of schemata for classical sentential logic with ¬ and
→ as primitives:

(a) ϕ → (ψ → ϕ)

(b) (ϕ → (ψ → θ)) → ((ϕ → ψ) → (ϕ → θ))

(c) (¬ψ → ¬ϕ) → (ϕ → ψ)

2. The quantificational schemata

(a) Universal Instantiation (UI)

∀xϕ → (ϕ)t/x, where t is a term free for x inϕ

(b) Distributivity (DIS)

∀x(ϕ → ψ) → (∀xϕ → ∀xψ)

(c) Restricted Vacuous Quantification (RVQ)
ϕ → ∀xϕ, where x does not occur free in ϕ and either (a) ϕ is quantifier-
free or (b) ϕ is a universal formula (i.e. ϕ is of the form ∀zψ , where ψ can
be any formula).

11This switch is strictly one of convenience; we could, at some slight cost, have persisted with languages
based on the logical vocabulary consisting of just ¬,→ and ∀.
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3. Schemata that ‘define’ the logical constants ↔, ∧, ∨, and ∃ in terms of ¬, →
and ∀ in the standard way.

Later on the following facts about A will be useful:

(T1) �A ∀x(ϕ ∧ ψ) ↔ (∀xϕ ∧ ∀xψ)

(from (2.b) and the definition of ∧ in terms of → and ¬)

(T2) �A ∀x(ϕ → ψ) → (∃xϕ → ∃xψ)

(from (2.b) and the definition of ∃ in terms of ∀ and ¬)

(T3) �A ∃x(ϕ ∨ ψ) → (∃xϕ ∨ ∃xψ)

(from (2.b) and the definitions of ∃ and ∨ in terms of ∀, → and ¬)

(T4) �A (∀xϕ ∧ ∃xψ) → ∃x(ϕ ∧ ψ)

(from (2.b) and the definitions of ∃ and ∧ in terms of ∀, → and ¬)

(T5) (Change of Bound Variables)
�A ∀xϕ → ∀y(ϕ)y/x, where x is free for y in ϕ and y has no free

occurrences in ϕ

First we show this for the special case where y does not occur in ϕ at all. (Then
y has no free occurrences in ϕ and x is free for y in ϕ.) For this special case the
argument is simple: �A ∀xϕ → [ϕ]y/x by (2.a); so �A ∀y(∀xϕ → [ϕ]y/x) by UG;
so �A ∀y∀xϕ → ∀y[ϕ]y/x; but �A ∀xϕ → ∀y∀xϕ by (2.c); the transitivity of →
gives us what we want.

To prove the general case on the basis of this partial result is more work. In general
when y has no free occurrences in ϕ and x is free for y in ϕ, y may nevertheless have
bound occurrences inside ϕ (so long as the quantifiers that bind these occurrences do
not have free occurrences of x within their scope). To reduce this case to the restricted
case we have proved involves a fair amount of formula transformation. We do not
spell this out, for one thing because it is only the restricted form that we will be using
later on in the completeness proof.

(T6) �A (∀xϕ ∧ ∀yψ) → ∀x∀y(ϕ ∧ ψ), provided x does not occur free in ψ

From (2c) we get: �A ∀xϕ → ∀y∀xϕ and, from this by propositional logic and (T1,)
�A (∀xϕ ∧ ∀yψ) → ∀y(∀xϕ ∧ ψ). By U.G. and (2.b), �A ∀x(∀xϕ ∧ ∀yψ) →
∀x∀y(∀xϕ ∧ ψ). By more applications of (2.c) and (T1), �A (∀xϕ ∧ ∀yψ) →
∀x(∀xϕ ∧ ∀yψ). So, combining, we get �A (∀xϕ ∧ ∀yψ) → ∀x∀y(∀xϕ ∧ ψ). But,
by (2.a), �A ∀xϕ → ϕ, so, combining this with the previous line and by further
applications of (2.b) and propositional calculus, �A (∀xϕ ∧ ∀yψ) → ∀x∀y(ϕ ∧ ψ).

As is typical of axiomatic characterizations of provability, A accounts directly
only for the provability of logical theorems: �A ϕ iff there is a finite sequence of
formulae containing ϕ such that each formula in the sequence is either an axiom or
comes from one or two formulae earlier in the sequence by Universal Generalization
or Modus Ponens. The notion can be extended in the usual way to cover provability
from nonlogical premisses: We say that ϕ is provable in A from the set of formulae
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Γ iff there are γ1, ..., γn ∈ Γ such that �A (γ1 ∧ ... ∧ γn) → ϕ. A set Γ of formulae
is called A-inconsistent iff ψ ∧ ¬ψ is provable from Γ for some formula ψ , and is
called A-consistent otherwise.

Theorem 16 A sentence ϕ of a given language L is a parametric consequence of the
set Γ of sentences of L iff Γ �A ϕ.

Proof The proof of A’s soundness is straightforward. We have to show (i) for each
axiom schema  of A, if M is a parametric model for L, D a diagram of M , ψ is any
formula of L that instantiates the schema  and f any function that maps the free
variables of ψ to constants belonging to ConD, then �f (ϕ)�D,M = 1; and (ii) both
inference rules (MP and UI) preserve validity.

The least problematic are the rule and schemata relating to sentential logic (i.e.
MP, (A.1.a)–(A.1.c) and the ‘definitions’ for ∧, ∨ and ↔ in terms of → and ¬
alluded to in (A.3)). The cases that deserve attention are the axioms (A.2.a)–(A.2.c)
and the rule UG. Here we explicitly consider only (A.2.c) and UG. (UI is just
(3.1) above.)

RVQ (= A.2.c): First suppose that ϕ is an atomic formula, that x does not occur
free in ϕ and that y1, .., yk are the free variables of ϕ → ∀xϕ. Suppose that M is a
parametric model forL,D a diagram ofL and c1, .., ck constants belonging toConD

such that �[ϕ]c1/y1...ck/yk�D,M = 1. Then, since [ϕ]c1/y1...ck/yk is an atomic sen-
tence, D([ϕ]c1/y1...ck/yk) = 1. So, for all D′ ∈ M such that D ⊆ D′, D′([ϕ]c1/y1
... ck/yk) = 1. But since x is not free in ϕ, we have that for any c[ϕ]c1/y1 ... ck/yk

is the same formula as [ϕ]c1/y1 ... ck/yk, c/x. So, for all D′ ∈ M such that D ⊆ D′,
�[ϕ]c1/y1 ... ck/yk, c/x�D′,M = 1. So, �∀x[ϕ]c1/y1 ... ck/yk�D,M = 1. Second,
when ϕ is the negation of an atomic formula, i.e. ϕ = ¬ψ for some atomic formula
ψ , then we infer from �[ϕ]c1/y1 ... ck/yk�D,M = 1 that D([ψ]c1/y1 ... ck/yk) = 0.
In all other respects the argument proceeds in the same way as in the case where ϕ

is atomic. Thirdly, suppose that ϕ is of the form ∀zψ . We have to show, for any M ,
D and c1, .., ck as above, that if �[ϕ]c1/y1 ... ck/yk�D,M = 1, then �∀x[ϕ]c1/y1 ...
ck/yk�D,M = 1. Suppose that �[ϕ]c1/y1 ... ck/yk�D,M = 1. Then

(∗) forallD′ ∈ M that suchD⊆D′ and c∈ConD′, �[ψ]c/z, c1/y1...ck/yk�D′,M =1.

We have to show that for all D′ ∈ M such that D ⊆ D′ and c′ ∈ ConD′,
�[ϕ]c′/x, c1/y1 ... ck/yk�D′,M = 1. But since x has no free occurrences in ϕ, this last
condition can be rewritten as �[ϕ]c1/y1 ... ck/yk�D′,M = 1. This condition holds iff
for allD′′ ∈ M such thatD′ ⊆ D′′ and c′ ∈ ConD′′�[ψ]c′/z, c1/y1 ... ck/yk�D′′,M =
1. However, D′ ⊆ D′′ and D ⊆ D′ entail D ⊆ D′′. So D′′ and c′ satisfy the
preconditions in (*). So �[ψ]c′/x, c1/y1 ... ck/yk�D′′,M = 1.

UG: Suppose that the formula (ϕ)y/x of L is valid and that this formula has, in
addition to y, the free variables z1, ..., zk . Let M be any parametric model for L.
Then, for all D ∈ M and all c, c1, ..., ck ∈ ConD, �(ϕ)c/x, c1/z1 ... ck/zk�D,M = 1.
So, for all D ∈ M and all c1, ..., ck ∈ ConD, �(∀xϕ)c1/z1 ... ck/zk�D,M = 1. Hence,
∀xϕ holds in M at D0(M). Since this is true for arbitrary models M , ∀xϕ is valid.

So much for the soundness part.
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The general strategy of our completeness proof is familiar. As in classical logic,
Γ �A ϕ entails that the set Γ ∪ {¬ϕ} is A-consistent. So it suffices to show that
for every A-consistent set Γ of sentences there is a parametric model in which all
the sentences in Γ are true. We will describe the construction of such a model using
the method of semantic tableaux. We will, that is, build up inductively a ‘semantic
tableau structure’ T from which a model with the desired property can be derived
in a straightforward, mechanical manner. The tableau structure will have the struc-
ture of a tree, each node of which determines a diagram of the parametric model
that can be derived from it. Furthermore, if t, t ′ are nodes of the tree and t ≤ t ′ in
the sense of the tree ordering ≤, then the diagram determined by t ′ extends the dia-
gram determined by t . The finite stages of the construction can be regarded as finite
approximations of T in two respects: (i) the set of nodes of T will be the limit of the
finite sets of nodes that can be found at the successive construction stages and (ii)
for each node t in T the values assigned to t by decoration functions dn at succes-
sive construction stages n are finite approximations of the decorations assigned to t

in T .
We represent our trees as sets of finite sequences of natural numbers; that is, the

nodes of our trees are finite number sequences. <> is the empty sequence, and <

n1, ..., nk> is the sequence of the numbers n1, ..., nk . The ordering relation ≤ of such
a tree T is the relation that holds between two nodes t and t ′ iff t is an initial segment
of t ′.� is the operation of concatenation on sequences. In particular, if t is a sequence
and k a natural number, then t �<k> is the sequence obtained by appending k to t .
In this case we also write ‘t � k’.

By a (canonical) tree we understand any nonempty set T of finite sequences of
natural numbers such that, if t� < k >∈ T , then (i) t ∈ T ; and (ii) if k = r + 1
then t�< r > ∈ T . From here on we only consider canonical trees and we drop the
qualification ‘canonical’.

In the tableau construction we will often need to distinguish between different
‘copies’ of the same tree. We therefore index our trees, with finite binary sequences
(i.e. finite sequences of 0s and 1s) as indices. Thus, by an indexed tree we understand
a pair < r, T >, where r is a finite binary sequence and T is a tree; r will be called
the index of <r, T >.

Tableau structures are ‘decorated’ indexed canonical trees —to be precise, they
are pairs consisting of an indexed tree < r, T > and a function d from the nodes of
T to pairs of sets of formulae. (d will be referred to as the decoration (function) of
the tree.) The intuitive significance of the decorating pairs is this: The first member
of the pair d(t) (to which we refer as d(t)+) assigns as value to a node t of T a set
of sentences that should be thought of as appearing under the heading ‘TRUE’ of the
semantic tableau determined by t and the second member of d(t), d(t)−, contains
the set of formulae that should be thought of as appearing under the heading FALSE
of that tableau.

To define the notion of a tableau structure for our given language L formally
we need to have at our disposal an infinite sequence of constants disjoint from the
symbols of L. Let C be a denumerably infinite set of such constants and let c1, c2, ...
be some fixed enumeration of it.

We can now define the notion of a tableau structure for L as follows:
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A tableau structure for L is a pair << r, T >, d >, where < r, T > is an indexed
tree and d is a function from T to pairs of sets of sentences of L ∪ C. Where <<

r, T >, d > is a tableau structure, we refer to r as the index of <<r, T >, d > and to
the nodes of T as the nodes of <<r, T >, d >. We also refer to the tree of the tableau
structure <<r, T >, d > as ‘Tr ’ and to its decoration function as ‘dr ’.

A node t of a tableau structure << r, T >, d > is closed in << r, T >, d > iff
d(t)+ ∩ d(t)− �= ∅; otherwise t is open in << r, T >, d >. A tableau structure
<< r, T >, d > is closed iff there is at least one node t in T such that t is closed in
<<r, T >, d >; otherwise <<r, T >, d > is open.12

Tableau structures for L emerge in the course of tableau constructions for sets Γ

of sentences of L. The initial stage of this tableau construction is the indexed tree
<<<>, {<>}>, d >, where d(<>)+ = Γ and d(<>)− = ∅.

As the tableau construction proceeds from this starting point, new constants from
the set C may be introduced, so that for nodes t of the unfolding tableau structure
the sentences that make up d(t) will all belong to some extension L ∪ {c1, ..., cn} of
L, where < c1, ..., cn > is an initial segment of the fixed enumeration of C. There
will always be a minimal segment < c1, ..., cn > for which this is true—i.e. the
segment which consists of just those constants from C that make up the set Con(t)
= {c : c occurs in some sentence belonging to d(<>)+ ∪ d(<>)−}. We will refer
to the language L ∪ {c1, ..., cn}, where < c1, ..., cn > is fixed in this way, as the
‘language of t (in the given tableau structure)’, or, more succinctly, when it is clear
which tableau structure is at stake, as ‘L(t)’.

In general tableau constructions will not produce single tableau structures, but
‘disjunctive’ sets of such structures. We refer to these sets as tableau structure sets.
Tableau structure sets consisting of more than one element are the result of certain
tableau construction operations that ‘split’ a given tableau structure into two (so-
called ‘splitting operations’). Since at any stage n of the construction only finitely
many operations have been performed, and so a fortiori only finitely many operations
can have been performed that produce splitting, the tableau structure set will at each
finite stage of the construction be a finite set.

Tableau structure sets too can be distinguished into ‘open’ and ‘closed’. A tableau
structure set is closed iff each of the tableau structures belonging to it is closed;
otherwise the set is open.

When models for sentence sets Γ are constructed by the method of tableau con-
struction, it is crucial that every possible application of any one of the construction
operations that define the construction procedure be carried out at some stage. Oth-
erwise the construction might fail to identify the inconsistency of Γ in cases were
it is inconsistent. So, the construction procedure has to be set up in such a way that
no applications are missed. Here is one way in which we can make sure of this. Let
stage be an enumeration in which every quadruple < r, t, ϕ, p >, where r is a finite
binary sequence, t is a finite sequence of natural numbers, ϕ is a sentence of L ∪ C

12Note that this differs from the usual definition of tableau closure. Here, what corresponds to a model is
not a branch but an entire tableau structure set.
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and p is a ‘polarity’ (i.e. p ∈ {+, −}), occurs infinitely often. For each starting
stage {<<>, {<>}, < Γ, ∅ >>}, stage determines a unique tableau construction,
in which the order of rule applications is completely fixed, as follows: For each con-
struction stage n of the construction let Sn be the tableau structure set constructed at
stage n. Suppose that Sn has been constructed. Let m be the smallest integer such that
m = stage(< r, t, ϕ, p >) and the quadruple < r, t, ϕ, p > determines a possible
operation execution on Sn; that is, the construction operation determined by ϕ and p

can be executed at the node t that is part of the tableau structure in Sn with index r ,
because ϕ belongs to the set d(t)p. (The construction operations are defined below.)
Thus < r, t, ϕ, p > determines a possible operation on Sn only if (i) Tn contains a
tableau structure << r, Tr >, dr > whose index is r; (ii) << r, Tr >, dr > contains
the node t ; and (iii) ϕ ∈ dr(t)

p. When no such m can be found, then the construction
comes to a halt and is complete.

When < r, t, ϕ, p > determines a possible operation execution on Sn, then there
is, as we already indicated, a unique operation that can be applied to ϕ as a member
of dr(t)

p. This operation is determined by the form of ϕ and the value of p. Our next
task is to state these operations in detail. The relevant aspects of the form of ϕ are (i)
whether or not ϕ is atomic; and (ii) in case ϕ is not atomic, its main logical operator
(i.e. the one with widest scope). We state the operations only for the cases where ϕ

is atomic or where its main operator is one of ¬, →, and ∀—from these operations
those for the remaining logical operators are easily inferred, given their ‘classical
definitions’ in terms of ¬, → and ∀—and for each of these four cases we separately
consider the sub-cases where p = + and where p = −. We first consider the cases in
which ϕ is of the form ¬ψ , ψ1 → ψ2 and ∀xψ , respectively, and only then the one
where ϕ is atomic.

1. Suppose ϕ is the sentence ¬ψ and that p = −. Then we add ψ to the set dr(t)
+,

while removing ϕ from dr(t)
−.

The over-all effect on Sn (i.e. on the transition from Sn to Sn+1) is the same for all
operations and we state it only once: The tableau structure containing the node t at
which the operation is executed gets replaced by the tableau structure (or, in the case
of operation 4, the two tableau structures) into which the operation transforms it. In
all other respects Sn+1 is like Sn.

Notation: The change brought about by executions of operation 1 concerns the
tableau structure Tr , and, more specifically, the function dr . Since after the operation
Tr and dr are different from what they were before, it will often be useful to have
an unambiguous way of referring to these distinct entities. To this end we introduce
the following convention: when the operation is executed at stage n, we refer to the
tableau structure Tr as it exists at stage n (before the operation has been executed) as
‘Tr,n’ and to the result of executing the operation on Tr,n as ‘Tr,n+1’; and likewise we
refer to the decoration function of Tr,n as ‘dr,n’ and to that of Tr,n+1 as ‘dr,n+1’.

2. Suppose that ϕ is ¬ψ and p = +. As operation 1, but with the superscripts +
and − on d interchanged.

3. Suppose that ϕ is the sentence ψ1 → ψ2 and that p = −. Then we add ψ1 to
dr(t)

+ and ψ2 to dr(t)
− and remove ϕ from dr(t)

−.
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4. Suppose that ϕ is the sentence ψ1 → ψ2 and that p = +. This is a case
of splitting. We form two new tableau structures << r0, Tr0 >, dr0 > and
<< r1, Tr1 >, dr1 >, where r0 = r �0 and r1 = r �1. << r0, Tr0 >, dr0 >

is like << r, Tr >, dr > except that dr0(t)
− = (dr (t)

− \ {ϕ}) ∪ {ψ1} and
<<r1, Tr1 >, dr1 > is like <<r, Tr >, dr > except that dr1(t)

+ = dr(t)
+ ∪ {ψ2}.

Tm is obtained from Tn by (a) removing << r, Tr >, dr > and replacing it by
<< r0, Tr0 >, dr0 > and << r1, Tr1 >, dr1 >. (In this case ϕ is removed from
dr(t)

+.)
5. ϕ is of the form ∀xψ and p = −. In this perhaps most interesting case we

introduce a new ‘tableau’, i.e., a new decorated node t ′, into <<r, Tr,n >, dr,n >.
t ′ is to be an immediate successor to t and so must be of the form t � m for some
m. In fact, in order that the set T ∪ {t �<m>} be a tree m must be the smallest
natural number such that {t �<m>} /∈ T . The function dr,n must be extended
to a function dr,n+1 whose domain is obtained by adding t ′ to the domain of dr,n.
And the new tableau that dr,n+1 associates with t ′ should contain a ‘witness’
[ψ]c/x for the formula ∀xψ occurring in dr,n(t)

−. This witness should involve
a new constant c; we choose c to be the first constant in the fixed enumeration of
C which does not occur anywhere in Sn. Since [ψ]c/x is to bear witness to the
falsity of ∀xψ , it must itself play the role of a false sentence; so it must become
a member of dr,n+1(t

′)−. In order to make sure that every atomic sentence of the
language L(t ′) associated with t ′ is decided in the tableau determined by t ′ as
it will emerge from the construction: We add to dr,n+1(t

′)+ all sentences of the
form ψ → ψ , where ψ is an atomic sentence of the language L(t ′) of t ′. So
dr,n+1(t

′)− = {(ψ)c/x} and dr,n+1(t
′)+ = {ψ → ψ : ψ ∈ L(t ′) and ψ atomic}.

Moreover, as in all previous operations, ϕ is removed (from dr,n(t)
−).

Comment: By adding all the tautologies ψ → ψ for atomic ψ from the language
L(t ′) to the set dr,n+1(t

′)+ eventually each atomic sentence from L(t ′) will be
decided at some later stage in the construction as part of the decoration of t ′ in some
tableau structure << r ′, Tr ′ >, dr ′ > with r ′ a (proper or improper) extension of the
index r . Note that since all sentences ψ → ψ are valid (and, as is easily seen, prov-
able as theorems from the axiom system A), there is no danger that by adding these
formulae to the ‘TRUE’ side of the tableau associated with t ′ an inconsistency will
be introduced that would not be there otherwise: if the tableau construction involving
these additions to dr,n+1(t

′)+ leads to closure, then so would the construction when
these sentences would not be added.

6. ϕ is of the form ∀xψ and p = +. In this case we must add to dr,n(t)
+ all for-

mulae of the form (ψ)c/x for c a constant of L(t). But this is not all. According
to the parametric definition of truth, a universal sentence is true in a parametric
model M at a diagram D iff all its instances are true in M at all D′ ∈ M such that
D ⊆ D′. In the model M that is to be extracted from the tableau construction in
the absence of closure the diagrams will be those associated with the nodes of
some tableau structure, and the partial order of the tableau structure will deter-
mine the inclusion relation between the diagrams of M . So we must make sure
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that all instances of ϕ will be verified at all t ′ ≥ t . One way to achieve this is to
add, for each immediate successor t ′ of t in Tr,n, to dr,n(t

′)+ (a) every formula
(ψ)c′/x for c′ a constant of L(t ′) and (b) the formula ϕ itself. Note well that in
this case we do not remove ϕ from dr,n(t)

+.

At last we come to the operations for atomic sentences. The operations involv-
ing atomic sentences can obviously not be ‘reducing operations’, in which a given
sentence is reduced to one or more syntactically simpler sentences. In fact, these
operations are ‘transfer operations,’ in which copies of atomic sentences belonging
to the decoration of a node t are added to the decorations of the successors of t .
Adding atomic ϕ to nodes t ′ > t is needed to guarantee that the diagrams D(t) of
the model M that we will extract from the tableau construction in case it does not
close (i.e. when no finite construction stage is a closed tableau structure set) stand in
the right inclusion relation to each other: if t < t ′ then D(t) should be the restric-
tion of D(t ′) to the language L(t) of D(t). Since the information about D(t) will in
general not be completely available at the points where new nodes t ′ > t are intro-
duced into the given tableau structure, information about the truth values of atomic
sentences (which is determinate of the diagram D(t) of the model M if and when
it is constructed) must be passed up to higher nodes to make sure that the diagrams
determined by those nodes are extensions of D(t). As in the case of rule 6, we
can achieve eventual transfer to arbitrary successors by specifying the operation as
transferring ϕ just to the immediate successors of t . Because of the way the tableau
construction has been set up, later applications of the rule to the occurrences of ϕ

in the immediate successors to t will transfer ϕ to their immediate successors, and
so on.

In the light of these considerations we can state the operations as in 7a and b.

7a. Suppose that ϕ is atomic and that p = −. Then, for each immediate successor
t �<m> of t in <<r, Tr >, dr >, we add ϕ to dr(t �<m>)−.

7b. Suppose that ϕ is atomic and that p = +. Then, for each immediate successor
t �<m> of t in <<r, Tr >, dr >, we add ϕ to dr(t �<m>)+.

In both 7a and 7b ϕ is retained as member of dr(t)
+/−.

For reasons analogous to those explained in our description of operation 5, we start
the tableau construction not from <<>, {<>}, < Γ, ∅ >> but from <<>, {<>

}, < Γ ′, ∅ >>, where Γ ′ = Γ ∪ {ψ → ψ : ψ is an atomic sentence of L}.
There are two possible outcomes to the tableau construction for Γ ′:

(i) at some stage n the set Sn is closed.
(ii) Sn is closed for no n.

When the tableau construction reaches a stage n such that Sn is closed, the con-
struction terminates at that point (by stipulation). On the other hand, if there is no
closure, then the construction may go on forever, i.e. it runs through an infinity of
stages Sn, for n = 1, 2, .... Strictly speaking this is not always so; but it is the rule
rather than the exception. It is also the more challenging possibility. So this is the
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case on which we will focus. (Constructions that come to a halt after a finite num-
ber of steps without closing are easier to handle. Readers who have gone through the
argument for the non-terminating constructions will have no problem adapting it to
the terminating ones.)

The two possibilities (i) and (ii) are each handled using a strategy familiar from
other completeness proofs in which the tableau method has been used. For possibility
(i) we show that the tableau construction can be reduced to one that also closes but
involves only a finite number of sentences as decorations of finitely many nodes of
finitely many tableau structures, and assign Representing Formulas to the successive
construction stages. The RF of the final stage can be shown to be refutable in the
axiom system A and this refutability can then be shown to transfer from the RFs
of later to those of earlier construction stages, leading to the conclusion that the set
Γ itself is A-inconsistent; in case (ii) we construct a parametric model in which all
sentences of Γ are true.

We first consider the second possibility. Suppose that no Sn is closed. Then each
Sn has at least one member << rn, Trn >, drn > which does not close. So, for each
n the set Rn of indices r which label open members of Sn is non-empty. Consider
the union R =

⋃
n=1,2,.... Rn of all these sets. R is a binary branching tree with the

‘initial-segment’ relation as tree ordering. This tree is either finite or infinite. In either
case it will contain a maximal branch of open tableau structures. (When the tree is
infinite, this follows from König’s Lemma; when the tree is finite, it is obvious.)
When the tree is finite, a maximal open branch will be finite too, and thus will have
a ‘maximal’ index. If the tree is infinite an infinite open branch may take the form
of an infinite sequence of growing finite sequences. It is this possibility we pursue
further. The case where the branch has a maximal index is similar but simpler.

Suppose that b is an infinite open branch of R, i.e. b is a function from the natural
numbers to finite binary sequences such that if k ≤ m, then b(k) is an initial segment
of b(m), and furthermore there is no largest sequence among the values of b. We can
use b to define a parametric model M as follows. For each construction stage n there
will be exactly one tableau structure <<r, Tr >, dr > in Sn such that r belongs to the
range of b. We refer to this tableau structure as <<rn, Trn >, drn >, or simply as Trn .
The infinite sequence {<< rn, Trn >, drn >}n∈ω is a chain in the following sense: if
n < m, then the set of nodes of Trn is a subset of the set of nodes of Trm and for each
node t of Trn , drn(t)

+ ⊆ drm(t ′)+ and drn(t)
− ⊆ drm(t ′)−.

The diagrams ofM from< Trn >n∈ω are defined from the nodes occurring in {<<

rn, Trn >, drn >}n∈ω (i.e. the nodes t such that for some n t occurs in Trn ). We want to
associate with each such t a diagram Dt in the language L(t). Unfortunately we can-
not simply use the pairs drn(t) for this, where Trn is some tableau structure to which
t belongs, e.g. by defining, for arbitrary atomic sentences of L(t), Dt(P c1, ..cm) = 1
iff Pc1, ..cm ∈ drn(t)

+ and Dt(P c1, ..cm) = 0 iff Pc1, ..cm ∈ drn(t)
−; for in general

the pairs < drn(t)
+, drn(t)

− > do not decide all atomic sentences of L(t). How-
ever, because our tableau construction is for the set Γ ′ rather than for the set Γ and
because we throw in all conditionals ψ → ψ for atomic sentences ψ of L(t) each
time a new node t is created, each atomic sentence is eventually decided at each node
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t , in the sense that there will either be an m such that ψ ∈ drm(t)+ or there will be
an m such that ψ ∈ drm(t)−. On the other hand, since all tableau structures Trn are
open, no sentence can both belong to a set drm(t)+ for one m > n and at the same
time belong to a set drm′ (t)− for some other m′ > n. Putting these two observations
together, and defining dω(t)+/− = ⋃

n∈ω drn(t)
+/−, we conclude that dω partitions

the sets of atomic sentences of L(t) into two halves, the ‘true’ atomic sentences of
L(t) and the ‘false’ ones. So, the following definition of the diagram Dt determined
by t in {<<rn, Trn >, drn >}n∈ω is coherent:

For any atomic sentence Pc1, ..cm of L(t), Dt(P c1, ..cm) = 1 iff Pc1, ..cm ∈
dω(t ′)+.

It should be clear that this definition makes Dt into a diagram for the language L(t),
and also, in virtue of the repeated applications of the operations 7a,b, that if t < t ′,
then Dt ⊆ Dt ′ .

The modelM that we obtain from the tableau construction is the set of all diagrams
Dt for all nodes t that occur in at least one of the tableau structures Trn . The partial
order of M is given by the set-theoretical inclusion of its diagrams (which as we have
seen is in its turn induced by the partial order relation between the nodes). That M is
a model of the kind we are looking for is captured by (4.11).

(4.11) All sentences ϕ ∈ Γ are true in M at D<>.

(4.11) is established by proving, via induction on complexity of formulae, the
stronger (4.12).

(4.12) If t is a node of Tω and ϕ is a sentence of the language L(Tω, t) then

(i) if ϕ ∈ dω(t)+, then �ϕ�Dt ,M = 1;
(ii) if ϕ ∈ dω(t)−, then �ϕ�Dt ,M = 0.

The proof of (4.12) is straightforward and we omit it.
The second main task in the proof of Theorem 16 is to show that if the tableau

construction for the set Γ ′ closes after some finite number of steps, then the set
Γ is A-inconsistent. Suppose that the tableau construction for the set Γ ′ closes at
stage N . Then SN is a closed tableau structure set. This means that each of the
tableau structures << r, T >, d > in SN is closed, which implies that each of
these tableau structures has at least one closed node. Since the construction of SN

involves only a finite number of construction steps, there will have been only finitely
many splittings. So SN is a finite set. Moreover, there can have been only finitely
many introductions of new nodes in each of the tableau structures that make up
this set; so in that sense each of the tableau structures is finite. But for all we have
said so far, the decorations of the nodes could still be infinite. However, from the
fact that SN is closed we can conclude that there is also a tableau construction that
ends with a closing stage SM and in which all decorations are pairs of finite sets.
To see this, first note that since each of the finitely many tableau structures in SN

is closed, there will be at least one closing node t in each such structure Tr,N , and
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the closure of each such t is determined by the occurrence of at least one sentence
ψ which belongs to both dr,N (t)+ and dr,N (t)−. For each Tr,N select one closing
node tr from this structure and for each of these nodes tr choose one sentence ψr

that belongs to both dr,N (tr )
+ and dr,N (tr )

−. And consider for each node t of each
of the tableau structures Tr,N in SN those finite subsets d ′

r,N (tr )
+/− of dr,N (tr )

+/−
which consist of (a) those sentences that are subjected to an operation in the course
of constructing SN and (b) the sentence ψr in case t is the selected closing node tr
of Tr,N . Now consider the following tableau construction: (i) the starting structure is
{<<>, {<>} >, < Γ ′′, ∅ >}, where Γ ′′ consists of those sentences of Γ ′ that
belong to the set d ′

r,N (<>)+. (ii) whenever an application of operation 5 introduces
a new node t of a tableau structure Tr,n at some stage n of the construction, then we
include in dr,n+1(t)

+ only that subset of the set of sentences prescribed for inclu-
sion by operation 5, which also belong to the set d ′

r,N (tr )
+. It is not hard to see

that this tableau construction will close just as the original construction of SN does,
since exactly the same operations will be performed in the two constructions at the
same nodes of the same tableau structures. For the remainder of the proof we deal
with this tableau construction for the set Γ ′′ and its successive stages S0, S1, ...,
SN .

Because the tableau structure sets Sn are all finite in the sense just described (i.e.
finite sets of finite tableau structures whose node decorations are finite sets), it is
possible to associate with them Representing Formulae RF(Sn) in such a way that
the following three conditions are fulfilled.:

(4.13) (i) RF(S0) is derivable in A from Γ ;

(ii) �A ¬RF(SN)

(iii) for all n < N , �A RF(Sn) → RF(Sn+1).

To define the Representing Formulae some more notation will be helpful. Recall
that when a new node is introduced, this is always through application of oper-
ation 5 on a sentence ∀xψ belonging to the negative decoration of some node
t . And this operation always involves the introduction of exactly one new con-
stant from C. Since these constants are uniquely determined by the nodes t ′ as
part of whose creation they are introduced, we can denote them as ct ′ . Let us also
choose, corresponding to the different ct ′ , distinct variables xt ′ , none of which occur
in SN .

The formulae RF(Sn) are defined as disjunctions of representing formulae
RF(Tr,n) for the members Tr,n of Sn. The formulae RF(Tr,n), in their turn, are
defined as the special cases RF(<>, Tr,n), of formulae RF(t, Tr,n) for arbitrary
nodes t of Tr,n. RF(t, Tr,n) is defined by inverse induction on the indexed tree Tr,n,
i.e., the recursion starts from the leaves and works its way back to the root. Before
defining RF(t, Tr,n), we associate with each node t of Tr,n its local representing
formula LRF(t, Tr,n):

(4.14) LRF(t, Tr,n) = ∧
d(t)+ ∧ ∧{¬ψ : ψ ∈ d(t)−},

Next we define, for each node t ∈ Tr,n, RF(t, Tr,n) as
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(4.15) RF(t, Tr,n) = LRF(t, Tr,n) ∧ ∧ ∃x(RF(t ′, Tr,n))x
′
t /c

′
t : t ′ is an immediate

successor of t in Tr,n.

Finally RF(Sn) is defined by

(4.16) RF(Sn) = ∨{RF(<>, Tr,n) : Tr,n ∈ Sn}
From the definition of the formulas RF(Sn), (4.13.i) follows immediately. (Since

S0 is a singleton set, RF(S0) just is the conjunction of some finite subset Γ ′′ of Γ ′.
Γ ′′ consists of (a) a finite set of sentences in Γ and (b) a finite set of sentences of the
form ψ → ψ . But the latter are all theorems of A. So clearly each of the conjuncts
of RF(S0) is provable from Γ and so the conjunction is, since A includes all of
classical propositional logic.)

Second, (4.13.ii) is also easily established, but the details are worth paying atten-
tion to, since they give us a first taste of how the quantificational schemata of A enter
into the arguments that are needed to establish (4.13.iii). To show that �A ¬RF(SN)

it is enough to show that �A ¬RF(Tr,N ) for each tableau structure Tr,N belonging
to SN . To show this we recall that each Tr,N contains a closing node tr . (The closure
of tr in the new construction is brought about in particular by the sentence ψr , since
the selection of the sentences entered into the different nodes t when they are intro-
duced (at the start of the construction as members of Γ ′′ or later on) guarantee that
ψr will belong to both the positive and the negative decoration of t as part of Tr,N .)
So LRF(t, Tr,N ) will be a conjunction of sentences that has both ψr and ¬ψr among
its conjuncts. Let us abbreviate the conjunction (ψr ∧ ¬ψr)xt/ct as ⊥t . Evidently
�A ¬ ⊥t and �A LRF(t, Tr,N ) →⊥t . Since LRF(t, Tr,N ) is among the conjuncts
ofRF(t, Tr,N ), we also have�A ¬RF(t, Tr,N ). Now suppose that t ′ is the immediate
predecessor of t . (If t has no immediate predecessor, then t = <> and we are done.)
Then one of the conjuncts of RF(t ′, Tr,N ) is the formula (∃xt )(RF(t, Tr,N )xt/ct ).
Since �A RF(t, Tr,N ) →⊥t ,

(4.17) �A (∃xt )RF(t, Tr,N )xt/ct → (∃xt ) ⊥t (by UG and (T2))

On the other hand, since �A ¬ ⊥t , �A (∃xt ) ⊥t→⊥t . So

(4.18) �A LRF(t ′, Tr,N ) →⊥t

From this we infer that �A RF(t ′, Tr,N ) →⊥t . If t ′ =<> we are done. If not,
and t ′′ is the immediate predecessor of t ′, then the same argument shows that �A

LRF(t ′′, Tr,N ) →⊥t and so on until <> is reached.
Most of the work that has to be done to prove (4.13) goes into proving (4.13.iii).

As we have seen in the argument for (4.13.ii), arguments concerning the proof-
theoretic properties of the Representing Formulae of tableau structures typically
involve inverse induction. Nevertheless the inductive argument we gave for (4.13.ii)
was not formalized as a proof by induction in the proper sense of the word. A proper
proof would have to proceed by induction on the length (as sequence) of the node
at which the operation that leads from Sn to Sn+1 is carried out. We do not see,
however, that anything of substance would be gained by such a formal execution of
the argument, whereas on the other hand a good deal of perspicuity would be lost.
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So, in our arguments for (4.13.iii) we will not proceed by a formal general induc-
tion but by example. The example we have chosen—of a tableau structure, shown in
(4.19), with some particular node t to which the tableau construction operations are
applied in the transition from Sn to Sn+1—is just complex enough to show where
the arguments that establish (4.13.iii) must make use of properties of the axiom
system A and which properties are needed. In the example the node t is the one
labeled ‘t4’.

(4.19)

Note that the Representing Formula of this tableau structure has the form shown
in (4.20.i) (using the canonical notions for our tree nodes) and in (4.20.ii) (using the
labels t0, t1 etc.).Here and in what follows, we abridge, for any tableau structure node
t ′,

∧
d(t ′)+ ∧ ∧{¬ψ : ψ ∈ d(t ′)−} as ∧

d(t ′).

(4.20) (i)

∧
d(<>) ∧
(∃x<0>)(

∧
[d(< 0 >)]x<0>/c<0> ∧

(∃x<00>)
∧

[d(< 00 >)]x<00>/c<00> ∧
(∃x<01>)(

∧
[d(< 01 >)]x<01>/c<01> ∧

(∃x<010>)
∧

[d(< 010 >)]x<010>/c<010> ∧
(∃x<011>)

∧
[d(< 011 >)]x<011>/c<011>) ∧

(∃x<1>)
∧

[d(< 1 >)]x<1>/c<1>
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(ii)

∧
d(t0) ∧
(∃xt0)(

∧
[d(t1)]xt0/ct1 ∧ (∃xt3)

∧
[d(t3)]xt3/ct3 ∧

(∃xt )(
∧

[d(t)]xt/ct ∧
(∃xt5)

∧
[d(t5)]xt5/ct5 ∧

(∃xt6)
∧

[d(t6)]xt6/ct6) ∧
(∃xt2)

∧
[d(t2)]xt2/ct2

We assume that the operation which leads from Sn to Sn+1 involves a sentence
that is part of the decoration of node t4 of the tableau structure displayed in (4.19).
In what follows we will refer to t4 also simply as t . (4.19) should be thought of as an
indexed tableau structure<< r, T >, d > belonging to Sn. We will for the remainder
of the proof refer to this tableau structure as Tr,n and to the result of applying the
operation that leads to Sn+1 as Tr,n+1.

We proceed by cases, one for each of the reduction operations that can lead from
Sn to Sn+1. Those cases where the reduction step concerns a sentential connective
are handled in the same way they are when semantic tableaux are used to prove
completeness for the classical propositional or predicate calculus [2]. We consider
here just one case, that where the formula ϕ has the form ψ1 → ψ2 and belongs to
the set d(t)+. In this case Sn+1 differs from Sn in that Tr,n is replaced by two new
tableau structures, Tr�0,n+1 and Tr�1,n+1, in each of which the decoration of the
node t has changed: in Tr�0,n+1ψ1 has been added to d(t)− and in Tr�0,n+1ψ2 has
been added to d(t)+. (Also ψ1 → ψ2 has been removed from the positive parts of the
decorations of the new copies of the node t . But this has no bearing on the argument
and we ignore it.) To show that �A RT (Sn) → RT (Sn+1) we need to show that
�A RT (Tr,n) → (RT (Tr�0,n+1) ∨ RT (Tr�1,n+1)). First, we show that

(4.21) �A RF(t, Tr,n) → (RF(t, Tr�0,n+1) ∨ RF(t, Tr�1,n+1))

Note that (4.21) instantiates the general distribution principle

(4.22) �A (θ ∧ (ψ1 ∨ ψ2)) → ((θ ∧ ψ1) ∨ (θ ∧ ψ2))

which is a classical tautology and so is provable in A.
Next we observe that (4.23) follows from (4.21) by UG and the A-theorems T2

and T4.

(4.23) �A (∃xt )[RF(t, Tr,n)]xt/ct → (∃xt )([RF(t, Tr�0,n+1)]xt/ct ∨ (∃xt )

[RF(t, Tr�1,n+1)]xt/ct )

From (4.23) we can deduce that �A RF(t1, Tr,n) → (RF(t1, Tr�0,n+1) ∨
RF(t1, Tr�1,n+1)). (This just involves classical propositional logic.) The same
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quantificational principles then enable us to conclude that �A RF(t0, Tr,n) →
(RF(t0, Tr�0,n+1) ∨ RF(t0, Tr�1,n+1)) and thus that �A RF(Tr,n) →
(RF(Tr�0,n+1) ∨ RF(Tr�1,n+1)).

Our next case is that where the operation leading from Sn to Sn+1 involves a
sentence ϕ of the form ∀xϑ and is reduced as a member of the set d(tr,n)

−. Recall
that this reduction involves the introduction of a new successor node t ′ to t into Tr,n.
(Given the form of our tableau structure Tr,n, t ′ is of the form t � 2.) The new
decoration function dr,n+1 in Tr,n+1 is the same as the old decoration function dr,n

for Tr,n for all nodes of Tr,n+1 other than t ′ (except that ϕ is removed from dr,n
−);

and for t ′ it is given in (4.24).

(4.24) (i) dr,n+1(t
′)+ = dr,n(t)

+∪, where is some finite subset of {ψ → ψ : ψ

is an atomic sentence of L(t ′)}; (ii) dr,n+1(t
′)− = dr,n(t)

− ∪ {[ϑ]ct ′/x}.
Here ct ′ is the constant introduced in the reduction of ϕ; so L(t ′) is the language
L(t) ∪ {ct ′ }.

We first show

(4.25) �A RF(t, Tr,n) → RF(t, Tr,n+1)

Comparing RF(t, Tr,n+1) with RF(t, Tn,r ) we see (from the definition of RF ) that
RF(t, Tr,n+1) is likeRF(t, Tr,n) except for having an additional conjunct of the form

(4.26) (∃xt ′)[∧ dr,n+1(t
′)]xt ′/ct ′

The conjuncts of (4.26) are (a) the sentences ψ → ψ from the set , all of which
are theorems of A, and (b) the sentence [¬ϑ)]ct ′/x. Since we have �A ψ → ψ for
each of the sentences of type (a), we also have, by UG, �A (∀xt ′)([ψ → ψ]xt ′/ct ′).
So by repeated applications of (T4) we obtain

(4.27) �A (∃xt ′)[¬ϑ]ct ′/x → (∃xt ′)[∧ dr,n+1(t
′)]xt ′/ct ′

In view of (4.27), showing �A RF(t, Tr,n) → RF(t, Tr,n+1) only requires that
we show �A RF(t, Tr,n) → (∃xt ′)[[¬ϑ]ct ′/x]xt ′/ct ′ . But this follows from the
fact that one of the conjuncts of the formula RF(t, Tr,n) is ¬∀xϑ . We also have
�A ¬∀xϑ → ∃x¬ϑ (because of the definition of ∃ in terms of ∀ and ¬) and
�A ∃x¬ϑ → (∃xt ′)[[¬ϑ]ct ′/x]xt ′/ct ′ (by (T5) and the fact that x is free for xt ′ in ϑ).
The remainder of the argument that �A RF(Sn) → RF(Sn+1) is as in the previous
case.

Next we consider the case where ∀xϑ is reduced as part of dr,n(t)
+. In this case

RF(t, Tr,n+1) differs from RF(t, Tr,n) in that for each of the nodes ti (i = 4, 5, 6)
dr,n+1(ti)

+ may contain additional conjuncts of the form [ϑ]c/x, where c is some
constant from the language L(ti). Moreover, each of these successor nodes now con-
tains the sentence ∀xϑ . To see that in this case (4.25) (i.e., �A RF(t, Tr,n) →
RF(t, Tr,n+1)) holds, we need to show that RF(t, Tr,n) entails each of the contri-
butions that are made to RF(t, Tr,n+1) by the new conjunctions

∧
dr,n+1(ti) for i =

4, 5, 6. We distinguish between case (a) where i = 4 and case (b) where i �= 4. In
case (a) ti is the node t , so [ϑ]c/x occurs as a conjunct of a conjunction which also
contains ∀xϑ . So in this case it follows from axiom schema (2.a) that the new con-
junction

∧
dr,n+1(t) is entailed by the old conjunction

∧
dr,n(t). (The argument goes
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through of course also when several conjuncts of the form [ϑ]c/x have been added
to dr,n(t)

+.) In case (b) the new constituents are conjuncts of existentially quanti-
fied conjunctions which in their turn are conjuncts of RF(t, Tr,n). Let us focus on
the case where i = 5 and where dr,n+1(t5)

+ differs from dr,n(t)
+ by just one con-

junct [ϑ]c/x as well as the sentence ∀xϑ itself. (Again the case where more than
one conjunct [ϑ]c/x has been added to dr,n(t)

+ is similar.) The relevant conjunct
of RF(t, Tr,n+1) is now (∃xt5)

∧[dr,n+1(t5)]xt5/ct5 , where [∧ dn+1,r (t5)]xt5/ct5 dif-
fers from [∧ dr,n(t5)]xt5/ct5 in containing the additional conjuncts [ϑ]c/x and
∀xϑ . Note that since ∀xϑ and (∃xt5)[

∧
dr,n(t5)]xt5/ct5 are both conjuncts of

RF(t, Tr,n),

(4.28) �A ∀xϑ ∧ (∃xt5)[
∧

dr,n(t5)]xt5/ct5 → (∃xt5)([
∧

dr,n(t5)]xt5/ct5 ∧
[[ϑ]c/x]xt5/c ∧ ∀xϑ)

This follows from (T4) and (T5), the fact that t5 does not occur in ϑ and the fact
that �A ∀xϑ → ∀xt5∀xϑ by Restricted Vacuous Quantification (principle (2.c)).
This concludes in essence the demonstration that (4.25) holds in this case. The
remainder of the argument runs once again as before.

Finally, we consider the case where ϕ is atomic and treated as part of dn,r (t)
+

(operation 7a). (The case where ϕ is atomic and treated as part of dn,r (t)
− is com-

pletely analogous, and will be skipped). In an application of (7a) RF(t, Tr,n+1) will
differ fromRF(t, Tr,n) in having conjuncts of the form (∃xtj )([

∧
dr,n(tj )]xtj /ctj ∧ϕ)

where RF(t, Tr,n) has a corresponding conjunct (∃xtj )[
∧

dr,n(tj )]xtj /ctj . To show
that in A the latter formula entails the former, note that since the variable x

j
has no

free occurrences in ϕ and ϕ is atomic, �A ϕ → ∀x
j
ϕ by axiom schema (2c). But

in conjunction with the conjunct (∃xtj )[
∧

dr,n(tj )]xtj /ctj of RF(t, Tr,n)∀x
j
ϕ will

entail in A the existentially quantified conjunction (∃xtj )
∧

([dr,n(tj )]xtj /ctj ∧ϕ) by
the same principles that we appealed to in the previous case.

Together the three statements (4.13.i–iii) show that if the tableau construction
closes, then Γ is inconsistent. For starting from (4.13.ii) we arrive by a finite num-
ber of applications of Modus Tollens (with conditionals instantiating (4.13.iii)) at
�A ¬RF(S0). Together with (4.13.i) this leads to the conclusion that both RF(S0)

and ¬RF(S0) are provable from Γ in A. So Γ is A-inconsistent. Conversely, if Γ

is A-consistent, then the tableau construction for Γ ′ does not close, and in that case
we can construct a parametric model M in which all sentences of Γ are true. This
concludes the proof of Theorem 16.

5 Conclusion

We have tried to develop a theory of quantification broad enough to incorporate many
distinct conceptions of the nature of the objects of quantification and of the ways
in which those objects can be referred to or described. The different conceptions of
objects and reference that find representation within it, however, suggest different
constraints on the parametric structures that are at the center of the theory. These
different constraints lead in turn to different quantificational logics. Since differ-
ent conceptions yield different parametric theories or logics, each appropriate to its
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proper contexts of application, it might seem misleading to speak of the parametric
treatment of quantification.

Even so, one might have hoped that the logic of our approach is unified at least in
the weaker sense that all these different parametric logics and theories could be seen
as extensions of a single ‘minimal’ parametric logic. It is not clear to us, however, that
there is a single, maximally general parametric semantics that defines this minimal
logic and from which these various extensions can be obtained by restriction to spe-
cial classes of models. For instance, if we abandon the assumption that diagrams are
total, it is no longer clear how to deal with the sentential connectives; and, for all we
know, there will be no single treatment that encompasses all the defensible options.

When we restrict ourselves to bivalent parametric structures, however, the matter
appears to be clearer, at least from a formal point of view. For this case Section 4
presents the most general logic, that common to all bivalent parametric structures.
But even when the restriction to bivalence is adopted there remain strong reasons
for observing the greatest caution in the interpretation of our results. One reason
relates to identity, a concept we have not treated explicitly in this paper, but which is
evidently crucial for the conceptual issues which we offered as motivations for our
approach. Treating identity as a logical notion within the present framework raises
both the question of identity within a single diagram and the question of cross-stage
identification, i.e., the question when an entity referred to as c at stage s is to be
regarded as identical with an entity referred to as c or as c′ at some other stage s′.

Another reason for caution involves modality. We have designed our approach
to analyze quantifiers in contexts in which existence may be identified with con-
structibility at some stage of a process of construction. Where this identification is
implausible, so is our analysis. Our semantics can be interpreted as giving the quan-
tifiers modal force; its connection with modal logic seems to us another subject that
merits further investigation. In particular, it would be of interest to know more about
the various ways in which predicate logic with the semantics developed for it here can
be interpreted within the expressively richer language of modal predicate logic when
the latter is given a semantics in which parametric structures act as Kripke models.

Even within the much narrower limits of this study there are many formal ques-
tions we have not solved. One such question, strongly suggested by the results we
have obtained, is to find conditions on parametric structures M which are necessary
and sufficient for subsumption of classical logic—i.e., conditions C such that M has
C iff T h(M) is a classical first-order theory. But more important than such fairly spe-
cific technical questions is the larger task of arriving at a clearer and more detailed
picture of the full spectrum of conceptually significant parametric theories than we
have presented in this paper. We hope to make progress with this larger task in future
work. But we realize that it is a task which probably requires much more than one or
two people can accomplish on their own.
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