
TTATT 2016

Proceedings of the Workshop

Workshop on Trends in Tree Automata

and Tree Transducers

Seoul, South Korea
July 18, 2016

Preface

These proceedings contain the papers presented at TTATT 2016, the 4th Inter-
national Workshop on Trends in Tree Automata and Tree Transducers, which
was held on July 18, 2016 in Seoul, South Korea in collocation with CIAA 2016,
the 21st International Conference on Implementation and Application of Au-
tomata. In total, the workshop received 11 submissions, which were reviewed
by 3 program committee members. Most submission were appropriate, but due
to the time constraints of the 1-day workshop, the committee decided to accept
only 7 papers. In addition, to the contributions present in these proceedings,
the program also included the keynote lecture Determinacy and Query Preserva-
tion of Tree Transducers by Kenji Hashimoto (Nagoya University, Japan), who
kindly accepted our invitation on short notice after we unfortunately lost our
previous confirmed invited speaker, the late Zoltán Ésik (University of Szeged,
Hungary). Zoltán was one of the pioneers of the field covered by the workshop
and his contributions will remain a lasting influence on the field. In a minute of
silence we commemorated Zoltán and his work.

The 4th workshop follows 3 workshops in the series originally estabished un-
der the auspices of Hiroyuki Seki (Nagoya University, Japan). He also organized
the first TTATT workshop in 2012 as part of RTA 2012 in Nagoya, Japan. The
2nd workshop followed in the next year and took place in Hanoi, Vietnam in
collocation with ATVA 2013. It was organized by Sebastian Maneth (Univer-
sity of Edinburgh, UK). Finally, the 3rd workshop was the first workshop of the
series in Europe, and it took place in 2015 as part of the ETAPS joint confer-
ences in London, UK under the auspices of Emmanuel Filiot (Université Libre
de Bruxelles, Belgium).

Naturally, even a small workshop like TTATT 2016 relies on the help of sev-
eral other people. The organizer would like to thank all authors of submissions;
their interest and contributions make the workshop possible and demonstrate
the significance of such a meeting. Next, I would like to thank all the pro-
gram committee members, who worked hard during the short evaluation period.
Nevertheless the evaluations were achieved in a timely and fair manner. The
conference management system EasyChair made the submission management
process as smooth as possible, so I gratefully acknowledge their support. Last
but not least, I would like to thank Yo-Sub Han (Yonsei University, South Ko-
rea), the main organizer of CIAA 2016, and his team, who made the collocation
possible and took care of all the local arrangements.

July 10, 2016
Stuttgart

Andreas Maletti

Table of Contents

On the N-Best Problem for Hypergraphs . 5
Johanna Björklund, Frank Drewes and Anna Jonsson

A Lower Bound for the Length of the Wadge-Wagner Hierarchy of
Regular Tree Languages . 13

Jacques Duparc and Kevin Fournier

Rigid Tree Automata With Isolation . 21
Nathaniel Filardo and Jason Eisner

Direct Evaluation of Seleting Tree Automata on XML Documents
Compressed with Top Trees . 29

Kenji Hashimoto, Suguru Nishimura and Hiroyuki Seki

The Square Trees in the Tribonacci Sequence . 37
Yu Ke Huang and Zhi Ying Wen

The Output Size Problem for String-to-Tree Transducers 43
Nicolaas Weideman, Brink Van Der Merwe and Frank Drewes

Aligned Multistring Languages . 51
Anssi Yli-Jyrä

Program Committee

Arnaud Carayol IGM, Université Paris Est & CNRS, France
Olivier Carton LIAFA, Université Paris Diderot, France
Frank Drewes Ume̊a University, Sweden
Emmanuel Filiot Université Libre de Bruxelles, France
Zoltan Fülöp University of Szeged, Hungary
Andreas Maletti Universität Stuttgart, Germany
Sebastian Maneth University of Edinburgh, UK
Wim Martens University of Bayreuth, Germany
Akimasa Morihata University of Tokyo, Japan
Keisuke Nakano The University of Electro-Communications, Japan
Joachim Niehren Inria Lille, France
Damian Niwinski Warsaw University, Poland
Helmut Seidl TU München, Germany
Hiroyuki Seki Nagoya University, Japan
Jean-Marc Talbot LIF, Universite d’Aix-Marseille, France
Margus Veanes Microsoft Research, USA
Heiko Vogler TU Dresden, Germany
Bruce Watson Stellenbosch University, South Africa
James Worrell Oxford University, UK

Additional Reviewers

– Dietze, Toni
– Hashimoto, Kenji
– Ivan, Szabolcs
– Osterholzer, Johannes
– Vagvolgyi, Sandor

On the N -Best Problem for Hypergraphs

Johanna Björklund, Frank Drewes, and Anna Jonsson

Department of Computing Science, Ume̊a University, 901 87 Ume̊a, Sweden
{johanna,drewes,aj}@cs.umu.se

Abstract. We propose an algorithm for computing the N best roots
of a weighted hypergraph, in which the weight function is given over
an idempotent and multiplicatively monotone semiring. We give a set
of conditions that ensures that the weight function is well-defined and
that solutions exist. Under these conditions, we prove that the proposed
algorithm is correct. This generalizes a previous result for weighted tree
automata, and in doing so, broadens the practical applications.

1 Introduction

Suppose that we can solve an optimisation problem A by solving, in succession,
the problems A1, . . . , An. A simple way of approaching the joint optimization
over the cascade A1, . . . , An is to find the N best solutions to A1, and take
these as input to A2. We then compute the N best solutions to A2 for each of
these inputs, and prune the combined output down to the N best alternatives.
The computation continues in this fashion until we have the outputs for An, at
which point we take the top-ranking one as the best solution to A. In general,
this approach will not yield an optimal solution, but it is often a viable heuristic.

The problem of finding N elements that are optimal with respect to some
ranking device is referred to as the N -best problem. Typical ranking devices are
weighted automata, in which case N distinct elements with as small weights as
possible are sought. If the automaton is nondeterministic, having several distinct
runs on some inputs, the N -best problem is harder than the related N -best
derivations problem, which asks for the N best individual runs of the automaton.

Mohri and Riley [4] provide an algorithm for solving the N -best problem for
weighted string automata over the tropical semiring. To keep the run time poly-
nomial, they use a combination of lazy determinisation and Dijkstra’s N -shortest
paths algorithm. In [1], we generalise this algorithm to work for weighted tree
automata over an extremal semiring. In doing so, we simplify the search tech-
nique by working directly with the input automaton rather than an on-the-fly
determinisation. To mitigate the added dimensionality caused by working with
trees rather than strings, we propose a pruning technique that leads to an effi-
cient algorithm. The running time is comparable with that in [2] for computing
the N -best derivations.

In this paper, which describes on-going work, we consider the N -best prob-
lem for weighted hypergraphs over idempotent and multiplicatively monotone
semirings. The hypergraphs may be infinite, but may not contain cycles. Intu-
itively, this provides an abstraction and generalisation of the approach in [1] if

6 J. Björklund, F. Drewes, and A. Jonsson

the hypergraph is chosen to represent the set of all trees over a given ranked al-
phabet. The more general setting means that less is known about the structure of
the input graph, and this makes the computations potentially more demanding.
However, we believe that the running time of the proposed algorithm is compa-
rable with that of the previous algorithms under the same domain restrictions,
and will attempt to prove this in our continued work.

2 Preliminaries

We write N for the set of non-negative integers, N∞ for N∪{∞}, R+ for the set of
non-negative reals, and R∞+ for R+ ∪ {∞}. Given n ∈ N, we let [n] = {1, . . . , n},
and [∞] = N. In particular, [0] = ∅. The powerset of a set S is denoted by
pow (S). Given a k-tuple v = (a1, . . . , ak) we may denote its ith component ai
(i ∈ [k]) by v(i). A sequence is non-repetitive if each element occurs at most once.
A function π : S → S′ is implicitly extended to a function from sequences over
S to sequences over S′ and from pow (S) to pow (S′) in the usual elementwise
fashion, without making a notational distinction between π and these canonical
extensions. Given a sequence w, [w] denotes the smallest set S such that w is a
sequence over S. The set of all strings, i.e. finite sequences, over S is denoted by
S∗; it includes the empty string λ.

A (commutative) semiring is a tuple A = (A,⊕,⊗,0,1) such that (A,⊕,0)
and (A,⊗,1) are commutative monoids, ⊗ distributes both-sided over ⊕, and 0
is an absorbing element with respect to ⊗.

A quasi-order on S is a reflexive, transitive binary relation ≤. We write a < b
to express that a ≤ b but b 6≤ a. As usual, ≥ and > denote the inverses of ≤
and <, resp. A quasi-order is a partial order if it is antisymmetric, and it is
well-founded if there are no infinite descending chains, i.e., there is no infinite
sequence a1 > a2 > a3 > · · · . A stronger notion than that of well-foundedness is
that of a well quasi-order (wqo). A quasi-order is a wqo if every infinite sequence
a1, a2, . . . eventually increases, i.e., there are i < j such that ai ≤ aj .

A semiring A is idempotent if a ⊕ a = a for all a ∈ A. In this case, there
is a partial order ≤A on A, called the natural order of A, which is given by
a ≤A b ⇐⇒ a ⊕ b = a. Idempotent semirings are monotonic with respect to
their natural order [3, Lemma 2], in other words, a ≤A b implies a� c ≤A b� c
for all c ∈ A and � ∈ {⊕,⊗}.

The semiring A is finitely generated if there is a finite subset A′ of A such
that every a ∈ A can be written as a sum of products of elements in A′. A finitely
generated idempotent semiring in which 1 is the minimal element is nice.

Example 1. The min-plus semiring R∞+ , with min(a, b) serving as addition and
ordinary addition as multiplication, is idempotent. It is even extremal, i.e. a ⊕
b ∈ {a, b}. By generalising the domain to vectors of length k ∈ N over R∞+
and applying semiring addition and multiplication component-wise, we get an
idempotent semiring that is not extremal. If we restrict the domain of the min-
plus semiring to N∞, it becomes finitely generated (by {0, 1,∞}) and, in fact,
nice because 1 = 0 is its smallest element. The extension to vectors is still nice.

On the N -Best Problem for Hypergraphs 7

Rather than working on ordinary graphs, in which edges have a single source
and a single target, we consider hypergraphs in which hyperedges may have
several sources (but still only one target). This is particularly convenient for
representing sets of trees: a hyperedge labelled f with n sources corresponds to
an occurrence of the symbol f of rank n in a tree. The sources and the target
represent the roots of the direct subtrees and of the tree itself, respectively.

Definition 2 (Hypergraph). A hypergraph is a tuple G = (V,E, src, tar)
such that V and E are disjoint sets of nodes and hyperedges, respectively,
src : E → V ∗ assigns to each e ∈ E a sequence of sources src(e), and tar : E →
V assigns to each e ∈ E a target tar(e).

A node v ∈ V is an end if v /∈ [src(e)] for all e ∈ E. A path in G is a
nonempty sequence π = e0 · · · en ∈ E∗ such that tar(ei−1) ∈ [src(ei)] for all
i ∈ [n]. Its target tar(π) is tar(en) and we say that tar(π) is reachable from e0.

With this definition, hypergraphs can be infinite structures and may have
parallel hyperedges. In the following, we shall simply speak of graphs and edges
instead of hypergraphs and hyperedges.

Given a graph G (which will be understood from the context), we define
hull : pow (V)→ pow (E) by hull(U) = {e ∈ E | src(e) ∈ U∗ and tar(e) /∈ U} for
all U ⊆ V . Hence, hull(U) yields the set of all edges that lead from nodes in U to
nodes outside U . In particular, hull(∅) is the set of edges that have no sources.
For a finite set F ⊆ E of edges, hull(F) abbreviates hull(tar(F)). Moreover,
hull≤0(F) = F and hull≤n+1(F) = hull(hull≤n(F)) ∪ hull≤n(F) for n ∈ N.

Definition 3 (Layered graph). A graph G is layered if (a) hull≤n(∅) is finite
for every n ∈ N, (b) for every node v ∈ V there are only finitely many paths π
such that tar(π) = v, and (c) V = tar(E).

In particular, layered graphs are acyclic by requirement (b). Requirements (b)
and (c) make sure that all of G can gradually be built up from the “bottom” by
starting with the empty set of edges and repeatedly applying hull . In this process
requirement (a) guarantees that the subgraph obtained always stays finite.

Definition 4 (Weighted graph). Let A = (A,⊕,⊗,0,1) be a semiring. A
graph with weights in A, also called a weighted graph, is a tuple G = (V,E, src,
tar , ŵ) such that (V,E, src, tar) is a layered graph and ŵ : E → A is its weight
function. We let w : V ∪ E → A be determined by the following conditions:

– w(v) =
⊕

e∈tar−1(v) w(e) for every node v and

– w(e) = ŵ(e)⊗
⊗

i∈[n] w(vi) for every edge e, where src(e) = v1 · · · vn.

Since G is layered, for every node v there exists a path of maximum length
whose target is v. By induction on the length of this path, it follows that w is
uniquely determined.

Henceforth, given a graph G with weights, we denote its components by VG,
EG, srcG, tarG, and ŵG, respectively, and its induced weight function by wG.

8 J. Björklund, F. Drewes, and A. Jonsson

3 Computing N best nodes

Definition 5 (the N-best nodes problem). The N -best nodes problem is
defined as follows. An instance is a pair (G,N) consisting of

– a weighted graph G with weights in a well-founded semiring,1

– a set of target nodes V T ⊆ VG such that each v ∈ V T is an end, and
– an integer N ∈ N∞ such that N ≤

∣∣V T
∣∣.

A solution is a sequence of N pairwise distinct elements v1, v2, · · · of V T such
that there do not exist i ∈ [N] and v ∈ V T \ {v1, . . . , vi} with w(v) <A w(vi).

In practical instantiations of Definition 5, the set V T may correspond to
accepting configurations.

Before continuing, let us verify that the N -best nodes problem (with the
semiring A being well-founded) always has a solution. For this, choose any ele-
ment u0 of V T and build a sequence of nodes u0, u1, u2, . . . in V T with strictly
decreasing weights. As A is well-founded, every such sequence is finite. Thus, the
process eventually arrives at a node v1 such that no node of strictly lesser weight
exists in V T . Now, fix v1 and repeat the argument (with V T \ {v1} instead of
V T). Continue until N elements v1, . . . , vN have been found (or ad infinitum if
N =∞). Clearly, v1, . . . , vN is a solution.

In almost all applications, weights will be generated by a finite subset of A,
such as the finite set of weights of the rules of a weighted tree automaton. Next,
we show that such a situation provides us with a well-founded semiring. For this,
we need some additional notation and terminology for reasoning about vectors.

Let m,m′ ∈ Nk. We let m ≤ m′ if (∀i ∈ [k])m(i) ≤ m′(i) and, as usual,
m < m′ if m ≤ m′ and m 6= m′. An element m ∈ M of a finite set M ⊆ Nk, is
minimal if there is no m′ ∈ m such that m′ < m. We denote the subset of M of
minimal elements by min(M).

Lemma 6. Every nice semiring A is well-founded with respect to the natural
order.

Proof. The proof makes use of Dickson’s lemma. Recall that this lemma states
that (Nk,≤) is a wqo.

Let A be generated by {a1, . . . , ak}. For m ∈ Nk let ϕ(m) =
⊗

j∈[k] a
m(j)
j ,

and for a finite set M ⊆ Nk let Φ(M) =
⊕

m∈M ϕ(m) (where Φ(∅) = 1). Then,
since ⊗ distributes over ⊕, every a ∈ A is represented by at least one finite set
M ⊆ Nk in the sense that a = Φ(M). We call such a set a representative of a.

We first prove that the value of Φ(M) is determined by the minimal elements
of M , i.e., that the following statement holds.

For finite M ⊆ Nk, Φ(M) = Φ(min(M)). (1)

Indeed, if m,m′ ∈M are such that m < m′, then we have ϕ(m′) = ϕ(m)⊗a
for some a (namely for a = ϕ(m′−m)). Hence ϕ(m) = ϕ(m)⊗1 ≤A ϕ(m)⊗a =

1 A semiring is well-founded if its natural order is a well-founded quasi-order.

On the N -Best Problem for Hypergraphs 9

Algorithm 1 N -best nodes

1: procedure BestVertices(G,N)
2: U ← ∅
3: for i = 1, . . . , N do
4: H ← hull(U)
5: select e ∈ H such that minWeight(e) is minimal
6: v ← bestAncestor(e)
7: output v
8: U ← U ∪ descendants(v)
9: end for

10: end procedure

ϕ(m′) and thus ϕ(m)⊕ϕ(m′) = ϕ(m) by the definition of ≤A. Every such non-
minimal element m′ ∈ M can therefore be removed from M with no effect on
Φ(M), which proves (1).

Suppose there is a descending sequence s = b0 >A b1 >A b2 >A · · ·
and let Mi be a representative of bi for all i ∈ N. Since Φ(Mi ∪ Mi+1) =
Φ(Mi) ⊕ Φ(Mi+1) = Φ(Mi+1) we may assume that M0 ⊆ M1 ⊆ · · · . Now,
pick mi ∈ min(Mi) \ min(Mi−1) for every i > 0. This set cannot be empty,
by (1) and the fact that Φ(Mi) 6= Φ(Mi−1). Furthermore, we have mi−1 6≤ mi,
since mi−1 ≤ mi would imply mi /∈ min(Mi) \min(Mi−1). In other words, the
sequence m0,m1, . . . is non-increasing and must thus be finite because (Nk,≤)
is a wqo. This shows that s is finite, and thus that A is well-founded. ut

We devise a simple algorithm solving the N -best nodes problem, given an
instance (G,N). As G is infinite and thus cannot be represented explicitly, we
assume that it can be explored through a few procedures. These are as follows:

– There is a procedure that computes hull(U) for every finite set U ⊆ VG.
– For e ∈ EG, minWeight(e) returns a minimal element of all wG(v) such that
v ∈ V T and v is reachable from e on some path π. If no such v exists then an
error element > is returned, which is considered to be larger than all elements
of A. Note that minWeight(e) is well-defined since A is well-founded.

– For every edge e such that minWeight(e) is defined, bestAncestor(e) returns
some node tarG(π) such that π is as in the definition of minWeight(e) above.

– For every node u ∈ VG, descendants(u) returns the set of nodes v of which u
is an ancestor (including u itself). Note that this set is finite as G is layered.

The pseudocode is given in Algorithm 1.

Remark 7. Were we to apply Algorithm 1 to finding not only ends with minimal
weight, but nodes in general, then we would be faced with difficulties. Part of
what makes the algorithm fast is that it only visits each node once. However,
when a node v is on a minimal path to a node v′, and v has greater weight
than v′, then the algorithm would have to visit v before outputting v′, and then
return to v. This problem is however easily done away with by, e.g., introducing
dummy ends similarly to the introduction of a dummy root symbol in [1, p. 101].

10 J. Björklund, F. Drewes, and A. Jonsson

Let us now verify that the Algorithm 1 is correct.

Theorem 8. After i ≤ N executions of the loop body in Algorithm 1, it will
have outputted i nodes v1, . . . , vi ∈ V T such that

(1) there are no v ∈ V T \ {v1, . . . , vi} and j ∈ [i] such that v <A vi, and

(2) U =
⋃

j∈[i] descendants(vj).

Proof. We proceed by induction on i. For i = 0 the assertions are trivially true
as U is initialized to ∅. Thus, assume that (1) and (2) hold for some i− 1 < N
and consider the ith execution of the loop. Let H↑ be the set of all nodes that are
reachable from some edge in H = hull(U). We show that (U,H↑) is a partition
of VG, i.e., that H↑ = VG \ U . By (2) all descendants of a node u ∈ U are in
U as well. But by the definition of hull , tarG(H) ∩ U = ∅, and so U ∩H↑ = ∅.
Moreover, for v ∈ VG \ U , as G is layered, there are only finitely many paths
π such that tarG(π) = v, and hence there is such a path, say π = e0 · · · en, of
maximal length, which means that srcG(e0) = λ. Now either tarG(e0) /∈ U and
hence e0 is in H, or there is a largest index j ∈ [n] with tarG(ej−1) ∈ U , which
means that ej ∈ H. In both cases v ∈ H↑. This proves that, indeed, H↑ = VG\U .
Moreover, since all nodes in V T are ends, V T \ {v1, . . . , vi−1} ⊆ VG \ U = H↑.
Since a solution does exist, this means that there is a vi ∈ V T ∩H↑ such that
{v1, . . . , vi} satisfies (1), and it must be of minimal weight in V T ∩H↑ because
{v1, . . . , vi−1} /∈ H↑.

It follows that lines 5 and 6 select vi (or another node in V T of the same
weight) and v and Line 7 outputs it. Thus, (2) is now satisfied for i. ut

Since the set U in Algorithm 1 is always of the form
⋃

j∈[i] descendants(vj) for

some ends v1, . . . , vi, the procedures hull(U), minWeight(e), and bestAncestor(e)
actually only need to be implemented for this special case. Further, the individual
steps of the algorithm can be implemented by maintaining a priority queue for
the edges e ∈ H for which minWeight(e) 6= >, the priority being given by
minWeight(e). Then Line 5 becomes a dequeueing operation. In Line 8 elements
of the queue whose target nodes are included in U would be deleted from the
queue, and Line 4 would enqueue those edges having all of their sources in U
and at least one among those recently added to U (except initially, where H
becomes the set of all edges not having any sources).

4 Conclusion and future work

The presented work is still in progress. It remains to recast the original algorithm
for tree automata in the current setting, and to complement the theoretical
analysis with an empirical evaluation. In the future, we are also interested in
investigating other combinations of semirings and graph families, so as to further
generalize the algorithm, or make it more efficient for restricted domains.

Acknowledgment. We thank the reviewers for valuable suggestions.

On the N -Best Problem for Hypergraphs 11

References

1. Björklund, J., Drewes, F., Zechner, N.: An efficient best-trees algorithm for weighted
tree automata over the tropical semiring. In: Proceedings of the 9th International
Conference on Language and Automata Theory and Applications, Nice, France.
LNCS, vol. 8977, pp. 97–108 (2015)

2. Büchse, M., Geisler, D., Stüber, T., Vogler, H.: n-best parsing revisited. In: Appli-
cations of Tree Automata in Natural Language Processing, Uppsala, Sweden. pp.
46–54. Association for Computational Linguistics (2010)

3. Mohri, M.: Semiring frameworks and algorithms for shortest-distance problems.
Journal of Automata, Languages and Combinatorics 7(3), 321–350 (2002)

4. Mohri, M., Riley, M.: An efficient algorithm for the n-best-strings problem. In:
Proceedings of the Conference on Spoken Language Processing, Denver, Colorado
(2002), http://www.cs.nyu.edu/~mohri/pub/nbest.ps, Digital publication.

http://www.cs.nyu.edu/~mohri/pub/nbest.ps

12 J. Björklund, F. Drewes, and A. Jonsson

A Lower Bound for the Length of the
Wadge-Wagner Hierarchy of Regular Tree

Languages

Jacques Duparc1 and Kevin Fournier1,2

1Department of Information Systems 2Équipe de Logique Mathématique
Faculty of Business and Economics Université Paris Diderot

University of Lausanne UFR de Mathématiques case 7012
CH-1015 Lausanne, Switzerland 75205 Paris Cedex 13, France

Abstract. We investigate the complexity of the Wadge-Wagner hierar-
chy of regular infinite tree languages that relies on the following relation:
L is less complicated than a language L′ if L continuously reduce to L′

We provide a hierarchy of such languages whose length requires infinitely
many Veblen ordinal functions to be computed – a drastic extension of
both the deterministic and the word cases and previously known results.

Introduction

This paper is a contribution to the fine understanding of the topological com-
plexity of regular tree languages. It thoroughly extends some partial results on
regular tree languages of index [0, 2] previously obtained by the same authors in
[4]. We make use of descriptive set theory to measure the complexity of these
languages which is already highly involved for even the ones recognised by de-
terministic parity tree automata do not fit inside the Borel hierarchy – indeed
Π1

1-complete languages naturally arise even with only two priorities. On the con-
trary, nondeterministic automata recognise languages that are neither analytic,
nor coanalytic, nor in any difference of such sets. However, the expressive power
of nondeterministic automata is bounded by the second level of the projective
hierarchy, and, by Rabin’s complementation result [7], all nondeterministic lan-
guages lie in the ∆1

2 class.
The tool we rely on to investigate the complexity of these languages is the

reduction by continuous functions (the so-called Wadge-reducibility). Granted
with such a reduction relation, the complexity classes – called Wadge degrees –
are formed of sets that are Wadge-reducible to each other. These Wadge degrees
compose a hierarchy whose many levels – denoted ranks, can be specified in
details with the use of ordinals.

In this extended abstract, we describe a succession of operations on infi-
nite tree automata that haul up the Wadge degrees of the languages that they
recognise1. By composing these operations together, one generates a hierarchy of

1 We insist on that the whole study is completed without mention of any particular
determinacy principle. In particular, ∆1

2-determinacy is not required at all to show
that regular infinite tree languages yield the hierarchy we exhibit.

14 J. Duparc and K. Fournier

regular tree languages of very high topological complexity for in order to com-
pute its length, one needs to consider all the finite Veblen functions ϕn (any
n ∈ N). These Veblen functions are defined inductively. The first Veblen func-
tion ϕ0 : On → On is defined as the exponentiation of base ω: ϕ0(α) = ωα.
ϕn+1 : On→ On is defined as the function that enumerates2 the fixed points of
ϕn+1.

The length of the hierarchy that these operations provide corresponds to the
ordinal ϕω(0) = supn∈N ϕn(0).

In comparison, when one replaces infinite trees by infinite words, the length
of the Wadge hierarchy shrinks drastically since it becomes ωω (a result by

Klaus Wagner in [10]). This hierarchy also dwarfs down to (ωω)
3

+3 (a result by
Filip Murlak in [6]) when only infinite tree languages recognised by deterministic
automata are considered.

1 Preliminaries

1.1 The Wadge game

As usual, for Γ a pointclass3 we denote by Γ̌ its dual class containing all the
subsets whose complements are in Γ , and by ∆(Γ) the ambiguous class Γ ∩ Γ̌ .
Given any topological space X, the Wadge preorder ≤W on P(X) is defined

for A,B ⊆ X by A ≤W B if and only if there exists f : X
cont.−−−→ X such that

f−1(B) = A. It is a preorder which induces an equivalence relation ≡W whose
equivalence classes – denoted by [A]W – are called the Wadge degrees. A set
A ⊆ X is self-dual if [A]W = [A{]W , and non-self-dual otherwise.

The space TΣ of infinite binary trees over the alphabet Σ equipped with
the standard Cantor topology is homeomorphic to the Cantor space [2]. For any
L,M ⊆ TΣ , the Wadge game W (L,M) is a two player infinite game in which
each player builds a tree, say tI and tII. At every round, player I plays first, and
both players add a finite number of children to the terminal nodes of their tree.
Player II is allowed to skip her turn, but has to produce a tree in TΣ throughout
a game. Player II wins the game if and only if tI ∈ L⇔ tII ∈M .

2 More precisely, the inductive definition of ϕn+1(α) is

– ϕn+1(0) = supk∈N ϕn ◦ . . . ◦ ϕn︸ ︷︷ ︸
k

(0);

– ϕn+1(α+ 1) = supk∈N ϕn ◦ . . . ◦ ϕn︸ ︷︷ ︸
k

(
ϕn+1(α) + 1

)
;

– ϕn+1(λ) = supλk∈N ϕn+1(λk) when λ is a limit ordinal with λ = supλk∈N.

For instance, ϕ1(0) is the ordinal known as ε0 = sup
n<ω

ω
. .
.
ω0

︸ ︷︷ ︸
n

; and ϕ2(0) is the ordinal

supn<ω ε. . .ε0︸ ︷︷ ︸
n

.

3 a pointclass is a collections of subsets of a topological space that is closed under
continuous preimages (see [1]).

The Wadge-Wagner Hierarchy of Regular Tree Languages 15

Lemma 1 ([9]). Let L,M ⊆ TΣ. Then L ≤W M if and only if player II has a
winning strategy in the game W (L,M).

We write A <W B when II has a winning strategy in W (A,B) and I has a
winning strategy in W (B,A)4. Given a pointclass Γ of TΣ with suitable closure
properties, the assumption of the determinacy of Γ is sufficient to prove that Γ
is semi-linearly ordered by ≤W , denoted SLO(Γ), i.e. that for all L,M ∈ Γ ,

L ≤W M or M ≤W L{,

and that ≤W is well founded when restricted to sets in Γ ([8,1]). Under these
conditions, the Wadge degrees of sets in Γ with the induced order is thus a
hierarchy called the Wadge hierarchy. Therefore, there exists a unique ordinal,
called the height of the Γ -Wadge hierarchy, and a mapping dΓW from the Γ -Wadge
hierarchy onto its height, called the Wadge rank5, such that, for every L,M non-
self-dual in Γ , dΓW (L) < dΓW (M) if and only if L <W M and dΓW (L) = dΓW (M)

if and only if L ≡W M or L ≡W M{. The wellfoundedness of the Γ -Wadge
hierarchy ensures that the Wadge rank can be defined by induction as follows:

– dΓW (∅) = dΓW (∅{) = 1

– dΓW (L) = sup
{
dΓW (M) + 1 : M is non-self-dual,M <W L

}
for L >W ∅.

1.2 The Conciliatory Hierarchy

A conciliatory binary tree over a finite set Σ is a partial function t : {0, 1}∗ → Σ
with a prefix closed domain. Such trees can have both infinite and finite branches.
A tree is called full if dom(t) = {0, 1}∗. Let T ≤ωΣ and TΣ denote, respectively,
the set of all conciliatory binary trees and the set of full binary trees over Σ.
Given x ∈ dom(t), we denote by tx the subtree of t rooted in x. Let {0, 1}n
denote the set of words over {0, 1} of length n, and let t be a conciliatory tree
over Σ. We denote by t[n] the finite initial binary tree of height n+ 1 given by
the restriction of t to

⋃
0≤i≤n{0, 1}i.

For conciliatory languages L,M we define the conciliatory version of the
Wadge game: C(L,M) ([3,5]). The rules are similar, except for the fact that
both player are now allowed to skip and to produce trees with finite branches -
or even finite trees. For conciliatory languages L,M we use the notation L ≤c M
if and only if II has a winning strategy in the game C(L,M). If L ≤c M and
M ≤c L, we will write L ≡c M . The conciliatory hierarchy is thus the partial
order induced by ≤c on the equivalence classes given by ≡c. We write A <c B
when II has a winning strategy in C(A,B) and I has a winning strategy in
C(B,A).

4 This is in general stronger than the usual A <W B if and only if A ≤W B and B 6≤W
A, but the two definitions coincide when the classes considered are determined.

5 However the main result of this article does not provide any Wadge rank for the
canonical languages that are constructed, because we do not make use of any deter-
minacy principle.

16 J. Duparc and K. Fournier

From a conciliatory language L over Σ, one defines the corresponding lan-
guage Lb of full trees over Σ ∪ {b} by:

Lb =
{
t ∈ TΣ∪{b} : t[/b] ∈ L

}
,

where b is an extra symbol that stands for “blank”, and t[/b], the undressing of
t, is informally the conciliatory tree over Σ obtained once all the occurences of
b have been removed in a top-down manner. More precisely, if there is a node v
such that t(v) = b, we ignore this node and replace it with v0. If, for each integer
n, t(v0n) = b, then v /∈ dom(t[/b]). This process is illustrated below

c c c ba a a a

c

bb c b

a

ac a b

b

c c c b c a a a

b

a

c

a

c a c ac a c a

b

ac c b

b

aa c a

c

a c c a c a c c

a

b

b

a

b

c b b ba a a a

c

bb c b

a

ac b b

b

c c c b c a a a

b

a

c

a

c a c ac a c a

b

ac c b

b

aa c a

c

a c c a c a c c

a

b

b

a

b

(a) A tree t with blanks (b) blanks deleted in a top-down manner.

c

aa a c

c

a

(c) The resulting tree t[/b].

We say a conciliatory language L is in a pointclass of full trees Γ if Lb ⊆ Γ .

Lemma 2. For L and M any conciliatory languages,

L ≤c M if and only if Lb ≤W M b.

The mapping L 7→ Lb gives thus a natural embedding of the preorder ≤c re-
stricted to conciliatory sets in Γ into the Γ -Wadge hierarchy. Hence, for Γ with
suitable closure and determinacy properties, the conciliatory degrees of sets in Γ
with the induced order constitute a hierarchy called the conciliatory hierarchy.
We define, by induction, the corresponding conciliatory rank of a language:

– dΓc (∅) = dΓc (∅{) = 1
– dΓc (L) = sup{dΓc (M) + 1 : M <c L} for L >c ∅.

Similarly to the Wadge case, given two pointclasses Γ and Γ ′, for every concilia-
tory L ∈ Γ ∩ Γ ′, dΓc (L) = dΓ

′

c (L). Observe that the conciliatory hierarchy does
not contain self-dual languages: a strategy for I in C(L,L{) is to skip in the first
round, and then copy moves of II.

1.3 Automata and conciliatory trees

A nondeterministic parity tree automaton A = 〈Σ,Q, I, δ, r〉 consists of a finite
input alphabet Σ, a finite set Q of states, a set of initial states I ⊆ Q, a transition
relation δ ⊆ Q×Σ×Q×Q and a priority function r : Q→ ω. A run of automaton
A on a binary conciliatory input tree t ∈ T ≤ωΣ is a conciliatory tree ρt ∈ T ≤ωQ

with dom(ρt) = {ε} ∪ {va : v ∈ dom(t) ∧ a ∈ {0, 1}} such that the root of
this tree is labeled with a state q ∈ I, and for each v ∈ dom(t), transition
(ρt(v), t(v), ρt(v1), ρt(v1)) ∈ δ. We say that A accepts t if there exists a run ρt
that is accepting : either the highest priority of a state occurring infinitely often
on the branch is even or the priority of each leaf node in ρt is even.

The Wadge-Wagner Hierarchy of Regular Tree Languages 17

2 Operations on infinite tree automata

We briefly describe the operations on tree automata that yield a very long hi-
erarchy of conciliatory tree languages. We let Σ = {a, c} and use the following
conventions in the diagrams. Nodes represent states of the automaton. Node
labels correspond to state ranks. A red edge shows the state assigned to the left
successor node of a transition, a green edge goes to the right successor node. 6

2.1 The sum (+)

Given any automata A and B we form7 the automaton B+A:

i

A
0 1

B
1 j

⇤ ⇤ c

⇤a

⇤

a

c a

c B{

We write A•n for A+ . . .+A︸ ︷︷ ︸
n

.

2.2 The operation ϕ0

Given any automaton A we form ϕ0

(
A
)

by replacing each state in A with

i

0

0⇤⇤
c

a

⇤

a

c

i

⇤ ⇤

1

⇤

i

1

i

2.3 The operations ϕn+1

i

i

⇤
i

i

⇤

⇤

⇤
1

⇤

⇤

⇤⇤
⇤

⇤

0

⇤

⇤

⇤

W[0,n]

W[1,n+1]

6 In order to lighten the notation, transitions that are not depicted on a diagram lead
to some all-accepting state.

7

– i = 0 if the empty tree is accepted by A, and i = 1 otherwise;

– j = 1 if L(A) is equivalent to L(A) → g, where gdenotes any automaton that
rejects all trees, and j = 0 otherwise.

18 J. Duparc and K. Fournier

Given any automaton A and any automaton W[0,n] with priorities inside
[0, n] whose language Wadge-reduces every regular language recognised by an
automaton with priorities inside [0, n]. We form ϕn+1

(
A
)

by replacing each
state in A with

Given automata A and B, we write A ≤c B for L(A) ≤c L(B), and same
with <c,≤W , <W . These operations satisfy the following properties.

Lemma 3. Let A, A′, B and B′ be conciliatory languages such that A <c A′
and B ≤c B′, and 0 ≤ n < m < ω. Then, the following hold.

1. (B+A)
{ ≡c B+ (A)

{

2. B+A <c B′+A′;
3. B <c B+A.
4. A•m <c ϕ0(A+ g)

5. ϕn(A){ ≡c ϕn(A{).
6. ϕn(B) ≤c ϕn(B′).
7. ϕn(A) <c ϕn(A′).
8. ϕn ◦ϕm(A) ≡c ϕm(A).

We recall that every ordinal α > 0 admits a unique Cantor Normal Form of
base ω (CNF) which is an expression of the form α = ωαk · νk + · · · + ωα0 · ν0
where k < ω, 0 < νi < ωω for any i ≤ k, and α0 < . . . < αk < α. For every
ordinal 0 < α < ϕω(0), we inductively define a pair of automata (Aα, Āα) whose
languages are ≤c-incomparable by setting:

Aα = Aωαk •νk+ · · ·+Aωα0 •ν0, Āα = Aωαk •νk+ · · ·+Āωα0•ν0,

where Aωαi and Āωαi are respectively:

– gand g{ if αi = 0;

– ϕ0 (Aαi) and ϕ0

(
Āαi

)
if αi < ωαi ;

– ϕn+1 (Aβ) and ϕn+1

(
Āβ
)

if β < αi = ωαi = ϕn(αi) = ϕn+1(β).

Lemma 4. For 0 < α < β < ϕω(0), we have

1. Aα 6≤c Āα and Āα 6≤c Aα.
2. Aα <c Aβ ; Āα <c Aβ ; Aα <c Āβ and Āα <c Āβ.

Applying the embedding L 7→ Lb, we obtain the main result8.

Theorem 1. There exists a family
(
Aαb

)
α<ϕω(0)

of parity tree automata s.t.

1. each Aαb recognises languages of full trees over the alphabet {a, b, c};
2. α < β holds if and only if Aαb <W Aβb holds.

8 It is both new and hard to prove, yielding an unexpectedly high lower bound for the
height of the Wadge hierarchy on ω-regular tree languages.

The Wadge-Wagner Hierarchy of Regular Tree Languages 19

References

1. Andretta, A., Louveau, A.: Wadge degrees and pointclasses. In: Kechris, A.S.,
Löwe, B., Steel, J.R. (eds.) Wadge Degrees and Projective Ordinals: The Cabal
Seminar, Volume II. Cambridge University Press (2012)

2. Arnold, A., Duparc, J., Murlak, F., Niwiński, D.: On the topological complexity
of tree languages. Logic and automata: History and Perspectives 2, 9–29 (2007)

3. Duparc, J.: Wadge hierarchy and Veblen hierarchy, Part I : Borel sets of finite rank.
The Journal of Symbolic Logic 66(1), 56 – 86 (2001)

4. Duparc, J., Fournier, K.: A tentative approach for the wadge-wagner hierarchy
of regular tree languages of index [0, 2]. In: Descriptional Complexity of Formal
Systems - 17th International Workshop, DCFS 2015, Waterloo, ON, Canada, June
25-27, 2015. Proceedings. pp. 81–92 (2015)

5. Duparc, J., Murlak, F.: On the topological complexity of weakly recognizable tree
languages. In: FCT 2007, Budapest, Hungary, August 27-30, 2007, Proceedings.
pp. 261–273 (2007)

6. Murlak, F.: The wadge hierarchy of deterministic tree languages. Logical Methods
in Computer Science 4(4) (2008)

7. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Transactions of the AMS 141, 1–23 (1969)

8. Van Wesep, R.: Wadge degrees and descriptive set theory. In: Cabal Seminar 76–77.
pp. 151–170. Springer (1978)

9. Wadge, W.W.: Reducibility and determinateness on the Baire space. Ph.D. thesis,
University of California, Berkeley (1984)

10. Wagner, K.W.: On omega-regular sets. Information and Control 43(2), 123–177
(1979)

20 J. Duparc and K. Fournier

Rigid Tree Automata With Isolation

Nathaniel Wesley Filardo and Jason Eisner

Johns Hopkins University

Abstract. Rigid Tree Automata (RTAs) are a strict super-class of Reg-
ular Tree Automata (TAs), additionally capable of recognizing certain
nonlinear patterns such as {f⟨x,x⟩ ∣ x ∈X}. RTAs were developed for use
in tree-automata-based model checking; we hope to use them as part of
a static analysis system for a logic programming language. In developing
that system, we noted that RTAs are not closed under Kleene-star or pre-
concatenation with a regular language. We now introduce a strict super-
class of RTA, called Isolating Rigid Tree Automata, which can accept
rigid structures with arbitrarily many isolated rigid substructures, such as
“lists of equal pairs,” by allowing rigidity to be confined within subtrees.
This class is Kleene-star and concatenation closed and retains many fea-
tures of RTAs, including linear-time emptiness testing and NP-complete
membership testing. However, it gives up closure under intersection.

1 Rigid Tree Automata

Rigid Tree Automata (RTAs) [2] extend regular bottom-up nondeterministic
Tree Automata by imposing global constraints on accepting runs. They are
well-suited to describe regular structures containing finitely many typed vari-
ables, such as {f⟨g⟨x⟩,h⟨x, y⟩⟩ ∣ x ∈ L, y ∈ L′} where L,L′ are regular tree lan-
guages representing types. They can also describe families of “all-equal lists”
{[], [x], [x,x], [x,x, x], . . . ∣ x ∈ L}.1 As these examples show, variables may
be reused, each occurrence co-varying with the others. RTAs may also express
unions of such nonlinear structures, including infinite unions via recursion, as in
the case of all-equal lists.

An RTA is very much like a TA. Each has an underlying language signature
F ; a set of states Q; a set of accepting states QF ⊆ Q; and a transition map ∆,
which is a set of rules of the form f⟨q1, . . . , qn⟩→ q0 where ∀iqi ∈ Q and f/n ∈ F .
A run of an RTA A on a tree t is exactly like that of a TA: a map that annotates
each node ν of t with a state from Q in a way that respects ∆. That is, if node
ν has label g/m ∈ F and its m children are annotated with q1, . . . , qm ∈ Q, then
ν may be annotated with q0 if (g⟨q1, . . . , qm⟩→ q0) ∈∆.

The novelty of the RTA class is that an RTA designates a set of rigid states,
QR ⊆ Q, and runs are accepted more selectively. A tree is accepted by the
RTA A = ⟨F ,Q,QF ,QR,∆⟩ iff there exists a run in which the root position is
annotated by q ∈ QF (this is the TA acceptance criterion) and, for each q ∈ QR, all

1 We adopt some standard shorthand: [] = nil⟨⟩ and [a, b, . . .] = cons⟨a,cons⟨b, . . .⟩⟩.

22 N.W. Filardo and J. Eisner

subtrees whose roots are annotated by q are equal.2 For example, {h⟨x,x⟩ ∣ x ∈ L}
is recognized by an RTA ⟨F ∪ {h/2},Q ∪ {q∗},{q∗},{qF },∆ ∪ {h⟨qF , qF ⟩ → q∗}⟩
if q∗ /∈ Q and L is recognized by a regular TA A = ⟨F ,Q,{qF },∆⟩ whose sole
accepting state qF is non-reentrant (i.e., only occurs on the right of rules
in ∆).3 The set of languages described by RTAs are a strict superset of those
described by regular TAs [2, Theorem 5]: the RTA language above is not regular,
but any regular TA is an RTA with QR = ∅.

2 Kleene Non-Closure of Rigid Tree Automata

RTA cannot, however, describe (finite) structures with arbitrary numbers of
variables, as each variable corresponds to a state in QR. Let us look at two
examples. We use the notations ⋅◻, L∗,◻, and Ln,◻ as defined in [1, §2.2.1].

First, consider P = {[], [p⟨x1, x1⟩], [p⟨x1, x1⟩,p⟨x2, x2⟩],⋯ ∣ xi ∈ Lx}, with Lx

regular and ∣Lx∣ = ∞.4 The RTA pumping lemma [2, Lemma 1] says that no
RTA can recognize P . (The essential obstacle is that P needs to enforce sep-
arate equalities on unboundedly many pairs, which cannot be done with only
finitely many rigid states.) This implies that the RTA family is not closed un-
der pre-concatenation with a regular language, since P = L ⋅◻ M where L =
{nil⟨⟩,cons⟨◻, l⟩ ∣ l ∈ L} is regular (note the recursive definition, allowing trees
with arbitrarily many ◻ leaves) and M = {p⟨x,x⟩ ∣ x ∈ Lx} is rigid. RTAs are
trivially closed under post-concatenation with a regular language: L ⋅◻M is an
RTA language over F if L is rigid over F ∪ {◻} and M is regular over F , as the
rigidity in L will not be able to test the structure induced by concatenation with
M , making concatenation behave locally as if L were regular.5

Second, consider the set of lists D = {[], [x1, x1], [x1, x1, x2, x2],⋯ ∣ xi ∈
Lx} for some regular Lx with ∣Lx∣ = ∞. Again, the RTA pumping lemma im-
plies that D cannot be recognized by an RTA. This shows that RTAs are not
closed under Kleene-star, since D = E∗,◻ for the RTA language E = {nil} ∪
{cons⟨x,cons⟨x,◻⟩⟩ ∶ x ∈ Lx}, Note that Ek,◻ is an RTA language for any finite
k and any regular (or even rigid) language Lx.

3 Isolation

We augment RTA transition rules with the ability to discard rigidity constraints
across subtrees, introducing Isolating Rigid Tree Automata (IRTA), a proper

2 The states QR are thus “rigid” as each expands in one way throughout the tree.
3 These requirements on accepting states of A are needed for our RTA construction,

in which qF becomes a rigid state. However, they involve no loss of generality, since
if L is recognized by any regular TA A′

= ⟨F ,Q,QF ,∆⟩, it is also recognized by
an equivalent one that uses a single, non-reentrant accepting state, as required:
A = ⟨F ,Q ∪ {qF },{qF },∆ ∪ {f⟨q1, . . . , qk⟩→ qF ∣ (f⟨q1, . . . , qk⟩→ q) ∈∆,q ∈ QF }⟩.

4 For concreteness and to avoid any ability of the lemma to find pumping opportunities
in Lx, restrict to runs over “short” trees from Lx for this and the next example.

5 One could define a notion of concatenation that was more specialized to RTAs, where
◻ itself was interpreted rigidly. On this definition, RTAs would be closed under both
pre- and post-concatenation with regular languages.

Rigid Tree Automata With Isolation 23

super-class of RTA.6 Each transition rule is decorated with a set of rigid states

to isolate, making it of the form f⟨q1, . . . , qn⟩
!IÐ→ q0 with f/n ∈ F , ∀i.qi ∈ Q,

and I ⊆ QR.7 Intuitively, when such a rule is used in a run to reach a node
ν, the equality constraint for a rigid state q ∈ I is no longer enforced between
q-annotated nodes strictly dominated by ν and q-annotated nodes elsewhere.
Every RTA is an IRTA with I = ∅ everywhere.

The non-RTA examples from before are easily captured (see Figure 1 in
the appendix for illustrations). As before, suppose that Lx is recognized by the
TA A = ⟨F ,Q,{qF },∆⟩ with non-reentrant accepting state qF . Then taking
F ′ = F ∪ {p/2,cons/2,nil/0},

– The language P is recognized by the IRTA ⟨F ′,Q∪{q∗},{q∗},{qF },∆′⟩ with

∆′ =∆ ∪ {p⟨qF , qF ⟩ !{qF }ÐÐÐ→ qp,cons⟨qp, q∗⟩→ q∗,nil⟨⟩→ q∗}.
– The language D is recognized by the IRTA ⟨F ′,Q ∪ {q∗1 , q∗2},{q∗1},{qF },∆′⟩

with ∆′ =∆ ∪ {cons⟨qF , q∗1 ⟩→ q∗2 ,cons⟨qF , q∗2 ⟩
!{qF }ÐÐÐ→ q∗1 ,nil⟨⟩→ q∗1}.

The use of ∅ ⊊ I ⊊ QR allows for hybrid structures with both global and local
equalities, such as D′ = {[], [x0, x1, x1], [x0, x1, x1, x0, x2, x2],⋯ ∣ xi ∈ Lx}. Here
the equality of every third entry (x0) would be enforced throughout the entire list
using a rigid state that is not isolated (à la RTA), while the other entries are only
equal in adjacent pairs, using a rigid state that is periodically isolated as in D.

To describe the semantics of IRTA rules more formally, we first restate the
acceptance condition for TAs and RTAs as a bottom-up algorithm for generating
accepting runs, if any, on an input tree. A simple change then will suffice to make
this algorithm construct IRTA runs.

Membership testing for a deterministic TA can be accomplished by bottom-
up annotation of the given tree t. A step of this algorithm visits any unannotated
node of t whose children have already been annotated, and annotates it with the
only state that respects ∆ (given the child annotations), or rejects t if there
is no such state. t is accepted if the root is annotated by a final state. In the
nondeterministic case, each node of t is simultaneously annotated with all states
that can respect ∆ (given some choice of the child annotations), and t is accepted
if its root node is annotated with at least one final state.

We can extend this approach to RTAs by augmenting the annotations. Let
tν denote the subtree of t rooted at node ν. Each annotation of ν, rather than
being a state in Q, is now a pair (q, r) ∈ Q × ℘(QR × T (F)). Intuitively, this
pair records the existence of some run on tν that annotates ν with q, where
r ∶ QR ⇀ {subtrees of tν} is a partial function (represented as a set of ordered

6 In this work, we consider the family of nondeterministic (I)RTAs. Of course there is
also a class of deterministic IRTAs that generalize deterministic RTAs.

7 We choose the isolating set I as part of the transition rule. In the case of deterministic
IRTAs, however, it might increase power to change the form of the rules to defer the
choice of I until the next rule is selected. The next rule would then have the form
g⟨. . . , q0!I, . . .⟩→ q−1, allowing the choice of I at the q0-annotated node ν depend on
the annotations at ν’s siblings, and on the functor g and annotation q−1 at ν’s parent.

24 N.W. Filardo and J. Eisner

pairs) that maps each rigid state q′ used in the run to the tree t′ such that q′ was
used in the run only to annotate the roots of copies of t′. When visiting a node ν
with label g/m, if (g⟨q1, . . . , qm⟩→ q) ∈∆ and the m children are annotated with
(q1, r1), . . . , (qm, rm), the algorithm annotates this node with (q, r), provided
that r = ⋃mi=0 ri is a partial function, where r0 = {(q, tν)} if q ∈ QR and otherwise
r0 = ∅. The full tree t is accepted if its root has a label (q, r) for some q ∈ QF .

The generalization to IRTAs is now straightforward: the algorithm simply
“forgets” subtrees when directed to do so by the transition rules. When visiting

a node ν with label g/m, if (g⟨q1, . . . , qm⟩ !IÐ→ q) ∈ ∆ and the m children are
annotated with (q1, r1), . . . , (qm, rm), the algorithm computes r′ = r0 ∪ {(q′, t′) ∈
r ∣ q′ ∉ I}, where r = ⋃mi=1 ri and r0 is as before, and annotates this node with
(q, r′), provided that r′ is a partial function.

4 Pumping Lemma

The pumping lemma construction for RTAs given in [2, §2.4] relies heavily on
the fact that any path from a the root of an accepted run to a leaf thereof will
contain each rigid state at most once. Thus if there is an accepting run with
a path of length ∣QR∣(1 + ∣Q∣), there must exist a nontrivial sub-path with all
nodes there-on labeled with states from Q∖QR (i.e., not rigidly) and with both
endpoints equally labeled. This is no longer true in IRTA: a root-leaf path in an
accepted run can contain a rigid state at most once between isolations of that
state, but isolations may occur arbitrarily often.

Nevertheless, a pumping-style construction is still possible (see Figure 2 for
an illustration). Given an accepted tree t of height ∣Q∣ ⋅ 2∣QR∣ + 1, a root-leaf
path of that length is guaranteed to have two distinct nodes analyzed with the
same (possibly rigid) state and with the same set of rigid states having not
been isolated. Let two such colliding nodes be δ and α, respectively labeled as
(q, r) and (r, r′) with r and r′ having equal domains. We can then partition
the tree into three regions by writing it as B[D[A]], where B (“before”) and
D (“during”) are 1-contexts, with D rooted at δ, and A = tα (“after”) is a tree
rooted at α. We can construct a new 1-context D′ from D by “rewriting”: use
the values from r′, rather than r, to satisfy rigid states in D, traversing bottom
up and manipulating r′ as directed by the automaton’s rules. The result will be a
revised label of (q, r′′) for the root of D′; use the same rewrite procedure to turn
B, which used rigid trees from r′, into B′ using r′′. Now B′[D′[D[A]]] is another
accepted tree satisfying the pumping preconditions. One could, alternatively,
rewrite B to B′′ using r to obtain B′′[A], another accepted tree.

This pumping construction merely builds other trees; it does not repeat parts
of the tree structure exactly. Still, it shows that if an IRTA accepts a sufficiently
tall tree, it accepts infinitely many trees. It also shows an argument (different
from that of § 5.1 below) that emptiness of an IRTA’s language is decidable: one
could exhaustively enumerate and test trees of height up to ∣Q∣ ⋅2∣QR∣ only, since
the shortest accepted tree cannot be taller than that—any such tree could be
pumped down using the B′′[A] construction.

Rigid Tree Automata With Isolation 25

5 Decision Problems
5.1 Emptiness

RTAs may be tested for non-emptiness using a state-marking algorithm [2, §6.1].
The RTA algorithm constructs acyclic runs, demonstrating occupancy of the
RTA’s states by visiting them in a “depth-first” order. If a state is non-empty,
then this algorithm will construct a witness tree for it of height at most n, where
n is the number of states in the RTA. The RTA is non-empty iff at least one of
its final states is non-empty.

To find a witness of an IRTA’s non-emptiness, it suffices to find a witness for
the corresponding RTA (which drops the !I decoration, and thus enforces even
more equality than the IRTA requires). This works because if the IRTA has any
witness t, then it has a witness t′ that would be accepted by the RTA, which
can be found by rewriting subtrees to be equal much as in section 4.

5.2 Membership Testing

As with RTAs [2, §6.2], membership testing of a tree t (with n nodes) against
an IRTA ⟨F ,Q,QF ,QR,∆⟩ is NP-complete. The proof for RTA reduces 3-SAT
to membership testing. We need only show that an annotation of t’s nodes can
be checked in polynomial time to determine whether it constitutes a valid run
(section 3). This involves checking each node of t separately to ensure that its
annotation (q, r) can be derived from the annotations of its children by one of the
rules in ∆. Given such a rule, checking the r annotation (which dominates the
runtime) involves comparing at most a∣QR∣ pairs of subtrees of t, each having at
most n nodes, where a is an upper bound on the number of children (the largest
arity of any symbol in F). Thus, the total runtime is O(an2∣QR∣∣∆∣).8

5.3 Universality

As all RTAs are IRTAs, tests for universality (L(A) = T F?), equality (L(A) =
L(A′)?), and inclusion (L(A) ⊆ L(A′)?) all remain non-computable for our new
class: the proof from [2, §6.4] continues to hold. For practical purposes, we envi-
sion the possibility of a 3-way inclusion test that spends limited computational
power to prove or disprove inclusion, but sometimes fails to do either.

6 Closure Properties
Pre-concatenation with a Regular Language IRTAs are, by design, trivially closed
under this operation. When constructing an IRTA for L ⋅◻M from an IRTA for
M , where L is regular over F∪{◻}, isolate all rigid states in M on any transition
to the sole L state that labels ◻.

Kleene Closure Similarly, when constructing an IRTA for L∗,◻ from an IRTA
for L over F ∪ {◻}, isolate all rigid states of L on transitions to the ◻ state.

Projection Closure If Lx is an IRTA language, then the set of trees that appear
at a given address α (e.g., 1st child of 2nd child of root) within trees of Lx

is also an IRTA language. After eliminating unreachable rules (rules that con-
tain empty IRTA states as determined by § 5.1) to obtain a “trimmed” IRTA

8 Hash consing can eliminate a factor of n by allowing O(1)-time subtree comparison.

26 N.W. Filardo and J. Eisner

⟨F ,Q,QF ,QR,∆⟩, a simple recursive algorithm can nondeterministically follow
transitions of ∆ backwards from QF to find the collection Qq of states that can
appear at address α. The desired IRTA is then ⟨F ,Q,⋃q∈QF

Qq,QR,∆⟩.
Complementation Non-closure We conjecture that IRTAs are, like RTAs, not
closed under complementation. The existing demonstration from [2, Example 7
and §4.2] is, however, no longer sufficient: the set B of balanced binary trees
over F = {a/0,f/2} is an IRTA language. Let Q = {q0, q1}; then B is recognized

by ⟨F ,Q,Q,Q,{a⟨⟩ → q0,f⟨q0, q0⟩
!{q0}ÐÐÐ→ q1,f⟨q1, q1⟩

!{q1}ÐÐÐ→ q0}⟩. Unfortunately,
finding a replacement has proven tricky!

Intersection Non-closure It is possible to construct a series of IRTA machines
whose intersection would give the language of accepting runs of a two-counter
machine, as in [1, Thm. 4.4.7]. Therefore, as IRTA has a decidable emptiness
test, it must not be intersection-closed. Despite that, we conjecture that some
special cases of intersection may still be possible; in particular, we speculate
that intersecting an IRTA language with either a regular language or an RTA
language will tractably yield an IRTA language.

Union Closure IRTAs are trivially closed under union, by nondeterminism.

7 Comparison to TAC+ / TA=
The IRTA class is neither more general nor more specific than tree automata
with local equality constraints (TAC+ or TA=, [3]). The non-inclusion of IRTA
in TAC+ follows from the non-inclusion of RTA. RTA’s ability to enforce con-
straints globally rather than solely at fixed relative positions allow it to rec-
ognize, e.g., the class of trees t in which every two subterms g⟨t1⟩ and g⟨t2⟩
satisfy t1 = t2, even if they are arbitrarily far apart in the tree [2, Example 3]. To
show conversely that TAC+ is not included in IRTA, consider the language L =
{[0], [1,0], . . . , [n,n − 1, . . . ,1,0], . . .} (with integers represented as their Peano
encodings). L is recognized by the TAC+ ⟨{z/0,s/1,nil/0,cons/2},{qz, qs, qn, qc},
{qc},∆⟩, where∆ = {cons⟨qs, qc⟩

11=21ÐÐÐ→ qc,z⟨⟩→ qz,s⟨qz⟩→ qs,s⟨qs⟩→ qs,nil⟨⟩→
qn,cons⟨qz, qn⟩ → ql}. The first rule in ∆ is the centerpiece. L is not an IRTA
language: suppose that L is recognized by an IRTA A with k states, and consider
an accepting run of A on t = [k, . . . ,1,0]. Let ν be a minimum-height Peano node
of t such that its state annotation qν is reused for some ν′ in t with tν ≠ tν′ . ν
exists by pigeonhole. By minimality, each proper descendant of ν uses a state
that annotates equal trees throughout the run on t. Substituting tν in for all qν-
annotated nodes yields another accepting run on a new tree t′. However, t′ /∈ L:
either t′ is not a list, or t′ has the same length as t but different elements.

8 Conclusion

We have introduced a new class of automata, Isolating Rigid Tree Automata,
which are a Kleene-closed super-class of Rigid Tree Automata. We hope, despite
the loss of intersection closure, that IRTA will be useful for modeling inductive
(i.e., recursive) data types for programming languages where a data constructor
may make non-linear use of its (finitely many) arguments (e.g., Prolog).

Rigid Tree Automata With Isolation 27

References

1. Hubert Comon, Max Dauchet, Remi Gilleron, Florent Jacquemard, Denis Lugiez,
Christof Loding, Sophie Tison, and Marc Tommasi. Tree Automata Techniques and
Applications.

2. Florent Jacquemard, Francis Klay, and Camille Vacher. Rigid tree automata and
applications. Information and Computation, 209(3):486–512.

3. Jocelyne Mongy. Transformation de noyaux reconnaissables d’arbres. Forêts
RATEG. PhD thesis, Laboratoire d’Informatique Fondamentale de Lille, 1981.

A Additional Figures

cons q∗

cons q∗

nil q∗pair qp

b qFb qF

pair qp

a qFa qF

qF

qF

(a) An example tree from P .

cons q∗1

cons q∗2

cons q∗1

cons q∗2

nil q∗1b qF

b qF

a qF

a qF

qF

qF

(b) An example tree from D.

Fig. 1: Runs of IRTAs, as given in § 3, for languages defined in § 2. Horizontal
dotted lines indicate isolation: any two nodes labeled by the same rigid state
must dominate equal trees, unless separated by a line labeled by that state.

f’ (q, r′)

B

f (q, r)
D

A

∣Q
∣⋅2
∣Q

R
∣+

1

original tree

r and r′ have
identical support

f (q, r)
B′′

rewrite r′ as r

A

copy

shorter tree

f′ (q, r′′)
B′

rewrite r′ as r′′

f′ (q, r′)
D′

rewrite r as r′

f (q, r)
D

copy

A
copy

taller tree

Fig. 2: Graphic depiction of the IRTA pumping construction of § 4, showing how
to derive both a shorter and taller tree from a tree of height ∣Q∣ ⋅ 2∣QR∣ + 1.

28 N.W. Filardo and J. Eisner

Direct Evaluation of Selecting Tree Automata on
XML Documents Compressed with Top Trees

Kenji Hashimoto, Suguru Nishimura, and Hiroyuki Seki

Nagoya University, Japan
{k-hasimt,seki}@is.nagoya-u.ac.jp, nishimura@apal.i.is.nagoya-u.ac.jp

Abstract. Tree compression methods that utilize the structural infor-
mation have the advantage that a compressed document can be directly
scanned without decompression. We propose a method for manipulating
an XML document compressed with a top tree without uncompressing
the document. Deterministic selecting top-down tree automata are used
for specifying positions in a tree. Experimental results show the avoid-
ance of duplicated computation for common substructures can greatly
reduce the computation time.

1 Introduction
An XML document is easily handled and has high versatility, but the size of a
real-world XML document is apt to become large and various compression meth-
ods for XML have been proposed. Among them, tree compression methods have
advantage that a compressed document preserves the structure of the original
document and we can retrieve or update the document without decompressing
it in principle. A direct evaluation method for structured documents compressed
with tree grammars has shown good performance [5], which naturally raises a
question whether a direct evaluation is also effective for other tree compres-
sion methods. Among others, a compression method with top trees [4] has been
paid attention because of advantages in processing some type of navigational
queries, while it has been reported in [7] that the compression ratio achieved by
TreeRepair [8] is better than that by the method with top trees.

This paper proposes a method of directly querying a tree compressed with a
top tree. A query is given by a deterministic top-down selecting tree automaton
(DSTA) that computes a set of nodes of an input tree via state transitions. The
proposed method applies a given DSTA directly to a tree compressed with a top
tree. When the same states of the automaton are detected to be assigned to a
subtree, the algorithm avoids the duplicated computation by “memoization.”

2 Preliminaries
2.1 Tree

Let N = {1, 2, 3, . . .} and Σ be an alphabet. The set T (Σ) of (unranked) trees
over Σ is the smallest set that satisfies f(t1, . . . , tn) ∈ T (Σ) whenever f ∈ Σ
and ti ∈ T (Σ) for 1 ≤ i ≤ n. The set Pos(t) of positions of t = f(t1, . . . , tn)
is defined by Pos(t) = {ε} ∪

⋃n
i=1{ipi | pi ∈ Pos(ti)}. For u, v ∈ Pos(t), if

u = vw for some w ∈ N∗, we write v � u. If v � u and v 6= u, we write

30 K. Hashimoto, S. Nishimura, and H. Seki

v ≺ u. If u = vi for i ∈ N, (v, u) is an edge of t. The root of t is ε. If there
is no u ∈ Pos(t) such that v ≺ u, v is a leaf of t. Leaf(t) is the set of all
leaves of t. For p ∈ Pos(t), the subtree of t = f(t1, . . . , tn) at p, denoted as
t|p, is defined by t|ε = t and t|ip′ = ti|p′ (1 ≤ i ≤ n) and the label of p of
t, λ(t, p), is defined by λ(t, ε) = f and λ(t, ip′) = λ(ti, p

′) (1 ≤ i ≤ n). For
trees t, t′ ∈ T (Σ) and p ∈ Pos(t), let t[t′]p denote the tree obtained from t by
replacing t|p with t′. For a tree t = f(t1, . . . , tn), let |t| = 1 +

∑n
i=1 |ti| and

height(t) = 1 + max ({0} ∪ {height(ti) | 1 ≤ i ≤ n}).
A deterministic selecting top-down path automaton (abbreviated as DSTA)

over Σ is a triple A = (Q, q0, ∆) where (1) Q is a finite set of states, (2) q0 ∈ Q
is the initial state, and (3) ∆ is a set of transition rules that have the shape of
(q, f)Rqc where q, qc ∈ Q, f ∈ {%} ∪Σ, R ∈ {→,⇒} such that for every q ∈ Q,
there is a rule whose left-hand side is (q,%) in ∆, and for every pair of q ∈ Q
and f ∈ {%} ∪Σ, there is at most one rule whose left-hand side is (q, f). A rule
in ∆ whose left-hand side is (q,%) for q ∈ Q is called a default rule and a rule
(q, f)⇒ qc is called a selecting rule.

Let A = (Q, q0, ∆) be a DSTA. For a tree t ∈ T (Σ), a tree r ∈ T (Q) is a run
of t by A if (1) Pos(r) = Pos(t), (2) if p is not a leaf, λ(t, p) = f , λ(r, p) = q,
λ(r, pi) = qi and λ(r, pj) = qj for any i, j ∈ N, then qi = qj , and for some
R ∈ {→,⇒}, either (a) (f, q)Rqi ∈ ∆ or (b) (%, q)Rqi (and (f, q)Rq′ /∈ ∆ for
any q′), which is called the rule applied at p, and (3) λ(r, ε) = q0. For a tree t,
a run of t by A is unique if exists. A position p of t is selected by A if there is
a run r of t by A such that a selecting rule is applied at p. DSTAs express the
fragment of XPath with only child, descendant, test on labels. Let Apre(t) be
the set of pre-order numbers of positions of t selected by A, where the pre-order
number n of p means that p is the nth position when traversing t in pre-order.

Example 1. Consider an XPath expression //f/a. The DSTA A = (Q, q0, ∆)
selects the set of nodes specified by this XPath expression where ∆ = {(q0, f)→
q1, (q0,%)→ q0, (q1, f)→ q1, (q1, a)⇒ q0, (q1,%)→ q0}.
2.2 Top Tree and Top DAG

Definition 2. Let t ∈ T (Σ) and v, u ∈ Pos(t) such that v ≺ u with u = viw
for some i ∈ N and w ∈ N∗. Also let t|v = f(t1, . . . , tn), t|u = g(t′1, . . . , t

′
m),

and assume 1 ≤ r ≤ i ≤ s ≤ n. The cluster of t determined by v, r, s, u is
defined as Ct(v, r, s, u) = f(tr, . . . , ts)[g]z where z = (i − r + 1)w. Especially
when u ∈ Leaf(t), the cluster is denoted as Ct(v, r, s) = f(tr, . . . , ts). Also, v and
u (if u /∈ Leaf(t)) are called boundaries of the cluster; v is the top boundary and
u is the bottom boundary. ut

Definition 3. Let C1 = Ct(v1, r1, s1, u1) and C2 = Ct(v2, r2, s2, u2) be clusters
of a tree t. If C1 and C2 share one of their boundaries and they are either
horizontally or vertically adjacent in one of the following five ways, define the
merge C of C1 and C2 as follows:

(1) Case u1 = v2, r2 = 1, and s2 = max{i | v2i ∈ Pos(t)} :
(A) if u2 /∈ Leaf(t), C = Ct(v1, r1, s1, u2);

Selecting Tree Automata on XML Documents Compressed with Top Trees 31

(B) if u2 ∈ Leaf(t), C = Ct(v1, r1, s1).

(2) Case v1 = v2 and r2 = s1 + 1:

(C) if u1 /∈ Leaf(t) and u2 ∈ Leaf(t), C = Ct(v1, r1, s2, u1);
(D) if u1 ∈ Leaf(t) and u2 6∈ Leaf(t), C = Ct(v1, r1, s2, u2);
(E) if u1, u2 ∈ Leaf(t), C = Ct(v1, r1, s2).

(A), . . . , (E) are called merge types, or simply, types. A merge by (A) or (B)
is called a vertical merge and a merge by (C), (D) or (E) is called a horizontal
merge (see Figure 1). ut

(A) (B) (C) (D) (E)

Fig. 1. Merge types of clusters

Definition 4. A top tree τ of a tree t is a (binary) tree that satisfies all of the
following conditions:

(1) Every π ∈ Pos(τ) represents a cluster of ⊥(t) , denoted by Cl(π).
(2) If π ∈ Leaf(τ), π represents an edge of t, i.e., C⊥(t)(v, i, i, u) (i ∈ N and

u = vi) and λ(τ, π) = λ(t, u).
(3) If π /∈ Leaf(τ), π represents the merge of Cl(π1) and Cl(π2) and λ(τ, π) is

the merge type of C. ut

A top tree of a given tree t is not always uniquely determined because there
may be more than one way of constructing the cluster corresponding to t. For a
tree t, a top DAG (directed acyclic graph) τD is the minimal DAG representation
of a top tree τ of t where a node of τD may represent more than one position of
τ . We say that τD is a compression of t and t is the decompression of τD. We
abuse notions of a top tree, e.g., for a node ν of τD, we will write Cl(ν) to mean
Cl(π) where π is any position of the top tree represented by ν. The size |τD| of
τD is the number of edges of τD. The compression ratio CR(t, τD) of τD against
t is defined as CR(t, τD) = |τD|/|t|.

In the above definitions, we do not keep the label of the top boundary of
each cluster, following the idea in [4, 7]. This increases the likelihood of identical
subtrees in the top tree, and thus we can get a smaller top DAG. We wrap a
given tree t by a dummy symbol ⊥ so that the leftmost leaf of the top tree τ
keeps the label of the root of t.

32 K. Hashimoto, S. Nishimura, and H. Seki

3 Direct Processing of Selecting Tree Automaton
In this section, we propose algorithms for two tasks, counting and materializa-
tion [10], given a top DAG τD of a tree t and a DSTA A. To begin with, we
present an underlying procedure for computing a run of A. Algorithm 2 shows
eval(ν, q) that computes, for a node ν of τD and q ∈ Q, the state in Q assigned
to each position of Cl(ν) and returns the state assigned to all the children (in
t) of the bottom boundary of Cl(ν) (if exists) assuming that q is assigned to
each child of the top boundary of Cl(ν). Note that for the root node δ of τD,
eval(δ, q0) in effect constructs the run of t by A (if exists). More precisely, when
a leaf node ν with λ(τD, ν) = f is visited with a state q ∈ Q and (q, f)Rqc ∈ ∆,
the state qc is returned, and if R =⇒ in addition, the position 1 in Cl(ν) is
selected. This is because ν represents an edge (v, u) of t and u (its position in
Cl(ν) is 1) is selected by A.

Algorithm 2 eval(ν, q)

input: node ν (of top DAG τD), state q ∈ Q
output: state q′

1: if ν is a leaf node then
2: f := λ(τD, ν)
3: if (q, f) R qc ∈ ∆ then
4: q′ := qc
5: else
6: q′ := qc where (q,%) R qc ∈ ∆
7: end if
8: else
9: Let ν1 and ν2 be the left and right children of ν, respectively.

10: switch the type of Cl(ν) do
11: case (A) or(B):
12: q′ := eval(ν2, eval(ν1, q))

13: case (C):
14: q′ := eval(ν1, q); eval(ν2, q)

15: case (D):
16: eval(ν1, q); q

′ := eval(ν2, q)

17: case (E):
18: eval(ν1, q); eval(ν2, q)

19: end switch
20: end if

Since A is deterministic, the result of eval(ν, q) is unique when ν and q
are given. To avoid a duplicated computation, a table (hash map) is used for
memoization. When the algorithm needs to compute eval(ν, q), it first retrieves
the hash map with (ν, q) as a key, and if no information has been recorded,
eval(ν, q) is executed and the result is stored in the hash map with key (ν, q).

Counting. We consider the task of counting positions of t selected by A recur-
sively along with the structure of τD. We can compute the number |A(t)| in
O(|A||τD|) time. Our algorithm for counting just computes the number s(ν) of
selected positions in Cl(ν) for each node ν. The number s(ν) can be recursively

Selecting Tree Automata on XML Documents Compressed with Top Trees 33

computed in parallel with the computation of eval(ν, q) by adding s(ν) to the
return value of eval(ν, q).

(1) ν is a leaf node of τD and Cl(ν) is an edge (v, u) of t: s(ν) = 1 if a selecting
rule in ∆ is applied to u, s(ν) = 0 otherwise.

(2) ν is an internal node of τD: Let ν1 and ν2 be the left and right children of
ν, respectively. s(ν) = s(ν1) + s(ν2).

Materialization. Here we focus on computing Apre(t) from a given top DAG τD
of a tree t. We can construct an ordered list of Apre(t) in O(|A||τD| + |A(t)|)
time. Our algorithm for materialization computes recursively the following values
and sets for each node ν, in parallel with the computation of eval(ν, q): n(ν) is
the number of positions of Cl(ν) except its top boundary; b(ν) is the pre-order
number of the bottom boundary of Cl(ν) if exists; Pl(ν) (resp. Pr(ν)) is the set
of pre-order numbers of the selected positions in Cl(ν) smaller than or equal to
(resp. greater than) that of its bottom boundary. n(ν), b(ν), Pl(ν), and Pr(ν)
can be recursively defined as follows.

(1) ν is a leaf node of τD and Cl(ν) is an edge (v, u) of t: n(ν) = 1, b(ν) = 1,
Pr(ν) = ∅, and Pl(ν) = {1} if a selecting rule in ∆ is applied to u, Pl(ν) = ∅
otherwise.

(2) ν is an internal node of τD: Let ν1 and ν2 be the left and right children of
ν, respectively. Let ni = n(νi), bi = b(νi), and Pli = Pl(νi) and Pri = Pr(νi)
for i = 1, 2. Let us denote P + n = {n′ + n | n′ ∈ P}. n(ν) = n1 + n2.

b(ν) =

b1 + b2 if Cl(ν) is of type (A),
b1 if Cl(ν) is of type (C),
n1 + b2 if Cl(ν) is of type (D),
∅ if Cl(ν) is of type (B) or (E).

Pl(ν) =

Pl1 ∪ (Pl2 + b1) if Cl(ν) is of type (A),
Pl1 ∪ (Pr1 + n2) ∪ (Pl2 + b1) if Cl(ν) is of type (B),
Pl1 if Cl(ν) is of type (C),
Pl1 ∪ (Pl2 + n1) if Cl(ν) is of type (D) or (E).

Pr(ν) =

(Pr1 + n2) ∪ (Pr2 + b1) if Cl(ν) is of type (A),
Pl2 ∪ (Pr1 + n1) if Cl(ν) is of type (C),
Pr2 + n1 if Cl(ν) is of type (D),
∅ if Cl(ν) is of type (B) or (E).

4 Experiments
We implemented a prototype tool for direct evaluation of DSTAs on XML
documents compressed with top DAGs. We used the XML documents from
[1, 2, 3, 6, 11] listed in Table 1. Table 2 shows (the XPath expression equivalent
with) a DSTA we performed for a top DAG of each document. We implemented
a tool for compressing XML documents to top DAGs. As the same as [7], our tool
applies the idea of RePair to the horizontal merge step of top tree compression.
The top DAGs we used in the experiment were generated by the tool. Exper-
iments were performed in the following environment: Intel Xeon CPU E5-2407
v2 2.40GHz, 32GB RAM, FreeBSD 10.1.

34 K. Hashimoto, S. Nishimura, and H. Seki

Table 3 shows experimental results of our prototype evaluator for the two
tasks, counting and materialization, with/without memoization. We observe that
meemoization was much effective for both tasks, in particular when the compres-
sion ratio of a top DAG is high, e.g., XMark.

Table 1. XML documents and the compression ration of their top DAGs

File name size(KB) #edges height compression ratio

Mondial 408 22,422 5 0.2537
Nasa 8,267 476,645 8 0.1042
Treebank 25,508 2,437,665 36 0.4924
DBLP 1,770,844 42,699,876 6 0.0616
jawiki-article 491,552 32,615,072 5 0.0350
OpenStreetMap-spain 968,367 159,126,336 3 0.0385
XMark 5,738,500 87,538,032 12 0.0124

Table 2. Queries

File name XPath expression #rules of DSTA

(1) Mondial //* 1
(2) Nasa /*/*/*/*/*/*/*/* 9
(3) Treebank //NP//VP//PP//PP//IN 11
(4) DBLP /dblp/mastersthesis/school 7
(5) jawiki-article /mediawiki/page/revision/parentid 9
(6) OpenStreetMap-spain /osm/way/nd 7
(7) XMark //closed auction//keyword//* 5

Table 3. Results on direct query evaluation

|Apre(t)| counting (ms) materialization (ms)
w/o memo memo w/o memo memo

(1) 22,423 13 3 49 14
(2) 25,060 65 6 115 20
(3) 6,388 386 232 488 310
(4) 9 5,112 349 6,204 535
(5) 1,481,076 3,426 154 7,113 665
(6) 70,241,127 13,666 905 95,629 10,914
(7) 757,335 10,809 147 14,830 353

5 Conclusion
In this paper, we have presented a method of running a DSTA on a tree repre-
sented with a top DAG. Future work includes evaluation of queries with filtering
by using bottom-up automata, and updating directly a document represented
with a top DAG. Moreover, we need to compare our evaluator with other eval-
uators working over compressed documents such as TinyT [9].

References

[1] dblp – computer science bibliography, http://dblp.uni-trier.de/

[2] jawiki, https://dumps.wikimedia.org/jawiki/20160501/

[3] XMLCompBench. http://xmlcompbench.sourceforge.net/Dataset.html

http://dblp.uni-trier.de/
https://dumps.wikimedia.org/jawiki/20160501/

Selecting Tree Automata on XML Documents Compressed with Top Trees 35

[4] Bille, P., Gørtz, I.L., Landau, G.M., Weimann, O.: Tree compression with top
trees. Information and Computation 243(C), 166–177 (2015)

[5] Böttcher, S., Hartel, R., Jacobs, T.: Fast multi-update operations on compressed
XML data. In: Proceedings of the 29th British National Conference on Databases
(BNCOD 2013), LNCS 7968. pp. 149–164 (2013)

[6] Geofabrik: OpenStreetMap, http://download.geofabrik.de/
[7] Hübschle-Schneider, L., Raman, R.: Tree compression with top trees revisited. In:

Proceedings of the 14th International Symposium on Experimental Algorithms
(SEA 2015), LNCS 9125. pp. 15–27 (2015)

[8] Lohrey, M., Maneth, S., Mennicke, R.: XML tree structure compression using
RePair. Information Systems 38(8), 1150–1167 (2013)

[9] Maneth, S., Sebastian, T.: Fast and tiny structural self-indexes for XML. CoRR
abs/1012.5696 (2010), http://arxiv.org/abs/1012.5696

[10] Maneth, S., Sebastian, T.: XPath node selection over grammar-compressed trees.
In: Proceedings of the 2nd International Workshop on Trends in Tree Automata
and Tree Transducers (TTATT 2013), EPTCS 134. pp. 38–48 (2013)

[11] Schmidt, A., Waas, F., Kersten, M., Carey, M.J., Manolescu, I., Busse, R.: XMark:
A benchmark for XML data management. In: Proceedings of the 28th Interna-
tional Conference on Very Large Data Bases (VLDB 2002). pp. 974–985 (2002)

http://download.geofabrik.de/
http://arxiv.org/abs/1012.5696

36 K. Hashimoto, S. Nishimura, and H. Seki

The Square Trees in the Tribonacci Sequence

Yu-Ke Huang? and Zhi-Ying Wen

School of Mathematics and Systems Science, Beihang University (BUAA), Beijing,
100191, P. R. China; Department of Mathematical Sciences, Tsinghua University,

Beijing, 100084, P. R. China
huangyuke@buaa.edu.cn,hyg03ster@163.com;wenzy@tsinghua.edu.cn

Abstract. The Tribonacci sequence T is the fixed point of the substi-
tution σ(a) = ab, σ(b) = ac and σ(c) = a. In this note, we get the
explicit expressions of all squares, and then establish the tree structure
of the positions of repeated squares in T, called square trees. Using the
square trees, we give a fast algorithm for counting the number of repeated
squares in T[1, n] for all n, where T[1, n] is the prefix of T of length n.
Moreover we get explicit expressions for some special n such as n = tm
(the Tribonacci number) etc., which including some known results such
as in Mousavi-Shallit[6].

Keywords: kernel, square, gap sequence.

1 Introduction

Let A = {a, b, c} be a three-letter alphabet. The Tribonacci sequence T is the
fixed point beginning with the letter a of the substitution σ(a) = ab, σ(b) = ac
and σ(c) = a. As a natural generalization of the Fibonacci sequence, T has been
studied extensively by many authors, see [1,6,7,8].

Let ω be a factor of T, denoted by ω ≺ T. Let ωp be the p-th occurrence of
ω. If the factor ω and integers p, q such that ωpωq ≺ T, we call ωpωq a square
of T. As we know, T contains no fourth powers. The properties of squares and
cubes are objects of a great interest in mathematics and computer science etc.

We denote by |ω| the length of ω. Denote |ω|α the number of letter α in ω,
where α ∈ A. Let τ = x1 · · ·xn be a finite word (or τ = x1x2 · · · be a sequence).
We define τ [i, i − 1] = ε (empty word), τ [i] = τ [i, i] = xi for 1 ≤ i ≤ n; and
τ [i, j] = xixi+1 · · ·xj−1xj for i ≤ j ≤ n. Denote Tm = σm(a) for m ≥ 0, T−2 = ε,
T−1 = c. Denote tm = |Tm| for m ≥ −2, called the m-th Tribonacci number.
Denote by δm the last letter of Tm for m ≥ −1.

Denote A(n) = #{(ω, p) | ωpωq ≺ T[1, n]} the number of repeated squares in
T[1, n]. In 2014, Mousavi-Shallit[6] gave expression of A(tm), which they proved
by mechanical way. In [4], we give an algorithm for counting the number of
repeated squares in each prefix of the Fibonacci sequence. In this note, we give an

? Corresponding author. The research is supported by the Grant NSFC No.11431007,
No.11271223 and No.11371210. The authors thank sincerely the referees for many
helpful suggestions.

38 Y.-K. Huang

algorithm for counting A(n) for all n. In Section 2, we establish the tree structure
of the positions of repeated squares in T, called the square trees. Section 3
is devoted to give an algorithm for counting A(n). As a special case, we get
expression of A(tm) in Section 4.

The main tools of the paper are “kernel word” and “gap sequence”, which
introduced and studied in [2]. We define the kernel numbers that k0 = 0, k1 =
k2 = 1, km = km−1 + km−2 + km−3 − 1 for m ≥ 3. The kernel word with order
m is defined as K1 = a, K2 = b, K3 = c, Km = δm−1Tm−3[1, km − 1] for m ≥ 4.
Using the property of gap sequence, we can determine the positions of all ωp,
and then establish the square trees.

2 The square trees

In [3], we determined the three cases of squares with kernel Km (i.e., the maximal
kernel word occurring in these squares is Km). For m ≥ 4 and p ≥ 1, we denote

Λ(m, p) = ptm−1 + |T[1, p− 1]|a(tm−2 + tm−3) + |T[1, p− 1]|btm−2.

By Property 6.1 in [5], we have the position of the last letter of the p-th occur-
rence of Km that P (Km, p) = Λ(m, p) + km − 1. Thus we can define three sets
for m ≥ 4 and p ≥ 1, which contain all positions of the last letters of the three
cases of squares, respectively.

〈1,Km, p〉 = {P (ωω, p) | Ker(ωω) = Km, |ω| = tm−1, ωω ≺ T}
= {Λ(m, p) + tm−1, . . . , Λ(m, p) + km+3 − 2};

〈2,Km, p〉 = {P (ωω, p) | Ker(ωω) = Km, |ω| = tm−4 + tm−3, ωω ≺ T}
= {Λ(m, p) + tm−3 + tm−4, . . . , Λ(m, p) + km+2 − 2};

〈3,Km, p〉 = {P (ωω, p) | Ker(ωω) = Km, |ω| = tm−4 − km−3, ωω ≺ T}
= {Λ(m, p) + km − 1, . . . , Λ(m, p) + 2tm−4 − 1}.

In the sequel, a finite set of integers S is identified with the vector T obtained
from S by arranging its entires in increasing order. For m ≥ 4 and p ≥ 1, we
consider the vectors

Γ1,m,p = [Λ(m, p) + km+2 − 1, . . . , Λ(m, p) + km+3 − 2];

Γ2,m,p = [Λ(m, p) + km+1 − 1, . . . , Λ(m, p) + km+2 − 2];

Γ3,m,p = [Λ(m, p) + km − 1, . . . , Λ(m, p) + km+1 − 2].

Obviously, |Γi,m,p| = km+4−i−km+3−i = tm−i−1 for i ∈ {1, 2, 3}. And 〈1,Km, p〉
(resp. 〈2,Km, p〉, 〈3,Km, p〉) contains the several maximal (resp. maximal, min-
imal) elements of Γ1,m,p (resp. Γ2,m,p, Γ3,m,p). Moreover maxΓ2,m,p + 1 =
minΓ1,m,p and maxΓ3,m,p + 1 = minΓ2,m,p.

Now we denote P (α, p) + 1 by α̂ for short, α ∈ {a, b, c}. Using Lemma
6.4 in [5], comparing minimal and maximal elements in these sets below, we
have Γ1,m+1,p = [Γ3,m,â, Γ2,m,â, Γ1,m,â], Γ2,m+2,p = [Γ3,m,b̂, Γ2,m,b̂, Γ1,m,b̂] and

Γ3,m+3,p = [Γ3,m,ĉ, Γ2,m,ĉ, Γ1,m,ĉ] for m ≥ 4. By the relation between Γi,m,p and

The Square Trees in the Tribonacci Sequence 39

〈i,Km, p〉, we get the trees structure of the positions of repeated squares in T,
called the square trees. The square trees is a directed graph G = (V,A) where:

V = {nodes} = {〈i,Km, p〉 | i = 1, 2, 3; m ≥ 4; p ≥ 1};

A = {edges} =

〈1,Km+1, p〉 → 〈i,Km, â〉;
〈2,Km+2, p〉 → 〈i,Km, b̂〉;
〈3,Km+3, p〉 → 〈i,Km, ĉ〉;

for i = 1, 2, 3; m ≥ 4; p ≥ 1.

Here the notation “v → x, y, z” means three directed edges from the node v to
nodes x, y and z, respectively.

51
50
49
48

〈1,K6,1〉

51
50

〈1,K5,2〉

44
43

〈2,K5,2〉

40
39

〈3,K5,2〉

51
〈1,K4,4〉

47
〈2,K4,4〉

45
〈3,K4,4〉

@@R
��

�
��
�*

�
�
�
�
�
�

-

-

 -

��
��

��
��

��
���

-

(a)

71
70
69
68
67
66
65
64

〈2, K7,1〉

71
70

〈1,K5,3〉

64
63

〈2,K5,3〉

60
59

〈3,K5,3〉

71
〈1,K4,6〉

67
〈2,K4,6〉

65
〈3,K4,6〉

@@R
��

��
��*

�
�
�
�
�
�

-

-

 -

��
��

��
��

��
���

-

(b)

106
105
104
103
102
101
100
99
98
97
96

〈3,K8,1〉

108
107

〈1,K5,5〉

101
100

〈2,K5,5〉

97
96

〈3,K5,5〉

108
〈1,K4,9〉

104
〈2,K4,9〉

102
〈3,K4,9〉

��
��

��
��

���1

-
C
C
C
C
CW -

 -

��
��

��
��

��
���

-

(c)

Fig. 1. (a)-(c) are square trees from root 〈1,K6, 1〉, 〈2,K7, 1〉, 〈3,K8, 1〉, respectively.

By the definition of G above, we have G is a family of finite trees with nodes
{〈i,Km, p〉 | i = 1, 2, 3; m ≥ 4; p ≥ 1} satisfying the following conditions:

(1) The roots are 〈i,Km, 1〉 for all i = 1, 2, 3 and m ≥ 4;

40 Y.-K. Huang

(2) The leaves are 〈i,K4, p〉 for all i = 1, 2, 3 and p ≥ 1.
(3) We define the range of the tree with root 〈i,Km, 1〉 to be the finite set of

integers which belong to at least one of the nodes of the tree. The ranges of all
the trees are pairwise disjoint.

3 Algorithm: the numbers of repeated squares in T[1, n]
The notation ν . ω means that the word ν is a suffix of the word ω. Denote
a(n) = #{(ω, p) | ωpωq . T[1, n]} the number of squares ending at position n.
By Proposition 1 below, we can calculate a(n), and obversely calculate A(n) by
A(n) =

∑n
i=4 a(i). For m ≥ 4, since km = tm−2tm−1+tm−2+1

2 ,
Γ1,m,1 = [tm+2tm−1−tm−2−1

2 , . . . , tm+2tm−1+tm−2−3
2];

Γ2,m,1 = [−tm+4tm−1+tm−2−1
2 , . . . , tm+2tm−1−tm−2−3

2];

Γ3,m,1 = [tm+tm−2−1
2 , . . . , −tm+4tm−1+tm−2−3

2].

We extend the expressions on m = 3. The first few values of a(n) are:
a([1, 2, 3]) = [0, 0, 0], a(Γ3,3,1) = a([4]) = [0], a(Γ2,3,1) = a([5]) = [0],
a(Γ1,3,1) = a([6,7]) = [0,0], a(Γ3,4,1) = a([8]) = [1], a(Γ2,4,1) = a([9,10]) = [0,1],
a(Γ1,4,1) = a([11, 12, 13, 14]) = [0, 0, 0, 1], a(Γ3,5,1) = a([15, 16]) = [1, 1].

Proposition 1. For m ≥ 3,

a(Γ1,m+1,1) = [a(Γ3,m,1), a(Γ2,m,1), a(Γ1,m,1)] + [0, . . . , 0︸ ︷︷ ︸
tm−1−km+1+1

, 1, . . . , 1︸ ︷︷ ︸
km+1−1

];

a(Γ2,m+2,1) = [a(Γ3,m,1), a(Γ2,m,1), a(Γ1,m,1)] + [0, . . . , 0︸ ︷︷ ︸
tm−1−km+2+1

, 1, . . . , 1︸ ︷︷ ︸
km+2−1

];

a(Γ3,m+3,1) = [a(Γ3,m,1), a(Γ2,m,1), a(Γ1,m,1)] + [1, . . . , 1︸ ︷︷ ︸
tm−1−km+1

, 0, . . . , 0︸ ︷︷ ︸
km−1

].

Denote Φm =
∑
a(Γ3,m,1) +

∑
a(Γ2,m,1) +

∑
a(Γ1,m,1). The immediately

corollaries of Proposition 1 are
∑
a(Γ1,m,1) = Φm−1 + km − 1,

∑
a(Γ2,m,1) =

Φm−2 + km − 1,
∑
a(Γ3,m,1) = Φm−3 + tm−4 − km−3 + 1. Moreover, for m ≥ 6,

Φm = Φm−1 + Φm−2 + Φm−3 + −3tm+6tm−1+tm−2−1
2 .

By induction, we can prove the four properties in Fig 2.

Algorithm. Step 1. For n ≥ 52, find the integers m and i such that n ∈ Γi,m,1.
Then A(n) = A(minΓi,m,1 − 1) +

∑n
i=minΓi,m,1

a(i).

Step 2. Since A(minΓi,m,1−1) = A(maxΓi+1,m,1), i = 1, 2; A(minΓ3,m,1−1) =
A(maxΓ1,m−1,1). We calculate A(minΓi,m,1 − 1) by Property (d) in Fig.2.

Step 3. We calculate
∑n
i=minΓi,m,1

a(i) by the properties in Fig.3.

4 Expression: the numbers of repeated squares in Tm

Since θ8m ≤ tm < θ9m and θ6m−1 ≤ tm − tm−1 < θ7m−1 for m ≥ 7, see Fig.3,∑tm
i=minΓ1,m,1

a(i)−
∑tm−3

i=minΓ1,m−3,1
a(i)

=
∑
a(Γ3,m−1,1) +

∑
a(Γ3,m−3,1) +

∑
a(Γ2,m−3,1) + 2tm − 2tm−1 − 3tm−2 + 1

= m
22 (−19tm + 29tm−1 + 13tm−2) + 1

44 (347tm − 622tm−1 − 47tm−2) + 9
4 .

The Square Trees in the Tribonacci Sequence 41

(a) Φm = m
22

(−5tm + 14tm−1 + 4tm−2) + 1
44

(67tm − 166tm−1 + 5tm−2) + 1
4
.

(b)
∑
a(Γi,4,1) = 1 where i ∈ {1, 2, 3}, and

∑
a(Γ1,m,1) = m

22 (4tm − 9tm−1 + 10tm−2) +
1
44 (19tm + 36tm−1 − 169tm−2)− 1

4 ;∑
a(Γ2,m,1) = m

22 (10tm − 6tm−1 − 19tm−2) +
1
44 (−189tm + 156tm−1 + 331tm−2)− 1

4 ;∑
a(Γ3,m,1) = m

22 (−19tm + 29tm−1 + 13tm−2) +
1
44 (237tm − 358tm−1 − 157tm−2) +

3
4 .

(c)
∑m−1
j=4 Φj = m

44
(13tm − 10tm−1 + 5tm−2) + 2

11
(−8tm + 8tm−1 − 7tm−2) + m

4
+ 2.

(d)

{
A(maxΓ3,m,1) = m

44
(−25tm + 48tm−1 + 31tm−2) + 1

44
(173tm − 294tm−1 − 213tm−2) + m+11

4
;

A(maxΓ2,m,1) = m
44

(−5tm + 36tm−1 − 7tm−2) + 1
22

(−8tm − 69tm−1 + 59tm−2) + m+10
4

;

A(maxΓ1,m,1) = m
44

(3tm + 18tm−1 + 13tm−2) + 1
44

(3tm − 102tm−1 − 51tm−2) + m+9
4

.

Fig. 2. These properties can be proved easily by induction, where (a) and (c) hold for
m ≥ 4, (b) and (d) hold for m ≥ 5.

For m ≥ 7, by induction,
∑tm
i=minΓ1,m,1

a(i) is equal to

m
44 (23tm − 38tm−1 − 3tm−2) + 1

44 (−65tm + 164tm−1 − 105tm−2) + 3m
4 −

9
4 .

Since minΓ1,m,1 − 1 = maxΓ2,m,1, A(tm) = A(maxΓ2,m,1) +
∑tm
i=minΓ1,m,1

a(i).

By the properties in Fig.3, we prove Theorem 21 in [6] in a novel way: for m ≥ 3,
A(tm) = m

22 (9tm − tm−1 − 5tm−2) + 1
44 (−81tm + 26tm−1 + 13tm−2) +m+ 1

4 .

References

1. Delecroix V., Hejda T., Steiner W.: Balancedness of Arnoux-Rauzy and Brun words.
Lecture Notes in Computer Science. 8079, 119–131 (2013).

2. Huang Y K., Wen Z Y.: Kernel words and gap sequence of the Tribonacci sequence,
Acta Mathematica Scientia (Series B). 36.1, 173–194 (2016).

3. Huang Y K., Wen Z Y.: The numbers of distinct squares and cubes in the Tribonacci
sequence. Numeration 2016, Prague, (2016).

4. Huang Y K., Wen Z Y.: The number of distinct and repeated squares and cubes in
the Fibonacci sequence. arXiv:1603.04211.

5. Huang Y K., Wen Z Y.: The numbers of repeated palindromes in the Fibonacci and
Tribonacci sequences. arXiv: 1604.05021.

6. Mousavi H., Shallit J.: Mechanical proofs of properties of the Tribonacci word.
Combinatorics on Words. Springer International Publishing. 170–190 (2014).

7. Richomme G., Saari K., Zamboni L.Q.: Balance and Abelian complexity of the
Tribonacci word. Advance Applied Mathematic. 45, 212–231 (2010).

8. Tan B., Wen Z Y.: Some properties of the Tribonacci sequence. European J Combin.
28, 1703–1719 (2007).

42 Y.-K. Huang

(a) n ∈ Γ3,m,1 = [
tm+tm−2−1

2
, · · · , −tm+4tm−1+tm−2−3

2
] for m ≥ 7. Denote

θ1m = minΓ3,m,1 =
tm+tm−2−1

2
;

θ2m = minΓ3,m,1 + |Γ3,m−3,1| = −5tm+10tm−1+3tm−2−1

2
;

θ3m = minΓ3,m,1 + |Γ3,m−3,1|+ |Γ2,m−3,1| = −tm+6tm−1−3tm−2−1

2
;

η1m = minΓ3,m,1 + tm−4 − km−3 + 1 = −2tm + 5tm−1.

θ4m = maxΓ3,m,1 + 1 = minΓ2,m,1 =
−tm+4tm−1+tm−2−1

2
.

Obviously, θ3m < η1m < θ4m for m ≥ 7, and minΓ3,m,1 − minΓ3,m−3,1 = tm−1. By
Property 1, we have: for n ≥ 52, let m such that n ∈ Γ3,m,1, then m ≥ 7 and

∑n
i=minΓ3,m,1

a(i)

=

∑n−tm−1
i=minΓ3,m−3,1

a(i) + n − minΓ3,m,1 + 1, θ1m ≤ n < θ2m;∑n−tm−1
i=minΓ2,m−3,1

a(i) +
∑
a(Γ3,m−3,1) + n − minΓ3,m,1 + 1, θ2m ≤ n < θ3m;∑n−tm−1

i=minΓ1,m−3,1
a(i) +

∑
a(Γ3,m−3,1) +

∑
a(Γ2,m−3,1) + n − minΓ3,m,1 + 1, θ3m ≤ n < η1m;∑n−tm−1

i=minΓ1,m−3,1
a(i) +

∑
a(Γ3,m−3,1) +

∑
a(Γ2,m−3,1) +

−5tm+10tm−1−tm−2+1

2
, otherwise.

(b) n ∈ Γ2,m,1 = [
−tm+4tm−1+tm−2−1

2
, · · · , tm+2tm−1−tm−2−3

2
] for m ≥ 6. Denote

θ5m = minΓ2,m,1 + |Γ3,m−2,1| = 3tm−5tm−2−1

2
;

η2m = minΓ2,m,1 + tm−3 − km + 1 = 2tm−1 − tm−2.

θ6m = minΓ3,m,1 + |Γ3,m−3,1|+ |Γ2,m−3,1| = 3tm−2tm−1−tm−2−1

2
;

θ7m = maxΓ2,m,1 + 1 = minΓ1,m,1 =
tm+2tm−1−tm−2−1

2
.

Obviously, θ5m < η2m ≤ θ6m for m ≥ 6, and minΓ2,m,1 − minΓ3,m−2,1 = tm−1. By
Property 1, we have: for n ≥ 32, let m such that n ∈ Γ2,m,1, then m ≥ 6 and∑n

i=minΓ2,m,1
a(i)

=

∑n−tm−1
i=minΓ3,m−2,1

a(i), θ4m ≤ n < θ5m;∑n−tm−1
i=minΓ2,m−2,1

a(i) +
∑
a(Γ3,m−2,1), θ5m ≤ n < η2m;∑n−tm−1

i=minΓ2,m−2,1
a(i) +

∑
a(Γ3,m−2,1) + n− η2m + 1, η2m ≤ n < θ6m;∑n−tm−1

i=minΓ1,m−2,1
a(i) +

∑
a(Γ3,m−2,1) +

∑
a(Γ2,m−2,1) + n− η2m + 1, otherwise.

(c) n ∈ Γ1,m,1 = [
tm+2tm−1−tm−2−1

2
, · · · , tm+2tm−1+tm−2−3

2
] for m ≥ 5. Denote

θ8m = minΓ1,m,1 + |Γ3,m−1,1| = tm+3tm−2−1

2
;

θ9m = minΓ1,m,1 + |Γ3,m−1,1|+ |Γ2,m−1,1| = −tm+4tm−1+3tm−2−1

2
;

η3m = minΓ1,m,1 + tm−2 − km + 1 = 2tm−1.

θ10m = maxΓ1,m,1 + 1 = minΓ3,m+1,1 =
tm+2tm−1+tm−2−1

2
.

Obviously, θ9m < η3m < θ10m for m ≥ 5, and minΓ1,m,1 − minΓ3,m−1,1 = tm−1. By
Property 1, we have: for n ≥ 21, let m such that n ∈ Γ1,m,1, then m ≥ 5 and∑n

i=minΓ1,m,1
a(i)

=

∑n−tm−1
i=minΓ3,m−1,1

a(i), θ7m ≤ n < θ8m;∑n−tm−1
i=minΓ2,m−1,1

a(i) +
∑
a(Γ3,m−1,1), θ8m ≤ n < θ9m;∑n−tm−1

i=minΓ1,m−1,1
a(i) +

∑
a(Γ3,m−1,1) +

∑
a(Γ2,m−1,1), θ9m ≤ n < η3m;∑n−tm−1

i=minΓ1,m−1,1
a(i) +

∑
a(Γ3,m−1,1) +

∑
a(Γ2,m−1,1) + n− η3m + 1, otherwise.

Fig. 3. (a)-(c) show the three cases of recursive relations between
∑n
i=minΓk,m,1

a(i)

and
∑n
i=minΓt,m−k,1

a(i), where k, t ∈ {1, 2, 3}, respectively. These relations are derived

directly from the square trees (the tree structure of the positions of repeated squares).
Using them, we can calculate

∑n
i=minΓk,m,1

a(i) fast, and give a fast algorithm for A(n).

The Output Size Problem for
String-to-Tree Transducers

Brink van der Merwe1, Nicolaas Weideman1,2, and Frank Drewes3

1 Department of Computer Science, Stellenbosch University, South Africa
2 Center for AI Research, CSIR, Stellenbosch University, South Africa

3 Department of Computer Science, Ume̊a University, Sweden

Abstract. The output size problem, for a string-to-tree transducer, is
to determine the rate of growth of the function describing the maximum
size of output trees, with respect to the length of the input strings. We
study the complexity of this problem. Our motivation is that a solution to
the output size problem can be used in order to determine the worst-case
matching time (for a given regular expression) of a backtracking regular
expression matcher, with respect to the length of the input strings.

Keywords: string-to-tree transducers, output size, backtracking regular expres-
sion matchers

1 Introduction

The complexity of determining the asymptotic behavior of the maximum output
size for trees produced by a given top-down tree transducer, as a function of
the size of input trees, was initiated in [4]. It was shown that the exponential
output size problem is NL-complete for total top-down tree transducers, and
DEXPTIME-complete for top-down tree transducers in general. We investigate
the complexity of determining the degree of the polynomial, in cases where the
maximum output size is polynomial in the size of the input, listed as future work
in [4]. Due to space limitations, we restrict our attention to total string-to-tree
transducers, but in contrast to [4], we allow transducer rules that, when applied,
will not consume any input (so-called ε-input rules).

The motivation of this research is that the results can be used to estimate the
matching time of backtracking regular expression matchers [2,3], by construct-
ing transducers that produce as output the computation tree of a backtracking
regular expression matcher, for a given input string that the regular expression
is attempting to match. Thus in this case, the maximum output size provides the
worst-case matching time behavior of a backtracking regular expression matcher,
for a given regular expression. For lack of space, we cannot detail this in the
present paper, but we will come back to it in the conclusion.

The outline of the paper is as follows. In the next section we introduce the
required notation and definitions. After this, we describe how results on ambi-
guity of non-deterministic finite automata (NFA) can be applied to solve the
output size problem, followed by our conclusions.

44 B. van der Merwe, N. Weideman, and F. Drewes

2 Definitions

In this section we introduce the notation and some of the definitions required
for the remainder of the paper.

For a finite alphabet Σ, we denote the set of all strings (or sequences) over
Σ, by Σ∗. In particular, Σ∗ contains the empty string ε. To avoid confusion, it
is assumed that ε /∈ Σ, and Σε = Σ ∪ {ε}. For Σ1 ⊆ Σ and w = a1 . . . an ∈ Σ∗,
with ai ∈ Σ, we let πΣ1

(w) be the word b1 . . . bn ∈ Σ∗1 , with bi = ai if ai ∈ Σ1,
and bi = ε otherwise. The length of a string w is denoted by |w|. We use N+ for
the positive integers, and N = N+ ∪ {0}.

A tree, with labels in a finite set ∆, is a function t : tD → ∆, where tD ⊆ N∗+
is a non-empty, finite set of vertices (or nodes) such that (i) tD is prefix-closed,
i.e., for all v ∈ N∗+ and i ∈ N+, vi ∈ tD implies v ∈ tD, and (ii) tD is closed
to the left, i.e., for all v ∈ N∗+ and i ∈ N+, v(i + 1) ∈ tD implies vi ∈ tD. The
vertex ε is the root of the tree and vertex vi is the ith child of v. We assume
that ∆ is a ranked alphabet, i.e. ∆ is a union of (not necessarily disjoint) sets
∆(0) ∪∆(1) ∪∆(2) . . . (with finitely of the ∆(i) non-empty). When f ∈ ∆(k), we
say f has rank k, and we allow symbols in ∆ to have more than one possible
rank, which is required for our application to regular expressions. If we want
to indicate explicitly that we consider f as a rank k symbol, we replace f by
f (k). Also, all trees are ranked, thus if v ∈ tD, then vi ∈ tD, for all 1 ≤ i ≤ k,
where k is one of the possible ranks of t(v). A node v such that v1 6∈ tD, is a leaf
node. The yield of a tree t, denoted by yield(t), is the concatenation of the labels
of the leaf nodes from left to right, i.e. yield(t) = α1 . . . αm, where αi = t(vi),
and v1 . . . vm are the leaf nodes in lexicographic order. We let |t| := |tD| denote
the size of t and |t|S = |{v ∈ tD | t(v) ∈ S}|, for S ⊆ ∆, the number of
occurrences of symbols from S in t. Moreover, t/v (v ∈ tD), denotes the tree t′,
with t′D = {w ∈ N∗+ | vw ∈ tD}, where t′(w) = t(vw) for all w ∈ t′D. Given trees

t1, . . . , tn and α ∈ ∆(n), we let α[t1, . . . , tn] denote the tree t with t(ε) = α and
t/i = ti for all i ∈ {1, . . . , n}. The tree α[] may be abbreviated as α. Trees t
with t(v) ∈ ∆(0) ∪∆(1), for all v ∈ tD, may be written as α1α2 . . . αn (instead
of α1[α2[. . . [αn]]]), where αi ∈ ∆(1) for i < n and αn ∈ ∆(0), and also being
regarded as strings (with rank 0 end markers). Given a ranked alphabet ∆, the
set of all ranked trees t : tD → ∆ is denoted by T∆. Moreover, if Q is an alphabet
disjoint from ∆, we let T∆(Q) := T∆∪Q where Q = Q(0), i.e., the symbols in Q
appear only at the leaves.

In the definition of an NFA below, the transition function δ is defined to
allow for parallel transitions on the same symbol between a pair of states. By
δ(p, α, q) = i > 0, we indicate that there are i transitions on α between p and q,

numbered from 1 to i. By writing p
α(j)−−−→ q or pα(j)q, where 1 ≤ j ≤ δ(p, α, q),

we refer to the jth-transition on α from p to q (but if δ(p, α, q) = 1, we may

still use the standard notation p
α−→ q or pαq). Although parallel transitions do

not influence the language accepted by an NFA, they do influence the number
of accepting runs of a given input string, and thus play a role in our setting.

The Output Size Problem for String-to-Tree Transducers 45

Definition 1. A non-deterministic finite automaton (NFA) is a tuple A =
(Q,Σ, q0, δ, F) where: (i) Q is a finite set of states; (ii) Σ is the input alphabet;
(iii) I ⊆ Q is the set of initial states; (iv) the partial function δ : Q×Σε×Q→
N+ is the transition function; and (v) F ⊆ Q is the set of final states.

Also, |A|δ :=
∑
q1,q2∈Q,α∈Σε

δ(q1, α, q2) is the transition size of A.

Next we define (accepting) runs and the language accepted by an NFA.

Definition 2. For an NFA A = (Q,Σ, q0, δ, F) and w ∈ Σ∗, a run on w is a
string r = s0α1(j1)s1 · · · sn−1αn(jn)sn, with s0 ∈ I, si ∈ Q and αi ∈ Σε such
that δ(si, αi+1, si+1) ≥ ji+1 for 0 ≤ i < n, and the string πΣ(r) = α1 · · ·αn is
equal to w. A run is accepting if sn ∈ F . The language accepted by A, denoted
by L(A), is the subset {πΣ(r) | r is an accepting run in A} of Σ∗.

Remark 1. Instead of our definition of NFA, one could also use weighted au-
tomata over the semiring N, and replace the i transitions on α between p and
q, when δ(p, α, q) = i > 0, by a single transition of weight i. We defined NFA as
above, to keep Definition 6, in Section 3, as close as possible to the the corre-
sponding definition from [1].

We now recall string-to-tree transducers, followed by the definition of the set
output trees produced by a string-to-tree transducer, when applied to a given
input string.

Definition 3. A string-to-tree transducer is a tuple td = (Q,Γ,∆, I, δ), where
Γ = Γ (0) ∪ Γ (1) and ∆ are finite ranked input and output alphabets respectively,
Q a finite set of states disjoint with ∆, I ⊆ Q the initial states, and δ ⊆ (Q ×
Γ (0) × T∆) ∪ (Q × Γ (1)

ε × T∆(Q)) is the transition relation. When (q, α, t) ∈ δ,
we also write q

α−→ t. Also, |td|δ :=
∑

(q,α,t)∈δ |t| is the transition size of td.

We assume in the remainder of the paper that all transducers are string-to-
tree transducers.

For w ∈ TΓ , the set of output trees, when applying td to w, is denoted
by td(w) ⊆ T∆, and defined as follows. We have that t ∈ td(w) if w can be

written as α1 · · ·αn, with αi ∈ Γ (1)
ε for i < n and αn ∈ Γ (0), such that there

exists a sequence of trees t0, . . . , tn ∈ T∆(Q) with t0 ∈ I and tn = t; and for
every i ∈ {1, . . . , n}, ti is obtained from ti−1 by replacing every leaf v for which

ti−1(v) ∈ Q with any tree t′ such that ti−1(v)
αi−→ t′.

We now define when transducers are total and deterministic. The presence
of ε-input rules leads to non-standard definitions. A transducer td is total if
tdq(w) 6= ∅ for all q ∈ Q and w ∈ TΓ (where tdq is td with its initial state
replaced by q), and deterministic if for each q ∈ Q and α ∈ Γ , we have at most

one rule of the form q
ε−→ t or q

α−→ t′ in δ.

Definition 4. A transducer td = (Q,Γ,∆, I, δ) is total if q ∈ Q, a(1), b(0) ∈ Γ
implies tdq(ab) 6= ∅ and tdq(b) 6= ∅, where tdq is (Q,Γ,∆, {q}, δ). Also, td is
deterministic if for all q ∈ Q and α ∈ Γ , there is at most one rule of the form
q
ε−→ t or q

α−→ t′ in δ.

46 B. van der Merwe, N. Weideman, and F. Drewes

Next we give the output size definition from [4], and also an output size
definition based on the length of the yield of the output trees.

Definition 5. The full output size and the yield output size of a transducer
td is given respectively by functions osFtd, osYtd : N+ → (N ∪ {∞}), such that
osFtd(n) = max{|t| | t ∈ td(s) and |s| ≤ n} (with max ∅ = 0), and osYtd(n) =
max{|yield(t)| | t ∈ td(s) and |s| ≤ n}. The exponential output size problem is
to decide if osFtd has exponential rate of growth, and the polynomial output size
problem is to determine the degree of the asymptotic polynomial growth of osFtd
and osYtd (if it is polynomial).

Note that since we allow ε-input transducer rules, it may happen that output
trees of arbitrary size are produced for input trees of a given fixed size.

In the following example, transducers with exponential and with polynomial
(of arbitrary degree) output size, are given.

Example 1. First we define transducers tdk with osFtdk
(and osYtdk

) exponential.

Let tdk = (Q,Γ,∆k, {q0}, δk) with Q = {q0}, Γ = {a(0), f (1)}, ∆k = {a(0), g(k)},
for some fixed integer k ≥ 2, and δk = {q0

f−→ g[q0, . . . , q0], q0
a−→ a}. Then

tdk(fna) is a perfect k-ary tree of height n, and |tdk(fna)| is thus exponential,
with base k, in n.

Next we give transducers tdk, for k ≥ 1, such that osF
tdk

and osY
tdk

are polyno-

mial, of degrees k and (k−1), respectively. In general, in the polynomial case, the
degree of osFtd is at most 1 larger than that of osYtd. We let tdk = (Q,Γ,∆, {qk}, δk)

with Qk = {q1, . . . , qk}, Γ = {a(0), f (1)}, ∆ = {a(0), f (1), g(2)}, and δk = {qi
f−→

g[qi−1, qi] for 1 < i ≤ k} ∪ {q1
f−→ f [q1]} ∪ {qi

a−→ a for 0 ≤ i ≤ k}. We have
that |tdk(fna)| ∈ Θ(nk) and |yield(tdk(fna))| ∈ Θ(nk−1), which is obtained by
induction, using tdk(fna) = g[tdk−1[fn−1a], tdk[fn−1a]], for k > 1. ut

3 Linking output size to NFA ambiguity

In this section we show how results on ambiguity of NFA, from [1], can be used to
approximate osFtd and osYtd, when td is total. We note here that, although in this
paper we use NFA with possibly parallel transitions, the results from [1] (which
were proved for ordinary NFAs) still hold. This can easily be seen by replacing
every transition by a succession of two transitions on the same symbol, with
a fresh state in between. We begin by introducing definitions related to NFA
ambiguity.

Definition 6. The degree of ambiguity for w ∈ Σ∗, with respect to the NFA
A, denoted by dA(w), is the number of accepting runs on w in A. The degree
of ambiguity of A is the maximum degree of ambiguity over all w ∈ Σ∗, which
might be infinite, in which case we say A has infinite degree of ambiguity (IDA).
When A has IDA (and A does not have ε-loops), we consider the rate at which
the maximum number of accepting runs grows in proportion to the length of the
input strings, which might be exponential, described by saying A has exponential
degree of ambiguity (EDA), or polynomial, described as A being polynomially
ambiguous.

The Output Size Problem for String-to-Tree Transducers 47

With every total deterministic transducer td = (Q,Γ,∆, I, δ), we associate
NFAs nfaFtd and nfaYtd, for which the ambiguity of a given input string w is equal
to |td(w)| and |yield(td(w))|, respectively. If td is not total, the ambiguity values
only provide upper bounds for |td(w)| and |yield(td(w))|.

The NFAs nfaYtd and nfaFtd are constructed in a very similar way. Their input
alphabet is Γ . The set of initial states I is the same as for td and the set of
states is Q∪{qp, qf}, where qp and qf are fresh states and qf the only final state.

The transition functions δY and δF of nfaYtd and nfaFtd are built according to the
following intuition: If td processes a symbol of rank 1 in a state q, producing
the partial output t, then one “process” qp is spawned for each occurrence of a

symbol in ∆(0) in the case of nfaYtd. In the case of nfaFtd, the same is done for each
occurrence of a symbol in ∆. Each of these will give rise to a single accepting
computation without branching any further. In addition, each occurrence of a
state in t gives rise to a corresponding sub-computation of nfaYtd and nfaFtd, resp.
Formally, we define δX(qp, α, qp) = δX(qp, β, qf) = 1 for α ∈ Γ (1), β ∈ Γ (0) and
X ∈ {F, Y }. For every (q, α, t) ∈ δ we let

δX(q, α, q′) =

|t|∆ if α ∈ Γ (0), q′ = qf and X = F ;
|t|∆ if α ∈ Γ (1), q′ = qp and X = F ;
|t|∆(0) if α ∈ Γ (0), q′ = qf and X = Y ;
|t|∆(0) if α ∈ Γ (1), q′ = qp and X = Y ;
|t|{q′} if q′ ∈ Q and X ∈ {F, Y }.

Following the intuition explained above, one can easily prove the following.

Lemma 1. Let td be a total deterministic transducer and let nfaFtd and nfaYtd
be as above. Then for all w ∈ TΓ we have that dnfaX

td
(w) = osXtd(w), and for

w ∈ Γ ∗ \ TΓ , we have dnfaX
td

(w) = 0, with X ∈ {F, Y }. Also, let δ, δF and

δY be the transitions functions of td, nfaFtd and nfaYtd, resp. Then |nfaYtd|δY ≤
|nfaFtd|δF = |td|δ.

By [4, Lemma 3.2], for every transducer td one can construct a deterministic
transducer td ′ such that, for some constant a ∈ N+, osXtd(n/a) ≤ osXtd ′(n) ≤
osXtd(n) for all n ∈ N and X ∈ {F, Y }. Also, the construction preserves total-
ity and can be carried out on logarithmic space. Altough this lemma is only
stated and proved for full output size and transducers without ε-input rules,
it is straightforward to extend the result to our more general setting. Thus,
Lemma 1 can also be used in the case where td is nondeterministic. (Alterna-
tively, the construction used in [4] can easily be incorporated into the way nfaYtd
and nfaFtd are built, thus avoiding the need to modify td.) Together with results
from [1], on the complexity of determining various types of ambiguity, we obtain
the following result on full and yield output size for transducers.

Theorem 1. Let td be a total deterministic transducer. Then:

1. It is decidable in time O(|td|2δ) if td has exponential full (and yield) output
size.

48 B. van der Merwe, N. Weideman, and F. Drewes

(a)

q0 qp qf
f

f(1)

f(2)

a

f

a

(b)

q0 q1 q2 qf

f

f

a

f

f

a

f

a

Fig. 1. (a) nfaFtd2 and (b) nfaY
td3

, with td2 and td3 as defined in Example 1.

2. If the full (and yield) output size of td is not exponential (and not ∞, cor-
responding to nfaFtd or nfaYtd having ε-loops), then it is polynomial, and the
degree of the polynomial growth of the full and yield output size of td can be
computed in time O(|td|3δ).

Example 2. In Figure 3, we show nfaFtd2
and nfaY

td3
, with td2 and td3 as in Ex-

ample 1. Clearly, both nfaFtd2
and nfaY

td3
has IDA, and nfaFtd2

has EDA, whereas

nfaY
td3

is polynomial ambiguous of degree 2 (also see [1], for NFA properties char-

acterizing various types of ambiguity). Thus td2 has exponential full (and yield)
output size, and the yield output size of td3 grows quadratically. ut

4 Conclusions and Future Work

In [2,3] the time complexity of backtracking regular expression matchers was
investigated. Starting from a regular expression E, the question asked is how
efficient (or inefficient) the corresponding matcher is. It was shown that, given E,
one can construct a transducer tdE such that, for every input string w, tdE(w) (or
more precisely, tdE(w$), with $ a rank 0 symbol) represents the computation tree
of the matcher. Hence, to know the full output size of tdE is to know the running
time of the matcher. Unfortunately, tdE is not total, which means that we cannot
directly apply Theorem 1 but have to extend it to non-total transducers first.
This, together with a detailed exposition of the facts mentioned in the previous
paragraph, is our agenda for future work.

Acknowledgment. We thank the reviewers for suggesting some improvements
of the presentation.

References

1. Allauzen, C., Mohri, M., Rastogi, A.: General algorithms for testing the ambiguity
of finite automata. In: Ito, M., Toyama, M. (eds.) Proc. 12th Intl. Conf. on Devel-
opments in Language Theory (DLT 2008). LNCS, vol. 5257, pp. 108–120 (2008)

2. Berglund, M., Drewes, F., van der Merwe, B.: Analyzing catastrophic backtracking
behavior in practical regular expression matching. In: Ésik, Z., Fülöp, Z. (eds.)
Proce. 14th Intl. Conf. on Automata and Formal Languages (AFL 2014). EPTCS,
vol. 151, pp. 109–123 (2014)

The Output Size Problem for String-to-Tree Transducers 49

3. Berglund, M., van der Merwe, B.: On the semantics of regular expression parsing in
the wild. In: Drewes, F. (ed.) 20th Intl. Conf. on Implementation and Application
of Automata (CIAA 2015). LNCS, vol. 9223, pp. 292–304 (2015)

4. Drewes, F.: The complexity of the exponential output size problem for top-down
and bottom-up tree transducers. Inf. Comput. 169(2), 264–283 (2001)

50 B. van der Merwe, N. Weideman, and F. Drewes

Aligned Multistring Languages

Anssi Yli-Jyrä

University of Helsinki, Finland
Anssi.Yli-Jyra@helsinki.fi

Abstract. Aligned bistrings and multistrings generalize Solomon Mar-
cus’ structured strings to configurations of multiple strings related with
alignment structures. Their languages form an interesting set of objects
that are related to n-way same-length relations, parallel corpora, aligned
gene sequences, syntactic trees, phonological derivations, and autoseg-
mental representations. The current work-in-progress aims to extend the
recently discovered class of inertial bistrings for which a coding morphism
is available. The code words generate a prime decomposition of inertial
bistrings and yield a way to recognize bistring languages with string au-
tomata. It is now proven that a coding morphism is also available for so
called intervallic bistrings that may contain some crossing associations.
Relational join of bistrings gives rise to multistrings that may also have a
coding morphism when their join configuration is a tree. For tree-shaped
inertial and intervallic multistrings, the recognizable languages are closed
under concatenation, star, and Boolean operations, as well as join and
projection, but not necessarily path contraction. It remains open if path
contraction of a recognizable intervallic multistring language always re-
sults in a recognizable intervallic multistring language and if there is a
constructive proof for this.

1 Aligned Bistring Languages
An aligned bistring is defined in [11] as a triple S = (σ, τ, E) where σ =
s1s2 . . . s|σ| and τ = t1t2 . . . t|τ | are component strings over respective finite al-
phabets and E is a subset of [1..|σ|] × [1..|τ |] called the association relation.
Our slightly modified definition adds the possibility to use a padding symbol
and a shared alphabet. The modified definition is illustrated by the diagrams

(a)
c o l o r

c o l o u r
(b)

c o l o r

c o l o u r
(c)

c o l o � r

c o l o u r
. (1)

These diagrams represent, respectively, the bistrings

(color, colour, {(1, 1), (2, 2), (3, 3), (4, 4), (5, 6)})
(color, colour, {(1, 1), (2, 2), (3, 3), (4, 4), (4, 5), (5, 6)})
(colo�r, colour, {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}).

In (1a-b), the component strings are not of the same length whereas diagram (1c)
describes only very simple letter-to-letter correspondences. The core alphabet of

52 Anssi Yli-Jyrä

the bistrings is Σ but an additional padding symbol � /∈ Σ gives the option
to associate insertions and deletions in the component strings to the symbol.
Bistrings(Σ) is the set of all aligned bistrings with component strings over the
total alphabetΣ� = Σ∪{�}. Its subsets are called aligned bistring languages.

The empty string is denoted by ε and the empty bistring with (ε, ε, {}). Con-
catenation of bistrings is defined in the natural way, with no added associations.
Special concatenations that add new associations can also be defined [11,9].

Aligned bistrings generalize the notion of structured strings, due to Solomon
Marcus (1925-2016) [13,14]. These are pairs (s, E) where s = s1...sn ∈ Σ∗ is
a string over alphabet Σ and E is an anti-reflexive dependency relation over
string positions {1, ..., n}. The rooted tree-structured string in diagram (2a) can
be viewed as an aligned bistring (s, s, E) (2b) with a copy property.

(a)

is

this simple

very
(b)

this is very simple

this is very simple

(2)

Since all bistrings are at least trivially aligned with E = {}, we drop the qual-
ifier aligned in the presence of further qualifiers. Languages of fully associated
bistrings [11] are sets of bijectively associated bistrings such as (1b-c) and (3d),
in contrast to (1a), (2b) and (3a-c). In (3a), the respective order of unassociated
elements B, E and F is not specified and the bistring cannot be unambiguously
factorized. Languages of semi-inertial bistrings restrict the unassociated el-
ements of bistrings to interrupting ones, unlike (3a) that contains unassociated
elements that are not interruptions. Languages of proper bistrings [11] consists
of such bistrings as (1a-c) and (3a,d) where no interruptions occur. Languages of
well-formed bistrings consists of bistrings like (1a-c,3a-b) where no crossing
associations occur. Languages of one-to-one bistrings consist of fully associ-
ated bistrings such as (1c) and (3d). Languages of inertial bistrings [18] consist
of well-formed semi-inertial bistrings, such as (1b-c,3b).

(a)
A B C

D E F G
(b)

A

B C D E
(c)

A B C

D E F
(d)

A B

C D
(3)

Proposition 1 (e.g. [10]). Closure of a finite set of well-formed one-to-one
bistrings under concatenation, star, union and relative complement is effective.

Theorem 1 ([18,20] for inertial bistrings; [19] for semi-inertial b.s.).
The finest factorization of semi-inertial bistrings is unambiguous.

Theorem 1 gives rise to prime decomposition of all semi-inertial bistrings
Bistringssemi-inertial(Σ). The possible factors in prime decomposition of semi-
inertial bistrings constitute an infinite set of semi-inertial primes Psemi-inertial.
Its well-formed restriction, Pinertial, generates the set Bistringsinertial(Σ).

A set X ⊆ A∗ is a code[2] if all strings w ∈ X∗ have an unambiguous
factorization w = w1w2...wn into elements of X. A morphism µ : H∗ → A∗ from
a free monoid (H∗, ·, εµ) into a free monoid (A∗, ·, ε) is a coding morphism for
a code X ⊂ A∗ if µ is injective and saturates X by X = µ(H).

Aligned Multistring Languages 53

Theorem 2 ([18]). There is a bijection between the inertial bistring primes
Pinertial and an infinite regular language X that is a code.

Corollary 1 ([18]). There is a coding morphism between the set of inertial
bistrings P∗inertial and the regular language X∗ generated by a code X.

E.g., (1b) and (3b) could be mapped to code words ’|cc|oo|ll|o|ou|rr’ and
’|B◦C◦D|AE’, respectively, using the Polish code described in [18]. (In comparison
to [18], we turn the diagrams upside down for more intuitive presentation.)

A bistring set L ⊆ P∗inertial is X-recognizable if its image under a coding
morphism P∗inertial → A∗ for the code X ⊂ A∗ is a recognizable subset of A∗.

Corollary 2. The closure of X-recognizable sets of inertial bistrings under con-
catenation, star, union and relative complement is effective.

2 Aligned Multistring Languages
Proposition 2. The recognizable well-formed one-to-one bistring languages (aka
same-length regular relations [10]) extend to n-way same-length relations that are
effectively closed under concatenation, star and the Boolean operations.

We want to generalize Corollary 2 and Proposition 2 to larger families of aligned
bistring languages with multiple component strings and more complex associ-
ation relations. The motivation comes from autosegmental phonology [6], non-
concatenative morphology [15], multi-level derivations [8], multilingual parallel
corpora [3] and multiplanar decomposition of dependency trees [16]. Further
motivation comes from bioinformatics and parallel computing.

Example (4a) presents the nonconcatenative structure of the Arabic stem
kattab meaning ’caused to write’, (4b) presents alignments between Finnish-
French-Spanish translations of the sentence ’I love you’, (4c) presents a multi-
planar decomposition of the dependencies in a Latin sentence ’The final age of
the Cumaean song has now arrived’ (Virgil, Eclogues, IV.4).

(a)

a

C V C C V C

k t b

(b)

minä rakastan sinua

je t’ aime

te amo

(c)

ultima cumaei venit iam carminis aetas

ultima cumaei venit iam carminis aetas

ultima cumaei venit iam carminis aetas

(4)

Let K = (VK , EK) be a graph over vertices VK = {1, ..., k} and an irreflex-
ive relation EK ⊆ V × V . An aligned EK-multistring is a map m : EK →
Bistrings(Σ) satisfying a constraint according to which (i) the image of m
consists of bistrings m((i, j)) =

(
σm,i, σm,j , Ei,j

)
where (i, j) ∈ Ek, and (ii) the

component strings of these constitute the set {σm,1, ..., σm,k}.Multistrings(Σ,K)
is the set of aligned EK-multistrings with component strings over alphabet Σ�.
Its subsets are called aligned EK-multistring languages. The qualifiers (in-
ertial etc.) of bistring languages are lifted to these languages in the natural
way.

Any bistring (σ, τ, E) can be seen as a multistring {(1, 2) 7→ (σ, τ, E)}. Ex-
amples (4a-c) are {(1, 2), (2, 3)}-multistrings but the bistrings in (4c) have, in

54 Anssi Yli-Jyrä

addition, the copy property mentioned above. An EK-multistring is acyclic if
the graph K is acyclic. [6] discuss K-multistrings where K is a tree. Now we
want to generalize Theorem 2 to languages of tree-shaped inertial multistrings.

For arbitrary alphabets A,B ⊆ A, let πB : A∗ → B∗ be a morphism that
eliminates the letters A\B in strings.

Lemma 1. Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be regular subsets of A∗. There is a
language L1 ↑ L2 = {w ∈ A∗ | πΣ1

(w) ∈ L1, πΣ2
(w) ∈ L2} such that {(x, y) ∈

L1 × L2 | πΣ2
(x) = πΣ1

(y)} = {(πΣ1
(w), πΣ2

(w)) | w ∈ L1 ↑ L2} and, for all
w1, w2 ∈ L1 ↑ L2, πΣ1(w1) = πΣ1(w2) and πΣ2(w1) = πΣ2(w2) only if w1 = w2.

Lemma 1 varies the idea of composition filters [1] and synchronized infiltration
[17] of two regular languages to combine two regular languages in an unambigu-
ous way. If L1 = {abca, cba} ⊆ {a, b, c}∗ and L2 = {dabda, dbda} ⊆ {a, b, d}∗,
L1 ↑ L2 could be defined, for example, as {dabdca, dcbda} or {dabcda, cdbda}.

Lemma 2. Let L1 and L2 be an inertial bistring languages. Then there
are coding morphisms µ1 : P∗inertial → Σ∗1 , µ2 : P∗inertial → Σ∗2 such that
πΣ2(µ1((σ1, τ2, E))) = πΣ1(µ2((σ2, τ3, F))) exactly when τ2 = σ2.

For example, if µ1(
A

B C
)=’1B1AC ’ and µ2(

B C

D
)=’2B2CD ’ then πΣ2

(µ1(
A

B C
)) =

πΣ1(µ2(
B C

D
)) = ’BC’. Here we adapted the Polish code from [18].

Theorem 3. There is a bijection between inertial {(1, 2), (2, 3)}- multistrings
and a regular language L, and there is a code X such that L = X∗.

For example, a specific implementation of the ↑-operator in Lemma 1 combines
the Polish code words of the previous example as the string ’12B1A2CD ’. This
string is a code word that encodes the {(1, 2), (2, 3)}-multistring (A

B C
, B C

D
).

Corollary 3. The closure of X-recognizable sets of inertial {(1, 2), (2, 3)}- mul-
tistrings under concatenation, star, union and relative complement is effective.

Theorem 3 generalizes to more complex tree-shaped multistrings [4,6], but the
necessary steps cannot be elaborated here.

Let K1 = ({1, ..., k}, E1), K2 = ({1, ..., l}, E2) be trees with 1 as the root. For
g ∈ {1, ..., k} and K1 and K2-multistring languages L1 and L2, the g-join of K2

into K1 is a (E1∪E′2)-multistring language L1 ong L2 where E′2 = {(g, j+k−1) |
(1, j) ∈ E2} ∪ {(i+ k − 1, j + k − 1) | (i, j) ∈ E2, i 6= 1}. This is defined by

L1 ong L2 =

{
m1 ∪ f(m2)

∣∣∣∣ m1 ∈ L1,m2 ∈ L2, σm1,g = σm2,1

}

where f((i, j) 7→ β) =

{
(g, j+k−1) 7→ β if i = 1

(i+k−1, j+k−1) 7→ β otherwise.

Theorem 4. Let L1 and L2 be X-recognizable languages of inertial tree-shaped
multistrings. The join of L2 into L1 is an X-recognizable multistring language.

Aligned Multistring Languages 55

The join operation and the multistring languages obtained through it can be used
to generalize the results of [8] on multi-tape compositions in phonology: If aligned
bistring languages implement phonological relations, then join operation does
not only compute the composition of the relations but also builds the derivation
history of each surface phoneme.

Component projection of a bistring language produces an ordinary string
language. This generalizes to projection (dropping a leaf of K) in a K-
multistring language, aka a chart reduction [6]. For many encoding schemes,
projection of a leaf string is easy to implement.

Theorem 5. Projection dropping a leaf vertex of K in a recognizable inertial
K-multistring language is effective.

For 1-rooted trees K, path contraction (cf. the alignment operation in [11])
lifts an edge in EK to a higher node along the path towards the root of K
and simultaneously updates a K-multistring language by modifying bistrings
accordingly: the bistring that is further away from the root is replaced with a new
bistring that represents the relational composition of the adjacent bistrings. The
contraction of path (1− 2− 3) in a {(1, 2), (2, 3)}-multistring language produces
a {(1, 2), (1, 3)}-multistring language. After this, projection can be applied to
obtain a {(1, 3)}-multistring language.

(a)
x y z

E1,2

A B C
E2,3

a b c d

(b)
A B C

(E1,2)
−1

x y z
E1,3

a b c d

(c) x y z

a b c d

(d)
x y z

A B C

(e) x y z

a b c d
(5)

Example (5a) is an inertial multistring. The contraction of the path (1− 2− 3)
creates crossing associations (5b). The contracted path is singled out in (5c).

Lemma 3. Path contraction does not generally preserve well-formedness.

3 Intervallic Bistrings
A graph G is an interval graph [5] if and only if the maximal cliques of the
graph can be ordered to a clique path (C1, C2, ..., Cn) in such a way that if an
element belongs to Ci and Ck, i < k, then it belongs to every clique Cj such
that i < j < k [12]. The edges of such a graph represent intersections of intervals
in the real line [7]. A bistring is intervallic if

1. it is fully associated (a simplifying restriction due to space constraints here),
2. it can be converted to an interval graph by extending its complete bipartite

subgraphs into cliques with additional edges, and
3. the clique path respects the linear order of component strings.

For example, bistring (abc,ABC, {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3)} is not interval-
lic because there is no way to order the cliques {a,A,B,C}, {a,b,B}, {a,c,C}
of its extended graph as required.

Bistring (5a.upper) is intervallic by conversion to (5d) that has the clique path
({x,y,A}, {y,A,B,C}, {y,z,C}). The path decomposes into halves ({x,y}, {y},

56 Anssi Yli-Jyrä

{y,z}) and ({A},{A,B,C},{C}) that are encoded, respectively, as bracketed strings
[x[y·xy] ·y [z·yz]] and 〈A ·A 〈B〈C·ABC〉〉·C〉 where the letters occur in linear order
without repetition. Each clique is indicated by a dot ’·’ whose subscript is added
to illustrate the clique content: the intersecting intervals at that point. Observe
that bracketed intervals are cross-serial (FIFO) rather than nested (LIFO).

The halves of the decomposition combine into the full clique path by one-by-
one matching. For the encoded halves, this is implemented by an interpretation
of Lemma 1: it consumes the first string first but synchronizes the strings at the
shared dots. The result is [x[y〈A·xyA]〈B〈C ·yABC [z〉〉·C〉·yz]] Similarly, (5a.lower)
can be encoded by joining the encoded halves [A·][B·][C·] and 〈ab·〉〈c·〉〈d·〉 as the
combined string [A〈ab·Aab]〉[B〈c·Bc]〉[C〈d·Cd]〉.

Bistring (5c) turns out to be intervallic as it corresponds to graph (5e) hav-
ing the clique path ({x,y,a,b}, {y,a,b,c,d}, {y,z,d}. Its decomposition is
encoded by [x[y·xy] ·y [z·yz]] and 〈ab ·ab 〈c〈d·abcd〉〉·d〉. The combination of the
halves can be encoded as [x[y〈ab·xyab]〈c〈d ·yabcd [z〉〉·yzd]]〉 by an interpretation
of Lemma 1. When we have encoded the clique paths of interval graphs (5d,e),
we have also implicitly encoded their largest bipartite subgraphs (5a.upper,c).

Conjecture 1. Path contraction of an intervallic multistring is an intervallic m.s.

The sharing limit (abbr. s.l.) is a parameter h that determines how many
cliques can share each letter in the clique path. For inertial bistrings h = 2, but
a higher h is needed if the bistring is obtained as a result of a path contraction.

Proposition 3. Every intervallic bistrings is semi-inertial and has prime de-
composition.

Lemma 4. There is a bijection between the tree-shaped intervallic bistring primes
Pintervallic with a fixed sharing limit h and an infinite regular code X.

Theorem 6. The X-recognizable intervallic multistring languages with a s.l. are
closed under concatenation, star, union, rel. complement, join and projection.

Conjecture 2. Path contraction of a recognizable intervallic K-multistring lan-
guage is effective and it produces a recognizable intervallic K ′-multistring lan-
guage (with a changed shape K ′ and a possibly increased sharing limit).

4 Conclusion
In this extended abstract and ongoing work, the notion of aligned bistrings
(aka autosegmental graphs) is generalized towards aligned multistrings and the
theory of multistring languages. Recognizable languages of tree-shaped inertial
multistrings and their effective closure under the join and projection operations
are shortly presented. The third new operation, path contraction motivates the
introduction of intervallic multistrings, for which, the existence of a coding mor-
phisms is indicated. Conjectures are presented that the intervallic multistrings
and their code recognizable languages are actually closed under path contraction.

Aligned Multistring Languages 57

References
1. Allauzen, C., Riley, M., Schalkwyk, J.: Filters for efficient composition of weighted

finite-state transducers. In: Domaratzki, M., Salomaa, K. (eds.) Implementation
and Application of Automata: 15th International Conference, CIAA 2010, Win-
nipeg, MB, Canada, August 12-15, 2010. Revised Selected Papers. pp. 28–38.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

2. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata, Encyclopedia of
Mathematics and Its Applications, vol. 129. Cambridge University Press (2010)

3. Christodouloupoulos, C., Steedman, M.: A massively parallel corpus: the Bible in
100 languages. Language Resources and Evaluation 49(2) (2014)

4. Clements, G.N.: The geometry of phonological features. Phonology Yearbook 2,
225–252 (1985)

5. Cohen, J.E.: Food Webs and Niche Space. Princeton University Press, Princeton,
New Jersey (1978)

6. Coleman, J., Local, J.: The "no crossing constraint" in Autosegmental Phonology.
Linguistics and Philosophy 14, 295–338 (1991)

7. Fishburn, P.C.: Interval graphs and interval orders. Discrete Mathematics 55, 135–
149 (1985)

8. Hulden, M.: Grammar design with multi-tape automata and composition. In: Han-
neforth, T., Wurm, C. (eds.) Proceedings of the 12th International Conference on
Finite-State Methods and Natural Language Processing 2015 (FSMNLP 2015 Düs-
seldorf) (2015)

9. Jardine, A., Heinz, J.: A concatenation operation to derive autosegmental graphs.
In: Proceedings of the 14th Meeting on the Mathematics of Language (MoL 2015).
pp. 139–151. Association for Computational Linguistics, Chicago, USA (July 2015)

10. Kaplan, R., Kay, M.: Regular models of phonological rule systems. Computational
Linguistics 20, 331–378 (1994)

11. Kornai, A.: Formal Phonology. Garland Publishing, New York (1995)
12. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of

intervals on the real line. Fundamenta Mathematicae 51, 45–64 (1962)
13. Marcus, S.: Algebraic Linguistics; Analytical Models. Academic Press, New York

(1967)
14. Marcus, S.: Words and Languages Everywhere. Polimetrica, New York (2007)
15. McCarthy, J.: A prosodic theory of non-concatenative morphology. Linguistic In-

quiry pp. 373–418 (1981)
16. Yli-Jyrä, A.: Multiplanarity – a model for dependency structures in treebanks.

In: TLT 2003, Proceedings of the Second Workshop on Treebanks and Linguistic
Theories. pp. 189–200 (2003)

17. Yli-Jyrä, A.: An efficient constraint grammar parser based on inward deterministic
automata. In: Proceedings of the NODALIDA 2011 Workshop Constraint Gram-
mar Applications. NEALT Proceedings Series, vol. 14, pp. 50–60 (2011)

18. Yli-Jyrä, A.: Three equivalent codes for autosegmental representations. In: Han-
neforth, T., Wurm, C. (eds.) Proceedings of the 12th International Conference
on Finite-State Methods and Natural Language Processing 2015 (FSMNLP 2015
Düsseldorf). Düsseldorf (2015)

19. Yli-Jyrä, A.: Prime factorization for a subclass of well-formed bistrings. Manuscript
(2016)

20. Yli-Jyrä, A.: Transition systems for well-formed bistrings. Manuscript. To appear
in a collection (2016)

	On the N-Best Problem for Hypergraphs
	A Lower Bound for the Length of the Wadge-Wagner Hierarchy of Regular Tree Languages
	Rigid Tree Automata With Isolation
	Direct Evaluation of Selecting Tree Automata on XML Documents Compressed with Top Trees
	The Square Trees in the Tribonacci Sequence
	The Output Size Problem for String-to-Tree Transducers
	Aligned Multistring Languages

