Approximating Compound Compositionality based on Word Alignments

Fabienne Cap

UPPSALA UNIVERSITY SWEDEN

March 9th, 2017

Motivation

Methodology

Results

- Medeiros de Caseli et al. (2010) used **alignment** assymmetries to identify MWEs in Brazilian Portuguese.
- Salehi and Cook (2013) compared the translations of English MWEs with the **translations of their parts**.
- Salehi et al. (2014) measured **distributional similarity** of English and German MWEs and their translations.
- Villada Moirón and Tiedemann (2006) used the **variance** of MWE alignments to identify idiomatic MWEs in Dutch.

- Medeiros de Caseli et al. (2010) used **alignment** assymmetries to identify MWEs in Brazilian Portuguese.
- Salehi and Cook (2013) compared the translations of English MWEs with the **translations of their parts**.
- Salehi et al. (2014) measured **distributional similarity** of English and German MWEs and their translations.
- Villada Moirón and Tiedemann (2006) used the **variance** of MWE alignments to identify idiomatic MWEs in Dutch.

- Medeiros de Caseli et al. (2010) used **alignment** assymmetries to identify MWEs in Brazilian Portuguese.
- Salehi and Cook (2013) compared the translations of English MWEs with the **translations of their parts**.
- Salehi et al. (2014) measured **distributional similarity** of English and German MWEs and their translations.
- Villada Moirón and Tiedemann (2006) used the **variance** of MWE alignments to identify idiomatic MWEs in Dutch.

- Medeiros de Caseli et al. (2010) used **alignment** assymmetries to identify MWEs in Brazilian Portuguese.
- Salehi and Cook (2013) compared the translations of English MWEs with the **translations of their parts**.
- Salehi et al. (2014) measured **distributional similarity** of English and German MWEs and their translations.
- Villada Moirón and Tiedemann (2006) used the **variance** of MWE alignments to identify idiomatic MWEs in Dutch.

- Medeiros de Caseli et al. (2010) used **alignment** assymmetries to identify MWEs in Brazilian Portuguese.
- Salehi and Cook (2013) compared the translations of English MWEs with the **translations of their parts**.
- Salehi et al. (2014) measured **distributional similarity** of English and German MWEs and their translations.
- Villada Moirón and Tiedemann (2006) used the **variance** of MWE alignments to identify idiomatic MWEs in Dutch.

- Medeiros de Caseli et al. (2010) used **alignment** assymmetries to identify MWEs in Brazilian Portuguese.
- Salehi and Cook (2013) compared the translations of English MWEs with the translations of their parts. vpart, nn
- Salehi et al. (2014) measured **distributional similarity** of English and German MWEs and their translations. **vpart, nn**
- Villada Moirón and Tiedemann (2006) used the variance of MWE alignments to identify idiomatic MWEs in Dutch. v+pp

- Medeiros de Caseli et al. (2010) used **alignment** assymmetries to identify MWEs in Brazilian Portuguese.
- Salehi and Cook (2013) compared the translations of English MWEs with the translations of their parts. vpart, nn
- Salehi et al. (2014) measured **distributional similarity** of English and German MWEs and their translations. **vpart**, **nn**
- Villada Moirón and Tiedemann (2006) used the variance of MWE alignments to identify idiomatic MWEs in Dutch.
 v+pp

We used **this** approach and applied it to determine the compositionality of **German noun-noun compounds**.

- The meaning of non-compositional compounds is lexicalised
- A lexical counterpart might be missing in the other language
- Translators have to work around it
- ullet ightarrow highly likely that these "work-arounds" will differ
- Example: Herzblut: passion, commitment, dedication

- Ad-hoc created compounds might also lack a counterpart
- But: due to their compositional meaning, the translator is likely to create the same compound in the other language
- Example: Blutbus: blood bus

- The meaning of non-compositional compounds is lexicalised
- A lexical counterpart might be missing in the other language
- Translators have to work around it
- ullet ightarrow highly likely that these "work-arounds" will differ
- Example: Herzblut: passion, commitment, dedication

- Ad-hoc created compounds might also lack a counterpart
- But: due to their compositional meaning, the translator is likely to create the same compound in the other language
- Example: Blutbus: blood bus

- The meaning of non-compositional compounds is lexicalised
- A lexical counterpart might be missing in the other language
- Translators have to work around it
- ullet
 ightarrow highly likely that these "work-arounds" will differ
- Example: Herzblut: passion, commitment, dedication

- Ad-hoc created compounds might also lack a counterpart
- But: due to their compositional meaning, the translator is likely to create the same compound in the other language
- Example: Blutbus: blood bus

- The meaning of non-compositional compounds is lexicalised
- A lexical counterpart might be missing in the other language
- Translators have to work around it
- ullet ightarrow highly likely that these "work-arounds" will differ
- Example: Herzblut: passion, commitment, dedication

- Ad-hoc created compounds might also lack a counterpart
- But: due to their compositional meaning, the translator is likely to create the same compound in the other language
- Example: Blutbus: blood bus

- The meaning of non-compositional compounds is lexicalised
- A lexical counterpart might be missing in the other language
- Translators have to work around it
- ullet ightarrow highly likely that these "work-arounds" will differ
- Example: Herzblut: passion, commitment, dedication

- Ad-hoc created compounds might also lack a counterpart
- But: due to their compositional meaning, the translator is likely to create the same compound in the other language
- Example: Blutbus: blood bus

- The meaning of non-compositional compounds is lexicalised
- A lexical counterpart might be missing in the other language
- Translators have to work around it
- $\bullet\,\rightarrow\,$ highly likely that these "work-arounds" will differ
- Example: Herzblut: passion, commitment, dedication

- Ad-hoc created compounds might also lack a counterpart
- But: due to their compositional meaning, the translator is likely to create the same compound in the other language
- Example: Blutbus: blood bus

- The meaning of non-compositional compounds is lexicalised
- A lexical counterpart might be missing in the other language
- Translators have to work around it
- $\bullet\,\rightarrow\,$ highly likely that these "work-arounds" will differ
- Example: Herzblut: passion, commitment, dedication

- Ad-hoc created compounds might also lack a counterpart
- But: due to their compositional meaning, the translator is likely to create the same compound in the other language
- Example: Blutbus: blood bus

- The meaning of non-compositional compounds is lexicalised
- A lexical counterpart might be missing in the other language
- Translators have to work around it
- $\bullet\,\rightarrow\,$ highly likely that these "work-arounds" will differ
- Example: Herzblut: passion, commitment, dedication

- Ad-hoc created compounds might also lack a counterpart
- But: due to their compositional meaning, the translator is likely to create the same compound in the other language
- Example: Blutbus: blood bus

- The meaning of non-compositional compounds is lexicalised
- A lexical counterpart might be missing in the other language
- Translators have to work around it
- $\bullet\,\rightarrow\,$ highly likely that these "work-arounds" will differ
- Example: Herzblut: passion, commitment, dedication

- Ad-hoc created compounds might also lack a counterpart
- But: due to their compositional meaning, the translator is likely to create the same compound in the other language
- Example: Blutbus: blood bus

- The meaning of non-compositional compounds is lexicalised
- A lexical counterpart might be missing in the other language
- Translators have to work around it
- $\bullet\,\rightarrow\,$ highly likely that these "work-arounds" will differ
- Example: Herzblut: passion, commitment, dedication

- Ad-hoc created compounds might also lack a counterpart
- But: due to their compositional meaning, the translator is likely to create the same compound in the other language
- Example: Blutbus: blood bus

- Some compounds have both, a compositional and a non-compositional meaning, depending on their context.
- compositional: Die Blütezeit der Kirschbäume. "The flowering period of the cherry trees."
- non-compositional: Die Blütezeit der Dampfmaschine. "The heyday of the steam machine."
- Translations thus differ considerably, which adds variance

- Some compounds have both, a compositional and a non-compositional meaning, depending on their context.
- compositional: Die Blütezeit der Kirschbäume. "The flowering period of the cherry trees."
 non-compositional: Die Blütezeit der Dampfmaschine. "The heyday of the steam machine."
- Translations thus differ considerably, which adds variance

- Some compounds have both, a compositional and a non-compositional meaning, depending on their context.
- compositional: *Die Blütezeit der Kirschbäume.* "The flowering period of the cherry trees."
- non-compositional: *Die Blütezeit der Dampfmaschine.* "The heyday of the steam machine."
- Translations thus differ considerably, which adds variance

- Some compounds have both, a compositional and a non-compositional meaning, depending on their context.
- compositional: Die Blütezeit der Kirschbäume. "The flowering period of the cherry trees."
- non-compositional: Die Blütezeit der Dampfmaschine. "The heyday of the steam machine."
- Translations thus differ considerably, which adds variance

- Some compounds have both, a compositional and a non-compositional meaning, depending on their context.
- compositional: Die Blütezeit der Kirschbäume. "The flowering period of the cherry trees."
- non-compositional: Die Blütezeit der Dampfmaschine. "The heyday of the steam machine."
- Translations thus differ considerably, which adds variance

- Some compounds have both, a compositional and a non-compositional meaning, depending on their context.
- compositional: Die Blütezeit der Kirschbäume. "The flowering period of the cherry trees."
- non-compositional: Die Blütezeit der Dampfmaschine. "The heyday of the steam machine."
- Translations thus differ considerably, which adds variance

How about compositional constructions? \rightarrow less variation of contexts

- Some non-compositional compounds occur only/mostly within larger idioms
- Translation variations shown by previous works on MWEs
- Example 1: von der Bildfläche verschwinden "disappear", "vanishing into thin air"
- Example 2: Dreh- und Angelpunkt sein "the crux of the matter", "the key element",

- Some non-compositional compounds occur only/mostly within larger idioms
- Translation variations shown by previous works on MWEs
- Example 1: von der Bildfläche verschwinden "disappear", "vanishing into thin air"
- Example 2: Dreh- und Angelpunkt sein "the crux of the matter", "the key element",

- Some non-compositional compounds occur only/mostly within larger idioms
- Translation variations shown by previous works on MWEs
- Example 1: von der Bildfläche verschwinden "disappear", "vanishing into thin air"
- Example 2: Dreh- und Angelpunkt sein "the crux of the matter", "the key element",

- Some non-compositional compounds occur only/mostly within larger idioms
- Translation variations shown by previous works on MWEs
- Example 1: von der Bildfläche verschwinden "disappear", "vanishing into thin air"
- Example 2: Dreh- und Angelpunkt sein "the crux of the matter", "the key element",

- Some non-compositional compounds occur only/mostly within larger idioms
- Translation variations shown by previous works on MWEs
- Example 1: von der Bildfläche verschwinden "disappear", "vanishing into thin air"
- Example 2: Dreh- und Angelpunkt sein "the crux of the matter", "the key element",

Motivation

Methodology

Results

Motivation

Methodology

Results

Die Schriftgröße sollte groß genug sein

The font size should be large enough

Die Schriftgröße sollte groß genug sein

The font size should be large enough

• Parallel Corpus

• Parallel Corpus

• Statistical Word Alignment

Die Schriftgröße sollte groß genug sein

The font size should be large enough

• Parallel Corpus

• Statistical Word Alignment

Die Schrift größe sollte groß genug sein

The font size should be large enough

- Parallel Corpus
- Statistical Word Alignment
- Compound Splitting

Die Schrift größe sollte groß genug sein | | | | | | The font size should be large enough

- Parallel Corpus
- Statistical Word Alignment
- Compound Splitting

Word Alignment

(a)	compositional:	Schriftgröße	(102	occurrences))
-----	----------------	--------------	------	--------------	---

Word		Alignments
.		font (65), text (7), fonts (3), size (3), type (2),
Schrift	=	character (2), sizes (2), font text (1), record (1)
		(16 more singletons)
Crößo	_	size (74), sizes (13), relative size (1),
GIODE	_	(14 more singletons)

Word Alignment

Word		Alignments
		font (65), text (7), fonts (3), size (3), type (2),
Schrift	=	character (2), sizes (2), font text (1), record (1)
		(16 more singletons)
Größe	_	size (74), sizes (13), relative size (1),
GIODE	_	(14 more singletons)

(d) non-compositional: Schriftzug (89 occurrences)

Word	Alignments
	lettering (10), logo (6), label (5), logotype (4),
Schrift -	text (3), writing (3), texts (3), inscription (2),
Schnit -	sticker (2), etched (2), word (1), imprints (1),
	(47 more singletons)
	lettering (10), label (5), logo (5), logotype (4),
7	of (4), inscription (3), sticker (2), letters (2),
Zug —	writings (1) , nameplate (1) , handwriting (1) ,
	(51 more singletons)

Word Alignment

Word	Alignments
Schrift =	font (65), text (7), fonts (3), size (3), type (2), character (2), sizes (2), font text (1), record (1)
	(16 more singletons)
Größe –	size (74), sizes (13), relative size (1),
Grobe =	(14 more singletons)

(f) non-compositional: Schriftzug (89 occurrences)

Word	Alignments
	lettering (10), logo (6), label (5), logotype (4),
Schrift -	text (3), writing (3), texts (3), inscription (2),
Schint -	sticker (2), etched (2), word (1), imprints (1),
	(47 more singletons)
	lettering (10), label (5), logo (5), logotype (4),
7	of (4), inscription (3), sticker (2), letters (2),
Zug —	writings (1), nameplate (1), handwriting (1),
	(51 more singletons)

(g) compositional: Schriftgröße

Word	Alignments
Schrift =	font (65), text (7), fonts (3), size (3), type (2), character (2), sizes (2), font text (1), record (1) (16 more singletons)
Größe =	size (74), sizes (13), relative size (1), (14 more singletons)

(h) non-compositional: Schriftzug

Word	Alignments
Schrift =	lettering (10), logo (6), label (5), logotype (4), text (3), writing (3), texts (3), inscription (2), sticker (2), etched (2), word (1), imprints (1), (47 more singletons)
Zug =	lettering (10), label (5), logo (5), logotype (4), of (4), inscription (3), sticker (2), letters (2), writings (1), nameplate (1), handwriting (1), (51 more singletons)

(i) compositional: Schriftgröße

Word	Alignments
Schrift =	font (65), text (7), fonts (3), size (3), type (2), character (2), sizes (2), font text (1), record (1) (16 more singletons)
Größe =	size (74), sizes (13), relative size (1), (14 more singletons)

(j) non-compositional: Schriftzug

Word	Alignments
Schrift =	lettering (10), logo (6), label (5), logotype (4), text (3), writing (3), texts (3), inscription (2), ticker (2), etched (2), upped (1), imprinte (1)
	(47 more singletons)
Zug =	lettering (10), label (5), logo (5), logotype (4), of (4), inscription (3), sticker (2), letters (2), writings (1), nameplate (1), handwriting (1), (51 more singletons)

Calculation of translational entropy:

$$H(T_s|s) = -\sum_{t \in T_s} P(t|s) \log P(t|s)$$

(k) compositional: Schriftgröße

Word	Alignments
Schrift =	font (65), text (7), fonts (3), size (3), type (2), character (2), sizes (2), font text (1), record (1) (16 more singletons)
Größe =	size (74), sizes (13), relative size (1), (14 more singletons)

(I) non-compositional: Schriftzug

Word	Alignments
Schrift =	lettering (10), logo (6), label (5), logotype (4), text (3), writing (3), texts (3), inscription (2), sticker (2), etched (2), word (1), imprints (1),
	(47 more singletons)
Zug =	lettering (10), label (5), logo (5), logotype (4), of (4), inscription (3), sticker (2), letters (2), writings (1), nameplate (1), handwriting (1), (51 more singletons)

Schriftgröße: 1.451

Schriftzug: 3.827

Calculation of translational entropy:

 $H(T_s|s) = -\sum_{t \in T_s} P(t|s) \log P(t|s)$

Ranking

Compound	Freq.	TE
Seilbahn	561	3.809
Sonnenschirm	594	3.315
Seemann	76	3.114
Armband	178	3.058
Stereoanlage	119	2.899
Wasserhahn	50	2.778
Kaffeemaschine	333	2.725
Hausboot	34	2.718
Bettwäsche	842	2.670
Telefonzelle	26	2.602
Gewächshaus	165	2.584
Schlauchboot	56	2.524
Mülleimer	61	2.500
Kopfkissen	83	2.481
Handtuch	911	2.463
Mülltonne	34	2.459
Schachbrett	66	2.408
Tintenfisch	75	2.394
Sessellift	134	2.368

Motivation

Methodology

Results

Motivation

Methodology

Results

- Calculate Spearman rank correlation coefficient (*ρ*-value) on the von der Heide/Borgwaldt dataset
- Compare to vector-based approach by Schulte im Walde (2016)

- Calculate Spearman rank correlation coefficient (ρ-value) on the von der Heide/Borgwaldt dataset
- Compare to vector-based approach by Schulte im Walde (2016)

- Calculate Spearman rank correlation coefficient (ρ-value) on the von der Heide/Borgwaldt dataset
- Compare to vector-based approach by Schulte im Walde (2016)

- Calculate Spearman rank correlation coefficient (ρ-value) on the von der Heide/Borgwaldt dataset
- Compare to vector-based approach by Schulte im Walde (2016)

VDHB	minimal frequency					
VDIID	5	10	25	50	100	
#compounds	143	110	76	43	18	
mod.vector	0.5839	0.5478	0.5237	0.4713	0.2301	
mod.te	-0.0175	-0.043	-0.0524	-0.0663	-0.0877	
head.vector	0.5942	0.5871	0.5946	0.4804	0.4634	
head.te	0.1268	0.1205	0.1643	0.3392	0.4407	

- Calculate Spearman rank correlation coefficient (ρ-value) on the von der Heide/Borgwaldt dataset
- Compare to vector-based approach by Schulte im Walde (2016)

VDHB	minimal frequency					
VDIID	5	10	25	50	100	
#compounds	143	110	76	43	18	
mod.vector	0.5839	0.5478	0.5237	0.4713	0.2301	
mod.te	-0.0175	-0.043	-0.0524	-0.0663	-0.0877	
head.vector	0.5942	0.5871	0.5946	0.4804	0.4634	
head.te	0.1268	0.1205	0.1643	0.3392	0.4407	

A closer look at the results – Rankings for the 18 highest frequent compounds

VDHB mod ranking	mod.te ranking		VDHB head ranking	head.te ranking
Handtuch	Sonnenschirm		Bettwäsche	Seilbahn
Visitenkarte	Seilbahn		Stereoanlage	Sonnenschirm
Nachttisch	Armband		Seilbahn	Armband
Haselnuss	Gewchshaus		Wasserfall	Stereoanlage
Sonnenblume	Visitenkarte		Eisberg	Kaffeemaschine
Stereoanlage	Bettwäsche		Armband	Bettwäsche
Sessellift	Papierkorb		Papierkorb	Gewächshaus
Kreditkarte	Nachttisch		Kreditkarte	Handtuch
Armband	Sessellift		Gewächshaus	Sessellift
Seilbahn	Stereoanlage		Kaffeemaschine	Wasserfall
Papierkorb	Handtuch		Nachttisch	Papierkorb
Postkarte	Postkarte		Sessellift	Nachttisch
Eisberg	Kaffeemaschine		Postkarte	Postkarte
Sonnenschirm	Wasserfall		Sonnenschirm	Visitenkarte
Bettwäsche	Haselnuss		Handtuch	Haselnuss
Gewächshaus	Sonnenblume		Visitenkarte	Kreditkarte
Kaffeemaschine	Eisberg		Haselnuss	Eisberg
Wasserfall	Kreditkarte		Sonnenblume	Sonnenblume

Fabienne Cap

Approximating Compound Compositionalitybased on Word Alig

- Alignment variance is weakly correlated with compositionality
- Head variance better indicator than modifier variance (!)
- Problem: data sparsity

- Weighting of TE scores
- Combine alignments into different languages
- Combine with other existing alignment-based scores
- Combine with monolingual approaches

- Alignment variance is weakly correlated with compositionality
- Head variance better indicator than modifier variance (!)
- Problem: data sparsity

- Weighting of TE scores
- Combine alignments into different languages
- Combine with other existing alignment-based scores
- Combine with monolingual approaches

- Alignment variance is weakly correlated with compositionality
- Head variance better indicator than modifier variance (!)
- Problem: data sparsity

- Weighting of TE scores
- Combine alignments into different languages
- Combine with other existing alignment-based scores
- Combine with monolingual approaches

- Alignment variance is weakly correlated with compositionality
- Head variance better indicator than modifier variance (!)
- Problem: data sparsity

- Weighting of TE scores
- Combine alignments into different languages
- Combine with other existing alignment-based scores
- Combine with monolingual approaches

- Alignment variance is weakly correlated with compositionality
- Head variance better indicator than modifier variance (!)
- Problem: data sparsity

- Weighting of TE scores
- Combine alignments into different languages
- Combine with other existing alignment-based scores
- Combine with monolingual approaches

- Alignment variance is weakly correlated with compositionality
- Head variance better indicator than modifier variance (!)
- Problem: data sparsity

- Weighting of TE scores
- Combine alignments into different languages
- Combine with other existing alignment-based scores
- Combine with monolingual approaches

- Alignment variance is weakly correlated with compositionality
- Head variance better indicator than modifier variance (!)
- Problem: data sparsity

- Weighting of TE scores
- Combine alignments into different languages
- Combine with other existing alignment-based scores
- Combine with monolingual approaches

- Alignment variance is weakly correlated with compositionality
- Head variance better indicator than modifier variance (!)
- Problem: data sparsity

- Weighting of TE scores
- Combine alignments into different languages
- Combine with other existing alignment-based scores
- Combine with monolingual approaches

- Alignment variance is weakly correlated with compositionality
- Head variance better indicator than modifier variance (!)
- Problem: data sparsity

- Weighting of TE scores
- Combine alignments into different languages
- Combine with other existing alignment-based scores
- Combine with monolingual approaches