

Evaluating Semantic Composition of German Compounds

Corina Dima, Jianqiang Ma and Erhard Hinrichs University of Tübingen, Department of Linguistics and SFB 833, Germany

Wer wurmt der Ohrwurm? An interdisciplinary, cross-lingual perspective on the role of constituents in multi-word expressions, DGfS 2017, 09.03.2017

Motivation

- vector space models of language (Mikolov et al., 2013; Pennington et al., 2014) create meaningful representations for the individual words in a language
- how to create meaningful, reusable representations for longer word sequences – in this work – for German compounds?

Motivation

- vector space models of language (Mikolov et al., 2013; Pennington et al., 2014) create meaningful representations for the individual words in a language
- how to create meaningful, reusable representations for longer word sequences – in this work – for German compounds?

Solution 1

Add compounds to the dictionary of the language model and directly learn representations for them.

[intractable due to the productivity of compounding]

Motivation

- vector space models of language (Mikolov et al., 2013; Pennington et al., 2014) create meaningful representations for the individual words in a language
- how to create meaningful, reusable representations for longer word sequences – in this work – for German compounds?

Solution 1

Add compounds to the dictionary of the language model and directly learn representations for them.

[intractable due to the productivity of compounding]

Solution 2

Use semantic composition to build the meaning of the compound starting from the meaning of individual words.

Semantic Composition

Semantic Composition

 learn a composition function f that combines the representations of the constituents Apfel and Baum into the representation of the compound Apfelbaum

Semantic Composition

- learn a composition function f that combines the representations of the constituents Apfel and Baum into the representation of the compound Apfelbaum
- the composed representation of *Apfelbaum* should be similar (cosine similarity) to its corpus-estimated representation

7 | Dima, Ma and Hinrichs - Evaluating Semantic Composition of German Compounds Wer wurmt der Ohrwurm? @ DGfS 2017

How to Choose the Composition Function?

Model	Formula
Mitchel & Lapata (2010)vector addition, vector multiplication, etc.	$p = \lambda u + \beta v$ $p = u \odot v$
Baroni & Zamparelli (2010)matrix for the adjective, vector for the noun	p = Uv
 Zanzotto et al. (2010) linear combination of vectors and matrices for both components 	$p = \mathcal{M}_1 u + \mathcal{M}_2 v$
Socher et al. (2010)global matrix to combine component vectors + nonlinearity	$p = g(\mathcal{W}[u;v])$
 Socher et al. (2012) use a individual word matrix to modify each word before combining it though the global matrix + nonlinearity 	$p = g(\mathcal{W}[\mathcal{V}u; \mathcal{U}v])$

Empirically: Test All Models

Dataset

- 34497 compounds from the German wordnet, GermaNet, v9.0
- train-test-dev splits (70/20/10)
- with splitting information: immediate head and modifier for every compound (Henrich & Hinrichs, 2011)
- frequency filtered: modifier, head and compound with minimum frequency 500 in the support corpus

Empirically: Test All Models

Dataset

- 34497 compounds from the German wordnet, GermaNet, v9.0
- train-test-dev splits (70/20/10)
- with splitting information: immediate head and modifier for every compound (Henrich & Hinrichs, 2011)
- frequency filtered: modifier, head and compound with minimum frequency 500 in the support corpus

Word representations

- Trained 50, 100, 200 and 300 dimensional word representations using GloVe (Pennington et al., 2014)
- 10 billion words corpus from DECOW14AX (Schäfer, 2015); used 1 million word vocabulary (frequency min. 100)

Train Composition Models

- estimate the parameters of the composition functions using the training split of the dataset
 - start from corpus-induced representations for

head, modifier, compound

apply the composition function => composed representation
 f(head, modifier) = compound

Train Composition Models

- estimate the parameters of the composition functions using the training split of the dataset
 - start from corpus-induced representations for

head, modifier, compound

- apply the composition function => composed representation

f(head, modifier) = compound

 objective function for training: minimize the mean squared error between the composed and the corpus-induced compound representations

compound ⇔ **compound**

Evaluate Composition Models

 intuition: a good composition model produces composed representations such that the corpus-observed representations of the same compounds are their nearest neighbors in the vector space

Evaluate Composition Models (2)

- compute the ranks of the composed representations in the test set
- rank computation
 - compute cosine distance between the composed representation (compound) and *all* the corpus-induced vectors
 - 2. sort, most similar first
 - 3. the rank is the position of the corresponding corpus-induced vector (compound) in the sorted list

Evaluate Composition Models (2)

- compute the ranks of the composed representations in the test set
- rank computation
 - compute cosine distance between the composed representation (compound) and *all* the corpus-induced vectors
 - 2. sort, most similar first
 - 3. the rank is the position of the corresponding corpus-induced vector (compound) in the sorted list
- lower rank is better ~ composed representation is closer neighbour to the corpus-induced represention

Evaluation Results

Composition with the Mask Models

- masks:1-dimensional vectors of the same size as the word vectors
- provide **position-dependent refinement** of the initial word vector

car factory ⇔ factory car

car => car_as_modifier, car_as_head
factory => factory_as_modifier, factory_as_head

Composition with the Mask Models

- masks:1-dimensional vectors of the same size as the word vectors
- provide **position-dependent refinement** of the initial word vector

car factory ⇔ factory car

car => car_as_modifier, car_as_head
factory => factory_as_modifier, factory_as_head

- at composition time, the word vector is first multiplied with the corresponding mask vector
- train 2 vectors (one for the modifier position, one for head position) for each word

Composition with the Mask Models (2)

Wrap-up: Composition Models

- the best models create good composed representations (rank<=5) for 50% of the test data
- more details in:

Dima, C. 2015. *Reverse-engineering Language: A Study on the Semantic Compositionality of German Compounds*. In Proceedings of EMNLP, pp. 17–21.

Wrap-up: Composition Models

- the best models create good composed representations (rank<=5) for 50% of the test data
- more details in:

Dima, C. 2015. *Reverse-engineering Language: A Study on the Semantic Compositionality of German Compounds*. In Proceedings of EMNLP, pp. 17–21.

- how can they be improved?
 - try other models
 - get more training data

Wrap-up: Composition Models

- the best models create good composed representations (rank<=5) for 50% of the test data
- more details in:

Dima, C. 2015. *Reverse-engineering Language: A Study on the Semantic Compositionality of German Compounds*. In Proceedings of EMNLP, pp. 17–21.

- how can they be improved?
 - try other models
 - get more training data
- take a closer look at their results for particular compound types –
 e.g. compare performance on transparency-rated compounds

Transparency-rated compound set

- dataset from Im Walde et al. (2013)
- 244 two-part noun-noun compounds (concrete, depictable)

head modifier	transparent	opaque
transparent	Ahornblatt 'maple leaf'	Feuerzeug 'lighter' lit. fire+stuff
opaque	Fliegenpilz 'toadstool' lit. fly+mushroom	Löwenzahn 'dandelion' lit. lion+tooth

Transparency-rated compound set: Mturk annotation

head	transparent	opaque
modifier	7	1
7 transparent	Ahornblatt 'maple leaf' whole: 6.03 modifier: 5.64 head: 5.71	Feuerzeug 'lighter' lit. fire+stuff whole: 4.58 modifier: 5.87 head: 1.90
opaque 1	Fliegenpilz 'toadstool' lit. fly+mushroom whole: 2.00 modifier: 1.93 head: 6.55	Löwenzahn 'dandelion' lit. lion+tooth whole: 1.66 modifier: 2.10 head: 2.23

Transparency-rated compound set - average ranks

used 219 compounds (intersection of transparency & compositionality datasets)

head modifier	transparent 3	.5 opaque 1
7	144 compounds	20 compounds
transparent	Average rank 50.6	Average rank 68.4
opaque	50 compounds	5 compounds
1	Average rank 81.7	Average rank 635.8

Transparency-rated compound set - average ranks

used 219 compounds (intersection of transparency & compositionality datasets)

head	transparent	3	5 opaque
modifier			
7	Ahornblatt, rank 1		Feuerzeug, rank 10
transparent	Schneemann, rank 15 lit. 'snow' + 'man'		Zahnseide, rank 117 lit. 'tooth' + 'silk'
	Regenbogen, rank 879 lit. 'rain' + 'arch','bow', 'arc', (5)	
	Average rank 50.6		Average rank 68.4
opaque	Fliegenpilz, rank 40 Flohmarkt, rank 424 lit. 'flea' + 'market'		Löwenzahn, rank 1000 Nilpferd, rank 43 'hippo', lit. 'Nile' + 'horse'
1	Average rank 81.7	I	Average rank 635.8

Transparency-rated compound set - average ranks

used 219 compounds (intersection of transparency & compositionality datasets)

head modifier	transparent 3	5 opaque 1
7 transparent	composition works in the majority of cases	composition possible problem: multisense and metaphoric meaning of the head
opaque 1	composition possible problem: multisense and metaphoric meaning of the modifier	composition impossible : compound representation cannot be obtained compositionally

Conclusion

 composition models create good representations for many compounds

Conclusion

- composition models create good representations for many compounds
- problem: multisense and metaphoric meaning of the head or modifier
 - solution sense- & metaphor-aware word representations/ composition models

Conclusion

- composition models create good representations for many compounds
- problem: multisense and metaphoric meaning of the head or modifier
 - solution sense- & metaphor-aware word representations/ composition models
- problem: opaque compounds compound representation cannot be obtained compositionally
 - solution identification of opaque compounds

Thank you!

Contact

Corina Dima corina.dima@uni-tuebingen.de