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Deverbal (DCs) vs. Root Compounds (RCs)

● N-N compounds that are interpreted on the basis of a 
relationship between the head and the non-head;

● RCs are headed by lexical nouns (usually non-derived); the 
relationship is determined by world knowledge or context: 

1. fireman, train station vs. book chair, chocolate box

● DCs are headed by deverbal Ns; the relationship is often 
identified to the one between the base verb and the non-head:

2. snow removal < to remove (the) snow (OBJ)
 police questioning < the police questions somebody (SUBJ)
 safety instruction < to instruct somebody on safety (OTHER)

● Even DCs are often hard to interpret, in spite of the verbal base 
and especially due to the ambiguity of the deverbal noun head:

3. marketing approval, committee assignment, security assistance
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Argument Structure Nominals (ASNs) 
vs. Result Nominals (RNs)

● Grimshaw (1990): Deverbal Ns are ambiguous between compo-
sitional V-like ASN-readings and more lexicalized RN-readings:

4. a. The examination/exam was on the table. (RN)
 b. The examination of the patients took a long time/*was on the table. (ASN). 

● ASNs vs. RNs (presence/absence of event structure):

(adapted from Alexiadou & Grimshaw 2008: 3, citing Grimshaw 1990; see Appendix-1 for details)
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The Linguistic Debate on DCs

● Grimshaw (1990): DCs ~ ASNs: DCs obey AS-constraints; only  
lowest argument (Theme/OBJ) is possible (Agent<Goal<Theme): 

5. gift-giving to children - *child-giving of gifts (to give gifts to children)

    book-reading by students - *student-reading of books (Students read books)

● Cf. RCs (e.g., compounds headed by zero-derived nominals):

6. bee sting; dog bite (vs. *bee-stinging, *dog-biting)

● Borer (2013): DCs = RCs; DCs have no AS or event structure: 

7. a. the house demolition (*by the army) (*in two hours) (DC)
 b. the demolition of the house by the army in two hours (ASN)

● As in RCs, non-heads are context-dependent: Agent/SUBJ is OK:
8. teacher recommendation; court investigation; government decision 
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Contribution of this Talk

● Hypothesis: If a noun is used more like an ASN or a RN, this should be 
preserved in compounds => ASN-like nouns head DCs with OBJ/int. 
argument, RN-like nouns form RCs with context-dependent readings:

9. snowOBJ/wasteOBJ removal    vs. healthOBJ/floodOTHER insurance

 drugOBJ/childOBJ trafficking  bodyOBJ/protestOTHER/studentSUBJ movement

● Our study: a balanced collection of DCs automatically extracted from 
the Annotated Gigaword Corpus (Napoles et al. 2012)

● Use machine learning techniques to check which morphosyntactic 
properties of DC heads are relevant for the (OBJ-NOBJ) interpretation 
of DCs and what correlations we find between the two

● Our results provide support for Grimshaw's analysis and our hypothesis 
that DCs headed by ASN-like nouns receive OBJ readings
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Outline

1) Our Methodology: Data Extraction and Annotation

2) Verification by Machine Learning Techniques 

3) Discussion of Results

4) Conclusion and Future Plans
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Our Plan

● Test if heads of DCs are more like ASNs or RNs in the corpus
● Hypothesis: DCs ≠ RCs

 Two types of compounds headed by ASN/RN-like deverbal Ns: 
➢ True DCs: non-head = only internal argument (OBJ)
➢ RCs: non-head = ext. arg. (SUBJ); OTHER; int. arg. (OBJ)

● Expectation to test: 
➢ Correlation between ASN-properties in heads of DCs and an 

OBJ interpretation of the DC
● Corpus and Tools: see details in Appendix-2
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Procedure

1) We created a frequency-balanced list of 25 heads for each of 
the suffixes -ing, -ion, -al, -ance, -ment (see Appendix-3)
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Procedure

1) We created a frequency-balanced list of 25 heads for each of 
the suffixes -ing, -ion, -al, -ance, -ment (see Appendix-3)

2) We then extracted the 25 most frequent compounds that they 
appeared as heads of => a total of 3111 compounds
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Procedure

1) We created a frequency-balanced list of 25 heads for each of 
the suffixes -ing, -ion, -al, -ance, -ment (see Appendix-3)

2) We then extracted the 25 most frequent compounds that they 
appeared as heads of => a total of 3111 compounds

3) Annotate each compound's interpretation: OBJ, SUBJ, OTHER
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3) Annotation of Compounds

● Two trained annotators (native speakers of American English)
● Annotate the relation between head and non-head:

– SUBJ: ext. Arg. (police questioning, designer creation) 
– OBJ: int. Arg. (book writing, crop destruction, hair removal)
– OTHER (contract killing, safety instruction)
– ERROR (PoS tag errors or uninterpretable compounds: e.g. faceV 

abandonment, fondA remembrance, percent assurance)

● Allow for ambiguity & preference order: SUBJ – OBJ, SUBJ > OBJ

● Post-processing (Appendix-4) => binary classification OBJ-NOBJ 

● Simple interannotator agreement after post-processing: 81.5%
● Result: 2399 DCs: 1502 OBJ - 897 NOBJ 
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Procedure

1) We created a frequency-balanced list of 25 heads for each of 
the suffixes -ing, -ion, -al, -ance, -ment (see Appendix-3)

2) We then extracted the 25 most frequent compounds that they 
appeared as heads of => a total of 3111 compounds

3) Annotate each compound's interpretation: OBJ, SUBJ, OTHER

4) Determine ASN vs. RN properties of heads based on some of 
Grimshaw's (1990) tests by extracting contexts from the 
Gigaword
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4) Morphosyntactic Features to Test

● 2. - 4. are Grimshaw's ASN-properties; 3. is the crucial one!
● 5. & 6. - comparable properties when the head is part of DCs
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Outline

1) Our Methodology: Data Extraction and Annotation

2) Verification by Machine Learning Techniques 

3) Discussion of Results

4) Conclusion and Future Plans
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Logistic Regression for Data Analysis

● Questions for the experiments:
1) Can the head's ASN-properties help in predicting the meaning of 

DCs (OBJ or NOBJ)?
2) Which properties are the strongest predictors?

● 7 independent variables (one categorical: suffix)
● Categorical dependent variable (OBJ-NOBJ)
● Split up data so that no head in test data is seen in training
● Balanced data set for two classes (by removing OBJ instances)
● Data used:  1614 training, 180 test compounds
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Results in Ablation Experiments

† indicates a statistically significant difference from the performance when all features are 
included
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Answers to our Questions

1) Are the features predictive? YES – cf. random baseline: 66.7% 
vs. 50%; best performance: 76.1% vs. 50% (see Appendix-5 & 6) 

2) Which features are strongest? 
● Head_in_DC: how often a head noun appears within a compound 

out of its total occurrences in the corpus
● Sg_head+of_outside_DC: how often a head noun (in the 

singular) realizes an of-phrase outside compounds 
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Outline

1) Our Methodology: Data Extraction and Annotation

2) Verification by Machine Learning Techniques 

3) Discussion of Results

4) Conclusion and Future Plans
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Head_in_DC (46.7% vs. 66.7%)

➔ High percentage of occurrences of a head inside compounds
➔ It indicates an OBJ interpretation (see Appendix-6)

● Not related to ASN-hood and not mentioned in previous 
literature

● High compoundhood of a head noun indicates its specialization 
for compounds

● The fact that it correlates with an OBJ reading shows us that if a 
deverbal noun typically forms a compound with one of its 
arguments, then this argument will be the object

➔ This supports Grimshaw’s claim that DCs embed event 
structure with internal arguments 
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Head_in_DC: Examples 

Heads with most/least frequent occurrence in compounds; outliers in bold

Head noun Head_in_DC OBJ-reading

laundering 94.80% 95.45%

mongering 91.77% 100%

growing 68.68% 95.23%

trafficking 61.99% 100%

enforcement 53.68% 66.66%

insurance 43.73% 46.15%

chasing 44.74% 90%

rental 42.95% 87.5%

acquittal 1.80% 12.5%

ignorance 0.85% 0%

refusal 0.77% 43.75%

anticipation 0.70% 37.5%

defiance 0.64% 35.29%
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Sg_head+of_outside_DC (56.1% vs. 66.7%)

➔ The presence of an of-phrase realizing the internal argument of 
the head/verb (cf. the examination of the patient)

➔ It predicts an OBJ reading (see Appendix-6)

● In Grimshaw (1990), the realization of the internal argument is 
most indicative of the ASN status of a deverbal noun. 

➔ This proves our hypothesis to be right: high ASN-hood of the 
head => OBJ reading in compound

● Precision & recall in the extraction of of-phrases is pretty good: 
● Precision: 90.96
● Recall: 90.08
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Sg_head+of_outside_DC: Examples

 

Heads with (in)frequent of-phrases outside compounds; outliers in bold

Head noun Of-phrases OBJ-reading

creation 80.51% 72.72%

avoidance 70.40% 100%

obstruction 65.25% 90.47%

removal 63.53% 92%

breaking 58.83% 94.11%

abandonment 55.90% 90%

assassination 52.27% 11.76%

preservation 52.14% 100%

education 1.81% 30%

proposal 1.08% 76.19%

counseling 0.53% 10%

insurance 0.42% 46.15%

mongering 0% 100%
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Sg_head+by_inside_DC (71.1% vs. 66.7%)

➔ Frequency of a by-phrase (i.e., ext. argument) with a compound
➔ It is noisy – results improve when feature is dismissed
● Grimshaw (1990): book-reading by students
● Borer (2013): the house demolition (*by the army)
➔ Possible interferences:
➢ by is ambiguous between ext. arg. and 'author'-by: e.g., a book 

by Chomsky => in principle, both ASNs and RNs should be OK
➢ Precision 85.02 & recall 72.78 in our by-phrase extractions
● Further investigation is needed 
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Conclusions

● Heads of DCs are ambiguous between ASNs and RNs and this 
influences the interpretation of DCs

● We find two correlations: 
– realization of internal arguments as of-phrases and OBJ readings
– high compoundhood and OBJ readings

● These support Grimshaw's claim that DCs include event 
structure with internal arguments

● The by-phrase in compounds is a noisy feature – this may be 
due to its ambiguity 

● Suffixes: see Appendix-7
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Future Plans

● Add third annotator (majority vote)
● Add annotation feature result (RN) vs. process (ASN) (1 to 5)
● We extracted the base verbs and their objects/subjects – check  

whether:
– the high frequency of a direct object with a verb correlates with an 

OBJ reading of the DCs
– the non-heads that appear in DCs correlate with the objects/ 

subjects of the verb – close to Borer's (2013) suggestions

● Would descriptive statistics be able to explain the correlations in 
our data better than ML techniques?
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Appendix
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Appendix-1: ASNs vs. RNs (Grimshaw 1990)

● Arguments are introduced by verbs via their event structure 
(aspectual properties, argument licensing, verbal properties)

● ASNs preserve event structure & AS from verbs; RNs do not
● ASN: obligatory internal arguments (vs. RNs) (Grimshaw 1990: 50-52)

(7) a. The assignment is to be avoided. (RN)

      b. *The constant assignment is to be avoided. (ASN-RN)

 c. The constant assignment of unsolvable problems is to be avoided. (ASN)

● Constant and frequent are aspectual modifiers when they 
appear with a singular noun => they require event structure (7b, 
c); if the noun is plural, it can be a RN:

(9) The constant assignments were avoided by the students. (RN)
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Appendix-1: ASNs vs. RNs (Grimshaw 1990)

● Intentional, deliberate, careful are agent-oriented modifiers and 
only appear with event structure => ASNs but not RNs

(11) a. *The instructor's intentional examination took a long time.

   b. The instructor's intentional examination of the papers took a long time.

● ASNs reject plural (not nominal enough) vs. RNs (Grimshaw 1990: 54)

(18) a. The assignments were long. (RN)

   b. *The assignments of the problems took a long time. (ASN)
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Appendix-2: Corpus and Tools

● The Annotated Gigaword Corpus (Napoles et al. 2012) – LDC Catalog No. 
LDC2012T21

● 10-million documents from seven news outlets
● Total of more than 4-billion words
● Automatic processing and annotation we use:

1. Segmentation (using Splitta - Gillick, 2009) and tokenization (using 
Stanford‘s CoreNLP pipeline) 

 2. Lemmatization and POS tags (Stanford‘s CoreNLP pipeline)

3. Treebank-style constituent parse trees (Huang et al. 2010, Avg. F 
score = 91.4 on WSJ sec 22)

4. Syntactic dependency trees (Using Stanford‘s CoreNLP pipeline for 
the conversion from constituency to dependency trees)

● We removed within-file (1010 files) duplicate sentences  (170 >143 GB)
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Appendix-3: Selection of Target Head Nouns

● For each suffix, we selected 25 nouns derived from transitive verbs, 
which head NN compounds (no N before or after) in Gigaword;

● Arrival – the only unaccusative verb
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Appendix-4: Post-processing of Annotations

● Initial database of 3111 compounds
● Conflate OTHER and SUBJ to NOBJ (=> binary classification)
● Remove errors (163) 
● Remove disagreements (547)
● Remove true ambiguous cases (for both annotators) (2)
● DCs headed by arrival: SUBJ > OBJ (but we didn‘t check 

alternating verbs – on our to do list)
● For ambiguous vs. unambiguous annotations, take overall 

preference (e.g., A1: NOBJ-OBJ; A2: NOBJ => NOBJ)
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Appendix-5: Comparison to NLP Studies

● Our best performance: 76.1% vs. 50% => 26.1% improvement
● Previous work in the NLP literature targets state-of-the-art 

performance in prediction with methods different from ours
● Our purpose was to start from linguistic theory and test 

linguistic hypotheses
● These studies include more suffixes (-er, -ee) and zero-derived 

nouns; -er and -ee are biased, so they are more predictive;
● We had only 'event'-denoting suffixes, where SUBJ/OBJ are 

similarly conceivable 

● Lapata (2002): 86.1% vs. 61.5% => 24.6% above the baseline
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 Appendix-6: Predicted Interpretation

Variable                               Class OBJ
 ===================================
 suffix=nt                          -0.1518
 suffix=ce                           -0.5366
 suffix=on                              0.3439
 suffix=al                              0.2855
 suffix=ng                           -0.0636
 head_in_DC                     0.0328
 sg_head+of_outside_DC  0.0202

● The two most predictive features correlate with an OBJ-reading (see 
head_in_DC, sg_head+of_outside_DC 

● For the suffix feature we get some variation:

Suffix: -ion, -al : OBJ 
 -ance, -ment, -ing : NOBJ
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Appendix-7: Suffixes (61.7% vs. 66.7%)

● It is the weakest predictive feature
● Grimshaw (1990): ing-nominals are always ASNs => OBJ
● Borer (2013): ing introduces the Originator (ext. arg.) itself and  

biases the DC towards an OBJ reading
➔ Both theories predict a correlation between ing and OBJ, which 

we did not find
● Latinate suffixes (-ion, -ment, -al, -ance) are taken to behave 

similarly in theory, but we find a bias for OBJ in -ion and -al, and 
for NOBJ in -ance and -ment

● Further research is needed: both cleaner data on our side and 
linguistic research on the selectional preferences of suffixes
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