Understanding compound words

A new perspective from compositional systems in distributional semantics

Marco Marelli
University of Milano-Bicocca
Compositionality in action

buttercup crown  pineapple pen
Compositionality in action

buttercup crown

pineapple pen
Compositionality in action

buttercup

pineapple
Compositionality in action

buttercup

pineapple
Outline

To understand the psycholinguistics of compounding, compositionality is crucial

1. CAOSS: a distributional model to capture internal semantic dynamics in compounds
2. CAOSS simulations of novel compound processing
3. CAOSS-based interpretation of transparency effect on response times and eye-movements in reading
How to model the semantic processing of compounds
(using distributional semantics)
The distributional hypothesis

The meaning of a word is (can be approximated by, learned from) the set of contexts in which it occurs

We found a little, hairy *wampimuk* sleeping behind the tree
The foundations of distributional semantics

• The distributional hypothesis can be formalized through computational methods:
  
  • Word meanings are modelled through lexical cooccurrences
  
  • In turn, lexical cooccurrences can be collected from linguistic corpora
The geometry of meaning

<table>
<thead>
<tr>
<th></th>
<th>shadow</th>
<th>shine</th>
</tr>
</thead>
<tbody>
<tr>
<td>moon</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>sun</td>
<td>15</td>
<td>45</td>
</tr>
<tr>
<td>dog</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

![Graph showing the geometry of meaning with points for moon, sun, and dog]
A model of the conceptual system?

• Very appealing for cognitive science
• Plausible nuanced representations for meanings
• Related to biologically plausible learning-mechanism

• Distributional approaches very effective in many cognitive experiments
  • explicit semantic intuitions (Landauer and Dumais, 1997)
  • learning curves (Landauer and Dumais, 1997)
  • fixation times in reading (Griffiths et al., 2007)
  • priming paradigms (Jones et al., 2006)
Distributional semantics for compounding?

- Language is a productive system, but vanilla distributional models cannot induce representations for novel combinations.


SOLUTION: compositional distributional semantics.
Compositional distributional models

• Recently, several proposals in computational linguistics
  • For example, simple sums or multiplication of constituent vectors (Mitchell & Lapata, 2010)

• In psycholinguistics, function-based FRACSS model (Marelli & Baroni, 2015)
  • Account for several morphology effects, including response times and priming effects
The FRACSS model
Why a different approach for compounds?

- A model for compound meanings should be able to account for:
  - The productivity of the system
  - The ease of comprehension of novel compounds
  - The possibility to generate compounds including newly acquired words (out of the possibilities of function models)
  - Impact of constituent order (out of the possibilities of simpler proposals)

Function-based and simpler models are not an ideal solution for compounding
We turn to the system proposed by Guevara (2011)

A compositional representation is obtained through a semantic update of the constituents, achieved by means of a set of weight matrices

\[ A \times p + B \times q = c \]
CAOSS: Compounding as Abstract Operation in Semantic Space

STEP 0
semantic representations for independent words

STEP 1
role-dependent update by means of CAOSS matrices

STEP 2
combination of the obtained constituent representations
CAOSS training

carwash
\[
\begin{pmatrix}
ca_1 \\
ca_2 \\
ca_3 \\
\vdots \\
ca_N
\end{pmatrix}
\]

car
\[
\begin{pmatrix}
ua_1 \\
ua_2 \\
ua_3 \\
\vdots \\
ua_N
\end{pmatrix}
\]

wash
\[
\begin{pmatrix}
va_1 \\
va_2 \\
va_3 \\
\vdots \\
va_N
\end{pmatrix}
\]

swordfish
\[
\begin{pmatrix}
cb_1 \\
cb_2 \\
cb_3 \\
\vdots \\
cb_N
\end{pmatrix}
\]

sword
\[
\begin{pmatrix}
ub_1 \\
ub_2 \\
ub_3 \\
\vdots \\
ub_N
\end{pmatrix}
\]

fish
\[
\begin{pmatrix}
vb_1 \\
vb_2 \\
vb_3 \\
\vdots \\
vb_N
\end{pmatrix}
\]

moonlight
\[
\begin{pmatrix}
cz_1 \\
cz_2 \\
cz_3 \\
\vdots \\
cz_N
\end{pmatrix}
\]

moon
\[
\begin{pmatrix}
uz_1 \\
uz_2 \\
uz_3 \\
\vdots \\
uz_N
\end{pmatrix}
\]

light
\[
\begin{pmatrix}
vz_1 \\
vz_2 \\
vz_3 \\
\vdots \\
vz_N
\end{pmatrix}
\]

\[
\begin{pmatrix}
m_{11} & m_{12} & m_{13} & \ldots & m_{1N} \\
m_{21} & \ldots & \ldots & \ldots & \ldots \\
m_{31} & \ldots & \ldots & \ldots & \ldots \\
\vdots & \ldots & \ldots & \ldots & \vdots \\
m_{N1} & \ldots & \ldots & \ldots & m_{NN}
\end{pmatrix}
\] \ast \n
\[
\begin{pmatrix}
h_{11} & h_{12} & h_{13} & \ldots & h_{1N} \\
h_{21} & \ldots & \ldots & \ldots & \ldots \\
h_{31} & \ldots & \ldots & \ldots & \ldots \\
\vdots & \ldots & \ldots & \ldots & \vdots \\
h_{N1} & \ldots & \ldots & \ldots & h_{NN}
\end{pmatrix}
\] \ast \n
\[
\begin{pmatrix}
M \\
\ldots \\
H \\
\ldots
\end{pmatrix}
\]
CAOSS: a psycholinguistic evaluation

(1) The processing of novel compounds
Novel compounds: roles and relations

Constituent roles

**Head** (rightmost element):  
_A mountaine magazine_ is a _magazine_

**Modifier** (leftmost element):  
_A mountain magazine_ has something to do with _mountains_

Compound relations

Unexpressed links between head and modifier

_A mountain magazine_ is a _magazine about mountain_
Relational priming effect

Behavioral results from Gagné (2001)

Primes for the target *honey soup*

<table>
<thead>
<tr>
<th>Shared Constituent</th>
<th>Relation</th>
<th>Prime Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>modifier</td>
<td>same</td>
<td><em>honey muffin</em></td>
</tr>
<tr>
<td>modifier</td>
<td>different</td>
<td><em>honey insect</em></td>
</tr>
<tr>
<td>head</td>
<td>same</td>
<td><em>ham soup</em></td>
</tr>
<tr>
<td>head</td>
<td>different</td>
<td><em>holiday soup</em></td>
</tr>
</tbody>
</table>
Relational priming effect in CAOSS

Priming effect as similarity between compositional meanings
Relational priming effect in CAOSS

Priming effect as similarity between compositional meanings

honey+muffin

honey+soup
Relational dominance effect

Behavioral results from Gagné & Shoben (1997)

<table>
<thead>
<tr>
<th>Condition</th>
<th>Target Example</th>
<th>Dominant Relation for Modifier</th>
<th>Dominant Relation for Head</th>
<th>Actual Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>plastic crisis</td>
<td>MADE-OF</td>
<td>ABOUT</td>
<td>ABOUT</td>
</tr>
<tr>
<td>HH</td>
<td>plastic toy</td>
<td>MADE-OF</td>
<td>MADE-OF</td>
<td>MADE-OF</td>
</tr>
<tr>
<td>HL</td>
<td>plastic equipment</td>
<td>MADE-OF</td>
<td>FOR</td>
<td>MADE-OF</td>
</tr>
<tr>
<td>LH</td>
<td>college headache</td>
<td>ABOUT</td>
<td>CAUSED-BY</td>
<td>CAUSED-BY</td>
</tr>
<tr>
<td>HH</td>
<td>college magazine</td>
<td>ABOUT</td>
<td>ABOUT</td>
<td>ABOUT</td>
</tr>
<tr>
<td>HL</td>
<td>college treatment</td>
<td>ABOUT</td>
<td>FOR</td>
<td>IN</td>
</tr>
</tbody>
</table>
Relational dominance in CAOSS

Relational dominance as similarity between constituents and compositional meanings

\[ \text{honey} \quad \text{honey+soup} \]
Relational dominance in CAOSS

Relational dominance as similarity between constituents and compositional meanings
Relational dominance in CAOSS

Relational dominance as similarity between updated constituents and compositional meanings
Relational dominance in CAOSS

Relational dominance as similarity between updated constituents and compositional meanings
CAOSS and novel compounds

- CAOSS can provide apt representations for novel combinations in a data-driven framework

- Psycholinguistic effects are mirrored in CAOSS predictions

- Compound relations and head-modifier roles can be seen as by-products of compound usage, or high-level description of a nuanced compositional system
CAOSS: a psycholinguistic evaluation

(2) The processing of familiar compounds
Semantic transparency in chronometric studies

• Evidence of transparency effects is at times inconsistent (e.g., Zwitserlood, 1994; Pollatsek & Hyona 2005)

• When an effect is observed, is often characterized in compositional terms by means of:
  • rating instructions (Marelli & Luzzatti, 2012)
  • experimental design (Frisson et al., 2008; Ji et al., 2011)
  • training examples in modelling (Marelli et al., 2014)

Compositionality may play a crucial role in a cognitively-relevant definition of semantic transparency
Why compositionality?

• The compositional procedure should be **fast and automatic**: generating new meanings is the very purpose of compounding

• A compositional meaning **should be always computed** by the speaker: when processing a compound, the speaker cannot know in advance whether it is familiar or not

• Such a procedure would be **most often effective**: very opaque compounds are rare, and the meaning of partially opaque words can be approximated compositionally
The many faces of transparency

Constituent-based Relatedness
The many faces of transparency

Constituent-based Relatedness
The many faces of transparency

Constituent-based Relatedness

Compound Compositionality

Constituent-based Compositionality
The many faces of transparency in CAOSS

**Constituent-based Relatedness**

**Compound Compositionality**

**Constituent-based Compositionality**
CAOSS and lexical decision

• Response times for 1845 lexicalized compounds from the English Lexicon Project (Balota et al., 2007)

• Semantic effects tested against a baseline of form-related variables (length, frequency, etc)
CAOSS effects in lexical decision

- Compound Compositionality
- Constituent-based Relatedness

- Constituent-based Compositionality
CAOSS effects in lexical decision
CAOSS effects in lexical decision

Effect of compound compositionality

- Head contribution
- Compound compositionality

- Effect values: 0.66, 0.65, 0.64, 0.63, 0.62, 0.61, 0.6, 0.59, 0.58, 0.57, 0.56, 0.55, 0.54, 0.53, 0.52, 0.51, 0.5, 0.49, 0.48, 0.47, 0.46, 0.45, 0.44, 0.43, 0.42, 0.41, 0.4, 0.39, 0.38, 0.37, 0.36, 0.35, 0.34, 0.33, 0.32, 0.31, 0.3, 0.29, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.2, 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01, 0.0
CAOSS effects in lexical decision

• Compound compositionality affects response times

• The constituent impact is better explained in terms of *their contribution to the compositional meaning*

• Head constituent has a modulating role
CAOSS effects in lexical decision

• The compositionality effect is unexpected: lack of compositionality eases recognition!

• Task effect?
  • any string activating much semantic information is likely to be a word
  • low compositionality means that a compound activate two different meanings
  • large semantic activation boosts response times
CAOSS and eye tracking

- Response times for 78 lexicalized compounds from GECO (Cop et al., in press)
- Semantic effects tested against a baseline of form-related variables

- Two models:
  - *first fixation times* as index of early processing
  - *gaze durations* as index of late processing

I cut myself some fresh pineapple, then promptly

Fixation times on each word (ms)
CAOSS effects in eye tracking

Constituent-based Relatedness

GAZE DURATIONS ONLY

Compound Compositionality

Constituent-based Compositionality

FIRST FIXATIONS ONLY
CAOSS effects on first fixations
CAOSS effects on gaze durations
Compositionality and task effects

Lexical decision

Eye tracking in reading
CAOSS effects in eye tracking

- Time course of the compositional process
  - First, early combination of constituent meanings
  - Second, late comparison between compositional and stored compound meaning

- The effect of compound compositionality is affected by task requirements
  - When a specific sense must be accessed (reading task), a competition between the compositional and the lexicalized meaning needs to be resolved: compositionality eases the process
Conclusions

• There are complex semantic dynamics that must be formalized in order to be properly investigated
  • Distributional models can be profitably applied as a large-scale data-driven solution

• Compositionality plays a central role in compound processing
  • Novel and familiar compounds builds on the same basic processes
  • Compositionality must be properly addressed in psycholinguistic investigations on compounding
Thank you for your attention!

...and thanks to...

Marco Baroni

Christina Gagné and Thomas Spalding

Fritz Günther

...for their invaluable contribution to the presented works