Factors affecting the processing of compounds in the second language

Serkan Uygun & Ayşe Gürel Yeditepe University & Boğaziçi University

Outline

- Issue under investigation
- Introduction What is compounding?
- Models for morphological processing
- Previous L1 and L2 studies on compound processing
- The study
- Results
- Discussion
- Conclusion

Issue under investigation

• This study explores whether late L2 Turkish learners with L1 English process nominal compounds in the same way as native Turkish speakers do.

What is compounding?

- Compounding is a fundamental word formation process as it offers the easiest and most effective way to create new meanings and complex words (Dressler, 2006; Libben, 2006).
- Compounding is the combination of two words, one of which modifies the meaning of the other (i.e., the head) (e.g., Bauer, 1983, 2001, 2006; Plag, 2003; Delahunty and Garvey, 2010).

Why to study the processing of compounds?

- Compounds may consist only of two free morphemes, yet inflected and derived forms always include an affix.
- Compounds allow us to identify the role of constituents, frequency and semantic transparency in the processing of multimorphemic words (Foirentino, 2006).

Models for morphological processing

Model	Assumption	Prediction for Compounds
Full-Listing Model (Butterworth, 1983)	Complex words are represented as whole units	Compound RT = Single word RT
Decomposition Model (Taft&Forster, 1975)	Complex words are decomposed into constituent morphemes	Compound RT > Single word RT
Dual-route Models	Frequency, family size and transparency determine which processing route applies	Full-listing for opaque, decomposition for transparent compounds
The APPLE Model (Libben, 1994; 1998)	Complex words are decomposed into constituent morphemes	Compound RT < Single word RT Transparency leads to longer RT

L1 compound studies

- Compound studies mainly focus on the questions of:
 - whether one of the constituents has a more significant impact on the processing route;
 - whether the semantic transparency of constituents affects the parsing route

Effects of constituents (C1and C2)

Study	Language	Methodology	Findings	Conclusion
Taft&Forster, 1976	English	Lexical decision	C1 word (footmilge) RT > C1 nonword (thernlow) RT \rightarrow decomposition Low frequency C1 RT > high frequency C1 RT \rightarrow decomposition	C1 effects
Juhasz, 2006	English	Eye movement	High frequency C1 had shorter first fixation times and gaze durations than simple words \rightarrow decomposition Low frequency C1 = simple words	C1 effects
Juhasz et al., 2003	English	Eye movement, naming, lexical decision	Access to constituents depended on C2 frequency	C2 effects
Libben et al., 2003	English	Priming	C2 opaque (stair <u>case</u>) RT > C2 transparent (straw <u>berry</u>) RT	C2 effects
Andrews et al., 2003	English	Eye movement	Reliable effects of frequency for both constituents	Both C1 and C2 effects
Janssen et al., 2014	English	Lexical decision	C1 and C2 frequency were found to be important	Both C1 and C2 effects

Semantic transparency

- Another major question: whether the semantic transparency of constituents affects the parsing route.
- Compounds are divided into four groups:
 - Transparent-transparent (TT): bedroom
 - Opaque-transparent (OT): nickname
 - Transparent-opaque (TO): shoehorn
 - Opaque-opaque (OO): deadline
- The RTs for each compound type were compared with each other to identify the effect of semantic transparency.

Effects of semantic transparency

Study	Language	Methodology	Findings	Conclusion
Libben et al., 2003	English	Priming	Both C1 and C2 were activated regardless of semantic transparency	No effect of semantic transparency; decomposition independent of transparency
Jarema et al., 1999	French	Priming	Constituents activation in all compound types	Decomposition independent of transparency
Sandra, 1990	Dutch	Semantic priming	No priming effect for opaque compounds but both constituents were activated in transparent compounds	Effect of semantic transparency (dual-route)
Zwitserlood, 1994	Dutch	Semantic priming	No priming effect for opaque compounds but both constituents were activated in partially and fully-transparent compounds	Effect of semantic transparency (dual-route)
Jarema et al., 1999	Bulgarian	Priming	No priming effect for opaque compounds	Effect of semantic transparency (dual-route)
Stathis, 2014	English	Lexical decision	Decomposition only when both C1 and C2 were transparent	Effect of semantic transparency (dual-route)

L2 compound processing

- Limited number of studies on L2 compound processing aim to:
 - explore how L2 learners process compound words
 - whether L2 learners differ from native speakers in terms of the route they employ in processing compounds

How L2 learners process compounds?

Study	Language	Methodology	Findings
Goral et al., 2008	L1 Hebrew- L2 English	Priming	No priming effect \rightarrow full-listing (for participants from Israel) Priming effect \rightarrow decomposition (for participants from the USA)
Ko, 2011	L1 Korean- L2 English	Masked priming	No priming effect \rightarrow full-listing
Ko et al., 2011	L1 Korean- L2 English	Lexical decision	Compound words were decomposed into their constituents
Wang, 2010	L1 Chinese- L2 English	Lexical decision	Faster RT for compounds with high frequency $C2 \rightarrow$ decomposition
Mayila, 2010	L1 Chinese- L2 English	Masked priming	Decomposition for transparent, full- listing for opaque \rightarrow dual-route

L1 processing = L2 processing?

Study	Language	Methodology	Findings
De Cat et al., 2014; 2015	L1 German-L2 English & L1 Spanish-L2 English	EEG recordings	Licit compounds (<i>coal dust</i>): dual- route in L1, decomposition in L2 Reversed compounds (<i>dust coal</i>): both groups employed decomposition
Li et al., 2015	L1 Chinese-L2 English	Masked priming	$L1 = L2 \rightarrow$ decomposition Both C1 and C2 were activated regardless of transparency

Processing studies in agglutinative languages

Study	Language	Methodology	Findings
Kuperman et al., 2008	Finnish	ERP	They obtained C1 frequency effect but no effect of $C2 \rightarrow$ decomposition
Bertram & Hyönä, 2003	Finnish	Eye movement	Long compounds were decomposed but short compounds were stored as whole units \rightarrow dual-route
Duñabeitia et al., 2007	Basque	Lexical decision	They obtained C2 frequency effect High frequency C2 RT < low frequency C2 RT \rightarrow decomposition
Vergara- Martinez et al., 2009	Basque	ERP	They obtained C2 frequency effect High frequency C2 RT < low frequency C2 RT \rightarrow decomposition

Processing studies of Turkish compounds

- Özer (2010) investigated three types of compounds via a morphological priming paradigm by means of a picture naming task :
 - Bare juxtaposed compounds: *akbalık* 'dace'
 - Indefinite compounds: *dil balığı* 'flounder'
 - Definite compounds: gölün balığı 'fish of the lake'
- Picture names (e.g., *balık* 'fish') were morphologically related either to C1 or C2 or they were completely unrelated.
- Morphologically related compounds led to shorter naming latencies \rightarrow decomposition.
- Despite not being significant, an RT advantage for C2 (head).

The aim of the study

• The study aims to examine the representation/processing of compounds in the mental lexicon of L1-English L2-Turkish learners in comparison to Turkish native speakers.

Compounds in Turkish

- Compounds in Turkish are formed by combining two words (Göksel, 2009).
- Turkish compounds are mostly right-headed (Yükseker, 1987; Göksel & Haznedar, 2007; Kunduracı, 2013).
- Turkish has verbal (e.g., *alay etmek* 'to ridicule'), adjectival (e.g., *delikanlı* 'young man') and nominal (e.g., *büyükbaba* 'grandfather') compounds.

Participants

Groups	Gender	Mean age (Range)	Mean age of L2 exposure (Range)	Mean length of L2 exposure(Range)
Turkish Native Speakers (N=73)	57F-16M	32.37 (18-46)	At birth	From birth
L2 Turkish	21F-15M	40.30	31.13	9.08
Intermediate (N=36)		(20-67)	(17-55)	(2-30)
L2 Turkish	24F-11M	42.60	25.14	17.42
Advanced (N=35)		(21-62)	(15-43)	(5-40)

- A background questionnaire
- Transparency judgment test (in a 5-point Likert scale with 86 participants)
- Turkish Placement Test of Istanbul University Language
 Center
- Masked priming experiment via E-prime 2.0 (Schneider, Eshman & Zuccolotto, 2002)

Stimuli

Condition	Item
Transparent-transparent (TT)	kuzeydoğu 'northeast'
Partially-opaque (PO)	büyükelçi 'ambassador'
Pseudocompound (PSC)	<i>fesleğen</i> 'basil'
Monomorphemic (MONO)	kaplumbağa 'turtle'
Nonword Compound	kumardalga
Nonword Monomorphemic	ülterzatif

- All word items were matched on whole-word frequency, whole-word length, C1 frequency, C1 length, C2 frequency and C2 length as much as possible based on METU Corpus.
- A significant difference was only obtained between partially-opaque and pseudocompound items in terms of whole-word length (p=.038).

Procedure

- The participants were asked to respond to a set of words appearing on the computer screen by pressing either a "Yes" or "No" button on the keyboard as quickly and as accurately as possible.
- The experiment automatically records the RTs and accuracy of the participants.

Priming Conditions

Constituent 1 (C1)	Constituent 2 (C2)	Unrelated (UR)	Target
kuzey	doğu	çanta	KUZEYDOĞU
'north'	'east'	'bag'	'northeast'

- If RTs to the target after prime, C1 (kuzey) \leq UR (çanta) \rightarrow C1-based decomposition
- If RTs to the target after prime, C2 (doğu) \leq UR (çanta) \rightarrow C2-based decomposition
- If RTs to the target after prime, C1 (kuzey) = C2 (doğu) \leq UR (çanta) \rightarrow decomposition
- If RTs to the target after prime, C1 (kuzey) = C2 (doğu) = UR (çanta) \rightarrow no decomposition
- If RTs to the target after prime, C1 (kuzey) = C2 (doğu) > UR (çanta) \rightarrow no decomposition

Language test scores

Groups	Scores (100)	Range	Standard deviation
L2 Tr Int (N=36)	43.50	33-54	6.98
L2 Tr Adv (N=35)	75.88	67.5-87	5.61

- The independent sample t-test revealed a significant difference between the Turkish test scores (t(69)=21.447, p=.000)
- Advanced level participants received significantly higher scores than the intermediate level participants.

Data analysis

- All incorrect responses and outliers (3 SD above and below the mean) were excluded from the analysis.
- Three analyses were conducted:
 - Analysis 1: if compound words are processed differently from noncompound words
 - Analysis 2: if semantic transparency influences the processing of compounds
 - Analysis 1 and 2 also investigate which constituent has a more significant impact in processing compounds
 - Analysis 3: how pseudocompound and monomorphemic items are proccessed
- 2 (word types) x 3 (prime types) x 3 (groups) mixed-model ANOVA was conducted for each analysis.

Compound (C) vs. Noncompound (NC)

Significant differences of: <u>Word types</u> (*F*=198.143; *p*=.000) \rightarrow C > NC (*p*=.000) <u>Prime types</u> (*F*=5.276; *p*=.006) \rightarrow C2 < UR (*p*=.003) <u>Groups</u> (*F*=184.691; *p*=.000) \rightarrow <u>C:</u> L1 Tr < L2 Int (*p*=.000) & L2 Adv (*p*=.000), L2 Adv < L2 Int (*p*=.000); <u>NC:</u> L1 Tr < L2 Int (*p*=.000) & L2 Adv (*p*=.000), L2 Adv < L2 Int (*p*=.000) <u>Word types x groups</u> (*F*=59.675; *p*=.000)

Within-group analysis (C vs. NC)

	L1 Turkish	L2 Turkish Int	L2 Turkish Adv
Compound vs. Noncompound	C > NC (<i>p</i> =.000)	C > NC (<i>p</i> =.000)	C > NC (<i>p</i> =.000)
Compounds	C1 < UR (p =.066) C2 < UR (p =.002) Headedness-based decomposition	No priming effects \rightarrow no decomposition	No priming effects \rightarrow no decomposition
Noncompounds	No priming effects \rightarrow no decomposition	No priming effects \rightarrow no decomposition	No priming effects \rightarrow no decomposition

Partially-opaque (PO) vs. Transparent-transparent (TT)

Significant differences of:

<u>Word types</u> (*F*=10.545; *p*=.001) → PO > TT (*p*=.001) <u>Prime types</u> (*F*=4.707; *p*=.01) → C2 < UR (*p*=.006) <u>Groups</u> (*F*=165.394; *p*=.000) → <u>PO:</u> L1 Tr < L2 Int (*p*=.000) & L2 Adv (*p*=.001), L2 Adv < L2 Int (*p*=.000); <u>TT:</u> L1 Tr < L2 Int (*p*=.000) & L2 Adv (*p*=.000), L2 Adv < L2 Int (*p*=.000) <u>Word types x groups</u> (*F*=4.844; *p*=.009)

Within-group analysis (PO vs. TT)

	L1 Turkish	L2 Turkish Int	L2 Turkish Adv
PO vs. TT	No difference	No difference	No difference
Partially-opaque compounds	C1 < UR (<i>p</i> =.011) C2 < UR (<i>p</i> =.006) Decomposition	No priming effect Full-listing	No priming effect Full-listing
Transparent- transparent compounds	C2 < UR (p=.023) Headedness-based decomposition	No priming effect Full-listing	No priming effect Full-listing

Pseudocompound (PSC) vs. Monomorphemic (MONO)

Significant differences of:

<u>Word types</u> (F=69.975; p=.000) \rightarrow PSC \leq MONO (p=.000)

<u>Groups</u> (*F*=184.050; *p*=.000) \rightarrow L1 Tr < L2 Int (*p*=.000) & L2 Adv (*p*=.000), L2 Adv < L2 Int (*p*=.000)

<u>Word types x groups</u> (*F*=14.684; *p*=.000)

Within-group analysis (PSC vs. MONO)

	L1 Turkish	L2 Turkish Int	L2 Turkish Adv
PSC vs. MONO	PSC < MONO	PSC < MONO	PSC < MONO
	(<i>p</i> =.000)	(<i>p</i> =.000)	(<i>p</i> =.000)
Pseudocompound	No priming effect	No priming effect	No priming effect
	Full-listing	Full-listing	Full-listing
Monomorphemic	No priming effect	No priming effect	No priming effect
	Full-listing	Full-listing	Full-listing

Discussion

L1 Turkish

L2 Turkish

- Compounds are accessed in a decomposed fashion.
- Semantic transparency:
 - Both constituents are activated in PO
 - Headedness-based decomposition for TT
- Noncompounds are stored as unanalyzed whole units.

L2 Tr Int

No priming effect → full-listing for all items

L2 Tr Adv

- No priming effect → full-listing for all items
- Noncompounds are stored as unanalyzed whole units.

Conclusion

L1 Turkish

L2 Turkish

- Decomposition
 - Longer RTs for compounds
 - Opaqueness → activation of both constituents

- They are not native-like in compound processing.
- Factors that may influence nativelike processing:
 - Age of L2 exposure
 - Familiarity with the constituents
 - Formal instruction

Recommendations for further research

- Using different experimental techniques such as eye tracking
- Investigating the processing of fully-opaque compounds
- Investigating L2 Turkish participants who have similar lengths of L2 Turkish exposure
- Measuring L2 Turkish participants' proficiency level with a standardized proficiency test

Acknowledgment

This study has been supported by a research grant given to Ayşe Gürel by the Scientific and Technological Research Council of Turkey (TÜBİTAK-1001) (research grant no:112K183).