Formal Models in NLP: Parsing

Daniel Quernheim

April 17, 2012
What’s parsing?

- Syntactic analysis of a string
- CFG, CCG, Dependency Grammar

```
S
 /  \\  
NP VP
 /  \\
Kim V PP
 /  \\
lives P PN
 /  \\
in Australia
```
What’s parsing?

- Syntactic analysis of a string
- CFG, CCG, Dependency Grammar

```
\[
\begin{array}{cccc}
  \underline{Kim} & L & \underline{likes} & L & \underline{kangaroos} & L \\
  NP & L & (S\setminus NP)/NP & S\setminus NP & NP & >A \\
  S & S & >A
\end{array}
\]
```
What’s parsing?

- Syntactic analysis of a string
- CFG, CCG, Dependency Grammar
What do we need for parsing?

A formalism

- CFG
- CCG
- Dependency Grammar
- RCG
- TAG
- LFG,
- HPSG
- ... [Müller, 2010]

A parsing algorithm

- Recursive Descent
- Earley
- CYK
- LR, Tomita
- ... [Shieber et al., 1995]
Topic 1: Viterbi parsing

Questions
Given a string and a CFG, . . .

► . . . how do we efficiently compute the best derivation?

► – or the best n derivations? [Huang and Chiang, 2005]

► . . . how do we avoid accidentally discarding good derivations while pruning? [Klein and Manning, 2003]
Kim gives the kangaroos food
Topic 2: Dependency parsing

Questions

▶ How do probabilistic models of DG work? [Eisner, 1996b]
▶ How do we deal with non-projective structures such as this one? [McDonald et al., 2005]
Topic 3: CCG parsing

What is CCG?

- Combinatory Categorial Grammar (Steedman)
- a fully lexicalized grammar formalism
- a few primitive categories (NP, S, Det) and infinitely many complex
- pure CG: only functional application
- CCG: combinatory rules: type-raising, functional composition

Advantages of CCG

- categories for non-standard constituents (e.g. non-constituent coordination)
- easy to do semantics: The semantic type of the logical form is entirely determined by the syntactic category
Topic 3: CCG parsing

Functional application only:

\[
\frac{Kim}{NP} \quad \frac{likes}{(S\setminus NP)/NP} \quad \frac{kangaroos}{NP} \\
\frac{(S\setminus NP)\setminus NP}{S\setminus NP} \quad \frac{S\setminus NP}{S} \quad \text{>A}
\]

With type-raising and functional composition:

\[
\frac{Kim}{NP} \quad \frac{likes}{(S\setminus NP)/NP} \quad \frac{kangaroos}{NP} \\
\frac{S/(S\setminus NP)}{S/np} \quad \frac{S/np}{S} \quad \text{>A}
\]

Daniel Quernheim

Parsing

April 17, 2012
Topic 3: CCG parsing

Questions

▶ How to avoid spurious ambiguity due to combinatory rules? [Eisner, 1996a]
▶ How to build a statistical CCG parser? [Clark and Curran, 2007]
Topic 4: TAG parsing

What is TAG?

- Tree Adjoining Grammar
- elementary trees are composed by substitution and adjunction
- can elegantly capture long-distance dependencies

```
NP | kangaroos
S  | NP | VP
  |   |  V
  |   | jump
VP | Adj | VP*
   | always
```
Question:

- How can TAG be parsed efficiently?
 [Shieber et al., 1995, Schabes and Joshi, 1988]
- (For a variety of TAG:) [Kallmeyer and Satta, 2009]
Topic 5: RCG parsing

What is RCG?

- Range Concatenation Grammar [Boullier, 1999]
- even more powerful than TAG
- covers the entire PTIME class of languages
- rules make use of predicates over variables denoting ranges

Example RCG

\[
S(XYZ) \rightarrow A(X, Y, Z) \\
A(ax, ay, az) \rightarrow A(X, Y, Z) \\
A(bx, by, bz) \rightarrow A(X, Y, Z) \\
A(\varepsilon, \varepsilon, \varepsilon) \rightarrow \varepsilon
\]
Topic 5: RCG parsing

Questions

▶ How can we place sensible restrictions on this framework to stay tractable?
▶ How do we parse Earley style? [Kallmeyer et al., 2009]
▶ How are common syntactic phenomena modeled? [Boullier, 1999]
▶ Can RCGs be used for machine translation? [Søgaard, 2008]
References

Chinese numbers, MIX, scrambling, and Range Concatenation Grammars.

Wide-coverage efficient statistical parsing with CCG and log-linear models.

Efficient normal-form parsing for Combinatory Categorial Grammar.
In Proc. ACL, pages 79–86.

Three new probabilistic models for dependency parsing: An exploration.

Better k-best parsing.
In Proc. IWPT, pages 53–64.

An Earley parsing algorithm for Range Concatenation Grammars.

A polynomial-time parsing algorithm for TT-MCTAG.

In Proc. HLT-NAACL.

Non-projective dependency parsing using spanning tree algorithms.
In Proc. HLT/EMNLP.

Grammatiktheorie.
Stauffenburg.

An earley-type parsing algorithm for Tree Adjoining Grammars.
In Proc. ACL, pages 258–269.

Principles and implementation of deductive parsing.

Range concatenation grammars for translation.