Semantics-based Machine Translation

Daniel Quernheim
daniel@ims.uni-stuttgart.de

Institut für Maschinelle Sprachverarbeitung
Universität Stuttgart

January 27, 2012
About this lecture

About me

- I am a Ph.D. student in Andreas Maletti’s project
- Working on tree acceptors and transducers for syntax-based MT

About my ISI visit

- I visited USC/ISI for three months last year
- At ISI, I worked in KEVIN KNIGHT’s group
- They produce state-of-the-art results in syntax-based MT
- ...but they are working on semantics-based MT now!
- This lecture is mostly about what they have in mind, not what has happened already!
Motivation

Why semantics-based MT?
The more linguistic structure we use, the better the translation can be!
Motivation (2)

But what’s wrong with phrase-based and syntax-based MT?

- We want to get the “who did what to whom” (WWW) right
- Preservation of meaning can be more important than grammaticality/fluency
- We are aiming for useful translation!

But haven’t people tried and failed?

Yes, but . . .

- that was before statistics
- small-scale, hand-crafted
- people said the same about syntax-based MT and look where it’s now!
Words of wisdom

Kevin Knight: “As long as we get the WWW wrong, we are optimizing with respect to the wrong metric (BLEU)!”

Warren Weaver: “Thus it may be true that the way to translate from Chinese to Arabic [...] is not to attempt the direct route, shouting from tower to tower. Perhaps the way is to descend, from each language, down to the common base of human communication – the real but as yet undiscovered universal language – and then re-emerge by whatever particular route is convenient.”
Different MT paradigms

- Phrase-based MT: \(n\)-grammatical
- Syntax-based MT: grammatical
- Semantics-based MT: **sensible** and grammatical
Different MT paradigms (2)

Phrases: represented as **strings**
Syntax: represented by **trees**
Semantics: represented by **directed acyclic graphs**
Feature structures

INSTANCE charge

THEME

INSTANCE person

NAME "Pascale"

INSTANCE and

OP1 INSTANCE resist

AGENT 1

THEME

OP2 INSTANCE intoxicate

THEME 1

LOCATION

INSTANCE public

INSTANCE arrest

THEME 1
Directed acyclic graphs

CHARGE \mapsto charge(theme, pred)
AND \mapsto and(op1, op2)
RESIST \mapsto resist(agent, theme)
ARREST \mapsto arrest(theme)
INTOXICATE \mapsto intoxicate((theme, location))
PUBLIC \mapsto public()
PERSON \mapsto person(name)
PASCALE \mapsto "Pascale"
Translation pipelines

Syntax-based MT pipeline

The individual components are efficiently represented as weighted tree acceptors and transducers.

\[\text{estring} = \text{BESTPATH}(\text{INTERSECT}(\text{language model}, \text{YIELD}(\text{BACKWARDS}(\text{translate}, \text{fstring}))))). \]
Translation pipelines (2)

Semantics-based MT pipeline

\[
\text{fstring} \rightarrow \text{understand} \rightarrow \text{esem} \rightarrow \text{rank} \rightarrow \text{esem} \\
\rightarrow \text{generate} \rightarrow \text{etree} \rightarrow \text{rank} \rightarrow \text{estring}
\]

- No suitable automaton framework is known!
Algorithms and automata

<table>
<thead>
<tr>
<th></th>
<th>string automata</th>
<th>tree automata</th>
<th>graph automata</th>
</tr>
</thead>
<tbody>
<tr>
<td>k-best</td>
<td>paths through a WFSA</td>
<td>trees in a weighted forest</td>
<td></td>
</tr>
<tr>
<td>EM training</td>
<td>Forward-backward EM</td>
<td>Tree transducer EM training</td>
<td></td>
</tr>
<tr>
<td>Determinization</td>
<td>of weighted string acceptors</td>
<td>of weighted tree acceptors</td>
<td></td>
</tr>
<tr>
<td>Transducer composition</td>
<td>WFST composition</td>
<td>Many transducers not closed under composition</td>
<td></td>
</tr>
<tr>
<td>General tools</td>
<td>AT&T FSM, Carmel, OpenFST</td>
<td>Tiburon</td>
<td></td>
</tr>
</tbody>
</table>

Table: General-purpose algorithms for strings, trees and feature structures.
Algorithms and automata (2)

Our goal

▶ Find an adequate automaton model for the pipeline parts
▶ Investigate algorithms and fill all the blanks!

Candidates

▶ Treating everything as a tree (too weak?)
▶ Unification grammars (HPSG, LFG) (too powerful?)
▶ Hyperedge replacement grammar (too powerful?)
▶ Some straightforward extension of tree automata?
Dag automata

finite string automaton: (FSA)
 one input state, one input symbol, one output state
 \[\cdots \quad p \xrightarrow{\sigma} q \quad \cdots \]

finite tree automaton: (FTA)
 one input state, one input symbol, many output states
 \[\cdots \quad p \xrightarrow{\sigma} q_1 \quad q_2 \quad \cdots \]

finite dag automaton: (FDA?)
 many input states, one input symbol, many output states
 \[\cdots \quad p_1 \xrightarrow{\sigma} q_1 \quad q_2 \quad \cdots \quad p_2 \xrightarrow{\sigma} q_2 \quad q_3 \quad \cdots \]
Dag automata (2)

Kamimura and Slutzki (1981, 1982)

- Dag acceptors and dag-to-tree transducers
- They proved a couple of technical properties, no algorithms
- We investigate their model with some adjustments:
 - not only adjacent leaves can be connected
 - top-down transducers instead of bottom-up
 - we add weights (probabilities)
Example dag automaton

\[
\begin{align*}
q & \rightarrow \text{WANT}(r, q) \langle 0.3 \rangle \\
q & \rightarrow \text{BELIEVE}(r, q) \langle 0.2 \rangle \\
q & \rightarrow r \langle 0.4 \rangle \ | \ \emptyset \langle 0.1 \rangle \\
r & \rightarrow \text{BOY} \langle 0.3 \rangle \ | \ \text{GIRL} \langle 0.3 \rangle \ | \ \emptyset \langle 0.1 \rangle \\
[r, r] & \rightarrow r \langle 0.2 \rangle \\
[r, r, r] & \rightarrow r \langle 0.1 \rangle \\
\end{align*}
\]

\[
\begin{align*}
\text{WANT} & \mapsto \text{want}(\text{agent, theme}) \\
\text{BELIEVE} & \mapsto \text{believe}(\text{agent, theme}) \\
\text{BOY} & \mapsto \text{boy()} \\
\text{GIRL} & \mapsto \text{girl()} \\
\end{align*}
\]
Example dag generation
Example dag transducer rules

- Rules have m incoming edges with states and produce m trees
- Rules have n outgoing edges and n variables to pass states down

\[
[q_{\text{nomb}}, q_{\text{accb}}].\text{BOY} \rightarrow \text{NP}(\text{the boy}), \text{NP}(\text{him})
\]

\[
q_{\text{accg}}.\text{GIRL} \rightarrow \text{NP}(\text{the girl})
\]

\[
q_s.\text{WANT}(x, y) \rightarrow \text{S}(q_{\text{nomb}}.x, \text{wants}, q_{\text{infb}}.y)
\]

\[
q_{\text{infb}}.\text{BELIEVE}(x, y) \rightarrow \text{INF}(q_{\text{accg}}.x, \text{to believe}, q_{\text{accb}}.y)
\]
Example dag transduction

\[
\begin{align*}
S & \quad \Rightarrow \\
q_{nomb} & \quad \text{wants} \\
q_{inf} & \\
\text{BELIEVE} & \\
\text{BOY} & \quad \text{GIRL} \\
S & \quad \Rightarrow \\
q_{nomb} & \quad \text{wants} \\
q_{inf} & \\
\text{BELIEVE} & \\
\text{BOY} & \quad \text{GIRL} \\
\Rightarrow \\
S & \quad \Rightarrow \\
q_{nomb} & \quad \text{wants} \\
q_{accg} & \quad \text{to believe} \\
q_{acb} & \\
\text{BOY} & \quad \text{GIRL} \\
\Rightarrow \\
\text{NP} & \quad \text{NP} & \quad \text{NP} \\
\text{the boy} & \quad \text{wants} & \quad \text{the girl} & \quad \text{to believe} & \quad \text{him} \\
\end{align*}
\]
Toolkit

I implemented in Python...

- unweighted and weighted membership checking
- unweighted and weighted dag-to-tree transductions

- packing the set of derivations into a dag acceptor
- packing the set of output trees into an RTG

- unweighted and weighted n-best generation

- backward application (tree to dag)

- product construction: intersection and union

- nice visualization of trees and graphs using GraphViz
Building an NLP system

With the theoretical background, it should be possible to carry out the same program that worked for syntax-based MT:

- Collect lots of training data

- Train models for parts of the translation pipeline

- Use them in a bucket-brigade approach or in an integrated decoder

Diagram:

```
S
  ▼
  NP  NP  NP
  ▼  ▼  ▼
  the boy wants the girl to believe him

WANT
  ▼
  BELIEVE
  ▼
  BOY  GIRL
```

Training data

- Goal: gold standard esem bank
- In the meantime: annotate data automatically using other resources (e.g. Propbank/OntoNotes) and manually correct them
After training: evaluation

Is BLEU the right metric?

BLEU and other n-gram based automated metrics...

▶ ... favor translations that make the same lexical choices as the reference translations
▶ ... capture translation fluency, but often disagree with human judgment
▶ ... are still the metrics of choice of most people!

What makes a good metric

▶ It should favor useful (meaning-preserving) translations
▶ It should not require identical lexical choices
▶ It should be relatively cheap
A semantically motivated metric

MEANT (Lo and Wu 2011)

- measures accuracy (precision and recall) of semantic frames
- it scores the **who did what to whom**
- can be performed by monolinguals, no bilinguals needed
- less labor-intensive than other adequacy-oriented metrics
- good correlation coefficient with human judgment
The end beginning

Thank you for your attention! – Questions?

What are you in for?

(c / charge-05
 :theme (m / me)
 :predicate (a / and
 :op1 (r / resist-01
 :agent m
 :theme (a2 / arrest-01
 :theme m)))
 :op2 (i / intoxicate-01
 :theme m
 :location (p2 / public))))

You got arrested for resisting arrest?

I know, right? This policeman grabs me, and I’m like what the f--

Sounds like you are playing four different roles here.

It’s just semantics.