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Abstract

The linguistic analysis of chemical terminology is a key to biochemical
text processing and semi-automatic database curation. The system de-
scribed analyses systematic and semi-systematic names of chemical com-
pounds, class terms, and also otherwise underspecified names by means
of a morpho-semantic grammar developed according to IUPAC nomencla-
ture. It yields an intermediate semantic representation which describes
the information encoded in a name. Our tool provides SMILES strings for
the mapping of names to their molecule structure and also classifies the
analysed terms. It was implemented in Prolog as a prototype and a basis
for further development to support research in the life sciences.
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1 Introduction

The understanding of biochemical terminology is a key to many challenges in
biochemistry, as unrecognised and undecoded terminology constitutes an es-
sential bottleneck in processing the huge and growing amount of textual data
available. The PubMed organisation1 has collected around 13 million abstracts
and publications until now and between 1,500 and 3,000 entries are added per
day. An overview on “text mining in life science” is given by Fluck et al. (2005).
According to Larsen (2005), about 42 % of biological information are still ‘en-
coded’ in journal files; only around 17 % are already structured in databases.
To cope with this data in biochemical research, the fields of computational
linguistics and applied information technology offer various methods of nat-
ural language processing (NLP). The development of adaptive tools for the
semi-automatic extraction of knowledge, i. e. methods such as text mining or
automatic summarisation, is essential to access and exploit the huge amount
of textual data.

For all these interdisciplinary so-called BioNLP applications, terminology
poses a serious challenge (see Krauthammer and Nenadić, 2004), because full
sentence and text analysis is hampered by non-recognised names. To handle
that, either huge, open-ended dictionaries of terms, a statistical approach, or
methods of analysis and interpretation have to be used, the latter being our
choice.

Grammar rules and lexica for the decomposition of biochemical terms can be
implemented (an approach similar to the treatment of productive natural lan-
guage phenomena) along the lines of organic compound2 nomenclature systems.
Names for organic compounds are too numerous to be explicitly enumerated
but do have an internal structure that can be exploited with methods of com-
putational linguistics. As they usually are the objects of interest in a text,
their identification and classification is of great importance. Only with such
a dynamic approach as opposed to the usage of static databases, the growing
number of new terms can be coped with.

The challenge in dealing with terminology (e. g. for database curation), con-
sists mainly in establishing links for term reference, i. e. to assign terms to their
corresponding structure entry (see figure 1, an entry from the KEGG3 chemical
compound database). Another issue is to resolve coreferences in databases, i. e.

1PubMed is a service of the National Library of Medicine (NLM) and the National Institutes
of Health (NIH).

2A compound in this context belongs to chemical terminology: an ‘assembly’ of atoms; it
does not refer to a ‘linguistic compound’ (described in section 2.1).

3Kyoto Encyclopedia of Genes and Genomes (http://www.genome.ad.jp/kegg)

http://www.genome.ad.jp/kegg
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to detect different entries referring to one and the same structure (figures 1
and 2).

Figure 1: Example entry from a chemical compound database

(a) (b)

Figure 2: Multiple database entries for one compound

The variability of nomenclature principles, combined with the occurrence
of alternative rules in each of them (as elaborated in section 2.2), leads to a
number of synonymous compound names. Examples for such alternative names
for a single structure are shown in figure 3.

Few tools for the linguistic processing of biochemical terms have been de-
veloped; none of these provide the representations of molecule structure or
classify terms based on the name. Many systems of a similar kind allow for a
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(a) (b)

Figure 3: Database entries containing several synonymous compound names

search in static databases and lexica and can thus not deal with newly emerged
names, not to mention underspecified ones, where the name not fully reflects
the molecular structure.

Our work is based on Reyle (2005). This article contains a proposal for a deep
semantic analysis of chemical terminology; formal properties of a system for the
understanding of terms including underspecified ones are described there.

We implemented, on the basis of chemical nomenclature rules and domain
knowledge such as chemical defaults4, a parser in Sicstus ‘Prolog’5 which anal-
yses names of organic chemical compounds. It conducts a morphological de-
composition and semantics construction, the output of which is expressed in
our semantic representation language. Based on this representation, our system
reconstructs molecular structure as far as it is made explicit in such a name
and assigns the corresponding SMILES string (a simple representation of the
molecule structure). The system also classifies names according to functional
and structural properties, which are expressed in the names’ parts. Prelimi-
narily and for testing the approach, SMILES strings are generated for carbohy-
drate6 compounds and a classification is provided for other organic compounds.

An example analysis to demonstrate the procedure of the system is shown in
figure 4. The morphemes of the compound name in the top line are separated
(second line) and a semantic analysis is conducted which yields the correspond-
ing semantic representation as shown in the third line. From this representation,

4A default signifies an option that is selected automatically unless an alternative is specified,
e. g. in this context, the filling of free valences with hydrogen atoms.

5Logic Programming Language (see http://www.sics.se/sicstus/docs/latest/html/sicstus.
html)

6We will use the term ‘sugar’ for carbohydrate in the following; see also section 2.2.

http://www.sics.se/sicstus/docs/latest/html/sicstus.html
http://www.sics.se/sicstus/docs/latest/html/sicstus.html
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a SMILES string as description of the molecular structure and a class list are
generated (bottom line, from left to right).

7-hydroxyheptan-2-one

7- hydroxy hept an -2- one

compd(ane(7*C),pref([??*[7]-hydroxy]),suff([??*[2]-one]))

OCCCCCC(O)C ALCOHOL,KETONE,...

Figure 4: Example analysis

We chose, as a starting point, the wide field of organic chemistry (containing
e. g. alkanes, alkenes, alcohols, etc.) with a special focus, so to speak, on carbo-
hydrates by going into depth there. Even though the nomenclature principles
for general organic compounds and carbohydrates are quite distinct – carbohy-
drates as a part of organic chemistry have special principles of nomenclature –
we developed a common grammar for the two parts because their names can
contain each other mutually.7

Our linguistic approach as opposed to a molecule structure-based one has
the advantage that underspecified names such as butene, for which no distinct
structure can be depicted, can be analysed as well. In this example, the informa-
tion on where the double bond (-ene) is located is missing. Such underspecified
names, which are a frequent phenomenon in biochemical data, can be handled
by generating partial structures. Their classification can help to retrieve a more
detailed description for their further processing.

The system is able to deal with systematic, trivial and semi-systematic
chemical terms of organic substances, chemical class names as well as semi-
systematic class names. Examples for each name type are presented in table 1.
For (semi-)systematic terms, both fully specified and underspecified forms oc-
cur. Underspecified trivial names do not exist; class names or semi-systematic
class names are inherently underspecified.

The tool’s ability to cope with underspecification and class names distin-
guishes it from existing systems as described in the section on related work
(section 3).

7As the closely related topics heavily overlap, it seems reasonable to provide all information
together instead of spreading it in different diploma theses.



5

fully specified underspecified

systematic names 7-hydroxyheptan-2-one butene

trivial names benzene ∅
semi-systematic benzene-1,3,5-triacetic acid dihydrobenzene

class names ∅ sugar
semi-systematic ∅ 2-deoxysugar

Table 1: Examples for existing compound name types

With this tool, we created a valuable basis for term reference and coreference
resolution. Nomenclature-based synonyms can be identified by either matching
their semantic representation or their SMILES strings (2-pentulose and pent-
2-ulose yield the same output). Ambiguities (possible readings of a term) are
partially resolved by a consistency check of the information contained in the
term.

The limitations of our system are the following: Our parser is not exhaustive
for all organic chemistry but (in the context of this work) constitutes a fragment
as a starting point, model and template. The rules are only formulated for
the purpose of analysis; our system is not meant for name generation from
structures even though that would be theoretically possible. The Prolog parsing
algorithm chosen is not very efficient compared to other parser implementations,
however, the formalism is ideal for intuitive and traceable morpho-semantic
decomposition of linguistic entities.

To conduct large-scale qualitative evaluation of our tool was not possible
because, on the one hand, the system is not meant to be exhaustive and, on
the other hand, no data containing annotated term analyses exist to refer to
for an assessment.

To summarise, the objectives of this project are to provide a semantic normal-
isation of biochemical terminology. Applications range from the support of text
processing technologies for the growing amount of textual information to the
automation of biochemical ontology-based8 database population and curation.
The challenge thereby consists in covering all existing variations of terminology
and the resolution of underspecification and ambiguity.

After this general introduction, a description of the theoretical background to
provide a common basis is presented in section 2. To range our work in the state
of the art, information on related work follows in section 3. Section 4 presents

8An ontology is a systematically defined comprehensive system of concepts and objects which
are linked by relations such as ‘is a’ or ‘part of’.
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the system details, from a general overview to possible applications. In the
outlook (section 5), perspectives for an extension of the system are enumerated.
After a summary and conclusion, the program source files, a specification of our
semantic representation language, and our testsuite are given in the appendix.



7

2 Theoretical Background

In order to provide a common basis for the explanation of our system’s details,
we introduce important notions and terms in the areas of linguistics and com-
putational linguistics as well as some biochemical background in this section.

2.1 Computational Linguistics

Central concepts of linguistics with related terms will be introduced and comple-
mented by the relevant notions in the special field of computational linguistics.

Morphology

The linguistic field of morphology deals with the study of the internal struc-
ture of words. It examines the elements which are used to form simplex words,
complex words, or bigger grammatical units, so-called multi-word expressions.
These elements are termed morphemes; they are defined as the smallest mean-
ingful units of a language. Morphology is divided into the two principal com-
ponents, inflection and word formation, where the latter is the field of main
interest in the context of this work. An overview of the topic is presented by
Spencer (1991).

There are various word formation processes, the most frequent and produc-
tive9 ones being compounding and derivation. The former process combines
several morphemes which can each stand alone as an independent word (free
morphemes) such as in [[black][bird]] or [[apple] [tree]]. In the latter process,
free and bound morphemes, the latter of which can only occur when attached
to other morphemes, are combined (e. g. as in [[colour][ful]]). These bound mor-
phemes are called affixes. They are divided into prefixes, infixes, and suffixes
according to their position within the word they are part of.

Structurally complex words and multi-word expressions which are transpar-
ent, i. e. morphologically and semantically deconstructable, can be parsed. Mor-
phological parsers analyse their structure and assign a ‘parse tree’, which shows
the hierarchical relations of their parts.

In English, where linguistic compounds in most cases contain blanks, the dis-
tinction between morphology and syntax, the study of sentence structure, is not
always clear. Multi-word expressions (which also occur especially in chemical
terminology) have to be recognised as belonging together.

9The term productivity refers to the property of a word formation pattern to generate ‘new’
words.
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Special terms of scientific domains, e. g. chemical compound names, are sim-
ilar to complex and transparent non-terminological words of natural languages.
Therefore, transferable methods of word analysis according to ‘word formation
rules’ can be applied.

Semantics

The field of semantics studies the meaning of linguistic entities. In computa-
tional semantics, tools are developed to deal with the construction of meaning.
Various theoretical devices exist, e. g. different levels of semantic or logic rep-
resentation languages. An overview (in German) is given in Carstensen et al.
(2004, chap. 2 and 3.5). Predicate logic uses predicates with a defined number
of arguments (valency) and a corresponding truth value for the description of
linguistic entities, such as ‘student(Tom)’ with the truth value ‘1’ for the sen-
tence ‘Tom is a student.’. The Montague semantics is based on formal logic
and applies, e. g., the lambda calculus (in the following: λ-calculus).10 It is a
means to compute the meaning of a complex entity, where its parts contribute
their semantics to compositionally calculate the meaning of the whole.11 The
λ-expressions used abstract over properties of, e. g., objects (i. e. over predicate
arguments) and express the application of functors to arguments (represented
by the symbol @), which is then resolved with a so-termed beta reduction (β-re-
duction). An example expression is ‘λX.student(X)@tom’, which is β-reduced
to ‘student(tom)’. In this work, we do shallow semantic processing as opposed
to a deep interpretation or ‘understanding’ by computer programs.

Ambiguity A linguistic entity is ambiguous if it has two or more possible
readings, usually with differing probabilities for an interpretation in a given
context. The words ‘cold’ or ‘bank’ are standard examples for semantic ambi-
guities, the former having adjective or noun as parts of speech and the latter
meaning the institution or the furniture. For structural ambiguities, several
parse trees for complex entities can be generated. (1) is an example for a syn-
tactically ambiguous sentence.

(1) She can see the student with the telescope.

In sophisticated NLP systems, methods of disambiguisation are being used.
These either rely on the linguistic context or apply frequency statistics.

10See, for example, Lohnstein (1996) for a detailed introduction (in German).
11See Blackburn and Bos (2005) for a comprehensive introduction to compositional semantics.
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Underspecification The term underspecification describes the fact that a
certain feature of a linguistic entity to be definite and unambiguous is miss-
ing. The characteristics of the entity are thus not fully specified. Usually, the
missing information can be deduced from the linguistic or other context (re-
solvable underspecification). In other cases, it is simply not relevant or aimed
to be abstracted from in a certain application – the underspecification cannot
be resolved. For example, for ethene (C=C12), the position of the double bond
expressed by -ene is clear even though not indicated because there is only one
possibility, whereas butene can be used to refer to either C=CCC or CC=CC. In
order to deal with underspecified linguistic units, a semantic representation
expressing the kind of underspecification as well as a resolution algorithm have
to be designed. More information on underspecification can be found via the
underspecification bibliography13 of the Institute for Natural Language Pro-
cessing (IMS), University of Stuttgart.

Coreference From a general linguistic point of view, coreference means the
‘pointing’ of two distinct terms, usually common nouns or proper names, to one
concrete single instance of an object or person. For example, the definite descrip-
tion ‘the developer of the SMILES chemical language’ and ‘David Weininger’
refer to one and the same person.

Chemical compound names are usually used in two kinds of readings de-
pending on their context. On the one hand, in a sentence such as (2), the name
benzene is used as a non-count or mass noun referring to the substance class.
A mass noun is a type of common noun that represents a substance not easily
quantified by a number, e. g. ‘knowledge’.

(2) “Benzene is used in the manufacture of plastics, [. . .]”14

On the other hand, in a context such as (3), the concrete molecular structure
is referred to.

(3) “Benzene is a six membered ring [. . .]”15

Usually, when benzene is used in scientific research publications, e. g. in reac-
tion equations, the structure of a typical molecule is denoted.

12Details on such SMILES string representations can be found in subsection 2.2.
13http://www.ims.uni-stuttgart.de/projekte/sfb/b3/ul-bib.html
14http://benzene.lifetips.com/cat/61153/uses-of-benzene
15http://www.factbites.com/search.php?kp=Phenyl+ring

http://www.ims.uni-stuttgart.de/projekte/sfb/b3/ul-bib.html
http://benzene.lifetips.com/cat/61153/uses-of-benzene
http://www.factbites.com/search.php?kp=Phenyl+ring
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Presupposition An implicit or explicit assumption which underlies, e. g.,
a statement, is termed a presupposition. In the following example, (4b) is a
presupposition of (4a).

(4) a. ‘Why is Tom studying?’
b. ‘Tom is studying.’

Axiom An axiom is a well-established principle or rule. The term denotes a
statement whose truth is taken to be obvious and self-evident without proof.
An example from mathematics would be (5a); (5b) presents one related to
chemistry.

(5) a. ‘Two things equal to the same thing are equal to each other.’16

b. ‘Primary alcohols are alcohols.’

Grammars and Prolog

A grammar consists of a set of rules with which, on the one hand, a language
is described and, on the other hand, a linguistic entity can be deconstructed
into its parts. According to the Chomsky hierarchy, there are four kinds of
grammars, increasingly constrictive (concerning the generated languages) from
unrestricted grammars via context-sensitive grammars and context-free gram-
mars to regular grammars.17

Depending on their configuration, rule-based (also called symbolic) gram-
mar systems can be overanalysing, i. e. not rejecting incorrect input. If such
grammars are used for generation, they in turn overgenerate, i. e. they produce
incorrect output.

The logic programming language Prolog is ideal for dealing with the analysis
of structurally complex linguistic entities.

“Almost from its origin, the development of logic programming has
been closely tied to the search for computational formalisms for
expressing syntactic and semantic analyses of natural language sen-
tences.”18

The common framework to parse linguistic units in Prolog is the Definite
Clause Grammar (DCG) formalism, a top-down, left-to-right symbolic parsing
algorithm. A DCG rule consists of terminal and non-terminal symbols and

16http://www.answers.com/topic/axiom
17For a brief introduction, see e. g. http://en.wikipedia.org/wiki/Chomsky hierarchy.
18http://www.let.uu.nl/∼Willemijn.Vermaat/personal/courses/prolog

http://www.answers.com/topic/axiom
http://en.wikipedia.org/wiki/Chomsky_hierarchy
http://www.let.uu.nl/~Willemijn.Vermaat/personal/courses/prolog
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defines their possible substituents. Non-terminal symbols are expanded until
they are replaced by a sequence of terminal symbols; terminal symbols are
substituted by a corresponding lexicon entry. DCG rules in Prolog are written
by use of the DCG operator ‘-->’. When coding a left-to-right parsing algorithm,
left-recursive rules should be avoided in order not to risk endless loops. Rules
are called left-recursive if a non-terminal symbol appears both as the symbol
to be expanded and as the first symbol to be expanded to. This property can
also be obtained indirectly by so-called chain productions. An example for the
first possibility is a rule ‘A → A a’; the second case could look like ‘A → B’
and ‘B → A a’. Symbols can have additional annotations as arguments (see
(6)), which allow for syntax or semantics construction, for example.

(6) organic compound(O C-Semantics)

For the latter, the λ-calculus can be used within the DCG.
Basic Prolog features are the facts, which consist of functors with arguments,

and rules (or clauses) with their corresponding head and body, presented in (7a)
and (7b), respectively.

(7) a. Prolog fact:
functor(arg1,arg2,...).

b. Prolog clause:
head of rule :- body of rule.

Prolog is a programming language which attempts to satisfy goals by processing
conditions in the form of clauses and facts; the unification mechanism, which
tries to ‘match’ variables and atoms, serves this purpose. An atom denominates
the simplest entity possible, e. g. ‘tom’; variables begin with a capital letter or
an underscore; in the latter case the name of the variable is disregarded for
unification. For more details, see e. g. Clocksin and Mellish (1987).

2.2 Biochemistry

The basis for our work are naming conventions for chemical compounds, es-
pecially the general ones for organic compounds and those for carbohydrates.
An overview together with some term definitions are presented in this subsec-
tion. Additionally, we describe here the SMILES notation, which we used to
assign a molecular structure to each name, and give a brief introduction to the
classification of organic chemical compound names.
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Nomenclature Systems

A chemical nomenclature system defines a standard for the naming procedure
of molecules. Its purpose is to provide a common basis for chemists to assign a
name to a molecule structure, so that it identifies the chemical species and its
structural properties and can be correctly interpreted by others knowing the
same nomenclature rules. That is, for being useful in scientific communication
in biochemistry, common nomenclatures had to be established.

Historical Background The first attempt to organise international organic
chemical nomenclature was at the Geneva Conference in 1892,19 which estab-
lished a basis for a chemical nomenclature to evolve – one of the main interests
was to bring up an international standard.20 As a consequence, in 1919 the
International Union of Pure and Applied Chemistry (IUPAC) was formed, one
of its aims being the standardisation of names in chemistry.

Other initiatives exist to promote the use of nomenclature systems, e. g.
the Joint Commission on Biochemical Nomenclature of IUPAC and IUBMB21

(JCBN) and the Nomenclature Committee of the International Union of Bio-
chemistry and Molecular Biology (NC-IUBMB).

“The Mission of the IUBMB is to foster and support the growth and
advancement of biochemistry and molecular biology as the founda-
tion from which the biomolecular sciences derive their basic ideas
and techniques in the service of mankind. This it does through-
out the world [. . .] by promoting international cooperation [and
high standards in research, discussion, application and publication,
and] through international standardization of methods, nomencla-
ture and symbols [. . .] The IUBMB promotes the norms, values, stan-
dards and ethics of science and the free and unhampered movement
of scientists [. . .]”22

In the past decades, computers are increasingly involved in dealing with
chemical structures and names, and processing and storing chemical data in
its digital form is a common interest. Consequently, new institutions have
emerged, e. g. the Chemical Nomenclature and Structure Representation Di-
vision was established by IUPAC in 2002. It is “responsible for maintaining

19http://www.iupac.org/general/about.html
20http://www.chemheritage.org/explore/timeline/NOMEN.HTM
21IUBMB: International Union of Biochemistry and Molecular Biology
22http://www.iubmb.unibe.ch/Standing Orders/Mission.htm

http://www.iupac.org/general/about.html
http://www.chemheritage.org/explore/timeline/NOMEN.HTM
http://www.iubmb.unibe.ch/Standing_Orders/Mission.htm
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and developing standard systems for designating chemical structures, includ-
ing both conventional nomenclature and computer-based systems” (cited from
http://www.iupac.org/divisions/VIII/index.html). There also exists an online
naming service of ACD/Labs23 in collaboration with the IUPAC Committee on
Chemical Identity and Nomenclature Systems to facilitate and promote the
use of the nomenclature.24 This service predicts a name according to IUPAC
nomenclature rules for each a drawn chemical structure used as input.

Naming Variability As international nomenclature systems had not been
established before people realised their need, chemical compound names not
corresponding to such rules are used. They had been employed in literature
prior to the existence of international nomenclature systems, either created
systematically by a regional nomenclature system or coined as trivial names.
Furthermore, other naming conventions (and IUPAC nomenclature ‘dialects’)
which are used in addition to IUPAC’s international nomenclature system exist
and yield still other name variants (see e. g. Chemical Abstracts Services, 2002;
Beilstein, 1997)25.

Another point to consider is that the rules defined in IUPAC’s nomenclature
system are only recommendations, i. e. there is and can be no enforcement to
use them. For that reason, chemical compound names mentioned in texts do
not always correspond to nomenclature rules. Names that are “used but not
recommended” occur, caused, e. g., by misinterpretation of rules or motivated
as mentioned in IUPAC Commission on Nomenclature of Organic Chemistry
(1993):

“Occasionally, an author may wish to convey a particular emphasis
by assigning a name which departs from standard priority consid-
erations. So long as this is adequately explained and appropriate
consequences (e. g., for numbering) accepted and logically treated
so as to preserve freedom from error and ambiguity, this set of pro-
cedures may still be applicable. However, names so generated are
not recommended for general use.”

The other way round, there are recommended names which do not occur. Di-
achrony is also to be taken into account, as nomenclature rules change over
time and yield contradicting recommendations – not to mention the number of
morpho-syntactic variations (with hyphens, brackets, space etc.).

23Advanced Chemistry Development, a chemistry software company
24http://www.iupac.org/nomenclature and http://www.acdlabs.com/products/name lab
25“Beilstein’s Handbook of Organic Chemistry”

http://www.iupac.org/divisions/VIII/index.html
http://www.iupac.org/nomenclature
http://www.acdlabs.com/products/name_lab
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Systematic names proposed by nomenclatures are not the only form of terms
used in literature. Especially, class names, established trivial names, and semi-
systematic names which are a combination of trivial or class names and sys-
tematic names do appear.

IUPAC Nomenclature Rules

We chose for this work – as a starting point – the IUPAC nomenclature for or-
ganic compounds (IUPAC Commission on Nomenclature of Organic Chemistry,
1993) and for carbohydrates (IUPAC-IUBMB Joint Commission on Biochemical
Nomenclature, 1996). There also exist more recent, however provisional, nomen-
clature recommendations, e g. to meet the changing requirements for chemical
nomenclatures depending on latest research.26

“Provisional Recommendations are drafts of IUPAC recommenda-
tions on terminology, nomenclature, and symbols made widely avail-
able to allow interested parties to comment before the recommenda-
tions are finally revised and published in Pure and Applied Chem-
istry.”27

Although carbohydrates (we will use the term ‘sugars’28 in this work) can also
be named according to the general nomenclature system for organic compounds,
the existing separate, special nomenclature for sugar names is more useful as
it provides specific abbreviations to facilitate their naming.

In the field of biochemistry nomenclatures define a language for assigning
a name to a molecule structure of a chemical compound. They prescribe the
morphemes as well as the grammar rules for combining these morphemes. To
form a valid name, morphemes and rules have to be used according to certain
aspects of the molecular structure, which are described in these nomenclatures,
too. In the following, some of these rules are presented.29

The morphemes used in compound naming refer to certain molecules (e. g.
phospha-), operations (deoxy-), locants (3), or multipliers (hexa-). They are

26http://www.iupac.org/reports/provisional/archives.html
27http://www.iupac.org/reports/provisional
28 The two terms are not truly equivalent: “The term ‘carbohydrate’ comprises monosaccha-

rides, oligosaccharides and polysaccharides as well as their derivatives [. . .] The term ‘sugar’
is frequently applied to monosaccharides and lower oligosaccharides.” (see IUPAC-IUBMB

Joint Commission on Biochemical Nomenclature, 1996). We used this term correctly in
the respect that the current system exclusively analyses monosaccharides.

29The sample rule specifications given here are literally cited from IUPAC Commission on
Nomenclature of Organic Chemistry (1993) and IUPAC-IUBMB Joint Commission on Bio-
chemical Nomenclature (1996).

http://www.iupac.org/reports/provisional/archives.html
http://www.iupac.org/reports/provisional
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attached to the parent name either as prefixes or suffixes. Some of them have a
prescribed order defined in the nomenclature rules. For example, so-called de-
tachable prefixes modify parent structures and precede nondetachable prefixes,
which have to be attached directly to the parent name.

(8) R-0. 1.8.3
Detachable prefixes describing substituents are cited preceding nondetachable
prefixes (see R-0. 1.8.1 and R-0. 1.8.2), if any, [...]

Several operation types are defined in the organic compound nomenclature,
in particular substitutive, replacement, additive, conjunctive, subtractive, ring
formation and cleavage, rearrangement, and multiplicative operation (R-1.2).
Each is expressed by specific morphemes and rules, e. g.:

(9) R-1. 2.1 Substitutive Operation
The substitutive operation involves the exchange of one or more hydrogen atoms
for another atom or group. This process is expressed by a prefix or suffix denoting
the atom or group being introduced (see R-3.2 and R-4 for lists of prefixes and
suffixes).

A configurational prefix (especially needed in sugar naming) describes the con-
figuration30 of up to four carbon atoms with their hydrogen (H) and an hydrox-
ygen group (OH) attached.

(10) 2-Carb-8.3. Multiple configurational prefixes
An aldose containing more than four chiral centres is named by adding two or
more configurational prefixes to the stem name. Prefixes are assigned in order
to the chiral centres in groups of four, beginning with the group proximal to C-1.
The prefix relating to the group of carbon atom(s) farthest from C-1 (which may
contain less than four atoms) is cited first.

Some nomenclature rules also prescribe the usage of lower- or uppercase char-
acters, super- or sub-scripts, different fonts, etc., for certain morphemes.

(11) R-0. 1.6.2
Italicized element symbols, such as O-, N-, P-, S-, are locants indicating attach-
ment to these heteroatoms.

Although IUPAC nomenclature rules describe the naming of a compound, i. e.
what is allowed and what should be avoided, it is intended to produce un-
ambiguous, not unique names for a given chemical compound – synonymous
names for one structure are possible to emerge (2-pentene and pent-2-ene).

30Configurations designate the stereochemical properties of a structure. For a list of stereo-
chemistry terms and their explanation see http://www.chem.qmul.ac.uk/iupac/stereo.

http://www.chem.qmul.ac.uk/iupac/stereo
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The other way round, it cannot be directly inferred from differing names that
they relate to differing structures. They could be synonyms, which has to be
checked. To summarise, between names and molecular structures, relations of
the following kind exist: one name can refer to different structures (it is an
ambiguous, underspecified or class name, e.g. hexulose) and one structure can
have several names (synonymous names) according to, e. g., various nomencla-
ture rules.

In the nomenclatures chosen as a basis for our system, we encountered several
unclear cases which partly made it difficult to implement the naming rules.
These cases include, e. g., complex example names31 for simple rules, amongst
others.32 Some examples for the unclear rules are listed and described in (12).

(12) a. R-5. 7.2.1, where the explanation is about sulfo- and sulfino-, whereas
the example uses the prefix sulfono-,

b. R-6, where the systematic description with (a) to (c) does not correspond to
exactly such a numbering in the examples,

c. R-0. 1.7.3
Addition of the vowel “o”. For euphonic reasons, the vowel “o” is sometimes
inserted between consonants.

General Naming Principles

For chemical structures named after the general nomenclature for organic com-
pounds, the following principles are applied (see also R-4): First, the opera-
tion type is determined. The principal characteristic/functional group33 to be
named as the suffix is then chosen. After that, the parent structure and the
non-detachable prefixes have to be determined and all parts are named (with
an alphabetical order for prefixes) and numbered.

The naming procedure for sugars34 is as follows: First, the parent monosac-
charide, being the longest chain of carbon atoms, is determined. The corre-
sponding aldose (H-[CHOH]n-CHO) or ketose (H-[CHOH]n-CO-[CHOHn-H) in its
original (acyclic and unmodified) form is the basis for naming. After number-
ing the carbon atoms, the parent name is chosen. The configurations of the
CHOH groups are also specified in the parent name by means of configurational

31However, for chemists, such rules requiring more chemical knowledge may not pose prob-
lems.

32By the way, this could be one reason for preventing people from using the nomenclature.
33A functional group is defined as an atom or group of atoms in an organic compound that

gives the compound some of its characteristic properties, such as the C=O functional group
in aldehydes and ketones.

34For larger molecules where more than one monosaccharide structure is embedded, see
IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (1996).
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symbols and prefixes. After that, the side branches of the parent are determined
and named, and the corresponding affixes are attached to the parent name.

We used the nomenclature rules as a basis to determine and construct the
corresponding molecular structure of a name instead of naming a structure, i. e.
the intrinsic use of the nomenclatures is reversed. The rules are not easy to be
rewritten as a grammar (to build a name analyser) as they comprise linking
morphemes and the deletion of single characters as well as replacement and
deletion of morpheme parts.

SMILES Strings

The Simplified Molecular Input Line Entry System (SMILES), provided and
supported by Daylight Chemical Information Systems35 and initially developed
by Weininger (1988), is a ‘nomenclature system’ used to represent molecules in
a line notation. This allows to process them with computer programs. It is also
possible to reconstruct the two- or three-dimensional model from the so-called
SMILES string. For example, L-threo-Tetrodialdose can be represented in
SMILES notation as in (13).

(13) C(=O)[C@]([H])(O)[C@@]([H])(O)C(=O)

The corresponding molecular structure is depicted in figure 5(a). An example in-
cluding a ring connection is shown in figure 5(b) (α-D-threo-Hexo-2,4-diulo-
2,5-furanose); a SMILES string representing this structure can be written as
in (14).

(14) C([H])(O)[C@@]2(O)[C@@]([H])(O)C(=O)C(O2)C([H])(O)

(a) (b)

Figure 5: Example structures for (a) L-threo-Tetrodialdose (in Fischer projec-
tion) and (b) α-D-threo-Hexo-2,4-diulo-2,5-furanose (in Haworth
representation). Both pictures are from IUPAC-IUBMB Joint Commission
on Biochemical Nomenclature (1996).

35http://www.daylight.com/smiles

http://www.daylight.com/smiles
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The Depict tool36 is a program for converting a SMILES string into a two-
dimensional structure displayed using the Haworth representation37

SMILES is one of a family of languages. Related languages are, e. g., USMILES,
ASMILES, SMARTS, or CHUCKLES as described at http://msdlocal.ebi.ac.uk/
docs/daylight/smiles/smiles-relatives.html. A molecule can be described by a
SMILES string in various ways (the naming process ‘walks through’ a struc-
ture and stores the encountered atoms and bonds), whereas, e. g. USMILES is
a language to provide a unique string for each molecular structure. An algo-
rithm to convert a SMILES string into a unique SMILES string representation
is described in Weininger et al. (1989).

SMILES Rules The following list contains simplified SMILES rules for rep-
resenting a molecular structure. The complete SMILES nomenclature and a
tutorial can be found at http://www.daylight.com/smiles.

(15) a. Atoms are represented by their standard atomic symbol, e. g. C for a carbon
atom. Hydrogen atoms can be omitted; otherwise, they appear in brackets
([H]).

b. Single bonds can be omitted or are represented by ‘-’, double bonds by ‘=’,
and triple bonds by ‘#’.

c. Branches are enclosed by parentheses ((...)); they may be nested.
d. Ring closure bonds are represented by matching digits as indices behind

the specifications of the joined atoms (e. g. C1CCCC1 for a cyclic form of a
pentose).

e. Tetrahedral chirality is specified as an atomic property right behind the re-
spective atom (anti-clockwise order of atoms: ‘@’, clockwise order: ‘@@’); the
whole expression comprising atom and its properties is enclosed in brackets
(see figure 6).

All characters listed are arranged without spaces anywhere between. Generally,
each atom is described separately with its properties specified, if necessary. Its
potential branches are appended thereafter.

Classification

Chemical compounds can be subsumed by generic categories according to struc-
tural and functional properties such as characteristic/functional groups. One

36This tool is provided by Daylight Chemical Information Systems; an online version is avail-
able at http://www.daylight.com/daycgi/depict.

37We used this tool in the development of the SMILES string generator for checking the
correctness of the generated SMILES string.

http://msdlocal.ebi.ac.uk/docs/daylight/smiles/smiles-relatives.html
http://msdlocal.ebi.ac.uk/docs/daylight/smiles/smiles-relatives.html
http://www.daylight.com/smiles
http://www.daylight.com/daycgi/depict
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Figure 6: Tetrahedral chirality in SMILES notation. For N[C@](C)(F)C(=O)O, looking
at the chiral center [C@] from the N atom, the atoms are anticlockwise
in order: C, F, C(=O) (picture is from http://www.daylight.com/smiles/
smiles-isomers.html#TETRA).

compound can belong to several (not necessarily same-level) classes. By deter-
mining super- and sub-classes of compound names, a hierarchy of categories
can be established. For a glossary of classes of organic compounds defined by
IUPAC see http://www.chem.qmul.ac.uk/iupac/class.

http://www.daylight.com/smiles/smiles-isomers.html#TETRA
http://www.daylight.com/smiles/smiles-isomers.html#TETRA
http://www.chem.qmul.ac.uk/iupac/class
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3 Related Work

To present the state of the art as to the processing of chemical compound
names, we give a survey of previous work in this section. Relevant existing
tools are listed and briefly described, followed by a summarising subsection.

3.1 Existing Systems

The following paragraphs present several systems similar to ours. Tools along
the lines of our modules are described first, supplemented by the presentation
of several additional resources.

Parsers

The series of papers Cooke-Fox et al. (1989a,b,c, 1990a,b) and Kirby et al.
(1991) describe an early approach to systematic chemical compound name anal-
ysis. We could, however, not evaluate this system because it is not available
online.

The tool ‘Chemfinder’38 provides the molecular structure of a queried name
as an image as well as more detailed information, including a list of synonyms.
It is based on a linguistic analysis of the name and also accepts deviations
from official rules (IUPAC, IUBMB and CAS). Underspecified compounds are
not covered. The system underlying Chemfinder is the parser Name=Struct as
described in Brecher (1999) and Cambridgesoft (2005).

The system for a “semantic analysis of names of organic compounds” devel-
oped by Gerstenberger (2001) in a student research project analyses names of
organic chemical compounds both syntactically and semantically. It does not
deal with underspecification; besides, the lexicon was not intended to be com-
prehensive, which is one reason why the system is currently not used in any
applications.

The ‘ACD/Name’39 tools provided by ScienceServe/Scientific Software Solu-
tions offer the generation of structures from systematic names and, vice versa,
the naming of given structures. As it is a commercial tool and no detailed doc-
umentation is available, we were not able to find out what kind of approach it
is based on, i. e. if it conducts an online systematical name analysis or relies on
a static database, nor if it handles underspecification.

38http://chemfinder.cambridgesoft.com
39http://www.scienceserve.com/Software/ACD/ACD Name.htm

http://chemfinder.cambridgesoft.com
http://www.scienceserve.com/Software/ACD/ACD_Name.htm
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SMILES String Generators

All the spotted systems providing SMILES strings, such as ‘Accelrys’ (http://
www.accelrys.com) or the ‘ChemAxon’ products (http://www.chemaxon.com),
take a graphical compound structure as input; none of them processes com-
pound names linguistically.

Classifiers

We did not locate any compound classifier which directly computes classes on
the basis of compound names. One example providing non-dynamic classifica-
tion by means of a fix hierarchy of classes assigned to specified compound names
is the ‘PAREO’ system (http://genome.jouy.inra.fr/pareo). Wittig et al. (2004)
developed a classification tool for compound names on the basis of SMILES
strings by conducting a subgraph search for functional groups. As SMILES
strings cannot be determined for underspecified compound names, this system
does not deal with underspecification.

Additional Resources

On the PubChem website40 of the National Center for Biotechnology Infor-
mation (NCBI), the ‘PubChem Compound’ tool presents a search for unique
chemical structures using, e. g., names. It offers to answer questions such as
“which compounds have tylenol as (a part of) their molecule name”. The tool
seems to use simple regular expressions over the queried compound names for
its search in the database. It does not conduct an analysis, which is why com-
positionally generated new names cannot be found there; underspecified terms
are also not included.

A similar repository is ‘ChEBI’41, a “freely available dictionary of small molec-
ular entities”. It offers a wildcard search in its database, which provides struc-
tures, SMILES strings, etc. for a static set of specified compounds.

Other resources are ‘Klotho’42, a “Biochemical Compounds Declarative Da-
tabase” offering a search using regular expressions of compound names, or
‘Whatizit’43, a tool providing links to different database entries containing cor-
responding SMILES strings, for example. Neither system contains underspeci-

40http://pubchem.ncbi.nlm.nih.gov
41http://www.ebi.ac.uk/chebi
42http://www.biocheminfo.org/klotho
43http://www.ebi.ac.uk/Rebholz-srv/whatizit/form.jsp

http://www.accelrys.com
http://www.accelrys.com
http://www.chemaxon.com
http://genome.jouy.inra.fr/pareo
http://pubchem.ncbi.nlm.nih.gov
http://www.ebi.ac.uk/chebi
http://www.biocheminfo.org/klotho
http://www.ebi.ac.uk/Rebholz-srv/whatizit/form.jsp
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fied entries. More such resources can be found on the site of the “Information
centre for chemistry, biology, pharmacy and related fields”44.

3.2 Conclusion

The majority of the systems described above do not totally correspond to the
functionality of our tool – either they take a different kind of input (e. g. graph-
ical), or they produce their output according to static databases. We are only
aware of two tools which process names of chemical compounds linguistically,
one of which being not developed far enough to be used practically (Gersten-
berger, 2001) and both not covering underspecification (Gerstenberger, 2001;
Brecher, 1999). All the others do not conduct an analysis but are based on
fix databases, which is why they do not cover systematically and productively
formed new compound names. None of the systems deals with cases of under-
specification, which is a serious drawback as such names appear frequently in
literature; they are, e. g., used in publications and reaction equations to gen-
eralise information. To the best of our knowledge, no comparable tool for the
linguistic processing of biochemical terms exists and our system clearly extends
the functionalities, even though not the quantitative coverage of similar ones.

44http://www.infochembio.ethz.ch/links/index.html (in German)

http://www.infochembio.ethz.ch/links/index.html
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4 The System

In this section, we describe the system developed in this project in more detail
– after the general background and a detailed description of the three modules,
a specification of the results is provided and several possible applications of the
tool are given.

4.1 Overview

This subsection will present a general introduction to the system. Starting with
the basics, we then depict the architecture, specify the input and output, and
in the end show a detailed example analysis.

General Information

The aim of our work was to build a flexible analysing system for names of
organic chemical compounds according to IUPAC nomenclature which is able
to deal with (semi-)systematic, trivial, and class names including underspec-
ification.45 The semantic representation yielded by the parser is transformed
to a SMILES string specifying a name’s molecular structure. Additionally, the
semantic representation is used to classify the chemical compound. Such results
are collected in our testsuite as can be seen in appendix B.2.1.

We decided in favour of a theoretical basis and thus integrated rules systemat-
ically starting with one selected nomenclature system. An alternative approach
is to investigate biochemical text sources and cover the most frequent phenom-
ena first. Our procedure is meant to start with a systematic approach whose
coverage can later be adapted according to frequency data.

After testing and evaluating how well the approach works, semi-automatic
extending will be necessary. For the time being, only prevalent nomenclature
rules from IUPAC Commission on Nomenclature of Organic Chemistry (1993)
are implemented – later, also names which were not formed according to this
special nomenclature or, e. g., morpho-syntactic variations should be analysed.
Totals formula, e. g. H2O or even H2O, will not be covered.

We conduct a linguistic analysis because the entities and properties of organic
compound names are expressed by their morphemes. The following are some
of these features which we adopt also in our representation language (with a
different syntactic structure, e. g. cyclo([...],ane(5*C))) for the description
of compounds (cf. Gerstenberger, 2001, chap. 4):

(16) a. (groups of) atoms, e. g. C, OH

45The tool is a prototype; it does not claim to be exhaustive.
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b. bonding types, e. g. single bonds (ane([...]))
c. structural properties of the chain, e. g. cyclic (cyclo([...]))

As opposed to other approaches, e. g. which go from SMILES strings over a
graph structure to a classification (viz e. g. Wittig et al., 2004), we also chose
this linguistic approach because a SMILES string (as opposed to a name) is
always bound to a certain structure. To catch ambiguous cases as well, we
thus consider the name directly and conduct a compositional analysis (see
section 2.1).

For systematic names, we provide a morpho-semantic grammar and lexicon
with currently about 80 rules and 450 lexicon entries; trivial and class names
are treated by lexicon lookup.

We chose Prolog as programming language because the DCG formalism is
ideal for the symbolic analysis of linguistic entities (see section 2.1). Our se-
mantic representation with its predicate/functor-argument terms is also suited
for further processing with Prolog. We implemented our version in ‘Sicstus Pro-
log’ (see Swedish Institute of Computer Science, 2001) and derived another one
to work with ‘SWI Prolog’ (see Free Software Foundation, 1987).

The source code of the system is kept in separate files as listed in table 2.

file contents

inout.pl input and output routine

compd lex.pl lexicon entries
compd.pl common root rules
compd common.pl common grammar rules and additional common predicates
parent nonsugar.pl non-sugar parent rules
parent sugar.pl sugar parent rules

smiles.pl predicates generating the SMILES strings
classes.pl predicates generating the class lists

Table 2: Prolog files with their corresponding contents description

Parsing Approach

For parsing the chemical compound names we used a symbolic as opposed to a
statistical approach (see, e. g. Appelt and Israel, 1999). A statistical procedure
depends on training data for the parser’s learning process, i. e. on a collection
of names and their correct and annotated analyses. Such data is not avail-
able in sufficient amount for a machine learning approach. Therefore, to use a
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statistical parser for our work, it would have been necessary to choose a repre-
sentative set of names and annotate them with information on their structure.
Even then, the disadvantage of a statistical parser remains: It works best with
data which is similar to that of the training corpus; new names and also rarely
occuring phenomena cannot be analysed reliably. Using a symbolic approach,
the parser can be more easily and intuitively extended by adding and modify-
ing rules. However, the possible drawbacks of a symbolic approach have to be
considered, namely regarding ambiguities and robustness. First, some ambigui-
ties are intentionally contained in the names themselves (semantic ambiguities,
as in pentadecene (figure 10 on page 30)) and hence must not be resolved.
Furthermore, as we use the semantic outcome (not the syntactic analysis) as a
result to be evaluated, most structurally ambiguous name structures pose no
difficulties for our system. Thus, syntactic ambiguities are partly resolved in
our system by semantics construction yielding identical semantic representa-
tions, In addition, a successful SMILES string generation and classification are
additional constraints to be fullfilled, which can prevent syntactic ambiguities
from emerging. Also without considering semantics or the additional modules,
there did not occur many structurally ambiguous analyses until now, probably
because the rules are simply not exhaustive. Second, concerning robustness,
our system currently fails to analyse incorrect names and names including un-
known morphemes, i. e. which are not in the system’s lexicon. This drawback
is to be remedied with, on the one hand, systematic lexicon enrichment and,
on the other hand, with more elaborate methods as described in section 5.

Generalisation

It is important to note that the grammar rules of our system are not meant
to be used for generating names, but only for analysing them. The grammar
rejects names with an ‘incorrect’ structure (i. e. not corresponding to the im-
plemented nomenclature principles), but not all of them. So, if it was used for
generating instead of parsing, that would result in overgeneration: Not only the
valid names of the modeled language would be generated, but also void ones.
Because our system is built for analysing names, the term overanalysis applies
here, which describes the succeeding analysis of incorrect or non-existent names.
The semantics construction and the SMILES string generation can be seen as
additional constraints to prevent void names from being analysed. By focusing
on the correct parsing results and not considering generation problems, the
nomenclature principles can be better generalised (with less restrictive rules
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covering more alternative cases)46, so that the number of grammar rules is
small. However, this means that we deliberately do not consider a few names
that might also match a rule and occur in literature. As for all symbolic (vs.
statistical) parsing approaches, where rules are hand-coded, it is an ambitious
task to cover all phenomena occurring without risking overanalysis; therefore,
a compromise had to be accepted in this respect.

Architecture

The general structure of our system illustrating its modules can be seen in
figure 7. The process sequence is as follows: A chemical compound name is
morpho-semantically deconstructed by the parser module, resulting in a se-
mantic representation term. This term is, on the one hand, processed by the
SMILES string generator yielding a SMILES string. On the other hand, our
classifier calculates the superclasses to which the name belongs.

name

parser

semantic representation

SMILES string generator

SMILES string

classifier

classes

Figure 7: System architecture

Program Flow

There are two ways of using the system, with each input-output variant having
its own call predicate. The call preprocess is for the first case, where the input
can be a single name. This query yields a complete call for a given name to
commit it again to Prolog (an example is shown in (17)). The analysis output
is displayed at the terminal.

(17) org compd(Syn,Sem,
[7,-,h,y,d,r,o,x,y,h,e,p,t,a,n,-,2,-,o,n,e],[]),

46Generally, the purpose of rules is to reach a generalisation as opposed to writing a separate
rule for each case.
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pp(Syn), beta reduce(Sem,RedSem),
smile(RedSem), classes(RedSem,ClassList).

As another possibility, a set of names can be stored in a file (named test-
suite.txt, one name per line) to serve as input to the system. This file may
include comment lines beginning with a % sign and empty lines, which are both
ignored. In this case (called with process), which we used for processing our
testsuite, the output is both displayed at the terminal and stored in a result
file (named testsuite.out).

Each input name is converted into a character list in Prolog format, e. g. hex-
ose becomes [h,e,x,o,s,e]. This conversion is done using a ‘Perl’ script47(see
Perl Foundation, 2004) which is called from the current Prolog process and
which writes the converted name into a temporary file. This file, in turn, is
read by Prolog to be processed further.

The Perl script not only splits the input name into single characters, but also
ensures the proper treatment of special characters, i. e. parentheses, commas,
hyphens, apostrophes and blanks. These get surrounded by single quotes, so
that they can be treated as Prolog atoms with no special meaning for the
program. Capital letters are converted to lower case for the same reason, which
also means that it does not matter if (parts of) names are given in lower or upper
case letters. A period at the end of an input name, which is usually required
for Prolog queries, may be omitted; if given it is ignored by the preprocessor.
Several successive space characters are ignored as well if they occur at the end
of, not within, a name. Special cases that have to be considered when giving a
name as input to the system are, for example, the symbol α, which has to be
replaced by the text string alpha.

After preprocessing the input name, Prolog is directed to try and find all
possible parsing solutions. The semantics of the name are generated simultane-
ously in the parsing process by means of the λ-calculus, which yields a complex
semantic representation. It is β-reduced in the next step, i. e. the λ-expressions
are evaluated, to obtain a simplified semantic representation. Duplicates of se-
mantic representations in the set of alternative parsing solutions are sorted out
because they would result in identical further processing. The program then at-
tempts to generate the SMILES string from the semantic representation of the
input name. This is possible if the representation term is valid and the name is
neither a non-sugar term nor a class name, as these cases are not covered. The
semantic representation then also serves as basis for the generation of the list
of classes for non-sugar names, which are calculated in the next step.

47We used Perl for the conversion because it was more intuitive to implement and less code
was necessary.
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The results, i. e. a syntax and a semantic analysis as well as a SMILES string
and a class list, if available, are then printed as output.48

Analysis Examples

A slightly simplified analysis for a non-sugar name (7-hydroxyheptan-2-one,
depicted in figure 8) is shown in figure 9. Simplified relevant grammar rules for
this non-sugar example with annotated semantics can be seen in (18) to (21).
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Figure 8: Molecular structure of 7-hydroxyheptan-2-one

organic compound
compd(ane(7*C),pref([??*[7]-hydroxy]),suff([??*[2]-one]))

prefix
[??*[7]-hydroxy]

parent nonsugar
ane(7*C)

suffix
[??*[2]-one]

locant
??*[7]

locant
??*[2]

loc
[7]

hyphen
∅

pref
hydroxy

mult
7

parent suffix
λ(X,ane(X*C))

hyphen
∅

loc
[2]

hyphen
∅

suff
one

7 - hydroxy hept an - 2 - one

Figure 9: Non-sugar example analysis

48The testsuite processing yields a reduced output omitting the syntactic analysis.
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(18) excerpt from compd.pl:

a. organic compound(compd(Sem parent nonsugar,
pref(Sem prefix),suff(Sem suffix)))

-->
prefix(Sem prefix),
parent nonsugar(Sem parent nonsugar),
suffix(Sem suffix).

b. prefix(Sem locant-Sem pref)
-->

locant(Sem locant),
pref(Sem pref).

c. suffix(Sem locant-Sem suff)
-->

locant(Sem locant),
suff(Sem suff).

(19) excerpt from parent nonsugar.pl:
parent nonsugarSem parent suffix@Sem mult)
-->

mult(Sem mult),
parent suffix(Sem parent suffix).

(20) excerpt from compd common.pl:

a. locant(??*Sem loc)
-->

loc(Sem loc),
hyphen( Sem hyphen).

b. locant(??*Sem loc)
-->

hyphen( Sem hyphen),
loc(Sem loc),
hyphen( Sem hyphen).

(21) excerpt from compd lex.pl:

a. lex([7],loc,7).
b. lex([2],loc,2).
c. hyph(hyph(-),affix sep) --> [-].
d. lex([h,y,d,r,o,x,y],pref,hydroxy).
e. lex([h,e,p,t],mult,7).
f. lex([a,n],parent suffix,λ(X,ane(X*C))).
g. lex([o,n,e],suff,one).

For ambiguous compound names, the parser yields several analyses as shown
in figure 10 on the next page. For pentadecene, we get on the one hand an
analysis where the main molecular structure has five C atoms and on the other
hand an analysis where it has ten C atoms, because locants specifications for the
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clarification of their number are missing. The impossible analysis (the bottom
one) has to be eliminated either by a consistency check as to how many skeleton
atoms are available to be referred to by prefix locants or during the SMILES
string generation.

penta dec ene

mult mult parent suffix

parent base locs mult

organic compound

mult mult parent suffix

locs mult parent base

organic compound

Figure 10: Ambiguous name with two analyses

4.2 Parser

The parser of our system depends on morpho-syntactic DCG rules written in
the Prolog programming language. They make it possible to analyse organic
compound names and to generate their corresponding semantic representations,
which is described below.

The analysis is obtained from the names exactly as given to the system. This
is in contrast to a system as developed by Gerstenberger (2001) which assumes a
preprocessing module that splits the names into appropriate morphemes before
processing them by means of grammar rules.

The Grammar

Here we describe how the grammar of our system is structured. Most DCG
rules for a specific syntactic category have alternative rules, which appear in the
grammar in groups. The comment lines just above each rule contain information
about the nomenclature principle implemented and/or give sample names to
be processed with that rule. The topmost syntactic category (the root of the
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grammar) is org compd which relates to a complete organic compound name.
It may also be embedded, which requires a recursive rule.

DCG Rule Example To describe the DCG notation format, a sample rule of
our grammar is shown in (22). It declares that ring stem can be substituted by
locs mult and ring triv, in the given order from left to right. The symbols
ring stem and locs mult are non-terminal symbols, whereas ring triv is a
terminal symbol which will be substituted by a lexicon entry in a next step. In
the name hexopyranose the part pyranose is parseable by means of this rule.

(22) ring stem(ring stem(Syn locs mult,Syn ring triv),
Sem ring triv@Sem locs mult)

-->
locs mult(Syn locs mult,Sem locs mult),
ring triv(Syn ring triv,Sem ring triv).

Each symbol’s arguments are its syntactic and semantic annotation. The first
argument describes the syntactic structure which is for ring stem constructed
from the syntactic category ring stem, comprising the syntactic substructures
of locs mult and ring triv. They are kept in the variables Syn locs mult
and Syn ring triv, respectively. Each symbol’s second argument constitutes
its semantic representation. The rule shown here determines that the semantic
representation of ring stem is an application of the semantic expression of
ring triv to the semantics of locs mult.

Grammar Rules The root rule with the head org compd determines what
constitutes an organic compound name, viz at least a parent name, possibly
supplemented by one or more prefixes, or suffixes, or both (see figure 11(a)). A
parent name can either be a sugar or a non-sugar name.

Non-sugar parents roughly are composed of a parent base (e. g. an element
morpheme or a multiplier) and either a saturated or an unsaturated parent
suffix. For unsaturated parents, locants and a multiplier are allowed to specify
the location of the unsaturation. See figure 11(b) for an example.

Sugar parents can consist of locants and multipliers combined with ring stems
or one or two stem suffixes with possibly more multipliers and locants attached
(see figure 11(c) for a simple example). Configurational symbols and prefixes,
which in the strict chemical sense also belong to the parent structure, are dealt
with in the prefix rules, as our categories are rather linguistically motivated.

The rule for prefixes prescribes their constituents to be one or more prefixes
with or without a succeeding hyphen. A prefix can be either a configurational
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org compd

prefixes parent suffixes

(a) organic compound rule

parent nonsugar

mult parent suffix

(b) non-sugar parent rule

parent sugar

mult ps zero

mult mult

(c) sugar parent rule

prefix

cfg prefix

cfg symbol hyphen cfg pref

hyphen

(d) prefix rule

suffix

locs mult

locants multiplier

suff

(e) suffix rule

Figure 11: Grammar excerpts
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one, a simple one (pref zero49) with or without locants and/or a multiplier, or
a double prefix consisting of locants and/or a multiplier, an element (e. g. C or
O) and a simple prefix (see figure 11(d)). In addition, as noted above, this is the
rule for nested compounds (possibly with locants and/or a multiplier), with or
without parentheses enclosing the nested compound, for example as shown in
figure 12 on page 39. Suffixes can be added either with or without a preceding
hyphen, one or more of them, with or without preciding locants and/or a
multiplier A simplified example can be seen in figure 11(e). Resulting from
nomenclature rules such as in (23), multi-word expressions such as ‘hexanoic
acid’ occur.

(23) R-5. 7.1.1
Carboxylic acid groups [. . .] are denoted by adding the suffix “-oic acid” or
“-dioic acid” [. . .] to the name of the acyclic hydrocarbon [. . .].

They have an adjective-noun structure, and also other combinations with such
emerged adjectives can be encountered in texts (e. g. hexanoic extract50).
For automatic term recognition in textual data, an analysis for the single parts
of such multi-word expressions (on a syntactic level) is therefore necessary. Our
current solution allows -oic as an adjective suffix together with a blank and a
class name (instead of allowing a fix suffix -oic acid). This complex suffix is
treated as a ‘functional groups (adjective) suffix’ which can attach to a parent
name in a kind of syntax rule. Although a separate analysis of hexanoic is
not provided thereby (this would have gone beyond the scope of this work), it
creates a basis for doing that.

The complete set of rules can be seen in appendix A.2.

Syntactic Structure In our grammar, the symbols’ names acting as syntac-
tic categories are motivated by linguistic, syntactic-semantic interests. Never-
theless, terms from the biochemistry vocabulary are also used as a basis for
naming the categories. However, a category with a name reminding of a bio-
chemical term does not necessarily refer to exactly the same part of a molecule
expressed by that biochemical term. We chose the syntactic category names
of our grammar for the practical reason to easily and uniformly construct the
semantics of the names. The syntactic structure of an analysed name was useful
when developing the grammar rules to check the parser’s performance, but is
currently not used for anything else.

49The term pref zero is motivated by syntactic categories such as N0 for a basic level noun.
50http://www.swsbm.com/Abstracts/Crataegus-AB.txt

http://www.swsbm.com/Abstracts/Crataegus-AB.txt
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The syntactic structure is represented in a functor-arguments format in which
the functor is named after the head symbol’s syntactic category and comprises
the syntactic categories of the rule body’s symbols. Thereby, the order of the
symbols in the grammar rule is retained. The term constructed in this manner
is the representation of the currently processed grammar rule and thus is used
as the syntactic annotation of the rule head. For the DCG example rule (22) on
page 31 the corresponding syntactic structure format is shown in (24).

The value of the variable Syn locs mult will be itself a syntactic structure
because it relates to the non-terminal symbol locs mult. The value of Syn -
ring triv will be a character list of the respective morpheme which the related
terminal symbol ring triv yields the lexicon entry.

(24) ring stem(locs mult(Syn locs mult),ring triv(Syn ring triv))

Semantic Representation The semantic representations are constructed
in a different, more complex manner than the syntactic structures. Working
with the λ-calculus with the aim to get a consistent semantic representation,
the morphemes’ semantic annotations have to be combined in the correct or-
der. This is achieved in the grammar rules by means of the operator ‘@’ put
between a λ-expression and each of the appropriate arguments to be used in
the λ-operation (as can be seen in (22) on page 31). It represents the appli-
cation of a λ-expression to the expression’s argument and combines all the
semantic representations in the parsing process of a name. The resulting com-
plex semantic representation has then to be β-reduced, i. e. the λ-expressions
have to be resolved by applying the λ-operation. The resulting semantic rep-
resentation describes the molecules of a compound name – for our needs – in
a kind of operator-arguments logic. Note that the grammar rules as well as
the morphemes’ lexicon entries may contribute a λ-expression. A simplified
example demonstrating the beta-reduction of the semantic representation for
pent-2-ulose is shown in (25).

(25) a. complex λ-expression:

lam(X,ulose(??*[2],X))@(5*C)

b. β-reduced semantic representation:

ulose(??*[2],5*C)

We defined the language of the semantic representation of organic compound
names in appendix B.1.1. It is described there in form of an Extended Backus-
Naur Form51 (EBNF). Generally, it is a term composed of functors and their
51We defined it according to the standard ISO/IEC 14977:1996(E)
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arguments. Each functor is an operator acting on a structure contained in
one of its arguments. Detailed specifications needed for the operation are in
the functor’s other arguments. The semantic representation of hex-2,3-diene
(shown in (26)) describes a skeleton structure consisting of six carbon atoms
(6*C), on which the functor ane (which determines that single bonds are to be
constructed) operates on. This semantic term is embedded as argument to the
functor ene which represents the creation of double bonds. This functor has a
supplementary argument to specify the locants where the double bonds should
be created (and how many): 2*[2,3] means that two locants are specified in
the corresponding name: 2 and 3.

(26) compd(ene(2*[2,3],ane(6*C)),pref([]),suff([]))

The outermost functor of our semantic representation (compd) is used to apply
prefix and suffix operations on the structure represented in its first argument
(the representation of the parent name). This functor and its arguments repre-
sent the whole structure denoted by the name that was given as input to the
parser. Terms with the functor compd can also be nested to describe embed-
ded, complete organic compound names, e. g. occurring as prefix to a parent
structure.

The format of a term consisting of the functor compd and its arguments is
shown in (27).

(27) a. compd(Parent, pref(Prefixes List), suff(Suffixes List))
b. Prefixes List:

[Prefix Spec 1, Prefix Spec 2, Prefix Spec 3,...]
c. Prefix Spec n :

Mult*Locant List-Prefix (e. g. ??*[2,3]-deoxy)
or

Mult*Locant List-Element-Prefix (e. g. 1*[3]-C-compd(...))

The functors pref and suff are special; their respective argument is a list
of operators that are to be applied to Parent, i. e. they are functors without
arguments and the structure they operate on is not directly associated. Each
of these operators is preceded by a multiplier, a list of locants, and a hyphen,
which denote the details for the operation, e. g. 2*[3,4]-deoxy. Note that
Prefix can be as well an embedded compd term.

Table 3 describes the functions of some of the operators contained in Parent
and in Prefixes List and Suffixes List.
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operator function

ose creates a carbonyl group (C=O) at first and/or last locant
ulose creates a carbonyl group at the specified locants
anose creates a ring connection between pairwise specified locants

Table 3: Examples of operational functors occurring in the semantic representations
and their associated functions

The Lexicon

Our lexicon consists of entries for valid morphemes to form a name with, sep-
arated into sets by their corresponding syntactic categories. A lexicon entry
comprises a morpheme represented as a Prolog list of characters, a syntactic
category and a semantic representation. These function as arguments to the
functor lex, altogether being a so-called Prolog fact. The format is shown in
(28a). Example (28b) shows the entry for the multiplier penta-.

(28) a. lex(Char List,Syn Cat,Sem).
b. lex([p,e,n,t,a],mult,5).

For some morphemes we created more than one lexicon entry, since they are
used with differing syntactic categories (e. g. erythro- is used as configura-
tional prefix and sugar parent trivial prefix). Moreover, as we do not deal with
linking morphemes (which bear no semantic meaning) and deletion of vowels,
we wrote double entries for morphemes that can also appear followed by a
linking morpheme. For example, we provide one entry for erythro- and one
for erythr-, both having exactly the same arguments except for the list of
characters (representing the morpheme string).

(29) a. lex([e,r,y,t,h,r,o],cfg pref,erythro).
b. lex([e,r,y,t,h,r,o],ps triv pref,erythrose).
c. lex([e,r,y,t,h,r],ps triv pref,erythrose).

The semantic annotation in a lexicon entry is either the morpheme itself, the
appropriate chemical symbol, or the appropriate number (in case of locants and
multipliers). A few morphemes require a complex λ-expression, e. g. as shown
in (30).

(30) lex([u,l,o,s,e],stem suff,lam(X,lam(Y,ulose(X,Y)))).

The λ-expression for the morpheme ulose defines the operator ulose as a
functor taking two arguments (the λ-operator is represented by the functor
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lam in our Prolog implementation).
The special character morphemes (comma, hyphen, etc.) also have annota-

tions which are at the argument position of the semantic annotations, but only
for consistency reasons – they are not used in the grammar. A special lexicon
entry clause is not necessary here, as these are single characters to be processed,
thus we used the usual lexicon rule. Note that special characters have to be
quoted in Prolog (to be processed as atoms) as is shown in the lexicon rule for
the left parenthesis in example (31b).

(31) a. hyph(hyph(-),affix sep) --> [-].
b. leftparenthesis(leftparenthesis(’(’),’(’) --> [’(’].

Table 4 shows some of the syntactic categories we used in our lexicon; their
corresponding lexicon entries can be seen in appendix A.2.1.

syntactic category description

ps class class names for sugar parent structures
pns triv trivial names for nonsugar parent structures
stem suff parent structure stem suffixes
loc locants
pref elem atomic element prefixes
cfg symb anom anomeric configurational symbols
hyph hyphen

Table 4: Sample syntactic lexicon categories and their desription

Efficiency Considerations

The system we present here is a prototype – other implementations, including
more sophisticated parsing methods, other programming languages, etc., may
ameliorate its performance. Nevertheless, we took care of efficient performance,
since it is not only a crucial aspect for the eventual application, but it was
already helpful during the system development.52 We checked the improved ef-
ficiency by use of the built-in predicate statistics which showed great impact
of the methods used and described in this subsection.

52For example, looking for all alternative parsing possibilities for a name (e. g. for checking
ambiguous analyses) may prolongs the parsing process essentially, as opposed to taking
the first parsing solution found.
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Cut Symbol In Prolog, the cut symbol ‘!’ is used in a clause to prevent
backtracking, i. e. the search for alternative clauses in case a clause failed. This
applies analogously for DCG rules (as the Prolog compiler translates them
into clauses). Our grammar contains several non-terminal symbols for which
there are alternative rules. The cut symbol can be used there like any other
(non-)terminal symbol. It is inserted at a point in the rule where no other so-
lutions for its head symbol should be found (i. e. further possible solutions are
‘cut’). Thus, unnecessary expanding of fruitless rules is prevented, which results
in faster processing. Cut symbols have to be inserted carefully not to acciden-
tally exclude wanted (correct) solutions. In addition, the order of alternative
rules is important when using cut symbols.

Lexicon Entry Clauses The DCG operator ‘-->’ is usually not only used
in grammar rules, but also for lexicon entries (i. e. for expanding non-terminal
symbols). However, we preferred writing a special Prolog clause for terminal
symbols because a lexicon rule using the DCG operator ‘-->’ would process
the lexicon entry character by character, as it constitutes a list of characters
in Prolog format. As opposed to this method, the clause we wrote for terminal
symbols to be substituted by their corresponding lexicon entries results in a
faster process: It checks if the complete lexicon entry matches the remaining
part of the name currently being processed.

Covington (1989) also emphasises the efficiency improvement possible by
using the “first argument indexing of Prolog”. This is achieved by giving Prolog
facts (in our case the lexicon entries) the most diverse argument first. We
followed his recommendations by choosing the character list of the respective
morpheme as first argument to the lexicon entry functor lex.

Example (32a) shows a sample lexicon rule usually used. The correspond-
ing lexicon entry clause we used instead is depicted in (32b), and (32c) is an
appropriate lexicon entry of our system.

(32) a. cfg pref(cfg pref(Entry),Sem)
-->

{lex(Entry,cfg pref,Sem)},
Entry.

b. cfg pref(cfg pref(Lex),Sem,All,Rest)
:-

lex(Lex,cfg pref,Sem),
append(Lex,Rest,All).

c. lex([r,i,b,o],cfg pref,ribo).
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Embedded Compound Names Our parser is able to analyse certain types
of embedded compound names, i. e. names which represent complete com-
pounds themselves, but that are part of other compound names. There are
several kinds of embeddings, some of which are listed in (33).

(33) a. 1,2-dimethyl -hexane
b. 2-C-(Hydroxymethyl )-D-ribose
c. Methyl 3-deoxy-D-threo-pentonate

The compound name methyl in (33a) is embedded as a prefix of hexane, pre-
ceded by locants and a multiplier. Example (33b) shows the embedding of the
non-sugar name Hydroxymethyl in a sugar name (D-ribose). According to the
nomenclature rules, names can also be combined as shown in (33c), where we
regard Methyl as the embedded name.

Figure 12 shows a nested syntactic structure illustrating our grammar rules,
where an organic compound structure can again be integrated in the prefix of
an organic compound.

organic compound

prefix parent suffix

locs mult organic compound

Figure 12: Grammar fragment including a nested organic compound

The disadvantage of embedding names is that it takes the parser longer to
decide if an input name is valid or not, corresponding to the rules. This is
because it multiplies the number of rules which the parser has to try when
processing a rule including an embedded compound. For that reason, we put
the rules for embedded compounds at the end of the respective set of alternative
grammar rules. But, as we want the parser to look for all possible solutions,
it will still try to process these rules – for names both with and without an
embedded compound name – even if other solutions have already been found.
On the other hand, when processing a name containing an embedded compound
name, all the alternative rules have to be tried first before finding at last the
correct rule. Here, working with cuts, put carefully at the correct positions in
the rule, improves the performance essentially.

Left-Recursiveness Embedded compounds require left-recursive grammar
rules (for a definition see section 2.1). As we work with a top-down, left-to-
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right parser, grammar rules are processed by expanding their left symbols first,
beginning at the rule for the top symbol. Additionally, alternative rules for a
non-terminal symbol to be expanded are processed in Prolog in the given order
as written in the files. Processing left-recursive rules may thus lead to endless
loops if the parser does not succeed in expanding the first, non-terminal symbol
of a left-recursive rule but by use of the same rule again. As no terminal symbol
is expanded and hence the input string is not reduced, the parser will continue
expanding the left-recursive rule by itself.

If the left-recursive rule is not the last of all alternative rules, the parser will
never reach the following rules. Instead, it will continuously try to expand the
left-recursive rule by itself.

Although correct input may lead to such endless loops, primarily, non-parse-
able expressions (i. e. incorrect names, which are not intended to be parsed)
will do so when using left-recursive rules.

To circumvent the difficulty with left-recursiveness in general, a different
parsing algorithm can be used – one that is also more efficient in processing
embedded compounds. For example, Voss (2004) describes an Earley chart
parsing algorithm implemented in Prolog.

4.3 SMILES String Generator

A SMILES string is a structural notation of a molecule which sequentially lists
the main chain elements with their properties and branches. In our system,
the basis for the generation of the SMILES string is the semantic representa-
tion of the compound name, which describes the operations to be applied to
nested semantic structures. Thus, we decided to generate the SMILES string
via a pre-representation which transforms the operational description of the se-
mantic representation notation into a description of chain elements with their
respective properties and branches. Its format is basically a functor-arguments
expression containing lists, which can be easily and efficiently processed in Pro-
log. From the pre-representation, the SMILES string can be generated more
intuitively. In case of underspecified names, it is constructed as completely as
possible and serves as an argument to an underspecification expression, i. e. a
mixed representation instead of a valid SMILES string is the output.

General Procedure

The construction of the pre-representation from the semantic representation
is an inside-out process: The SMILES string generator traverses the semantic
representation by matching a functor-argument-structure pattern, in which the
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argument itself is another functor-argument-structure. This is done recursively
until there is a simple structure embedded as an argument, i. e. the innermost
structure is found.

This structure serves for constructing the main chain of the molecule’s parent
structure. In case the innermost structure is a trivial name, a look-up in the
lexicon is made. After that, the superordinate functor which operates on this
structure is processed. The consistency of its first argument is checked to see
if the multiplier-locant combination is valid. Only in case it is valid, the still
incomplete pre-representation is modified, depending on the respective opera-
tion associated with this functor. As for sugars, the functors ose and ulose
each create a carbonyl group (i. e. a carbon-oxygen double bond: C=O); anose
builds a ring connection.

The respective superordinate functors are used repeatedly to build a more
and more complete parent structure53 pre-representation, until the outermost
functor is processed. At first, default operationsare then carried out on the
parent structure pre-representation.

After having constructed the pre-representation of the compound main chain,
the prefixes (including configurational prefixes) of the compound name are
processed.54 They are bundled in a list of Prolog expressions, as described in
section 4.2.

Embedded compounds are processed analogously when they are encoun-
tered, e. g. in the prefixes processing step, and will be embedded in the pre-
representation like any other element (or molecule group).

Innermost Semantic Structure

The innermost structure of the semantic representation is either a trivial name
or an expression of the form Length*Element, e. g. ‘5*C’ representing a skeleton
structure consisting of five carbon atoms.

Trivial Name If the innermost structure is a trivial name representation
(e. g. triv name(ribose) for ribose), the semantic representation (in the form
produced by the system) for the corresponding systematic name is looked up
in the lexicon for trivial names and the SMILES string is generated from it.55

53To be exact, it is not the pre-representation of the biochemical term parent structure, but
of the structure which is comprised by the syntactic category parent in our grammar.

54Currently, no sugar name is analysed as having suffixes. Therefore, these are not processed
in the SMILES string generator.

55This method can also be used for abbreviations of names.



4.3 SMILES String Generator 42

Example (34) shows a lexicon entry, which contains the trivial name, the cor-
responding systematic name, and the corresponding semantic representation.

(34) lex triv(ribose,
’D-ribo-pentose’,
compd(ose(??*[??],5*C),pref([cfg([D-ribo])]),suff([]))).

The general usage of trivial names is to be considered when associating their
systematic names in this lexicon. For example, the trivial name ribose is often
used for the cyclic form, β-D-ribofuranose. We dealt with this phenomenon
of ambiguous trivial names by adding a second lexicon entry for the cyclic
form. The order of the alternative lexicon entries is important as it decides
which systematic name is chosen first (which is crucial if alternatives are ‘cut’
in the process of generating the SMILES string).

Skeleton Structure In the second case, the innermost structure is a spec-
ification of the form Length*Element representing a chain of elements. For
example, the parent structure of pentose consists of five carbon atoms. This
skeleton is represented as 5*C, being the innermost structure of its semantic
representation shown in (35).

(35) compd(ose(??*[??],5*C),pref([]),suff([]))

The skeleton structure of the SMILES pre-representation is constructed by cre-
ating a list in Prolog format, which consists of list elements. Each of these
elements describes a main chain element of the molecular structure and has
the form as generally expressed in (36). The number of such list elements is
determined by the value of Length, which would be 5 in our example.

(36) chain el(Element,Index,Branches List,Features List)

The description of a main chain element includes its properties and side branches,
being arguments to the functor chain el. The argument at the position of El-
ement determines the chemical element which is inherited from the semantic
representation; in our example this would be C. The argument Index is the
locant number of the respective main chain element. As the number of chain
elements is specified by Length, this may be a number from 1 to 5, in our
example. For the arguments Branches List and Features List, empty lists
(noted as ‘[]’) are created initially, because only the skeleton structure are
constructed in this step. They will be modified in a later processing step.

After creating the skeleton of the main chain representation, a supplementary
list element is added at the beginning of the list, which we use to represent a
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possible set of underspecifications. This additional list element is composed of
the functor uspecs and a preliminarily empty list as its argument, which can
be filled up later.

The complete pre-representation skeleton is illustrated in (37) in a simplified
form, with index numbers from 1 to the specified length of the main chain.

(37) [uspecs([]),
chain el(Element,1,[],[]),
chain el(Element,2,[],[]),
...
chain el(Element,Length,[],[])]

Consistency Check

On each expression of the form Multiplier*Locants List a consistency check
is carried out. Such expressions appear as arguments of functors (e. g. as in
ene(2*[2,3],...)), and they are prefixed to operators (2*[1,3]-deoxy) in
the list of prefixes or suffixes in the semantic representation. If either Multi-
plier or Locants List is specified, or if neither of the two values is specified,
the consistency check succeeds.56 This means that no inconsistency could be
detected, although maybe resolvable or unresolvable underspecification is on
hand.

Otherwise, the success of the consistency check depends on the operator that
is associated with the specification Multiplier*Locants List or on the func-
tor comprising this specification – thus, these are considered in the consistency
check, too. In general, the number of locants in the locant list has to match
the number the multiplier presupposes. Any other case shows an inconsistency
in the naming of the respective compound.

However, if the operator comprising the specification is anose (as in shown
in (38)), the consistency check is special, as anose describes a ring connection.
In this case there have to be twice as much locants as the number given by
the multiplier number, or if no multiplier is specified, the number of locants
has to be divisible by 2. This presupposition has to be justified since each ring
connection – unless underspecified – has to be specified by a pair of locants.

(38) compd(anose(??*[2,5],5,...)
(e. g. in hexos-2-ulo-2,5-furanose )

The principles mentioned cover the following cases for non-ring specifications:

56Note that a specification which is required by our semantic representation language but
which is missing in a compound name, is depicted as ‘??’.
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(i) 3*[1,2,5]
(multiplier and locants are specified;
the multiplier matches the number of locants)

(ii) 3*[??]
(only the multiplier is specified57)

(iii) ??*[1,2,5,6]
(only the list of locants is specified)

For ring specifications (appearing as an argument to the functor anose), the
following cases are covered:

(iv) 2*[1,5,3,6]
(multiplier and locants are specified; the locants’ quantity,
divided by 2, matches the multiplier)

(v) 2*[??]
(only the multiplier is specified)

(vi) ??*[1,5,3,6]
(only locants are specified; their number is divisible by 2)

Fully specified examples as in (i) and (iv) are the simplest and most definite
kinds of specifications to be processed further. The other specifications shown
are also likely to appear and are therefore also considered. Examples as in (ii)
and (iii) may occur due to deliberate underspecification of a compound name
or insufficient knowledge of the nomenclature rules. Examples as in (v) and
(vi) are allowed specifications according to the nomenclature rules.

Note that in the case of full underspecification as shown in (vii), the consis-
tency check also succeeds, for both ring and non-ring specifications.

(vii) ??*[??]
(neither multiplier nor locants are specified)

Other cases are not allowed, i. e. when the number of locants does not match
the multiplier number (there are more locants or less locants than presupposed
by the multiplier) in non-ring specifications, or when the number of locants
is not divisible by 2 or the multiplier number is not equal to the number of
locants divided by 2 in ring specifications. These cases will cause the SMILES
string generation to fail.

57The locants are probably forgotten or underspecified.
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Ring Construction

A ring construction is determined in the semantic representation by the anose
functor, which comprises three arguments: Multiplier*Locants List, Ring -
Size, and the structure representation to operate on (i. e. to construct the ring).
The multiplier determines the number of (same-sized) rings to be constructed,
and the pairs of locants determine which chain elements are to be connected
to form a ring. If neither multiplier nor locants are specified, the default sup-
position is ‘1’ for the multiplier. That is, we preliminary opted for only one
ring connection (more exactly, for the first to be possible) in that case of un-
derspecification, although other underspecified expressions (e. g. prefixes) are
processed by looking for all possibilities. However, the implementation of this
feature is complex and we did not consider it essential for the current system.

The examples shown in (39) represent possible specifications and their cor-
responding methods for building the appropriate ring connections.

(39) a. 2*[1,4,3,6]
_ build ring connection using locant pairs

b. ??*[1,4,3,6]
_ build ring connection using locant pairs

c. 2*[??]
_ try to build 2 ring connections using ring size

d. ??*[??]
_ try to build 1 ring connection using ring size

All other cases are rejected by the consistency check. In the examples (39a) and
(39b), the multiplier is not necessary for further processing, because the locants
required for building ring connections are specified. In the examples (39c) and
(39d), the ring size is needed additionally for building ring connections, because
no locants are specified.

Using Locants If locants are specified as in (39a) and (39b), rings will be con-
structed directly by changing the pre-representation at the appropriate chain
elements as described below.

Before that, an additional consistency check of each pair of locants in relation
to the ring size is performed to ensure that the locants’ distance is matching
the ring size58.Furthermore, the order of each pair of locants is checked and
reversed if necessary. For the subsequent, sequential processing of the Prolog
pre-representation list, the lower locant should be the first to be processed.

58Note that the oxygen atom which is used as connection element has to be taken into account,
too, as it is also counted when specifying the ring size.
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Besides, a supplementary check is performed to ensure that a carbonyl group
is existent at exactly one of the chain elements specified by the pair of locants.
This is because the oxygen atom (O) of the carbonyl group (C=O) is a precon-
dition for the ring connection in a sugar compound. Such a chain element is
displayed in our pre-representation as shown in example (40). Only the chain
element of the pre-representation bearing the carbonyl group is depicted.

(40) [..., chain el(C,Loc1,[[=,O]],Features List),...]

Using Ring Size When the multiplier is given but no locants (as seen in
(39c)), the number of rings specified by the multiplier will be each constructed
only from the specified ring size. This construction method is also used in case
neither locants nor multiplier are given (see (39d)).

Again, the precondition for building a ring connection is the existence of a
carbonyl group at either of the two chain elements to be connected. The locant
of the other ring connection element can be calculated from the locant of the
carbonyl group and the specified ring size. In principle, the ring connection
element for which the locant is calculated may be either at a higher-numbered
locant or at a lower-numbered one.

We decided to build the first59 possible ring connection of the following
attempts: Starting from locant number 1, try and find a carbonyl group in the
main chain and calculate the appropriate locant for the other ring connection
element. If a ring connection is not possible there (e. g. if the chain is shorter
than the calculated locant number or if the corresponding chain element already
has a side branch), try with the next carbonyl groups in the chain until the
whole chain is processed. If no ring connection could be built, repeat trying to
find carbonyl groups starting from locant number 1. This time, calculate lower-
numbered locants for elements for a tentative ring connection. If all attempts
fail, the output is ‘NO SMILES’ instead of a SMILES string.

Modifying the Pre-representation For ring connections that can be con-
structed at the two ring elements specified or found, appropriate changes of the
pre-representation must be made. The ring connection is expressed in SMILES
by indexing the two connection elements with the same number and noting this
connection index just after the respective element in the SMILES string. In our
pre-representation, we insert the appropriate functor ring el1 or ring el2.
Each functor’s only argument is the index number of the connection, which we

59An enhancement of the system could be storing all possible ring connections and trying to
resolve the resulting ambiguity during further processing.
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chose to be the lower-numbered locant of the two ring connection elements, for
ease of implementation and unambiguousness.60

Additionally, the feature carbgrp is added to the feature list of the element
where the carbonyl group was attached before building the ring connection.
This information will be needed later for processing the configuration specifi-
cations.

At the ring connection element with the higher-numbered locant, the ex-
pression ring-O is added to its previously empty Branches-List.61 In turn, the
oxygen atom of the carbonyl group needed to build a ring connection, is deleted
from the branches list of the respective chain element – together with the double
binding specification in the same branch list.

Example (41) illustrates the pre-representation specifications for ring con-
nection elements before and after the ring connection is constructed. A pre-
representation of a ring connection is always specified as shown in this example,
no matter if constructed from locants or from ring size, forward or backward.

(41) ring connection elements
a. . . . before connection is made:

(i) chain el(C,1,[[=,O]],[...])
(ii) chain el(C,5,[],[...])

b. . . . after connection is been made:
(i) chain el(C,1,[],[ring-el1(1),carbgrp,...])
(ii) chain el(C,5,[[ring-O]],[ring-el2(1),...])

Defaults

Before applying the prefix functors, default operations are used to adapt the
skeleton structure of the pre-representation. This is useful at this point, because
there are prefixes which need to substitute default atoms of the side branches,
which have not been specified in our pre-representation, yet. Depending on
which (i. e. sugar or general organic compound) nomenclature is used, different
defaults are applied.

As for sugars, each chain element has one oxygen atom attached to it by
a single bond, unless it was specified otherwise. Additionally, the remaining
valences of each chain element (and oxygen atom attached) are filled up with
hydrogen atoms. These are implicit in the SMILES notation and thus need
not to be inserted. However, we need to note one hydrogen atom (as a side

60However, this can lead to complications if one carbon atom is involved in two ring connec-
tions. We did not prepare the system to deal with such a case.

61This is to keep the information that this is no usual branch of the carbon atom in the chain,
but an oxygen atom involved in a ring connection.
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branch) explicitly at each chain element so that it can be used for the consis-
tent specification of the chain element’s chirality62 and for a possible hydrogen
substitution operation. The remaining default hydrogen atoms (which are not
needed) are omitted. These defaults are applied in our pre-representation as
depicted in example (42).

(42) chain element of skeleton structure
a. . . . before applying defaults:

chain el(C,Index,[],[])

b. . . . after defaults applied:

chain el(C,Index,[[[H]],[O]],[])

Every empty branches list of a chain element is replaced by a branches list
representing a hydrogen branch and an oxygen branch attached to the car-
bon chain element. For representing two side branches, the two elements are
themselves noted as lists (enclosed in brackets). The atoms are noted by their
element symbol – the hydrogen atom has to be surrounded by brackets as this
is prescribed by the SMILES notation principles (see section 2.2).

When applying the defaults, chain elements bearing the feature ring el1
or ring el2 are ignored. The chain element specification containing ring -
el1 has an empty branches list, which should be kept empty as this is a ring
connection element bearing no side branches. As for ring el2, the branches
list is not empty (it comprises branch with the ring oxygen atom ring-O), and
would thus be ignored anyway.

Configuration Specifications

Configurational properties of a compound are determined in its name by pre-
fixing an expression to the parent name. Formally, this expression is part of
the description for the parent structure, consisting of an optional anomeric
configurational symbol, a configurational symbol, and a configurational prefix.
These may appear in the combinations shown in example (43), always in this
prescribed order. Several of those expressions may appear successively. They
have to be always attached directly in front of the parent name, which is why
they are are called nondetachable prefixes.

(43) a. D
(in front of trivial names, e. g.
D-Ribose)

62If the order of the branches is the same for all chain elements, a chirality symbol assigned
will always result in the same predictable chirality (see section 2.2).
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b. alpha-D
(in front of trivial names with ring connection, e. g.
alpha-D-Ribose)

c. D-threo
(in systematic names, e. g.
D-threo-tetrodialdose)

d. alpha-D-threo
(in systematic names with ring connection, e. g.
alpha-D-threo-Hexo-2,4-diulo-2,5-furanose)

Configurational prefixes are usually stated together with a preceding configu-
rational symbol (e. g. D, L), which specifies the configuration at the highest-
numbered centre of chirality, the so-called configurational atom.

Anomeric configurational symbols (α, β) determine the stereochemistry of a
compound containing a ring connection. They are attached in front of a con-
figurational prefix (in the name as well as in the semantic representation),
namely that one describing the part of the structure which comprises the
highest-numbered carbon atom involved in the ring connection.

In the semantic representation, the list of (possibly several) configuration
specifications (each one being of a form shown exemplarily in (43)) is the argu-
ment of the functor cfg. This expression is put into the list of prefixes being
an argument of compd. Example (44) shows a partial semantic representation
for D-glycero-L-gulo-heptose.

(44) compd(ose(??*[??],7*C),pref([cfg([D-glycero,L-gulo])]),suff([]))

Chirality Sign Assignment To generate a SMILES string of a sugar com-
pound name containing configuration specifications, we process the configu-
rational symbol first, after that the configurational prefix, then the anomeric
configurational symbol, always in this order, skipping the configuration specifi-
cations that are not given. In each step, chirality signs (@ and @@) are assigned
and changed respectively. Each sign is attached to the feature list of the corre-
sponding chain element, designated by the functor chir (see example (45)).

(45) chain el(C,Index,[[[H]],[O]],[chir(@)])

Traversing the list of chain elements one by one, each element’s properties
are checked to decide if a chirality sign is to be added or if it is possibly
to be changed, if already existent. Prolog facts exist associating each of the
configurational prefixes its list of chirality signs in the appropriate order (as
shown in example (46)). They are used like a lexicon, for looking up the list of
chirality signs needed in this processing step. Likewise we have also provided
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Prolog facts that associate combinations of an anomeric configurational symbol
and a configurational symbol with the corresponding chirality sign (see (47)).
Moreover, we provided two Prolog facts which have the purpose to deliver the
respective complementary chirality sign.

(46) lex smile(threo,[’@@’,’@’]).

(47) lex smile(alpha-’D’,’@’).

Considering Ring Elements In the processing step of assigning chirality
signs, each lower-numbered element of a pair of elements involved in a ring con-
nection is considered. If it bears the feature carbgrp marking that a carbonyl
group once existed there, no chirality sign is assigned. If no carbonyl group fea-
ture is encountered, one chirality sign is removed from the list of chirality signs
to be assigned. Each higher-numbered ring connection element will be ignored
in assigning a chirality sign for another reason: It does not have the required
branches list consisting of a hydrogen and a hydroxy group. We will assign the
appropriate chirality signs for ring connection elements later in the process,
when processing the anomeric configurational symbol. That is because the two
chiralities to be assigned to the ring connection elements are different from
each other, and they depend on the combination of anomeric configurational
symbol and configurational symbol.

Processing Order The order of processing different detachable and config-
urational prefixes is crucial for the correct specification of chiralities in the
pre-representation of the SMILES string. In fact, the assignment of chirality
signs still poses some difficulties for the current implementation.

If a deoxy- prefix (deleting an oxygen atom) is applied before the config-
uration prefixes, at those locants a chirality cannot be assigned because our
application method for the configuration prefixes requires a hydroxy (and a
hydrogen) branch to be existent there; it would not make sense to assign a
chirality as there is no centre of chirality any more (the carbon atom is not
asymmetric anymore: it has two branches of the same groups, namely hydro-
gen groups). This mechanism is desirable only in cases where the oxygen atom
is not to be replaced.

But, if the deoxy- prefix is applied and an additional prefix is specified which
adds a molecule at the same locant and branch (i. e. it replaces the oxygen),
e. g. amino-, the chirality sign should be assigned despite the specified deoxy-
prefix.

The difficulty is basically that our application method for the configuration
specifications currently requires the branches list consisting of a hydrogen and
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hydroxy group. Only in this case chirality sings will be assigned. This is to
ensure that they are not assigned spuriously to elements without asymmetric
branches.

When appearing in front of a trivial name, the deoxy- prefix deletes an
oxygen atom from a chain element where the chirality has already been assigned.
If the hydroxy group is only deleted and not replaced, the chirality sign is not
necessary any more. In case it is replaced, this molecule takes the position of
the hydroxy group, also in respect to its chirality, and so the chirality sign has
to be kept.

In the current implementation, we first process the configuration specifica-
tions, then the deoxy- prefixes, and after that the other prefixes. An enhance-
ment of this method could be to assign chiralities not until all other prefixes
have been processed. In that case, a check for asymmetry of each carbon atom
would be necessary. However, a simple equality comparison of branches rep-
resentations is not possible because of special branches (e. g. deoxy-[H] and
ring-O).

Detachable Prefixes

Prefixes which need not to be attached directly to the parent name, are called
detachable prefixes. Each prefix bears its own operation purpose which is to be
used for altering the parent structure. Possible operations are replacing, adding,
or removing chemical elements or molecules. The respective prefix operation is
applied to the pre-representation of the molecular structure built so far.

Single Prefixes Processing simple prefixes, the information needed for the
respective operation is provided in form of a lexicon entry as shown in (48)
for the prefix thio-. As the operation types mentioned can all be modeled by
substitutions of branches, currently only this kind of operation is implemented.
Thus, each entry includes a prefix name, the operation type substitute, the
substituted element, and the substitution element.

(48) a. format:
lex smile(PrefixName,OpType,[Substituted,Substitute]).

b. example:
lex smile(thio,substitute,[O,S]).

The lexicon look-up is only meant to be working for predefined prefixes, of
course. In case the lexicon look-up fails, we suppose that an embedded com-
pound is given as a prefix. If possible, the pre-representation for this compound
is generated and used as the substitute for the chain element’s side branch at
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the specified locant. To be attached there to a carbon atom, we determined the
precondition that an oxygen atom has to be missing at its side branch. This is
true, if a deoxy- prefix was applied before; thus the compound is only allowed
to substitute a side branch represented by [deoxy-[H]].

Double Prefixes Double prefixes of the semantic representation type as
shown in (49) can be processed similarly to single prefixes.

(49) Multiplier*[Locs List]-Element-PrefixName

For sugar compounds, Element may be e. g. C, O, or N, of which the two latter
elements are not implemented, yet. Double prefixes including the element C
are used to specify a substitution of a hydrogen atom (as a branch of a car-
bon atom) for PrefixName, where PrefixName may be a compound itself. We
implemented this prefix type to work with embedded compounds, especially
to integrate a simple non-sugar compound like methyl into our sugar SMILES
string generator.

Dependent Prefixes Prefixes can depend on each other, e. g. the prefix
amino- requires the appropriate deoxy- prefix to be present in the name (see
IUPAC-IUBMB Joint Commission on Biochemical Nomenclature, 1996, R.2-
Carb-14.1)). For implementing the dependency of the prefixes deoxy- and
amino- (as an example), we opted for an approach which changes the branches
list: By applying the deoxy- prefix on a chain element, the oxygen branch in the
branches list is substituted by [deoxy-[H]] instead of just being deleted from
the list. When applying the amino- prefix then, the amino group is tried to be
substituted for this branch to ensure that a deoxy- operation was conducted
before.

However, the amino- prefix might be as well used without specifiying also
deoxy- in some names, although exactly the same operation is meant. For that
case, we implemented an alternative (although not according to the IUPAC
nomenclature), which tries to substitute the amino group for an oxygen branch.
In case deoxy-[H] has not been substituted by any prefix at the end of the
pre-representation construction, there is a rule in the output routine to treat
it correctly, i. e. to ignore ‘deoxy-’ (see the output routine subsection).

Underspecifications

Chemical compound names can be underspecified in various ways, namely by
using class names or including prefixes, suffixes, or parent structure morphemes
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where not all information is provided, i. e. where the locants are missing. Am-
biguous names can be seen as another kind of underspecification. Furthermore,
some underspecified names used in the literature are meant to describe a certain,
fully specified structure, e. g. ribose63, where D-ribose would be correct (or
one of its cyclic forms, depending on the context: α-D-ribose or β-D-ribose).

Some seemingly underspecified terms in our semantic representations (‘??’
represents a missing but expected value, mostly used for locants and multipli-
ers) are only the consequence of consistently assigning syntactic structures to
names. For example, a semantic representation for multiplier and locants is
created also for the parts of a name consisting only of one of them (to lower
the number of rules, always the same grammar rule is used, covering all their
combinations). An example is hexose (locants are never specified for aldoses),
which is semantically represented in our system as ose(??*[??],6*C). Such
underspecifications can be resolved by applying defaults.

We treat all the underspecification types described above by trying to resolve
the underspecification or, if this is impossible, by stating the parts of the name
which are underspecified. Their output is in the form of packed representations
determining the underspecified operations and all possibilities where they could
be applied.

Parent Names In the semantic representation of parent skeletons, there are
terms with expressions of the form Multiplier*[Locs List] which seem to
be underspecified, e. g. as in ose(??*[??],6*C). This term represents hexose
where neither multiplier nor locants were specified in the name. Only the num-
ber of carbon atoms is specified. Aldoses named this way are meant to have
one carbonyl group at locant number 1. Thus, the term defaults should be 1 for
the multiplier and 1 for the list of locants. These default values should then be
used to replace the underspecified markers ‘??’ in the semantic representation
for the underspecification to be resolved.64 There are more examples like this,
where multiplier and locants should get default values unless they are specified.

For examples bearing underspecification concerning the ring connection ele-
ments (e. g. hexopyranose), it is not clear where to construct the ring connec-
tion, and there are no defaults that could be applied. However, there is only one
possibility for a ring connection. As the ring size is specified (a pyranose has
six ring elements, including one oxygen atom) and by knowing that one chain

63Note that this is not only an underspecified name, but also a trivial name.
64In our implementation, however, we directly apply the appropriate operations for the term

to the pre-representation, because changing the values in the semantic representation
would be an unnecessary intermediate step in this case.
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element with a carbonyl group will be one connection element, both locants
are inferred.

Yet other examples are underspecified and not resolvable, e. g. for hexos-2,3-
ulooxirose one cannot decide where to construct the ring connection, as there
are three carbonyl groups, each possibly serving as one of the two ring connec-
tion elements. Hence, there are three possible ring connections and it cannot
be inferred where one should be constructed. In the current implementation,
the first possible ring connection is constructed.

Names without configuration specifications could be treated as another kind
of underspecification, as there are several combinations of chirality signs possi-
ble to assign to a parent structure. We have not treated that as an underspec-
ification in the scope of this work.

Prefixes The semantic representation of a prefix occuring without a list of lo-
cants is underspecified. For processing such a prefix, we use the Prolog clause for
fully specified prefixes, but call it with a variable substituting a locant, which re-
sults in finding an appropriate one. In our implementation, Prolog is instructed
to find all solutions to the clause by calling it repeatedly as described above.
This procedure yields all the possible locants for applying the current prefix to
the pre-representation built so far. The acquired list of locants is attached to
the prefix in the same format as in the semantic representation: [Locants]-
Prefix. The resulting term is then inserted into the list of underspecifications,
which is the only argument of the functor uspecs. As stated before, this functor
is the first element in the list of the pre-representation. The pre-representation
remains unchanged in other respects. Example (50) represents an compound
with a fully underspecified specification for the deoxy- prefix which can be
applied to locants 1–5.

(50) [uspecs([??*[1,2,3,4,5]-deoxy]),
chain el(C,1,...),
chain el(C,2,...),...]

In a next step, one could try to infer which prefixes at which locants can be
applied to the pre-presentation created finally, i. e. which underspecifications
are resolvable, thereby considering coinciding locants and prefixes depending
on each other as described above.

When trying to generate the list of locants for the prefixes deoxy- and amino-
, we encountered the following difficulty: If the deoxy- prefix is underspecified
and thus does not change the pre-representation, the amino- prefix cannot be
applied to any chain element, because the dependency on the deoxy- prefix
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is modeled as described earlier in this subsection. This is another reason for
allowing the alternative proccessing of the amino- prefix, namely to be applied
(in a second try) independently from the deoxy- prefix.

Prefixes which cannot be applied to any chain element are inserted into
the list of underspecifications, too, but with their underspecified markers ‘??’
instead of a list of locants. – to express that they are probably not applicable
in the way described, but they could as well just miss in the lexicon, be spelled
incorrectly, or a naming error.

Class Names Pure class names as well as class names mixed with systematic
nomenclature rules forming a semi-systematic class name occur. The SMILES
string generator does not deal with names of both of these types; these cases
are not covered in the frame of this work. If enhanced, it should express the
underspecification (especially for the latter case) by printing the morphemes
that are involved so that more detailed information is available.

Output Routine

The SMILES string generation requires a more sophisticated output routine
than the remaining output data. This is due to the fact that it is based on an
intermediate pre-representation, which is necessary for the flexible and frequent
insertion and deletion of elements. Furthermore, ways to deal with underspeci-
fications had to be included. The SMILES string output is generated stepwise,
as each chain element and each branch have to be checked for certain features
before being printed accordingly. That is to say, the SMILES string generated
is not accessible via a Prolog variable, but displayed directly.

Underspecifications At the top level of the output, the pre-representation
given as list of chain elements is processed element by element. The first element
being the list of underspecifications is treated specially. In case it is not empty,
a functor-argument representation will be created, which combines the SMILES
string and the underspecified prefixes as shown in (51a). For deoxy-tetrose,
the corresponding output is shown in (51b).

(51) a. underspecified(SMILES String,Underspecified Prefixes List)
b. underspecified(C(=O)C([H])(O)C([H])(O)C([H])(O),

[??*2,3,4-deoxy])

The prefixes in the list of underspecifications are displayed in the same form as
they occur in the pre-representation, differing only in that the list of locants
is not embraced by brackets ([,]), but by braces ({,}) to indicate a set of
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possibilities. In case the list of underspecifications is empty, there is no such
output and the next element in the pre-representation (which is the chain
element with locant number 1) is processed.

Chain Elements Each of the chain elements is checked for a chirality sym-
bol; if specified, the element is printed together with the element symbol, sur-
rounded by brackets. After that, it is determined if the chain element is involved
in a ring connection, and in that case the locant number serving as connection
index is printed. Next, the side branches are output one by one, embracing
each one by parentheses (‘(’,‘)’). Branches can themselves be embedded pre-
representations of a complex compound, which will be treated as described
above, before the next step.

Any other branch will first be checked for special ring representations such
as ring-O (note that the O could be also substituted by a different element). If
existent, the respective element will be printed together with the appropriate
connection index which is to be found in the feature ring el2(Index) of the
feature list. Other special expressions prefixed with a hyphen to an element
(as in deoxy-[H]) are omitted and only the element is output. Furthermore, a
branch specification in the pre-representation can consist of a list of elements
and binding types, which are just output altogether.

Our pre-representation of SMILES strings is an easily extendible language;
the output routine has to be adapted accordingly. For example results of the
SMILES string generator see the testsuite in appendix B.2.2.

4.4 Classifier

The module for the structural classification of chemical compound names is
based on the morpho-semantic analysis yielded by the parser. Our ‘chemical
class calculus’ takes a semantic representation term (as described in section 4.2)
as input and yields a list of classes for each non-sugar name.

Compound classes are defined according to the combination of a name’s
morphemes, which partly represent its functional groups. The morphemes are
coded in our semantic representation language in the form of predicates with
determined arities (predicate-argument terms). We use rules (Prolog clauses)
formulated on the basis of domain knowledge, i. e. nomenclatures and chemical
defaults, to determine the corresponding classes. Along with the classes for a
name, (if applicable) the respective functional group on the basis of which a
class is defined is provided in parentheses, e. g. ‘ALCOHOL (-OH)’. Fully specified
names are processed first, followed by the underspecified cases.
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Procedure

The three arguments of the semantic representation predicate compd are ad-
justed to lists of an analogue format in order to compare them in a next step.
For example, the semantic representation term for 2-oxahexan-1-ol in (52)
yields a parent predicate list [6*C-ane], an unchanged prefix predicate list
[??*[2]-oxa], and an also unmodified suffix predicate list [??*[1]-ol].

(52) compd(ane(6*C),pref([??*[2]-oxa]),suff([??*[1]-ol]))

The general format of the output with the three predicate lists is illustrated in
example (53).

(53) compd(ParentPredList,PrefixPredList,SuffixPredList)

For nested parent predicates such as ene(??*[2],ane(5*C)), the order of items
in the parent list ([??*[2]-ene,5*C-ane]) corresponds to their nesting, i. e.
from the outermost to the innermost predicate.

The core part of the class calculation consists of a complex set of rules with
conditions for particular cases of predicate combinations. Most classes are cal-
culated directly from the morphemes (for parent and suffix predicates). For
example, according to the list of parent predicates, the combinations (cy-
clo,ene,ane), (cyclo,ane), and (yl,ane) are assigned the classes CYCLO-

ALKENE, CYCLOALKANE, and ALKYL, respectively. Table 5 shows several of the
morpheme-class mappings implemented.

morpheme class (defining property)

-ane ALKANE (single bond)
-ene ALKENE (double bond)

hydroxy-, -ol ALCOHOL (-OH)
amino-, -amine AMINE (-NH2)

Table 5: Morpheme-class mapping examples

Occasionally, prefix predicates do not simply add more classes, but ‘interact’
with parent or suffix predicates in such a way that the classes deduced from
the latter are either substituted by other classes (class-changing process) or
deleted (destructive process). As an example for such a prefix effect, the prefix
2,3-dihydro in 2,3-dihydropent-2-ene ‘neutralises’ the -ene (double bond)
desaturation: the latter is ‘no longer’ of the class ALKENE (see example (55) for
an image of the molecule structure).
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The evaluation of the predicate lists to generate a class list proceeds as
follows. First, very specific combinations of predicates are treated. They are
processed first with a special rule before general rules are applied. With the
help of Prolog cuts (described in section 4.2), it is made sure that more general
rules are prevented from being applied later if such specific rules succeed. The
following examples show the treatment of increasingly general cases of predicate
combinations.

In example (54) with the subtractive nomenclature operation prefix deoxy-,
which removes the oxygen atom and thereby the functional group for alco-
hol, the rule in (54c) describes the following: The predicate list combination
(ParPredList, PrefPredList, SuffPredList) is turned into a class list by
‘collecting’ certain predicates being members65 of the three lists. These three
predicates are stored in the variables ParPred, PredPred, and SuffPred. The
combination of these three variables is then checked in the lexicon-like Pro-
log fact (54d) which yields a corresponding class. The lexicon is hand-coded
according to chemical domain knowledge.

(54) a. name:
5-deoxypentan-5-ol

H C C C C C O H

H

H

H

H

H

H

H

H

H

H

b. semantic representation:
compd(ane(5*C),pref([??*[5]-deoxy]),suff([??*[5]-ol]))

c. Prolog clause:
predlistscomb2classes(ParPredList,PrefPredList,

SuffPredList,Class)
:-

member( Mult* Elem-ParPred,ParPredList),
member( Mult*[Loc| Rest]-PrefPred,PrefPredList),
member( Mult*[Loc| Rest]-SuffPred,SuffPredList),
prefchangeclass(ParPred,PrefPred,SuffPred,Class),
!.

d. Prolog fact:
prefchangeclass(ane,deoxy,ol,[ALKANE]).

After that, cases with only two predicates in combination are dealt with, e. g.
for 2,3-dihydropent-2-ene with the additive nomenclature operation prefix
dihydro-. The rule and lexicon entry are shown in (55).

65The built-in Prolog predicate member succeeds if its first argument is contained in the list
in its second argument.
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(55) a. name:
2,3-dihydropent-2-ene

H C C C C C H

H

H

H

H

H

H

H

H

H

H

b. semantic representation:
compd(ene(??*[2],ane(5*C)),pref([2*[2,3]-hydro]),suff([]))

c. Prolog clause:
predlistscomb2classes(ParPredList,PrefPredList,[],Class)
:-

member( Mult*[CommonLoc| Rest]-ParPred,ParPredList),
member(2*[CommonLoc,FollowingLoc| Rest]-PrefPred,

PrefPredList),
prefchangeclass(ParPred,PrefPred,none,Class),
FollowingLoc is CommonLoc+1.

d. Prolog fact:
prefchangeclass(ene,hydro,none,[ALKANE]).

Then, cases where one predicate does not have influence on the classification
are processed, e. g. for 2-phosphapentan-5-ol with the replacement nomen-
clature operation prefix phospha-. As this prefix does not influence the classi-
fication process, it gets the property no change assigned. More such prefixes
can thus be subsumed in a ‘class of unpersuasive prefixes’.

(56) a. name:
2-phosphapentan-5-ol

H C P C C C O H

H

H

H

H

H

H

H

H

H

H

b. semantic representation:
compd(ane(5*C),pref([??*[2]-phospha]),suff([??*[5]-ol]))

c. Prolog clauses:
predlistscomb2classes(ParPredList,PrefPredList,

SuffPredList,Class)
:-

member(Loc* Elem-ParPred,ParPredList),
member( Mult* LocList-PrefPred,PrefPredList),
member( Mult*[Loc| Rest]-SuffPred,SuffPredList),
prefchangeclass(ParPred,PrefPred,SuffPred,Class),
!.

prefchangeclass(ane,AnyPref,ol,
[ALKANE,PRIMARY ALCOHOL (-OH)])
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:-
no change(AnyPref).

d. Prolog fact:
no change(phospha).

Cases where only one (i. e. the parent) predicate is taken into consideration,
such as for pentane (without affixes), are then dealt with. Only a lexicon entry
is needed in this case.
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(57) a. name:
pentane

H C C C C C H

H

H

H

H

H

H

H

H

H

H

b. semantic representation:
compd(ane(6*C),pref([]),suff([]))

c. Prolog fact:
predlistscomb2classes([ Mult* Elem-ane],[],[],[ALKANE]).

Additional classes are yielded by taking superclasses out of a (manually defined)
hierarchy, e. g. with the axiom “Primary alcohols are alcohols.”. The rule looks
as shown in (58) and can be paraphrased as follows: Add the more general class
ALCOHOL (-OH) to the class list generated so far if PRIMARY ALCOHOL (-OH) is a
member of this class list.

(58) Prolog clause:
addsuperclasses(ClassList,[’ALCOHOL (-OH)’|ClassList])
:-

member(’PRIMARY ALCOHOL (-OH)’,ClassList).

Class names such as alkene and modified ones (semi-systematic class names)
such as 2-alkene are treated as shown in (59) and (60), respectively. The
clauses express that the class names (‘labeled’ by class name in the semantic
representation) are directly written to the class list variable.

(59) a. name:
alkene

b. semantic representation:
compd(class name(alkene),pref([]),suff([]))

c. Prolog clause:
classes(compd(class name(ClassNameforList),

pref([]),suff([])),[ClassNameforList]) :- !.

(60) a. name:
2-alkene

b. semantic representation:
compd((??*[2],class name(alkene)),pref([]),suff([]))

c. Prolog clause:
classes(compd( Mult* Locs,class name(ClassNameforList),

pref([]),suff([])),[ClassNameforList]) :- !.

A direct systematic classification of trivial names is not possible, therefore the
corresponding classes have been entered manually. See (61) for the benzene
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example.

(61) Prolog clause:
classes(compd(triv name(benzene),pref([]),suff([])),

[’AROMATIC’]) :- !.

For a methodic extension of this ‘lookup’ data, classes for trivial names could
be acquired, e. g., (by a corresponding tool) from SMILES strings, if available.
This procedure could also be enhanced by replacing the trivial names with their
corresponding systematic names (by means of a lexicon) and classifying these.
However, such systematic names are often rather complex (which is probably
why they were substituted by trivial names); their classification would not have
been covered in our prototype.

More examples as to special rules and lexicon entries can be found in the file
classes.pl in appendixA.

Perspectives

As far as the completeness of calculated classes is concerned, such a purely
linguistic approach has a potential drawback in comparison to a graph-of-
molecules processor. If new functional groups emerge in a compound structure
from the combination of original functional groups, a graph handles that simply
by searching for subgraphs (see Wittig et al., 2004). As such new functional
groups may not be expressed by a new morpheme in the compound name, a
classification relying exclusively on the name itself could be supplemented by
a classification via SMILES. As an alternative, a sophisticated deep semantic
interpretation of complex morpheme combinations has to be developed.

For the classifier module to become exhaustive, classification has to be han-
dled by directly starting with the name as the most specific kind of class. By
detaching the affixes incrementally and thereby ‘abstracting’ step by step, par-
tial names corresponding to intermediate class names will emerge. Additionally,
more superclasses have to be added by adding further axioms. After these anal-
yses, predicate interaction must be considered and potential class changes must
be made. Our system provides a basis for the ultimate aim to systematically
derive all intermediate classes and superordinate classes. Like that, a compre-
hensive hierarchy can be built to be used as an ontology of chemical compounds
and their classes such as the one in figure 13.
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7-HYDROXYHEPTAN-2-ONE

PRIMARY ALCOHOL

ALCOHOL

7-HYDROXYHEPTANE

HYDROXYHEPTANE

HEPTANE

ALKANE

7-HYDROXYALKANE

HYDROXYALKANE

7-HYDROXYKETONE

HYDROXYKETONE

KETONE

HYDROXYHEPTAN-2-ONE

HEPTAN-2-ONE

Figure 13: Class hierarchy for 7-hydroxyheptan-2-one

4.5 Results

The main output of our tool consists of a semantic representation of a com-
pound name together with a SMILES string for sugar compounds and a list of
classes for non-sugar compounds.66

The concrete output format for a Prolog call with the name hexose looks as
shown in (62). The org compd call is followed by a syntactic tree, the SMILES
string, and the variables with their values of the complex semantics, the syntax,
the β-reduced semantics corresponding to our semantic representation, and the
class list.

(62) | ?- org compd(Syn,Sem,[h,e,x,o,s,e],[]),pp(Syn),
beta reduce(Sem,RedSem),
smile(RedSem),classes(RedSem,ClassList).

=org compd
|=par sugar
| |=mult
| | |=[ h e x ]
| |=ps zero
| | |=stem suff
| | | |=[ o s e ]

C(=O)C(O)C(O)C(O)C(O)C(O)

Sem = compd(lam(??*[??],lam(6*C,ose(??*[??],6*C)))@
??*[??]@6*C,pref([]),suff([])),

Syn = org compd(par sugar(mult([h,e,x]),
ps zero(stem suff([o,s,e])))),

66For the time being, the complementary parts, i. e. SMILES for non-sugar and classes for
sugar names, are not provided (see section 1).
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RedSem = compd(ose(?? *[??],6*C),pref([]),suff([])),

ClassList = [NO CLASSES]

In the testsuite, this output is simplified; only the name, its list representa-
tion, the reduced semantics, the SMILES string, and the class (list) are printed,
if available. The compact analyses are followed by a triple dash (---); an empty
line separates different names from each other. If several analyses exist for one
name, these are separated only by a double dash as displayed in (63).

(63) hexane
[h,e,x,a,n,e]
compd(ane(6*C),pref([]),suff([]))
NO SMILES
ALKANE
---

cyclohexatriene
[[c,y,c,l,o,h,e,x,a,t,r,i,e,n,e]]
compd(cyclo(??*[??],ene(6*[??],ane(3*C))),pref([]),suff([]))
NO SMILES
CYCLOALKENE
---
compd(cyclo(??*[??],ene(3*[??],ane(6*C))),pref([]),suff([]))
NO SMILES
CYCLOALKENE
---

A sample of analyses with classes for non-sugar and SMILES strings for sugar
compound names can be seen in table 6. For the former case, the non-sugars,
7-hydroxyheptan-2-one is a complex example, alkene a class term and dipen-
tene an underspecified name. For the latter, we show L-threo-tetrodialdose
as an example with configurational prefixes and D-fructose as a trivial name;
2-pentulose and pent-2-ulose are synonyms due to nomenclature variations,
which can be matched by their identical semantic representations and SMILES
strings.

We cover nomenclature operations such as substitutive (exchange of H), re-
placement (exchange of C), additive, subtractive operation, ring formation, as
well as stereochemical features. The complete testsuite for our regression testing
with examples for all the phenomena covered is attached in appendix B.2.1.

A general assessment of the quality and the degree of coverage of this output
is difficult, because our lexicon is not filled with sufficient morphological infor-
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mation. Additionally, there is no data to be referred to for name analysis (terms
with correctly annotated structures), especially not for underspecification.

A rough estimation yields the supposition that missing rules are rarely the
reason for wrong or no results, but that mostly missing lexicon entries, espe-
cially for trivial names, cause such failures. The situation is comparable to
the one with natural language systems, where the rules can be coded quite
completely as opposed to the lexicon, which is practically open-ended.

Another issue to be considered are the ‘impure’ results for large-scale au-
tomatically generated compound lists. From one such list extracted from the
KEGG database by the Scientific Database and Visualisation (SDBV) group67

of the European Media Laboratory (EML), Heidelberg, we show the examples
in (64) for entries where our tool failed because of its current limitations.

(64) a. (partial) sum formula:
H2O; OH-

b. comments at the end of lines:
(oxidized); with phosphoric propanoic acid

c. miscellaneous:
2-Propanone 1-hydroxy-3-(phosphonooxy)-;
(R)-(-)-Epirenamine; L-Tyrosyl-tRNA()

Nevertheless, we provide with this system a sophisticated basis for biochemi-
cal name analysis, which functions well for recommended names corresponding
to the major nomenclature rules. This is crucial since semi-automatic NLP
methods for the tool’s extension can now be brought forward in order to essen-
tially enhance biochemical research.

4.6 Applications

In this subsection, we illustrate several contexts in which our tool can be used
to support research in the biochemical field.

The analysis of terminology is an important basis for computational text
processing, as unrecognised or unanalysed terminology poses a serious problem
there. If a semantic description can be provided for special terms, their identifi-
cation supports the processing of the huge amount of data available, especially
for the life sciences (see Krauthammer and Nenadić, 2004).

Intermediate classes as shown in figure 13 on page 63 become crucial for
automatic intelligent text processing, e. g. if an article which treats specific
compounds only mentions one of its superclasses in the title. An example for
a publication containing such an intermediate class (viz Hydroxyketone) is

67Thanks to all for their support of our work.
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Ishmuratov et al. (2001): “Ozonolysis of Alkenes and Study of Reactions of
Polyfunctional Compounds: LXIII. A New Procedure for Direct Reduction of
1-Methylcycloalkene Ozonolysis Products to Hydroxyketones”.

The support of biochemical database curation as, e. g., described in Ro-
jas et al. (2002) is another kind of application.68 The need for high-quality
databases requires the manual work of experts, which is time-consuming and
expensive. Therefore, semi-automatic database population and integration by
NLP for efficient, correct, consistent and non-redundant as well as non-over-
lapping databases is necessary. Until now, most biochemical databases consist
of plain text and inserted images of molecules, i. e. they are ‘flat’ (without a
deep structure) and do not offer the possibility to deduce further information.
For such a purpose, automatised deeply-structured databases are needed and
must be populated with the help of semantic processing or ontologies. In this
population task, our resulting SMILES strings can be used for term reference,
i. e. the assignment of a name to a structure, and for resolving coreferences.
Multiple entries for one and the same molecule (as seen in figure 2 on page 2)
can be detected and identified as such by the comparison of their correspond-
ing SMILES strings. Their elimination will contribute to database reliability;
besides, the population and curation of databases can be accelerated, which is
very important because of the huge amount of data available.

The classification of chemical compound names serves for database curation
as well. Compounds can be subsumed according to their classes; like that an
application can predict their common features. Thus, relations between com-
pounds and their classes are established in a hierarchical way, which helps to
automatise database handling.

Classification is also crucial for the processing of abstract reaction equations.
If a general class name or an otherwise underspecified name occurs in a reaction
equation such as in the example in figure 14 (taken from the Enzyme Structures
Database of the EBI69), possible instances of this equation can be generated
automatically. The comment lines have to be considered if they contain addi-
tional constraints (e. g. ‘but not . . . ’), or they can be searched for relations
between compounds and their classes such as ‘is a’, ‘part of’, etc. Biochemical
reactions at different levels of abstraction can thus be compared to each other.
In general, data which is represented in different ways can be matched, e. g. in
distinct databases for their integration.

68We conducted a preliminary implementation of the system (called from a ‘Java’ applica-
tion) at EML for the System for the Analysis of Biochemical Pathways (SABIO) in the
BioBrowser environment.

69EBI: European Bioinformatics Institute (http://www.ebi.ac.uk/thornton-srv/databases/
enzymes)

http://www.ebi.ac.uk/thornton-srv/databases/enzymes
http://www.ebi.ac.uk/thornton-srv/databases/enzymes
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Figure 14: Example entry for a reaction equation

All the above is associated to the field of bioinformatics, where the devel-
opment of computational methods to model, simulate and analyse biochemical
processes, e. g. also for the research on medication, is a central point of interest.
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5 Outlook

In this section, we will first describe concrete proximate steps to extend our
system and second take a look at further enhancement possibilities.

5.1 System Enrichment

Some proposals for a tangible extension of our work arelisted in this subsection.
For testing a potential database curation support and, in the course of that,
for the incremental semi-automatic perfection of the tool via user feedback, the
system should be integrated into a corresponding environment.

Parser

For better coverage of data, the system’s functionality has to be extended by
completing the linguistic analysis components. On the one hand, the grammar
has to be expanded according to nomenclature rules70and in respect of rather
syntax-based rules as mentioned in section 4.2. On the other hand, especially
the morphological lexicon71 must be enriched, e. g. also with features such as
the rule-based combination of multipliers (pentadec→ [[penta][dec]]). This
should be done semi-automatically with the help of computational methods. A
sample of features not yet covered are complex class names such as 3-hydroxy
acid, the rearrangement nomenclature of compounds (abeo-), organometal-
lic compounds (containing vinyl, gold, etc.), mononuclear hydrides with an
explicit bonding number (λ5-phosphane) or isotopically modified compounds
(Dichloro[2H2]methane). Morpho-syntactic variations as well as exceptions to
rules are other features to be implemented, and as the most important objects
in a text are often abbreviated, the analysis of all kinds of abbreviations is to
be added (cf. also the Biomedical Abbreviation Server72 for a collection of ab-
breviations and their corresponding long forms). More intricate cases are, e. g.,
prefixes originated from compounds such as methylimine, which then end in
a different vowel (methylimino-). As we do not want to list compounds as
possible prefixes, a vowel change has to be allowed without creating too much
overanalysis.

As a more elaborate system will yield more ambiguities, sophisticated solu-
tions for disambiguation will have to be found. Weighted rules for the pref-

70Trying to implement CAS nomenclature rules in addition to IUPAC rules caused high over-
analysis – a comprehensive coverage will thus present quite a challenge.

71A systematical lexicon enhancement will be done in a student research project at the IMS,
University of Stuttgart.

72http://bionlp.stanford.edu/abbreviation

http://bionlp.stanford.edu/abbreviation
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erence of frequent combinations may be introduced, as well as more complex
disambiguation methods according to syntactic, semantic, discourse context, or
ontologies. Implausible analyses can thus be marked or even suppressed.

As the number of rules increases and the lexicon grows, the efficiency of the
tool will no longer be satisfactory with the current DCG parsing algorithm.
The analyser will have to be converted into a more efficient parser with a more
favourable complexity. For example, Voss (2004) describes an Earley chart pars-
ing algorithm implemented in Prolog, with which also the difficulty concerning
left-recursiveness (as mentioned in section 4.2) could be solved.

To further increase the efficiency of the program, a database containing
all the names that have already been processed, together with their anal-
yses, SMILES string and classes, should be automatically generated during
the system execution. Frequent compound names will thus not be calculated
repeatedly, but simply looked up in a database, which is a faster solution.
As another extension, the stored result for a trivial name should also be re-
used if this trivial name is part of a semi-systematic name, such as ben-
zene in benzene-1,3,5-triacetic acid. Lists with the systematic equiva-
lents to trivial names may be useful there; examples can be found, e. g., on
http://www.chem.qmul.ac.uk/iupac/ions/app.html (for non-sugar names) or
on http://www.chem.qmul.ac.uk/iupac/2carb/app.html (for sugar names).

The robustness of the system is to be enhanced, e. g., by allowing partial
parses for incomplete input or input which is (to some extent) not compliant
to rules. This can be done along the lines of an underspecification handling,
where partial analyses and predictions about missing parts are needed as well.

A systematic error analysis with a corresponding output notice for the user,
e. g. ‘morpheme <...> is not in lexicon’, is also useful as a further devel-
opment. Along with that, warning messages such as ‘no longer recommended
according to IUPAC’ could be provided.

SMILES String Generator

The SMILES module has to be elaborated and extended to comprehensive non-
sugar name processing including also functional group suffixes, for example.

For class names (possibly mixed with systematic morphemes), a resulting
SMILES string should express the underspecification, as opposed to underspeci-
fied prefixes, where the missing information can mostly be resolved by consider-
ing coinciding locants, for example. As currently the first possible ring connec-
tion is constructed for underspecified carbohydrate rings (see section 4.3), this
can be improved by yielding all possibilities, e. g. in a packed representation.

http://www.chem.qmul.ac.uk/iupac/ions/app.html
http://www.chem.qmul.ac.uk/iupac/2carb/app.html
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Generally, the tool should be able to deal with resolvable and unresolvable
underspecification by means of domain knowledge. For a comprehensive treat-
ment of underspecified compound names, the idea of partial SMILES strings
(with variables for unknown substrings) has to be further worked out and im-
plemented in the system. Packed representations such as {1,2}-ene for butene
according to a valence calculus or a detailed predicate logic description with
operators on SMILES strings are possible solutions. ‘Extended SMILES’ provid-
ing explicit numbering (as already provided in the SMILES pre-representation),
e. g. for certain trivial names with non-systematic, prescribed indices such as for
tryptophane, are also to be developed. For such trivial names, special lexica
with exactly this numbering information have to be used.

As an extension of the current consistency check as described in section 4.3,
locant-multiplier combinations such as 2-di- must be tested for their potential
validity – the special case of two operations applied to one single atom without
specifying its locant twice (2,2-di- would be correct) could be on hand.

Nomenclature-based synonyms which do not directly yield the same SMILES
string should be identified with further thorough processing, for example, ac-
cording to detailed saturation information.

Classifier

The class calculus has to be elaborated for sugar compound names and, e. g.,
also for a complete classification of semi-systematic names (combined with
trivial or class names). Additionally, our name-based classification should be
systematically compared to a functional group classification, e. g. with a ‘loop-
way’ over SMILES strings, to assess and enhance it. The automatic acquisition
of a ‘natural’ comprehensive ontology with a detailed classification has to be
developed and implemented for results such as in the hydroxyketone example
in figure 13 on page 63. Such a knowledge base for scientists and also a basis
for advanced automatic knowledge management systems is crucial for further
biochemical research.

5.2 Further Research

In the following paragraphs, we present several perspectives for possible re-
search projects on the basis of a comprehensive tool as described in the last
subsection.
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As one continuative step, the component for the analysis of chemical ter-
minology can be advanced to cover all types of (bio-)chemical terms73, e. g.
the enzyme names of BRENDA74. More rules of the ‘still outstanding’ IUPAC
nomenclatures taken from IUPAC Commission on Nomenclature of Organic
Chemistry (2005) could be integrated. Some of them are listed in table 7; note
that several specific ones overlap with more general ones.

Branched nucleic acids EC 5 Isomerases Polymerized amino acids
Carbohydrates EC 6 Ligases Polypeptide conformation
Carotenoids Folic acid Polynucleotide conformation
Corrinoids (vitamin B12) Glycolipids Polysaccharide conformation
Cyclitols Glycoproteins Prenol nomenclature
Electron transport proteins myo-Inositol numbering Pyridoxal (vitamin B6)
Enzyme kinetics Lignan Nomenclature Retinoids
Enzyme nomenclature Lipid Nomenclature Steroids
EC 1 Oxidoreductases Multienzymes Tetrapyrroles
EC 2 Transferases Nucleic acid sequence Tocopherols (vitamin E)
EC 3 Hydrolases Organic Chemistry Translation Factors
EC 4 Lyases Peptide hormones Vitamin D

Table 7: A sample of IUPAC nomenclatures

Because of the huge amount of this nomenclature information, frequency data
from texts and databases might have to be considered during the extension of
the system in order to prevent needless inflation of rules and lexica.

While in the field of organic compounds there are many systematic names
and a classification functions quite regularly, other biochemical terms such as
protein complexes and enzyme names consist of more trivial and underspecified
names and the classification is more difficult. The complexity can be indicated
with the example of proteins depending on their environment and state for their
classification. Additionally, the productive phenomenon of verb formation from
biochemical terminology such as in dephosphorylate can be tackled.

A comprehensive valence and numbering model will have to be developed,
e. g., for the proper treatment of fusion nomenclature, certain trivial names, or
underspecified names for which the underspecified part can be resolved.

As our semantic representation language comprises all kinds of information
on a compound in a standardised form, it can also serve as basis for other

73As a special challenge, we found the following statement on http://fun.drno.de/incoming/
20020501/longestword.txt: “The longest word in the English language is 1,913 letters long
and it refers to a distinct part of DNA”.

74The Comprehensive Enzyme Information System (http://www.brenda.uni-koeln.de)

http://fun.drno.de/incoming/20020501/longestword.txt
http://fun.drno.de/incoming/20020501/longestword.txt
http://www.brenda.uni-koeln.de
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bioinformatics processing beyond the generation of SMILES strings and the
classification of compounds, e. g. biochemical reaction modelling and simula-
tion.

For a deeper understanding of texts, domain-specific inferencing and presup-
position resolution are necessary, and semantic, discourse, and extralinguistic
context properties must be exploited. In Cimiano (2002) and Cimiano et al.
(2004), systems towards this end are described.

In general, interrelations between form and contents, e. g. between language
and encoded knowledge (thus morphology and semantics), are also needed for
more comprehensive ontologies than classification hierarchies or as well for
semantic web applications.

An extension concerning human-machine interaction could be the repair of
users’ lexicographic errors, e. g., caused also by non-mother tongue speakers, to
additionally enhance the system’s robustness. This can be tackled with string
matching algorithms and the calculation of similarity, for example. Luque Ruiz
et al. (1996a,b) describe a system for the “Error Detection, Recovery and Repair
in the Translation of Inorganic Nomenclatures” as to this issue.75

A morpho-semantic interface for biochemical terminology such as in our ap-
proach can be both transferred to other term languages than English and to
other scientific domains with their respective terminology. The latter extensions
could resemble DeriF (Namer and Zweigenbaum, 2004), a morpho-semantics
parser to acquire a definition for French medical terminology.76 Moreover, com-
plex words of natural languages could be analysed similarly for a deep semantics
calculation; one approach providing a basis for that can be found in Schmid
et al. (2001).

An extended chemical compound name parser is a key to full term identi-
fication, i. e. recognition, classification and mapping (see Krauthammer and
Nenadić, 2004). This, in turn, serves as a central component for information
extraction (see Šarić, 2005), for text mining (see Tanabe et al., 1999), or for full
text understanding of scientific publications in order to ‘structure’ the knowl-
edge coded.

Coreference resolution in texts can as well be supported, e. g. for Discourse
Representation Theory (see Kamp and Reyle, 1993; Kamp et al., 2004) accord-
ing to sophisticated lexical semantics and detailed ontology modelling.

75From another viewpoint, Kirby and Polton (1993) propose the tackling of the difficulties
in automatic chemical compound processing as a motivation to systematically change
current nomenclature methods. This could, e. g., be supported by determining frequent
error sources.

76One application of such a tool could be biomedical term extraction by entity recognition,
e. g. described in Finkel et al. (2004).
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Another valuable application of an exhaustive term understanding system
can be a further automatised development of biochemical database systems.
By means of a linguistic analysis of terms and, particularly, by their semantic
normalisation, fully specified terminology can be covered by a fully automatic
tool; for underspecified terms a semi-automatic, interactive dialogue with the
expert to resolve remaining ambiguities is to be developed.



75

6 Summary

In this work we describe a natural language processing system developed in
Prolog which analyses names of organic chemical compounds. We used a rule-
based approach yielding an intermediate representation of semantic features
contained in a name. This semantic representation is, on the one hand, further
processed to generate a SMILES string describing the molecular structure, and,
on the other hand, it is used for the classification of a compound name. The
IUPAC nomenclature rules are the basis for our tool, which is able to analyse
several types of names, including systematic, trivial, and underspecified ones
such as class names. It could not be made exhaustive in the given framework,
but it is a valuable prototype as a template which can be extended with a
reasonable effort.

Existing similar systems either are not capable of assigning a molecular struc-
ture to chemical names directly or classifying them by a linguistic analysis, or
they depend on databases and thus are not able to analyse new names not
encountered before. None of the system spotted covers underspecified names,
which appear frequently in biochemical literature.

An adequate representation of terminology presents a crucial basis for term
identification in BioNLP applications. The necessary treatment of synonymous
names is only possible by an analysis and direct understanding of terms. The
system’s possible applications in the field of computational text processing and
bioinformatics include, e. g., supporting term extraction and database creation
and curation. From further enhancements, which were beyond the objectives
of this work, BioNLP can greatly benefit.

With this system we present a sophisticated basis for the semantic analy-
sis of recommended names of an excerpt of nomenclature rules. Terminology
decoding is essential for NLP methods in, e. g., biochemical research, and our
work is a key to large-scale data processing in this field.

To conclude, the linguistic approach we present is well applicable for handling
the existing complex biochemical data. By further extensive transfer between
experts from the NLP and biochemistry disciplines, more methods can be de-
veloped to essentially support research in the life sciences by automating the
processing of the huge and growing amount of biochemical data.
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Additional Links

Biochemistry Background

• The Organic Substance Classes, in German:
http://www.chemieseite.de/organisch

• Virtual Library of Biochemistry and Cell Biology:
http://www.biochemweb.org/databases.shtml

• CHEMINFO Chemical Information Sources:
http://www.indiana.edu/∼cheminfo

Resources for Life Science Terminology

• Bibliography of IUPAC and IUBMB Nomenclature Recommendations:
http://www.indiana.edu/∼cheminfo/14-03.html

• The Beilstein Institute and Database:
http://www.beilstein-institut.de

• Compound Synonym Lists:
http://www.chemicalland21.com,
http://lb.chemie.uni-hamburg.de

• Unified Medical Language Systems:
http://www.nlm.nih.gov/research/umls/about umls.html

• NCBI Organism Taxonomy:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Taxonomy

• InterPro Database of Protein Families, Domains, etc.:
http://www.ebi.ac.uk/interpro

• KDBI: Kinetic Data of Bio-molecular Interactions:
http://xin.cz3.nus.edu.sg/group/kdbi/kdbi.asp

• EBI/BCBI Taxonomy/Synonyms Databases:
http://www.ebi.ac.uk/msd-srv/docs/dbdoc/ref taxonomy.html

• Gene Ontology:
http://www.geneontology.org

Life Science Text Processing Applications

• MedMiner:
http://discover.nci.nih.gov/textmining

• GenIE (= Genome Information Extraction):
http://www.ims.uni-stuttgart.de/projekte/GenIE

• GENIA information extraction project:
http://www-tsujii.is.s.u-tokyo.ac.jp/∼genia
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A Source Code

A.1 Input and Output

A.1.1 File inout.pl

% ------------------------------------------- %

% File: inout.pl %

% Author: Gerhard Kremer %

% Purpose: input and output processing %

% ------------------------------------------- %

%% preprocess /0:

% produces query from single typed -in name

preprocess :-

format("Give me a name: " ,[]),

flush_output ,

system(’perl preprocess.perl’).

% s/(\(\))/"$1"/g;\

/*

processes nameslist ’testsuite.txt ’ (output in ’testsuite .out ’)

and prints name , semantics , (classes , SMILES strings)

perl -actions: (input: ’testsuite.txt ’,output: ’testsuite .tmp ’)

delete whitespaces at end of line , ignore comments( %...) ,

backslash every single quote ,print: ’<Name >’. ,

lowercase name , concatenate chars with comma in between ,

put special chars (comma , apostrophe , blank ,

round brackets) in double quotes ,

print in prolog -list format: [a,b,c ,...]

*/

system(’perl -n process.perl testsuite.txt > testsuite.tmp’),

open(’testsuite.tmp’,read ,InStream),

open(’testsuite.out’,write ,OutStream),

processNames(InStream ,OutStream),

close(InStream),

close(OutStream).

%% processNames /2:

/*

queries org_compd (... <Name >...) from InStream

and prints all semantic representations in OutStream

InStream should contain pairs of <Name >, format:

’name ’.

[n,a,m,e].

*/

processNames(InStream ,OutStream) :-

read(InStream ,Name),

Name \== end_of_file , %% not at end of file

!,

format(OutStream ,"~w~n",Name),format("~w~n",Name),

read(InStream ,Term),

output(Term ,OutStream),

findall(Sem ,org_compd(_Syn ,Sem ,Term ,[]),AllSems),

% sort(AllSems , AllSemsSorted ), % comment to see syntactic ambiguities

printSolutions(AllSems ,OutStream),

processNames(InStream ,OutStream).

% do nothing (if at end_of_file )

processNames(_InStream ,_OutStream).

%% printSolutions /2:

% beta -reduce list of semantic terms ,

% generate for each SMILES string and

% classes; print them all

printSolutions ([Sem1|RestSems],OutStream) :-

beta_reduce(Sem1 ,Sem1Reduced),

output(Sem1Reduced ,OutStream),
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smile_list(_SList ,SList ,Sem1Reduced),

output_smile(SList ,OutStream),

output_nl(OutStream),

classes(Sem1Reduced ,ClassList),

output_classes(ClassList ,OutStream),

output(---,OutStream), % separates alternative solutions

printSolutions(RestSems ,OutStream).

% all done; print additional newline

% ( separating names w/ their solutions -)

printSolutions ([], OutStream) :-

output_nl(OutStream).

%% Output of anything but strings

% to both stdout and outputstream

% (~w: pass to write /2)

output(Anything ,OutStream) :-

format("~w~n",[Anything ]),

format(OutStream ,"~w~n" ,[Anything ]).

output_nl(OutStream) :-

format("~n" ,[]),

format(OutStream ,"~n" ,[]).

output_no_nl(Anything ,OutStream) :-

format("~w",[Anything ]),

format(OutStream ,"~w" ,[Anything ]).

output_flexible(Format ,AnythingList ,OutStream) :-

format(Format ,AnythingList),

format(OutStream ,Format ,AnythingList).

% Output of classes list

output_classes ([ Class],OutStream) :-

!,

output(Class ,OutStream).

output_classes ([ Class|ClassRestList],OutStream) :-

output_no_nl(Class ,OutStream),

output_no_nl(’,’,OutStream),

output_classes(ClassRestList ,OutStream).

%% output_smile /2:

% Output of SMILES strings

% change according to smile_output in smiles.pl

% done

output_smile ([], _OutStream) :- !.

% output chain element w/ chirality sign given

output_smile(chain_el(El,_Loc ,Branches ,FList),OutStream) :-

member(chir(Chir),FList),

!,

output_flexible("~w~w~w~w" ,[’[’,El,Chir ,’]’],OutStream),

output_smile_ring_el1(FList ,OutStream),

output_smile_branches(Branches ,FList ,OutStream).

% output chain element (w/o chirality sign given)

output_smile(chain_el(El,_Loc ,Branches ,FList),OutStream) :-

!,

output_flexible("~w" ,[El],OutStream),

output_smile_ring_el1(FList ,OutStream),

output_smile_branches(Branches ,FList ,OutStream).

% it’s no underspecified SMILES

output_smile ([ uspecs ([])|SList],OutStream) :-

!,

output_smile(SList ,OutStream).

% output underspecified SMILES

output_smile ([ uspecs(USpecs)|SList],OutStream) :-

!,

output_flexible("~w~w" ,[underspecified ,’(’],OutStream),

output_smile(SList ,OutStream),
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output_flexible("~w~w" ,[’,’,’[’],OutStream),

output_smile_uspecs(USpecs ,OutStream),

output_flexible("~w~w" ,[’]’,’)’],OutStream).

% output atom (from a list)

output_smile(SmileHead ,OutStream) :-

atomic(SmileHead),

!,

output_flexible("~w" ,[SmileHead],OutStream).

% output list

output_smile ([ SmileHead|SmileList],OutStream) :-

output_smile(SmileHead ,OutStream),

output_smile(SmileList ,OutStream).

%% output_smile_branches /3:

% output branches

% done

output_smile_branches ([],_FList ,_OutStream) :- !.

% special rule when encountering [’O ’]

% (could be involved in ring connection )

output_smile_branches ([[ring -El]| Branches],FList ,OutStream) :-

!,

output_flexible("~w" ,[’(’],OutStream),

output_smile ([El],OutStream),

output_smile_ring_el2(FList ,OutStream),

output_flexible("~w" ,[’)’],OutStream),

output_smile_branches(Branches ,FList ,OutStream).

% special rule when encountering

%e.g. [deoxy -’[H]’]

output_smile_branches ([[ _Special -El]| Branches],FList ,OutStream) :-

!,

output_flexible("~w" ,[’(’],OutStream),

output_smile ([El],OutStream),

output_flexible("~w" ,[’)’],OutStream),

output_smile_branches(Branches ,FList ,OutStream).

% output one branch , then the others

output_smile_branches ([ Branch|Branches],FList ,OutStream) :-

output_flexible("~w" ,[’(’],OutStream),

output_smile(Branch ,OutStream),

output_flexible("~w" ,[’)’],OutStream),

output_smile_branches(Branches ,FList ,OutStream).

%% output_smile_ring_el1 /2:

% output ring element1 locant (ring index)

% output locant , if there is a ring element

output_smile_ring_el1(FList ,OutStream) :-

member(ring_el1(Loc),FList),

!,

output_flexible("~w" ,[Loc],OutStream).

% nothing to do (there is no ring element)

output_smile_ring_el1(_FList ,_OutStream).

%% output_smile_ring_el2 /2:

% output ring element2 locant (ring index)

% output locant , if there is a ring element

output_smile_ring_el2(FList ,OutStream) :-

member(ring_el2(Loc),FList),

!,

output_flexible("~w" ,[Loc],OutStream).

% nothing to do (there is no ring element)

output_smile_ring_el2(_FList ,_OutStream).

%% output_smile_uspecs /2:

%output uspecs

% output_smile_uspecs ([]) :- !.

% output last underspecification

output_smile_uspecs ([Mult*Locs -Prefix],OutStream) :-
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!,

output_flexible("~w~w~w" ,[Mult ,’*’,’{’],OutStream),

output_smile_uspecs(Locs ,OutStream),

output_flexible("~w~w~w" ,[’}’,’-’,Prefix],OutStream).

% output one underspecification , then the others

output_smile_uspecs ([Mult*Locs -Prefix|USpecs],OutStream) :-

!,

output_flexible("~w~w~w" ,[Mult ,’*’,’{’],OutStream),

output_smile_uspecs(Locs ,OutStream),

output_flexible("~w~w~w~w" ,[’}’,’-’,Prefix ,’,’],OutStream),

output_smile_uspecs(USpecs ,OutStream).

% output last locant for underspecification

output_smile_uspecs ([Loc],OutStream) :-

number(Loc),

!,

output_flexible("~w" ,[Loc],OutStream).

% output unknown locants

% (no locants found for which substitution could be made)

output_smile_uspecs ([’??’],OutStream) :-

!,

output_flexible("~w" ,[’??’],OutStream).

% output locants for underspecification

output_smile_uspecs ([Loc|Locs],OutStream) :-

number(Loc),

!,

output_flexible("~w~w" ,[Loc ,’,’],OutStream),

output_smile_uspecs(Locs ,OutStream).
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A.1.2 File preprocess.perl

# ------------------------------------------- #

# File: preprocess .perl #

# Author: Gerhard Kremer #

# Purpose: input name preprocessing #

# ------------------------------------------- #

# preprocessing for inout.pl

$_=<>; chomp; s/(\s+\.?|\.)$//g;

$_=lc; $_=join(",",split (//));

s/\’/\’\\\’\’/g;

s/,,/,\’,\’/g;

s/([\(\) ])/\’$1\’/g;

print "\ norg_compd(Syn ,Sem ,[$_],[]),pp(Syn),beta_reduce(Sem ,RSem),smile(RSem),classes(RSem ,CList)

.\n"

A.1.3 File process.perl

# ------------------------------------------- #

# File: process.perl #

# Author: Gerhard Kremer #

# Purpose: input name processing #

# ------------------------------------------- #

# processing of compound name input for inout.pl

# lowercase all; split

# to be treated non -special in Prolog:

# quotes , commas , parentheses , space characters

# output in Prolo -list -format

s/\s+$//g; next if /^(\%.*|)$/;

$name = $_;

$name =~ s/\’/\\\ ’/g;

print"\’$name\’.\n";

$_=lc; $_=join(",",split (//));

s/\’/\’\\\’\’/g;

s/,,/,\’,\’/g;

s/([\(\) ])/\’$1\’/g;

print "[$_].\n"
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A.2 Parser Module

A.2.1 File compd lex.pl

% ------------------------------------------- %

% File: compd_lex.pl %

% Author: Stefanie Anstein , Gerhard Kremer %

% Purpose: morpheme lexicon %

% ------------------------------------------- %

%%% common lexicon entries

%% special characters

comma(comma(’,’),listmem_sep) --> [’,’].

hyph(hyph(-),affix_sep) --> [-].

blank(blank(’ ’),word_sep) --> [’ ’].

colon(colon (:) ,:) --> [:].

apostrophe(apostrophe(’\’’),’\’’) --> [’\’’].

leftparenthesis(leftparenthesis(’(’),’(’) --> [’(’].

rightparenthesis(rightparenthesis(’)’),’)’) --> [’)’].

%% locants

loc(loc(Lex),Sem ,All ,Rest) :-

lex(Lex ,loc ,Sem),

append(Lex ,Rest ,All).

%% multipliers

mult(mult(Lex),Sem ,All ,Rest) :-

lex(Lex ,mult ,Sem),

append(Lex ,Rest ,All).

%% functional group suffixes

suff_zero(suff_zero(Lex),Sem ,All ,Rest) :-

lex(Lex ,suff_zero ,Sem),

append(Lex ,Rest ,All).

%% saturation parent suffix

pns_suff_sat(pns_suff_sat(Lex),Sem ,All ,Rest) :-

lex(Lex ,pns_suff_sat ,Sem),

append(Lex ,Rest ,All).

%% unsaturation parent suffix

pns_suff_unsat(pns_suff_unsat(Lex),Sem ,All ,Rest) :-

lex(Lex ,pns_suff_unsat ,Sem),

append(Lex ,Rest ,All).

%% trivial ring names

ring_triv(ring_triv(Lex),Sem ,All ,Rest) :-

lex(Lex ,ring_triv ,Sem),

append(Lex ,Rest ,All).

%% ring stem suffix

ring_stem_suff(ring_stem_suff(Lex),Sem ,All ,Rest) :-

lex(Lex ,ring_stem_suff ,Sem),

append(Lex ,Rest ,All).

%% trivial names for sugar parent structures

ps_triv(ps_triv(Lex),Sem ,All ,Rest) :-

lex(Lex ,ps_triv ,Sem),

append(Lex ,Rest ,All).

%[...]

%% locants

lex([1],loc ,1).

lex([2],loc ,2).

lex([3],loc ,3).

%[...]

%% multipliers ,

% table 11 (IUPAC 1996)

lex([p,e,n,t,a],mult ,5).

lex([h,e,x,a],mult ,6).

lex([h,e,p,t,],mult ,7).

%[...]



A.2 Parser Module 88

%% functional group suffixes ,

% table 5 (IUPAC 1996)

lex([o,l],suff_zero ,ol).

lex([o,n,e],suff_zero ,one).

lex([a,l,d,e,h,y,d,e],suff_zero ,aldehyde).

%[...]

%%% nonsugar lexicon entries

%% a-terms/ replacement prefixes

lex([o,x,a],pref_zero ,oxa).

lex([p,h,o,s,p,h,a],pref_zero ,phospha).

lex([h,y,d,r,o,x,y],pref_zero ,hydroxy).

%[...]

%% monomers

lex([o,x],monomer ,’O’).

lex([p,h,o,s,p,h],monomer ,’P’).

lex([a,r,s],monomer ,’As’).

%[...]

%% saturation parent suffix

lex([a,n],pns_suff_sat ,_).

lex([a,n,e],pns_suff_sat ,lam(X,lam(Y,ane(X*Y)))).

%% unsaturation parent suffix

lex([e,n,e],pns_suff_unsat ,lam(X,lam(Y,ene(X,Y)))).

lex([y,n,e],pns_suff_unsat ,lam(X,lam(Y,yne(X,Y)))).

%[...]

%% trivial names

lex([b,e,n,z,e,n,e],pns_triv ,benzene).

lex([t,h,i,o,p,h,e,n,e],pns_triv ,thiophene).

lex([f,u,r,a,n],pns_triv ,furan).

%[...]

%% class names

lex([a,l,k,e,n,e],pns_class ,alkene).

lex([a,l,c,o,h,o,l],pns_class ,alcohol).

lex([a,c,i,d],pns_class ,acid).

%[...]

%% element names

lex([o,x,y,g,e,n],pns_elem ,oxygen).

lex([h,y,d,r,o,g,e,n],pns_elem ,hydrogen).

%% cyclo - prefix

lex([c,y,c,l,o],cyc_pref ,lam(X,cyclo(’??’*[’??’],X))).

%% stereo prefixes

lex([c,i,s],stereo_pref ,lam(X,cis(X))).

lex([’(’,z,’)’],stereo_pref ,lam(X,stereo:z(X))).

%[...]

%%% sugar lexicon entries

%% prefixes

lex([d,e,o,x,y],pref_zero ,deoxy).

lex([a,m,i,n,o],pref_zero ,amino).

lex([t,h,i,o],pref_zero ,thio).

%[...]

%% element prefixes

lex([c],pref_elem ,’C’).

lex([o],pref_elem ,’O’).

%% trivial ring names

lex([o,x,i,r,o,s,e],ring_triv ,lam(X,lam(Y,anose(X,3,Y)))).

lex([o,x,e,t,o,s,e],ring_triv ,lam(X,lam(Y,anose(X,4,Y)))).

lex([f,u,r,a,n,o,s,e],ring_triv ,lam(X,lam(Y,anose(X,5,Y)))).

%[...]

%% ring stem suffix
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lex([a,n,o,s,e],ring_stem_suff ,lam(Z,lam(X,lam(Y,anose(X,Z,Y))))).

lex([a,n,o,s],ring_stem_suff ,lam(Z,lam(X,lam(Y,anose(X,Z,Y))))).

%% parent structure stem suffixes

lex([o,s,e],stem_suff ,lam(X,lam(Y,ose(X,Y)))).

lex([o,s],stem_suff ,lam(X,lam(Y,ose(X,Y)))).

lex([a,l,d,o,s,e],stem_suff ,lam(X,lam(Y,ose(X,Y)))).

%[...]

%% parent structure stem prefixes

lex([a,l,d,o,s,e],stem_pref ,ose).

lex([a,l,d,o],stem_pref ,ose).

lex([k,e,t,o],stem_pref ,ketose).

%[...]

%% configurational symbols

lex([d],cfg_symb ,’D’).

lex([l],cfg_symb ,’L’).

lex([d,l],cfg_symb ,’DL’).

%[...]

%% anomeric configurational symbols

lex([a,l,p,h,a],cfg_symb_anom ,alpha).

lex([b,e,t,a],cfg_symb_anom ,beta).

%[...]

%% configurational prefixes

lex([g,l,y,c,e,r,o],cfg_pref ,glycero).

lex([e,r,y,t,h,r,o],cfg_pref ,erythro).

lex([t,h,r,e,o],cfg_pref ,threo).

%[...]

%% trivial names

lex([e,r,y,t,h,r,o,s,e],ps_triv ,erythrose).

lex([t,h,r,e,o,s,e],ps_triv ,threose).

lex([r,i,b,o,s,e],ps_triv ,ribose).

%[...]

%% class names for sugar parent structures

lex([k,e,t,o,s,e],ps_class ,ketose).
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A.2.2 File compd.pl

% ------------------------------------------- %

% File: compd.pl %

% Author: Stefanie Anstein , Gerhard Kremer %

% Purpose: organic compound grammar %

% ------------------------------------------- %

:- use_module(library(system)). % system utilities (shell commands)

%% org_compd /4: organic compound (root rule)

% parent structure w/o affix(es),

% e.g. hexane

org_compd(org_compd(Syn_parent),

compd(Sem_parent ,pref ([]),suff ([]))

) -->

parent(Syn_parent ,Sem_parent).

% parent w/ suffix(es),

% e.g. methanol

org_compd(org_compd(Syn_parent ,Syn_suffs),

compd(Sem_parent ,pref ([]),suff(Sem_suffs))

) -->

parent(Syn_parent ,Sem_parent),

suffs(Syn_suffs ,Sem_suffs).

% parent w/ both prefix(es) and suffix(es),

% e.g. 2- oxahexanol

org_compd(org_compd(Syn_prefs ,Syn_parent ,Syn_suffs),

compd(Sem_parent ,pref(Sem_prefs),suff(Sem_suffs))

) -->

prefs(Syn_prefs ,Sem_prefs),

parent(Syn_parent ,Sem_parent),

suffs(Syn_suffs ,Sem_suffs).

% parent w/ prefix(es),

% e.g. 2,4,8- trioxaundecane , 1-methyl -pent -2- ulose

org_compd(org_compd(Syn_prefs ,Syn_parent),

compd(Sem_parent ,pref(Sem_prefs),suff ([]))

) -->

prefs(Syn_prefs ,Sem_prefs),

parent(Syn_parent ,Sem_parent).

% ’additive names formed by the use of a separate word ’,

% (’formerly called radiofunctional nomenclature ’),

% R -1.2.3.3.2 , R -5.6.2.1 ,

% e.g. methyl alcohol , ethyl methyl ketone

org_compd(org_compd(Syn_rads ,Syn_pns_class),

compd(Sem_rads+Sem_pns_class ,pref ([]),suff ([]))

) -->

rads(Syn_rads ,Sem_rads),

pns_class(Syn_pns_class ,Sem_pns_class).

% one radical ...

rads(rads(Syn_rad),

Sem_rad

) -->

rad(Syn_rad ,Sem_rad).

% ... or several radicals

rads(rads(Syn_rad ,Syn_rads),

Sem_rad+Sem_rads

) -->

rad(Syn_rad ,Sem_rad),

rads(Syn_rads ,Sem_rads).

% for efficiency reasons not org_compd ,

% but only parent (most frequent case) allowed

rad(rad(Syn_parent ,Syn_blank),

compd(Sem_parent ,pref ([]),suff ([]))

) -->

parent(Syn_parent ,Sem_parent),

blank(Syn_blank ,_Sem_blank).



A.2 Parser Module 91

%% prefs /4: prefixes

% single prefix or last prefix w/ hyphen ,

% e.g. 1-methyl - in 1-methyl -pent -2- ulose

prefs(prefs(Syn_pref ,Syn_hyph),

[Sem_pref]

) -->

pref(Syn_pref ,Sem_pref),

hyph(Syn_hyph ,_).

% single prefix / last prefix w/o hyphen ,

% e.g. 2,4,8- trioxa in 2,4,8- trioxaundecane

prefs(prefs(Syn_pref),

[Sem_pref]

) -->

pref(Syn_pref ,Sem_pref).

% several prefixes ,

% e.g. 2-oxa -3- phospha in 2-oxa -3- phosphahexane

prefs(prefs(Syn_pref ,Syn_hyph ,Syn_prefs),

[Sem_pref|Sem_prefs]

) -->

pref(Syn_pref ,Sem_pref),

hyph(Syn_hyph ,_),

prefs(Syn_prefs ,Sem_prefs).

%% one prefix

% configurational prefix ,

% e.g. alpha -D-threo

pref(pref(Syn_cfg),

Sem_cfg

) -->

cfg(Syn_cfg ,Sem_cfg).

% prefix w/o locs and/or mult ,

% R -2.3.3.2 ,

% e.g. oxa in oxacyclohexane

pref(pref(Syn_pref_zero),

(’??’*[’??’]-Sem_pref_zero)

) -->

pref_zero(Syn_pref_zero ,Sem_pref_zero),

!.

% prefix w/ locs and/or mult ,

% R -1.2.2 ,

% e.g. 1,2- dioxa in 1,2- dioxahexane , 1-oxa in 1- oxahexane

pref(pref(Syn_locs_mult ,Syn_pref_zero),

Sem_locs_mult -Sem_pref_zero

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

pref_zero(Syn_pref_zero ,Sem_pref_zero),

!.

% substitution / replacement prefix ,

% e.g. 2-C-amino

pref(pref(Syn_locs_mult ,Syn_hyph ,Syn_pref_elem ,Syn_hyph ,Syn_pref_zero),

Sem_locs_mult -Sem_pref_elem -Sem_pref_zero

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

hyph(Syn_hyph ,_),

pref_elem(Syn_pref_elem ,Sem_pref_elem),

hyph(Syn_hyph ,_),

pref_zero(Syn_pref_zero ,Sem_pref_zero).

% recursive call of org_compd for nested compds w/ parentheses ,

% e.g. 1,2-dimethyl - in 1,2-dimethyl -hex -3-ulose ,

% 1-methyl - in 1-methyl -pent -2- ulose

pref(pref(Syn_locs_mult ,Syn_leftparenthesis ,Syn_org_compd ,Syn_rightparenthesis),

Sem_locs_mult -Sem_org_compd

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

leftparenthesis(Syn_leftparenthesis ,_),
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!,

org_compd(Syn_org_compd ,Sem_org_compd),

rightparenthesis(Syn_rightparenthesis ,_).

% recursive call of org_compd for nested compds ,

% --- last rule ---

% e.g. 1,2-dimethyl - in 1,2-dimethyl -hex -3-ulose ,

% 1-methyl - in 1-methyl -pent -2- ulose

pref(pref(Syn_locs_mult ,Syn_org_compd),

Sem_locs_mult -Sem_org_compd

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

org_compd(Syn_org_compd ,Sem_org_compd),

!.

%% parent /4: parent structures (nonsugar or sugar)

% nonsugar parent structure ,

% e.g. hexane

parent(Syn_par_phr_nonsugar ,

Sem_par_phr_nonsugar

) -->

par_phr_nonsugar(Syn_par_phr_nonsugar ,Sem_par_phr_nonsugar).

% nonsugar parent structure with ’infix ’/double suffix ,

% e.g. 3-penten -1-yne

parent(Syn_infix_par_phr_nonsugar ,

Sem_infix_par_phr_nonsugar

) -->

infix_par_phr_nonsugar(Syn_infix_par_phr_nonsugar ,Sem_infix_par_phr_nonsugar).

% sugar parent phrase structure ,

% e.g. hexose

parent(Syn_par_sugar ,

Sem_par_sugar

) -->

par_sugar(Syn_par_sugar ,Sem_par_sugar).

%% suffs /4: suffixes

% with preceding hyphen

suffs(suffs(Syn_hyph ,Syn_suffs),

Sem_suffs) -->

hyph(Syn_hyph ,_),

!,

suffs(Syn_suffs ,Sem_suffs).

% one ( functional group) suffix

% e.g. ol in hexanol

suffs(suffs(Syn_suff),

[Sem_suff]

) -->

suff(Syn_suff ,Sem_suff).

% several ( functional group) suffixes w/o locs_mult ,

% R -5.8.3 ,

% e.g. olate in methanolate

suffs(suffs(Syn_suff ,Syn_suffs),

[Sem_suff|Sem_suffs]

) -->

suff(Syn_suff ,Sem_suff),

suffs(Syn_suffs ,Sem_suffs).

% ( functional group) suffix w/ locs_mult ,

% e.g. 2,3-diol in hexane -2,3- diol

suff(suff(Syn_locs_mult ,Syn_suff_zero),

Sem_locs_mult -Sem_suff_zero

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

suff_zero(Syn_suff_zero ,Sem_suff_zero).

% ( functional group) suffix w/o locs_mult ,

% e.g. ol in ethanol

suff(suff(Syn_suff_zero),
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(’??’*[’??’]-Sem_suff_zero)

) -->

suff_zero(Syn_suff_zero ,Sem_suff_zero).

% complex ( functional group) suffix(es) w/o locs_mult ,

% e.g. ’oic anhydride ’ in ’pentanoic anhydride ’

suff(suff(Syn_suff_adj),

(’??’*[’??’]-Sem_suff_adj)

) -->

suff_adj(Syn_suff_adj ,Sem_suff_adj).

suff_adj(suff_adj(Syn_adj_suff ,

Syn_blank ,

Syn_pns_class),

Sem_adj_suff+Sem_pns_class

) -->

adj_suff(Syn_adj_suff ,Sem_adj_suff),

blank(Syn_blank ,_Sem_blank),

pns_class(Syn_pns_class ,Sem_pns_class).
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A.2.3 File compd common.pl

% ------------------------------------------- %

% File: compd_common .pl %

% Author: Stefanie Anstein , Gerhard Kremer %

% Purpose: common predicates %

% ------------------------------------------- %

%%% grammar

%% locs_mult /4: locs -mult affix ,

% e.g. ...-3,4-di <affix >

% => Sem: affix (2*[3 ,4] ,...)

% only multiplier specified

locs_mult(locs_mult(Syn_mult),

Sem_mult *[’??’]

) -->

mult(Syn_mult ,Sem_mult),

!.

% locants and multiplier specified

locs_mult(locs_mult(Syn_locs ,Syn_mult),

Sem_mult*Sem_locs

) -->

locs(Syn_locs ,Sem_locs),

mult(Syn_mult ,Sem_mult).

% only locants specified

locs_mult(locs_mult(Syn_locs ,Sem_locs),

’??’*Sem_locs

) -->

locs(Syn_locs ,Sem_locs).

%% locs /4: locants

% single or last locant ,

% e.g. 8- in 2,4,8- trioxaundecane

locs(locs(Syn_loc ,Syn_hyph),

[Sem_loc ]) -->

loc(Syn_loc ,Sem_loc),

hyph(Syn_hyph ,_),

!. % if hyphen after locant , cut other rules

% locant(s) as infix (hyphen also at beginning ),

% e.g. -2- in pent -2-ene

locs(locs(Syn_hyph ,Syn_locs),

Sem_locs) -->

hyph(Syn_hyph ,_),

!, % if hyphen is first , no need to try other rules

locs(Syn_locs ,Sem_locs).

% several locants ,

% e.g. 2,4,8 in 2,4,8- trioxaundecane

locs(locs(Syn_loc ,Syn_comma ,Syn_locs),

[Sem_loc|Sem_locs ]) -->

loc(Syn_loc ,Sem_loc),

comma(Syn_comma ,_),

!, % after comma , this is the only matching rule

locs(Syn_locs ,Sem_locs).

% locant grouping w/ colons ,

% e.g. 1,2:3,4- in ring specification

locs(locs(Syn_loc ,Syn_colon ,Syn_locs),

[Sem_loc|Sem_locs ]) -->

loc(Syn_loc ,Sem_loc),

colon(Syn_colon ,_),

!, % after colon found , this is the only matching rule

%% pp /1: pretty print a prolog structure

% call: pp( PrologStructure )

pp(P) :- pp([],P).

pp(L,P) :- atomic(P), !, indented_print(L,P).
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pp(L,P) :- var(P), !, indented_print(L,P).

pp(L,[H|T]) :- atomic(H), !, indented_print(L,[H|T]).

pp(L,[H|T]) :- indented_print(L,’[’), pp([’  |’|L],H),

ppa([’|’|L],T), indented_print(L,’]’).

pp(L,P) :- P=..[F|Arg], !, pp(L,F), ppa([’  |’|L], Arg).

ppa(L,[H|T]) :- !, pp(L,H), ppa(L,T).

ppa(_,[]) :- true.

indented_print ([H|T], P) :- !, write(H), indented_print(T, P).

indented_print ([],P) :- is_list(P), !, write(’=[’), printm(P), write(’]’), nl.

indented_print ([],P) :- write(’=’), write(P), nl.

printm ([]) :- !, write(’ ’).

printm ([H|T]) :- write(’ ’), write(H), printm(T).

%% beta -reduce a semantic representation

% call: beta_reduce (Sem_Rep , Reduced_Sem_Rep )

% use lam(Var ,Formula) vor lambda -expression ,

% Formula@Arg for functional application

beta_reduce(F,Reduced) :- atom(F), !, Reduced = F.

beta_reduce(F,Reduced) :- var(F), !, Reduced = F.

beta_reduce(’@’(lam(X,F),Y),Reduced) :- !,

beta_reduce(Y,YR), YR=X, beta_reduce(F,Reduced).

beta_reduce(’@’(F,X),Reduced) :- !,

beta_reduce(F,FR), beta_reduce(X,XR),

beta_reduce(’@’(FR,XR),Reduced).

beta_reduce(Term ,Reduced) :-

Term =.. [Functor|Args],

reduce_args(Args ,RArgs),

Reduced =.. [Functor|RArgs].

reduce_args ([] ,[]) :- !.

reduce_args ([Head|Rest],[RHead|RRest]) :-

beta_reduce(Head ,RHead),

reduce_args(Rest ,RRest).
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A.2.4 File parent nonsugar.pl

% ------------------------------------------- %

% File: parent_nonsugar .pl %

% Author: Stefanie Anstein %

% Purpose: nonsugar parent grammar %

% ------------------------------------------- %

%% nonsugar parent phrases = parent structures with modifications

% saturated ’default ’ parent structure ,

% e.g. pentaoxane

par_phr_nonsugar(par_phr_nonsugar(Syn_par_nonsugar),

Sem_par_nonsugar

) -->

par_nonsugar(Syn_par_nonsugar ,Sem_par_nonsugar).

% unsaturated par str w/ locants ,

% e.g. 2-pentene

par_phr_nonsugar(par_phr_nonsugar(Syn_locs_mult ,

Syn_par_base ,

Syn_pns_suffs_unsat),

(Sem_pns_suffs_unsat@Sem_locs_mult)@(lam(X,ane(X*’C’))@Sem_par_base)

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

par_base(Syn_par_base ,Sem_par_base),

pns_suffs_unsat(Syn_pns_suffs_unsat ,Sem_pns_suffs_unsat).

% unsaturated par str w/o locants ,

% e.g. pentene meaning 1-pentene

par_phr_nonsugar(par_phr_nonsugar(Syn_par_base ,

Syn_pns_suffs_unsat),

(Sem_pns_suffs_unsat@ ’??’*[’??’])@(lam(X,ane(X*’C’))@Sem_par_base)

) -->

par_base(Syn_par_base ,Sem_par_base),

pns_suffs_unsat(Syn_pns_suffs_unsat ,Sem_pns_suffs_unsat).

% class names w/ locants ,

% e.g. 2-alkene

par_phr_nonsugar(par_phr_nonsugar(Syn_locs_mult ,

Syn_pns_class),

(Sem_locs_mult ,Sem_pns_class)

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

pns_class(Syn_pns_class ,Sem_pns_class).

% unsaturated par str w/ locant(s and mult),

% e.g. pent -2-ene , pent -2,3- diene

par_phr_nonsugar(par_phr_nonsugar(Syn_par_base ,

Syn_locs_mult ,

Syn_pns_suffs_unsat),

(Sem_pns_suffs_unsat@Sem_locs_mult)@(lam(X,ane(X*’C’))@Sem_par_base)

) -->

par_base(Syn_par_base ,Sem_par_base),

locs_mult(Syn_locs_mult ,Sem_locs_mult),

pns_suffs_unsat(Syn_pns_suffs_unsat ,Sem_pns_suffs_unsat).

% cyclic structure ,

% R -2.3.1.1 , R -2.3.2 ,

% e.g. cyclopentane

par_phr_nonsugar(par_phr_nonsugar(Syn_cyc_pref ,Syn_par_phr_nonsugar),

Sem_cyc_pref@Sem_par_phr_nonsugar

) -->

cyc_pref(Syn_cyc_pref ,Sem_cyc_pref),

par_phr_nonsugar(Syn_par_phr_nonsugar ,Sem_par_phr_nonsugar).

% stereochemical specification ,

% R-7,

% e.g. trans -but -2-ene , (E)-but -2-ene

par_phr_nonsugar(par_phr_nonsugar(Syn_stereo_pref ,Syn_hyph ,Syn_par_phr_nonsugar),

Sem_stereo_pref@Sem_par_phr_nonsugar

) -->

stereo_pref(Syn_stereo_pref ,Sem_stereo_pref),

hyph(Syn_hyph ,_Sem_hyph),

par_phr_nonsugar(Syn_par_phr_nonsugar ,Sem_par_phr_nonsugar).
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% ’additional suffix ’,

% one unsaturation suffix added to an unsaturated parent phrase ,

% R -3.1.4 ,

% e.g. -1-yne in 3-penten -1-yne or in pent -3-en -1-yne

infix_par_phr_nonsugar(infix_par_phr_nonsugar(Syn_par_phr_nonsugar ,

Syn_locs_mult ,

Syn_pns_suff_unsat),

(Sem_pns_suff_unsat@Sem_locs_mult)@Sem_par_phr_nonsugar

) -->

par_phr_nonsugar(Syn_par_phr_nonsugar ,Sem_par_phr_nonsugar),

locs_mult(Syn_locs_mult ,Sem_locs_mult),

pns_suff_unsat(Syn_pns_suff_unsat ,Sem_pns_suff_unsat),

!.

%% nonsugar parent structures

% trivial name ,

% e.g. benzene

par_nonsugar(par_nonsugar(Syn_pns_triv),

Sem_pns_triv

) -->

pns_triv(Syn_pns_triv ,Sem_pns_triv),

!.

% class name ,

% e.g. alkene

par_nonsugar(par_nonsugar(Syn_pns_class),

Sem_pns_class

) -->

pns_class(Syn_pns_class ,Sem_pns_class),

!.

% element name ,

% e.g. oxygen

par_nonsugar(par_nonsugar(Syn_pns_elem),

Sem_pns_elem

) -->

pns_elem(Syn_pns_elem ,Sem_pns_elem),

!.

% mononuclear hydrides ,

% table 2,

% e.g. borane

par_nonsugar(par_nonsugar(Syn_monomer ,Syn_pns_suff_sat),

lam(X,ane(1*X))@Sem_monomer

) -->

monomer(Syn_monomer ,Sem_monomer),

pns_suff_sat(Syn_pns_suff_sat ,_Sem_pns_suff_sat).

% saturated ’default ’ par str; operation : C-replacement ,

% R -2.2.2 ,

% e.g. pentaoxane

par_nonsugar(par_nonsugar(Syn_mult ,

Syn_monomer ,

Syn_pns_suff_sat),

Sem_pns_suff_sat@Sem_mult@Sem_monomer

) -->

mult(Syn_mult ,Sem_mult),

monomer(Syn_monomer ,Sem_monomer),

pns_suff_sat(Syn_pns_suff_sat ,Sem_pns_suff_sat).

% saturated ’default ’ par str;

% operation: C-replacement , alternating elements ,

% R -2.2.3.2 ,

% e.g. tetraarsazane

par_nonsugar(par_nonsugar(Syn_mult ,

Syn_par_base ,

Syn_pns_suff_sat),

Sem_pns_suff_sat@Sem_mult@Sem_par_base

) -->

mult(Syn_mult ,Sem_mult),

par_base(Syn_par_base ,Sem_par_base),

pns_suff_sat(Syn_pns_suff_sat ,Sem_pns_suff_sat).
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% locs to precede , pns_suffs_unsat to follow ,

% e.g. pentaox in 2- pentaoxene

par_nonsugar(par_nonsugar(Syn_mult ,

Syn_monomer),

lam(X,lam(Y,ane(X*Y)))@Sem_mult@Sem_monomer

) -->

mult(Syn_mult ,Sem_mult),

monomer(Syn_monomer ,Sem_monomer).

% simplest acyclic hydrocarbons ,

% R -2.2.1 , table 11,

% e.g. hexane

par_nonsugar(par_nonsugar(Syn_mult ,Syn_pns_suff_sat),

lam(X,ane(X*’C’))@Sem_mult

) -->

mult(Syn_mult ,Sem_mult),

pns_suff_sat(Syn_pns_suff_sat ,_Sem_pns_suff_sat).

%% parent bases

% either monomers

par_base(par_base(Syn_monomers),

Sem_monomers

) -->

monomers(Syn_monomers ,Sem_monomers),

!.

% or multipliers

par_base(par_base(Syn_mult),

Sem_mult

) -->

mult(Syn_mult ,Sem_mult),

!.

% or trivial names

par_base(par_base(Syn_pns_triv),

Sem_pns_triv

) -->

pns_triv(Syn_pns_triv ,Sem_pns_triv),

!.

%% single molecules/monomers

% two monomers , e.g. arsaz in tetraarsazane

monomers(monomers(Syn_monomer_1 ,

Syn_monomer_2),

Sem_monomer_1+Sem_monomer_2

) -->

monomer(Syn_monomer_1 ,Sem_monomer_1),

monomer(Syn_monomer_2 ,Sem_monomer_2).

%% nonsugar unsaturation parent suffixes (non - recursive)

% one unsaturation suffix ,

% e.g. ene in 2-pentene

pns_suffs_unsat(pns_suffs_unsat(Syn_pns_suff_unsat),

Sem_pns_suff_unsat

) -->

pns_suff_unsat(Syn_pns_suff_unsat ,Sem_pns_suff_unsat).
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A.2.5 File parent sugar.pl

% ------------------------------------------- %

% File: parent_sugar .pl %

% Author: Gerhard Kremer %

% Purpose: sugar parent grammar %

% ------------------------------------------- %

%% parent structures (sugar , carbohydrate )

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% parent phrase

%% par_sugar /4: parent (sugar)

% trivial parent structure name ,

% e.g. D-Glucose , beta -L-Fructose

par_sugar(par_sugar(Syn_ps_triv),

triv_name(Sem_ps_triv)

) -->

ps_triv(Syn_ps_triv ,Sem_ps_triv),

!.

% trivial parent (ketose -) prefix and ring ,

% e.g. D-Fructopyranose , D- Glucopyranose

par_sugar(par_sugar(Syn_ps_triv_pref ,Syn_ring_stem),

Sem_ring_stem@triv_name(Sem_ps_triv_pref)

) -->

ps_triv_pref(Syn_ps_triv_pref ,Sem_ps_triv_pref),

ring_stem(Syn_ring_stem ,Sem_ring_stem),

!.

% parent class name

par_sugar(par_sugar(Syn_ps_class),

class_name(Sem_ps_class)

) -->

ps_class(Syn_ps_class ,Sem_ps_class),

!.

% anosuloses , (as w/ only ring stem suffix default aldose)

% e.g. hexopyranos -4- ulose

par_sugar(par_sugar(Syn_mult ,Syn_ring_stem ,Syn_ps_zero),

Sem_ps_zero@(Sem_ring_stem@(ose(’??’*[’??’],Sem_mult*’C’)))

) -->

mult(Syn_mult ,Sem_mult),

ring_stem(Syn_ring_stem ,Sem_ring_stem),

ps_zero(Syn_ps_zero ,Sem_ps_zero),

!.

% only ring stem suffix (-> default: aldose),

% e.g. hexopyranose

par_sugar(par_sugar(Syn_mult ,Syn_ring_stem), %% later --> par -sugar -class ?

Sem_ring_stem@(ose(’??’*[’??’],Sem_mult*’C’))

) -->

mult(Syn_mult ,Sem_mult),

ring_stem(Syn_ring_stem ,Sem_ring_stem),

!.

% 2 ps_zeroes ( ketoaldoses )

% e.g. hexos -3- ulose

% [2-Carb -12]

par_sugar(par_sugar(Syn_mult ,Syn_ps_zero ,Syn_ps_zero_bar),

Sem_ps_zero_bar@(Sem_ps_zero@Sem_mult*’C’)

) -->

mult(Syn_mult ,Sem_mult),

ps_zero(Syn_ps_zero ,Sem_ps_zero),

ps_zero(Syn_ps_zero_bar ,Sem_ps_zero_bar),

!.

% aldoses , ketoses ,

% e.g. hexose , hex -3- ulose

par_sugar(par_sugar(Syn_mult ,Syn_ps_zero),
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Sem_ps_zero@(Sem_mult*’C’)

) -->

mult(Syn_mult ,Sem_mult),

ps_zero(Syn_ps_zero ,Sem_ps_zero),

!.

% ketoses w/ loc -prefix (CAS nomenclature ):

% locants before (C-chain -) multiplier

% e.g. 3-pentulose

par_sugar(par_sugar(Syn_locs ,Syn_mult ,Syn_stem_suff),

(Sem_stem_suff@ ’??’*Sem_locs)@(Sem_mult*’C’)

) -->

locs(Syn_locs ,Sem_locs),

mult(Syn_mult ,Sem_mult),

stem_suff(Syn_stem_suff ,Sem_stem_suff).

%% stem suffixes , possibly locants(,mult ,ring suffixes)

%% ps_zero /4:

% basic parent elements (sugar)

% aldoses , ketoses w/o locs_mult

% (no explicit loc for C=O - group),

% e.g. ose , ulose

% [2-Carb -8]

ps_zero(ps_zero(Syn_stem_suff),

Sem_stem_suff@ ’??’*[’??’]

) -->

stem_suff(Syn_stem_suff ,Sem_stem_suff),

!.

% several ring suffixes and stem

% multi -ketoses w/ (possibly more than 1) ring suffix ,

% e.g. -2,3-diulo -2,5- furanose

% [2-Carb -9] ,[2 -Carb -10]

ps_zero(ps_zero(Syn_locs_mult ,Syn_stem_suff ,Syn_ring_stems),

lam(X,Sem_ring_stems@ (( Sem_stem_suff@Sem_locs_mult)@X))

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

stem_suff(Syn_stem_suff ,Sem_stem_suff),

ring_stems(Syn_ring_stems ,Sem_ring_stems),

!.

% multi -aldoses ,-ketoses w/ loc -infix ,

% e.g. hexodialdose , hexo -2,3- diulose

% [2-Carb -9] ,[2 -Carb -10]

ps_zero(ps_zero(Syn_locs_mult ,Syn_stem_suff),

Sem_stem_suff@Sem_locs_mult

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

stem_suff(Syn_stem_suff ,Sem_stem_suff).

% [2-Carb -5]

% only 1 ring stem

ring_stems(ring_stems(Syn_ring_stem),

Sem_ring_stem

) -->

ring_stem(Syn_ring_stem ,Sem_ring_stem).

% more than 1 ring stem

ring_stems(ring_stems(Syn_ring_stem ,Syn_ring_stems),

lam(X,Sem_ring_stem@(Sem_ring_stems@X))) -->

ring_stem(Syn_ring_stem ,Sem_ring_stem),

ring_stems(Syn_ring_stems ,Sem_ring_stems).

% ring stem can be either trivial ... (up to size 7)

% ... or systematically constructed :

% trivial ,

% e.g. pyranose

ring_stem(ring_stem(Syn_ring_triv),

Sem_ring_triv@ ’??’*[’??’]

) -->

ring_triv(Syn_ring_triv ,Sem_ring_triv),
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!.

% systematic ,

% e.g. octanose

% ( ring_stem_suff : only ’anose ’)

ring_stem(ring_stem(Syn_mult ,Syn_ring_stem_suff),

(Sem_ring_stem_suff@Sem_mult)@’??’*[’??’]

) -->

mult(Syn_mult ,Sem_mult),

ring_stem_suff(Syn_ring_stem_suff ,Sem_ring_stem_suff),

!.

% trivial w/ mult or/and locs ,

% e.g. 2,3:5,6- dioxirose

ring_stem(ring_stem(Syn_locs_mult ,Syn_ring_triv),

Sem_ring_triv@Sem_locs_mult

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

ring_triv(Syn_ring_triv ,Sem_ring_triv),

!.

% systematic w/ mult or/and locs ,

% e.g. 2,8- octanose

ring_stem(ring_stem(Syn_locs_mult ,Syn_mult ,Syn_ring_stem_suff),

(Sem_ring_stem_suff@Sem_mult)@Sem_locs_mult

) -->

locs_mult(Syn_locs_mult ,Sem_locs_mult),

mult(Syn_mult ,Sem_mult),

ring_stem_suff(Syn_ring_stem_suff ,Sem_ring_stem_suff).

% configuration specifications root rule

% (rule for adding more stereochem . symbols)

cfg(cfg(Syn_cfg_prefs),

cfg(Sem_cfg_prefs)) -->

cfg_prefs(Syn_cfg_prefs ,Sem_cfg_prefs).

%% cfg_prefs /4: configurational prefixes

% (desired is the longest group;

% root rule may contain several prefs)

% more than 1 config.prefix w/ config.symbols

cfg_prefs(cfg_prefs(Syn_cfg_symbols ,Syn_hyph ,Syn_cfg_pref ,Syn_hyph ,Syn_cfg_prefs),

[Sem_cfg_symbols -Sem_cfg_pref|Sem_cfg_prefs ]) -->

cfg_symbols(Syn_cfg_symbols ,Sem_cfg_symbols),

hyph(Syn_hyph ,_),

cfg_pref(Syn_cfg_pref ,Sem_cfg_pref),

hyph(Syn_hyph ,_),

cfg_prefs(Syn_cfg_prefs ,Sem_cfg_prefs),

!.

% 1 config.prefix w/ config.symbols

% [2-Carb -4.3]

cfg_prefs(cfg_prefs(Syn_cfg_symbols ,Syn_hyph ,Syn_cfg_pref),

[Sem_cfg_symbols -Sem_cfg_pref ]) -->

cfg_symbols(Syn_cfg_symbols ,Sem_cfg_symbols),

hyph(Syn_hyph ,_),

cfg_pref(Syn_cfg_pref ,Sem_cfg_pref).

% config.symbol(s) only

cfg_prefs(cfg_prefs(Syn_cfg_symbols),

[Sem_cfg_symbols ]) -->

cfg_symbols(Syn_cfg_symbols ,Sem_cfg_symbols).

%% cfg_symbols /4:

% (anomeric) configurational symbols

% only config.symbol ,

% e.g. D-

% [2-Carb -4.1]

cfg_symbols(cfg_symbols(Syn_cfg_symb),

Sem_cfg_symb

) -->

cfg_symb(Syn_cfg_symb ,Sem_cfg_symb),

!.
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% anom.config.symbol and config.symbol ,

% e.g. beta -D-

% [2-Carb -6]

cfg_symbols(cfg_symbols(Syn_cfg_symb_anom ,Syn_hyph ,Syn_cfg_symb),

Sem_cfg_symb_anom -Sem_cfg_symb

) -->

cfg_symb_anom(Syn_cfg_symb_anom ,Sem_cfg_symb_anom),

hyph(Syn_hyph ,_),

cfg_symb(Syn_cfg_symb ,Sem_cfg_symb).
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A.3 SMILES Module

A.3.1 File smiles.pl

% ------------------------------------------- %

% File: smiles.pl %

% Author: Gerhard Kremer %

% Purpose: SMILES string generator %

% ------------------------------------------- %

% call: smile_list ( _UninstantiatedList ,SMILESList ,SemRep)

% recursive; builds the list from innermost predicate

% format Mult*Element; innermost structure :

% generate skeleton structure

smile_list(SList ,SList ,Mult*El) :-

!,

number(Mult),

atom(El),

gen_skeleton(Mult ,El,SList).

% trivial name (... part); innermost structure:

% look up smiles string in lexicon

smile_list(SList ,SList ,triv_name(TrivName)) :-

!,

lex_triv(TrivName ,_SystematicName ,Sem),

smile_list(_SList ,SList ,Sem).

%... or for the case , Sem is not in the lexicon , yet:

% generate it (here or

% just after parsing the compd -name which includes a triv_name )

% lex_triv -syst(TrivialName , SystematicName ),

% name -to -list(SystematicName ,Name), %%% as in process , preprocess

% org_compd(_,Sem ,Name ,[]) ,beta_reduce (Sem ,RSem).

% Operator w/ 1 argument

% (e.g. ane) %%%% TODO

smile_list(SList ,SListNew ,Expr) :-

Expr =.. [Functor |[Arg]],

Functor == ane , %%%%%% ??

smile_list(SList ,SListNew ,Arg),

!.

% Operator w/ 2 arguments

% (ose ,ulose ,... )

smile_list(SList ,SListNew ,Expr) :-

Expr =.. [Functor |[LocMult ,Arg2]],

smile_list(SList ,SList1 ,Arg2),

cons_check(LocMult ,Functor),

smile_parent(Functor ,LocMult ,SList1 ,SListNew),

!.

% Operator w/ 3 arguments

% (here:compd)

smile_list(SList ,SListNew ,Expr) :-

Expr =.. [compd |[Arg1 ,pref(Prefs),_Suffs]], % Suffs ohne _ !!

smile_list(SList ,SList1 ,Arg1),

smile_defaults(Arg1 ,SList1 ,SList2),

smile_prefixes(Prefs ,SList2 ,SListNew),

!.

% Operator w/ 3 arguments

% (here:anose) -- rings

smile_list(SList ,SListNew ,Expr) :-

Expr =.. [anose |[LocMult ,Size ,Arg3]],

smile_list(SList ,SList1 ,Arg3),

cons_check(LocMult ,anose),

ring_construct(LocMult ,Size ,SList1 ,SListNew),

!.

% Otherwise:

% NO SMILES available

smile_list(_SListOld ,[’NO SMILES ’],_Expr).
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% depending on functor (non -ring/ring:anose)

% call: cons_check (Mult *[ Locs],Functor)

% nothing specified , any functor (ok)

cons_check(’??’*[’??’],_F) :-

!.

% LocList is ’??’, any functor (underspecified , ok)

cons_check(_Mult *[’??’],_F) :-

!.

% Mult is ’??’, functor anose:

% LocList length has to be divisible by 2

cons_check(’??’*LocList ,anose) :-

!,

length(LocList ,L),

L mod 2 =:= 0.

% Mult is ’??’, any functor (ok)

cons_check(’??’*_LocList ,_F) :-

!.

% fully specified , functor anose:

% Mult has to be LocList_Length /2

% the other cases are covered above

% (i.e. no LocList/nor multiplier specified)

cons_check(Mult*LocList ,anose) :-

!,

length(LocList ,L),

AL is L/2,

AL =:= Mult.

% Mult has to be equal LocList Length

cons_check(Mult*LocList ,_F) :-

length(LocList ,L),

L =:= Mult ,

!.

% alternatives for divisibility by 2:

% Generates smile_list skeleton structure

% (list of C-Atoms of specified chain length for sugars , e.g.)

% adds empty uspecs ([]) -term as first chain element

gen_skeleton(Mult ,El ,[ uspecs ([])|SList ]) :-

!,

gen_skeleton(Mult ,Mult ,El ,SList).

%% gen_skeleton /4:

% done at 0

gen_skeleton (0,_Length ,_El ,[]) :-

!.

% generate chain element structure

% chain_el(Element ,Locant ,Branches , FeatureList )

gen_skeleton(Mult ,Length ,El ,

[chain_el(El ,Loc ,[] ,[])|DList]) :-

NewMult is Mult -1,

Loc is Length -NewMult ,

gen_skeleton(NewMult ,Length ,El ,DList).

%% smile_parent /4:

% modify SMILES list according to parent -operators

% aldose (there is no mono -aldose)

smile_parent(ose ,’??’*[’??’],SmileList ,SmileListNew) :-

!,

add2C (1,[’=’,’O’],SmileList ,SmileListNew).

% dialdose

smile_parent(ose ,2* _LocList ,SmileList ,SmileListNew) :-

!,

add2C (1,[’=’,’O’],SmileList ,SmileList1),
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add2C(last ,[’=’,’O’],SmileList1 ,SmileListNew).

% ketose (no more locants: done)

smile_parent(ulose ,_Mult *[], SmileListNew ,SmileListNew) :-

!.

% ketose (process locant by locant)

smile_parent(ulose ,_Mult *[ HeadLoc|LocList],SmileList ,SmileListNew) :-

!,

add2C(HeadLoc ,[’=’,’O’],SmileList ,SmileList1),

smile_parent(ulose ,_Mult*LocList ,SmileList1 ,SmileListNew).

% yl ( unsaturated )

smile_parent(yl,_Mult *[], SmileListNew ,SmileListNew) :-

!.

% yl ( unsaturated )

smile_parent(yl,’??’*[’??’],SmileList ,SmileListNew) :-

!,

add2flist ([1],unsat ,SmileList ,SmileListNew).

% yl ( unsaturated )

smile_parent(yl,_Mult*Locs ,SmileList ,SmileListNew) :-

sort(Locs ,LocsSorted),

!,

add2flist(LocsSorted ,unsat ,SmileList ,SmileListNew).

% if all (functors) fail (hopefully there ’s nothing to do)

% e.g. ane

smile_parent(_Functor ,_Mult*_Locs ,SmileList ,SmileList).

% traverses SmileList only once (-Locs must be in sorted order -)

% done

add2flist ([],_Feature ,SmileList ,SmileList) :-

!.

% locant found

add2flist ([ HeadLoc|Locs],Feature ,

[chain_el(El ,HeadLoc ,Branches ,FList)|SList],

[chain_el(El ,HeadLoc ,Branches ,[ Feature|FList])|SListNew ]) :-

!,

add2flist(Locs ,Feature ,SList ,SListNew).

% else (not appropriate locant)

add2flist(Locs ,Feature ,[Ch_El|SList],[Ch_El|SListNew ]) :-

add2flist(Locs ,Feature ,SList ,SListNew).

%% add2C /4:

% adds Branch at locant Loc

% (as first of Branches of C in chain)

% call: add2C(Loc ,Branch ,InList ,OutList)

% add El here

add2C(Loc ,Branch ,

[chain_el(El ,Loc ,Branches ,FList)|R],

[chain_el(El ,Loc ,[ Branch|Branches],FList)|R]) :-

!.

% add Branch at last locant

% (i.e. only 1 chain element left in list)

add2C(last ,Branch ,[ Ch_El],[Ch_ElNew ]) :-

!,

add2C(_Loc ,Branch ,[ Ch_El],[Ch_ElNew ]).

% traverse list until specified locant reached

add2C(Loc ,Branch ,[ Ch_El|R],[Ch_El|RNew]) :-

add2C(Loc ,Branch ,R,RNew).

%% ring_construct /4:

% creates a ring connection

% call: ring_construct (Mult*Locs ,RingSize ,SmileListIn , SmileListOut )

% Mult or Locs or both may be underspecified (’??’, [’??’] resp .)

% index for each ring connection will be the connections ’ lowest locant

% no mult , no locants specified : default 1 ring

ring_construct(’??’*[’??’],Size ,SmileList ,SmileListNew) :-

!,
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ring_construct (1*[’??’],Size ,SmileList ,SmileListNew).

% locants not specified , construct from ring size

ring_construct(Mult*[’??’],Size ,SmileList ,SmileListNew) :-

!,

ring_construct_fromsize(Mult*[’??’],Size ,SmileList ,SmileListNew).

% construct from specified locant list

% ( multiplier is specified or not - consistency is already checked)

ring_construct(_Mult*Locs ,Size ,SmileList ,SmileListNew) :-

ring_construct_fromlocs(Locs ,Size ,SmileList ,SmileListNew).

%% ring_construct_fromlocs /4:

% constructs ring from specified locants

% input: 2 locants and SmileList

% output: modified SmileList

% call: ring_construct_fromlocs (LocList ,RingSize ,SmileIn ,SmileOut)

% modifies FeatureList of chain_el /4 (adds ’carbgrp ’ if appropriate ,

% for remembering where the carbonyl group was - for config;

% adds ’ring_el ...(...) ’ if a ring element is to be built)

% ( consistency is already checked: cons_check ())

% ringsize -locants -match is checked here

% locant order is checked and , if necessary , reversed

% done (empty locs -list)

ring_construct_fromlocs ([],_Size ,SmileList ,SmileList) :- !.

% list of locants

% construct ring from first pair (then from the rest of locs)

ring_construct_fromlocs ([Loc1 ,Loc2|LocList],Size ,

SmileList ,SmileListNew) :-

Loc1 < Loc2 ,

!,

Size - 1 \== Loc2 - Loc1 + 1,

ring_construct_loc1(Loc1 ,Loc2 ,SmileList ,SmileList1),

ring_construct_fromlocs(LocList ,Size ,SmileList1 ,SmileListNew).

% list of locants

% construct ring from first pair (then from the rest of locs)

ring_construct_fromlocs ([Loc1 ,Loc2|LocList],Size ,

SmileList ,SmileListNew) :-

Loc2 < Loc1 ,

!,

Size - 1 \== Loc1 - Loc2 + 1,

ring_construct_loc1(Loc2 ,Loc1 ,SmileList ,SmileList1),

ring_construct_fromlocs(LocList ,Size ,SmileList1 ,SmileListNew).

%% ring_construct_loc1 /4:

% looks for correct SmileList at locant1 , and in that case

% modifies SmileList and looks for locant2

% ring_construct_loc1 (Loc1 ,Loc2 ,InList ,OutList)

% carbonyl group is at locant 1:

% change SmileList and FeatureList appropriately

ring_construct_loc1(Loc1 ,Loc2 ,

[chain_el(El ,Loc1 ,[[’=’,’O’]],FList)|SmileList],

[chain_el(El ,Loc1 ,[],[carbgrp ,ring_el1(Loc1)|FList ])|SmileListNew ]) :-

!,

ring_construct_loc2(non -carb ,Loc1 ,Loc2 ,SmileList ,SmileListNew).

% change SmileList at locant 1;

% carbonyl group C(=O) must be at locant 2

ring_construct_loc1(Loc1 ,Loc2 ,

[chain_el(El ,Loc1 ,[],FList)|SmileList],

[chain_el(El ,Loc1 ,[],[ ring_el1(Loc1)|FList])|SmileListNew ]) :-

!,

ring_construct_loc2(carb ,Loc1 ,Loc2 ,SmileList ,SmileListNew).

% go on looking for first locant , where to change SmileList

ring_construct_loc1(Loc1 ,Loc2 ,

[Ch_El|SmileList],

[Ch_El|SmileListNew ]) :-

ring_construct_loc1(Loc1 ,Loc2 ,SmileList ,SmileListNew).
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%% ring_construct_loc2 /5:

% looks for correct structure at locant 2 (i.e. carbonyl group required or not ?)

% and changes SmileList accordingly to build a ring (uses Loc1 as index),

% changes FeatureList also

% carbonyl group required , which exists at locant 2

ring_construct_loc2(carb ,Loc1 ,Loc2 ,

[chain_el(El ,Loc2 ,[[’=’,’O’]],FList)|SmileList],

[chain_el(El ,Loc2 ,[[ring -’O’]],[carbgrp ,ring_el2(Loc1)|FList ])|SmileList ]) :-

!.

% non -carbonyl -group required and there is no such at locant 2

ring_construct_loc2(non -carb ,Loc1 ,Loc2 ,

[chain_el(El ,Loc2 ,[],FList)|SmileList],

[chain_el(El ,Loc2 ,[[ring -’O’]],[ ring_el2(Loc1)|FList ])|SmileList ]) :-

!.

% traverse list unless we are at locant 2

ring_construct_loc2(CarbTag ,Loc1 ,Loc2 ,

[Ch_El|SmileList],

[Ch_El|SmileListNew ]) :-

ring_construct_loc2(CarbTag ,Loc1 ,Loc2 ,SmileList ,SmileListNew).

%% ring_construct_fromsize /4:

% construct ring only from ringsize by looking for a carbonyl group

% and trying to connect at first with higher locant (forwards), otherwise

% -if impossible - try to connect with lower locant ( backwards )

% modifies FeatureList of chain_el /4 (adds ’carb ’ if appropriate )

% done (Mult is 0)

ring_construct_fromsize (0*[’??’],_Size ,SmileList ,SmileList) :- !.

% try connecting forwards

ring_construct_fromsize(Mult*[’??’],Size ,SmileList ,SmileListNew) :-

ring_construct_fromsize_fwd1(_Loc1 ,_Loc2 ,Size ,SmileList ,SmileList1),

!,

MultNew is Mult - 1,

ring_construct_fromsize(MultNew *[’??’],Size ,SmileList1 ,SmileListNew).

% try connecting backwards (if forwards connecting failed)

ring_construct_fromsize(Mult*[’??’],Size ,SmileList ,SmileListNew) :-

ring_construct_fromsize_bkwd(_Loc1 ,Size ,SmileList ,SmileList1),

!,

MultNew is Mult - 1,

ring_construct_fromsize(MultNew *[’??’],Size ,SmileList1 ,SmileListNew).

%% ring_construct_fromsize_fwd1 /5:

% search fwd for carbonyl group ’=O’ and construct ring element 1,

% then go on and construct ring element 2;

% use ringsize for calculating index of ring element 2

% -- looks for first matching possibility , currently --

% first call w/ these arguments : (_,_,Ringsize ,InList ,OutList)

% found a carbonyl group

ring_construct_fromsize_fwd1(Loc1 ,Loc2 ,RSize ,

[chain_el(El ,Loc1 ,[[’=’,’O’]],FList)|SList],

[chain_el(El ,Loc1 ,[],[carbgrp ,ring_el1(Loc1)|FList])|SListNew ]) :-

Loc2 is Loc1 + RSize - 2, % (2 b/c ’O’ counts as ring element)

ring_construct_fromsize_fwd2(Loc1 ,Loc2 ,SList ,SListNew),

!.

% go on looking for a carbonyl group

ring_construct_fromsize_fwd1(Loc1 ,Loc2 ,RSize ,

[Ch_El|SList],

[Ch_El|SListNew ]) :-

ring_construct_fromsize_fwd1(Loc1 ,Loc2 ,RSize ,SList ,SListNew).

%% ring_construct_fromsize_fwd2 /4:

% search fwd for ring element 2 and construct it

% by adding the index number (from locant 1, where carbonyl group was)

% ring closure here (at calculated second locant)
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ring_construct_fromsize_fwd2(Loc1 ,Loc2 ,

[chain_el(El ,Loc2 ,[],FList)|SList],

[chain_el(El ,Loc2 ,[[ring -’O’]],[ ring_el2(Loc1)|FList ])|SList ]) :-

!.

% go on looking for element w/ index for ring element 2

ring_construct_fromsize_fwd2(Loc1 ,Loc2 ,

[Ch_El|SList],

[Ch_El|SListNew ]) :-

ring_construct_fromsize_fwd2(Loc1 ,Loc2 ,SList ,SListNew).

%% ring_construct_fromsize_bkwd /4:

% constructs a ring by looking for a carbonyl group and

% then calculating (locants) downwards for building the ring connection

% -- looks for first matching possibility , currently --

% first call w/ arguments : (_,RingSize ,InList ,OutList)

% - recursive -trick ... -

% no more possibilities

ring_construct_fromsize_bkwd(_Loc1 ,_RSize ,[] ,[]) :- fail.

% carbonyl group found

% build ring connection and

% instantiate Loc1 with calculated locant number for ring element 1

ring_construct_fromsize_bkwd(Loc1 ,RSize ,

[chain_el(El ,Loc2 ,[[’=’,’O’]],FList)|SmileList],

[chain_el(El ,Loc2 ,[[ring -’O’]],[carbgrp ,ring_el2(Loc1)|FList ])|

SmileList ]) :-

Loc1 is Loc2 - (RSize -2),

Loc1 > 0.

% recursive call ... until carbonyl group is found

% calculated Loc1 has to match with current locant number to

% construct ring element 1 here

ring_construct_fromsize_bkwd(Loc1 ,RSize ,

[chain_el(El ,Loc1 ,[],FList)|SmileList],

[chain_el(El ,Loc1 ,[],[ ring_el1(Loc1)|FList])|SmileListNew ]) :-

ring_construct_fromsize_bkwd(Loc1 ,RSize ,SmileList ,SmileListNew),

!.

% recursive rule for elements that don ’t have to be changed

% (i.e. non -carbonyl group ,

% not the calculated locant for ring element 1,

% or no possible connection there)

ring_construct_fromsize_bkwd(Loc1 ,RSize ,

[Ch_El|SmileList],

[Ch_El|SmileListNew ]) :-

ring_construct_fromsize_bkwd(Loc1 ,RSize ,SmileList ,SmileListNew).

%% smile_defaults /3:

% adds default structural parts to SmileList

% (first decides , if sugar or nonsugar defaults to impose)

% usually called when processing compd (...) , after smile_list -call

% if functor belongs to sugar_group

smile_defaults(Expr ,SList ,SListNew) :-

Expr =.. [Functor|_Args],

(

Functor == anose

;

Functor == ose

;

Functor == ulose

),

!,

smile_defaults_s(SList ,SListNew).

% if functor belongs to nonsugar_group

smile_defaults(Expr ,SList ,SListNew) :-

Expr =.. [Functor|_Args],

Functor == yl,

smile_defaults_ns(SList ,SListNew),

!.
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% no defaults for ... triv_name

smile_defaults(Expr ,SList ,SList) :-

Expr =.. [Functor|_Args],

Functor == triv_name.

%% smile_defaults_ns /2:

% smile defaults for nonsugars

% done ( traversed whole SmileList )

smile_defaults_ns ([] ,[]) :- !.

% add unsat to FeatureList

smile_defaults_ns ([ chain_el(_El ,1,[], FList)|SList],

[chain_el(_El ,1,[[’[H]’],[’[H]’],[’[H]’]],FList)|SListNew ]) :-

member(unsat ,FList),

smile_defaults_ns(SList ,SListNew).

% (last chain element)

smile_defaults_ns ([ chain_el(_El ,_LastLoc ,[], FList)],

[chain_el(_El ,_LastLoc ,[[’[H]’],[’[H]’],[’[H]’]],FList)]) :-

!,

member(unsat ,FList).

% if nothing matched:

% (e.g. wrong locant)

% go to next chain element

smile_defaults_ns ([Ch_El|SList],[Ch_El|SListNew ]) :-

smile_defaults_ns(SList ,SListNew).

%% smile_defaults_s /2:

% defaults for sugar group

% adds ([H])(O) to C in chain , where no other element or index

% ([H]) is for configuration and substitution purposes

% done (whole list traversed)

smile_defaults_s ([] ,[]) :- !.

% ring connection (ring element 1 or 2) or

% some element already there (’(=O) ’), or ring element

% go on w/o adding (O)

smile_defaults_s ([ chain_el(El ,Loc ,Branches ,FList)|SmileList],

[chain_el(El ,Loc ,Branches ,FList)|SmileListNew ]) :-

(

length(Branches ,L), L > 0

;

member(ring_el1(_L),FList)

;

member(ring_el2(_L),FList)

),

!,

smile_defaults_s(SmileList ,SmileListNew).

% uspecs are at the beginning of C-chain in pre - representation

smile_defaults_s ([ uspecs(USpecs)|SmileList],

[uspecs(USpecs)|SmileListNew ]) :-

!,

smile_defaults_s(SmileList ,SmileListNew).

% add ’[H]’,’O’ to (empty) list of branches

smile_defaults_s ([ chain_el(El ,Loc ,[], FList)|SmileList],

[chain_el(El ,Loc ,[[’[H]’],[’O’]],FList)|SmileListNew ]) :-

!, % not necessary since not the last rule ...

smile_defaults_s(SmileList ,SmileListNew).

%% smile_prefixes /3:

% process the various types of operators

% appearing in the prefixes -list (2nd arg of compd)

% nothing to do , or done

smile_prefixes ([],SList ,SList).

% first: select configurations
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smile_prefixes(PrefList ,SList ,SListNew) :-

select(cfg(CfgList),PrefList ,PrefListNew),

!,

smile_prefix(cfg(CfgList),SList ,SList1),

smile_prefixes(PrefListNew ,SList1 ,SListNew).

% select deoxy -prefix (before processing other prefixes)

smile_prefixes(PrefList ,SList ,SListNew) :-

select(Mult*Locs -deoxy ,PrefList ,PrefListNew),

!,

smile_prefix(Mult*Locs -deoxy ,SList ,SList1),

smile_prefixes(PrefListNew ,SList1 ,SListNew).

% process prefix by prefix

smile_prefixes ([ Pref1|PrefList],SList ,SListNew) :-

smile_prefix(Pref1 ,SList ,SList1),

smile_prefixes(PrefList ,SList1 ,SListNew).

%% smile_prefix /3:

% process the different types of prefixes

% double prefix , (C- substituted monosaccharide )

% e.g. ’C’-methyl , ’C’-Acetamido ,...

smile_prefix(Mult*Locs -’C’-Prefix ,SList ,SListNew) :-

cons_check(Mult*Locs ,Prefix),

sort(Locs ,SortedLocs), % noetig?

smile_list(_L ,SListAdd ,Prefix),

substitute(SortedLocs ,SList ,SListNew ,’[H]’,SListAdd),

!.

%% single prefix

% at least one Locant must have been found

smile_prefix(Mult*[’??’]-Prefix ,

[uspecs(USpecs)|SList],

[uspecs ([Mult*AllLocs -Prefix|USpecs ])|SList ]) :-

lex_smile(Prefix ,Action ,ArgList),

CallAction =.. [Action ,[Loc],SList ,_SListNew|ArgList],

CallFindall =.. [findall ,Loc ,CallAction ,AllLocs],

call(CallFindall),

AllLocs \== [],

!.

%% alternative clause for underspecified prefixes

% (but no substitution was possible)

% last rule for this type

smile_prefix(Mult*[’??’]-Prefix ,

[uspecs(USpecs)|SList],

[uspecs ([Mult*[’??’]-Prefix|USpecs ])|SList]) :-

!.

%% single prefix ,

% e.g. deoxy , amino , thio , seleno , telluro

smile_prefix(Mult*Locs -Prefix ,SList ,SListNew) :-

cons_check(Mult*Locs ,Prefix),

sort(Locs ,SortedLocs), % deletes doubles

lex_smile(Prefix ,Action ,ArgList),

CallAction =.. [Action ,SortedLocs ,SList ,SListNew|ArgList],

call(CallAction),

!.

% prefix which is a compound (not listed in lex_smile )

% i.e. a substituted derivative of a deoxy sugar

smile_prefix(Mult*Locs -Prefix ,SList ,SListNew) :-

cons_check(Mult*Locs ,Prefix),

sort(Locs ,SortedLocs),

smile_list(_L ,SListAdd ,Prefix),

substitute(SortedLocs ,SList ,SListNew ,deoxy -’[H]’,SListAdd),

!.

% configurational prefix list ,

% e.g. cfg ([alpha -’D’-gluco ,’D’-xylo ])

% reverse order because group nearest C1 is cited last
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% in case first C-Atom is involved in ring connection :

smile_prefix(cfg(CfgList) ,[chain_el(El ,Loc ,Branches ,FList)|SList],SListNew) :-

member(ring_el1(_L),FList),

!,

reverse(CfgList ,CfgListRev),

smile_config(CfgListRev ,[ chain_el(El ,Loc ,Branches ,FList)|SList],SListNew).

% ... otherwise keep from adding chirality to first C-Atom:

smile_prefix(cfg(CfgList) ,[Ch_El|SList],[Ch_El|SListNew ]) :-

reverse(CfgList ,CfgListRev),

smile_config(CfgListRev ,SList ,SListNew).

%% replace_el /4:

% replaces first occurence in List1 of A by B, Result in List2

% replace_el (List1 ,A,B,List2)

% Element has to be in a separate list: [... ,[A] ,...] ,[...] ,...

replace_el ([],_A ,_B ,[]) :- !.

replace_el ([[H]|T],A,B,[[B]| Result ]) :-

H=A,

T=Result ,

!.

replace_el ([H|T],A,B,[H|Result ]) :-

replace_el(T,A,B,Result).

%% substitute /5:

% substitute (Locants ,SMILEList ,SMILEListNew ,DeletionElement , AdditionElement )

% traverses SMILEList and substitutes at Locants (given in low -high -order !)

% AdditionElement for DeletionElement

% all locants have been processed

substitute ([],SList ,SList ,_DelEl ,_AddEL) :- !.

% element with appropriate locant found

% and branches -list is not empty

% replaced means that BranchesList should have changed

substitute ([Loc|LocsRestList],

[chain_el(El ,Loc ,Branches ,FList)|SListRest],

[chain_el(El ,Loc ,BranchesNew ,FList)|SListRestNew],

DelEl ,AddEl) :-

length(Branches ,L), L > 0,

replace_el(Branches ,DelEl ,AddEl ,BranchesNew),

Branches \== BranchesNew ,

substitute(LocsRestList ,SListRest ,SListRestNew ,DelEl ,AddEl).

% go on looking for appropriate locant

substitute(LocsList ,

[Ch_El|SListRest],

[Ch_El|SListRestNew],

DelEl ,AddEl) :-

substitute(LocsList ,SListRest ,SListRestNew ,DelEl ,AddEl).

%%% smile_config /3:

% processes configs (given as list -prefixes)

% and generates chirality information in FeatureList

% no more configs: done

smile_config ([],SList ,SList) :- !.

% process 1st config.,

% then restlist of config list

smile_config ([Cfg|CfgRestList],SList ,SListNew) :-

!,

smile_config(Cfg ,SList ,SList1),

smile_config(CfgRestList ,SList1 ,SListNew).

% config. consists of anom.config.symb.-config.symb.-config.prefix ,

% e.g. alpha -’D’-xylo

smile_config(CfgSymbAnom -CfgSymb -CfgPref ,SList ,SListNew) :-

!,
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lex_smile(CfgPref ,ChiralityCombis),

smile_config_symb(CfgSymb ,ChiralityCombis ,_RingIndex ,SList ,SList1),

lex_smile(CfgSymbAnom -CfgSymb ,Chir),

smile_config_anom(Chir ,_RingIndex ,SList1 ,SListNew).

% config. consists of config.symb.-config.prefix ,

% e.g. ’D’-gulo

smile_config(CfgSymb -CfgPref ,SList ,SListNew) :-

!,

lex_smile(CfgPref ,ChiralityCombis),

smile_config_symb(CfgSymb ,ChiralityCombis ,_RingIndex ,SList ,SListNew).

% config. consists of anom.config.symb.-config.symb.

% happens to appear in front of trivial name

% similar to rule above (which fails -- b/c of lex_smile )

smile_config(CfgSymbAnom -CfgSymb ,SList ,SListNew) :-

!,

smile_config_symb(CfgSymb ,SList ,SList1),

lex_smile(CfgSymbAnom -CfgSymb ,Chir),

smile_config_anom(Chir ,_RingIndex ,SList1 ,SListNew).

% only config.prefix

%happens to appear after having converted trivial name

smile_config(CfgPref ,SList ,SListNew) :-

lex_smile(CfgPref ,ChiralityCombis),

!,

smile_config_symb(’D’,ChiralityCombis ,_RingIndex ,SList ,SListNew).

% only config. symbol;

% happens to appear in front of trivial names

smile_config(CfgSymb ,SList ,SListNew) :-

% !, % not necessary as long as it’s the last rule

smile_config_symb(CfgSymb ,SList ,SListNew).

%%% smile_config_symb /5:

% assigns chirality symbols from chirality list ,

% considers config. symbol , hereby

% ring connection atoms aren ’t yet assigned their chirality (see ... _anom)

% ChiralityCombi -List empty , done

smile_config_symb(_CfgSymb ,[],_RingIndex ,SList ,SList) :- !.

% config.symbol L:

% turns @ into @@ , and @@ into @

% (no chirality for first C-atom or ring elements)

smile_config_symb(’L’,[Chir|ChiralityCombisRest],

RingIndex ,

[chain_el(El ,Loc ,[[’[H]’],[’O’]],FList)|SList],

[chain_el(El ,Loc ,[[’[H]’],[’O’]],[chir(OtherChir)|FList])|SListNew ]) :-

Loc > 1,

\+ member(ring -el1(_RLoc),FList),

\+ member(ring -el2(_RLoc),FList),

!,

lex_smile(Chir ,OtherChir),

smile_config_symb(’L’,ChiralityCombisRest ,RingIndex ,SList ,SListNew).

% config.symbol D:

% chiralities need no converting

% (... and DL , and meso - ,too? )

% (no chirality for first C-atom or ring elements)

smile_config_symb(CfgSymb ,[Chir|ChiralityCombisRest],

RingIndex ,

[chain_el(El ,Loc ,[[’[H]’],[’O’]],FList)|SList],

[chain_el(El ,Loc ,[[’[H]’],[’O’]],[chir(Chir)|FList])|SListNew ]) :-

Loc > 1,

\+ member(ring -el1(_RLoc),FList),

\+ member(ring -el2(_RLoc),FList),

!,

smile_config_symb(CfgSymb ,ChiralityCombisRest ,RingIndex ,SList ,SListNew).

% when encountering 1st ring -atom

% and it hadn ’t had a carbonyl group:

% remove one chirality symbol from list

% (it is to be given later),
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% indicate that 2nd ring -Atom is to be found ( instantiate RingIndex )

smile_config_symb(CfgSymb ,[ _Chir|ChiralityCombis],

RingIndex ,

[chain_el(El ,RingIndex ,Branches ,FList)|SList],

[chain_el(El ,RingIndex ,Branches ,FList)|SListNew ]) :-

member(ring_el1(RingIndex),FList),

\+ member(carbgrp ,FList),

!,

smile_config_symb(CfgSymb ,ChiralityCombis ,RingIndex ,SList ,SListNew).

% when encountering 1st ring atom

% and it had a carbonyl group:

% don ’t change chirality symbols list;

% indicate that 2nd ring -Atom is to be found ( instantiate RingIndex )

smile_config_symb(CfgSymb ,ChiralityCombis ,

RingIndex ,

[chain_el(El ,RingIndex ,Branches ,FList)|SList],

[chain_el(El ,RingIndex ,Branches ,FList)|SListNew ]) :-

member(ring_el1(RingIndex),FList),

member(carbgrp ,FList),

!,

smile_config_symb(CfgSymb ,ChiralityCombis ,RingIndex ,SList ,SListNew).

% when encountering 2nd ring -atom:

% check if it has the RingIndex of the 1st found ring element 1,

% remove chirality symbol from list

% (it is to be given later),

% if it wasn ’t the carbonyl group

smile_config_symb(CfgSymb ,[ _Chir|ChiralityCombisRest],

RingIndex ,

[chain_el(El ,Loc2 ,Branches ,FList)|SList],

[chain_el(El ,Loc2 ,Branches ,FList)|SListNew ]) :-

member(ring_el2(RingIndex),FList),

\+ member(carbgrp ,FList),

!,

smile_config_symb(CfgSymb ,ChiralityCombisRest ,RingIndex ,SList ,SListNew).

% any other config.symbol , (or case)

% w/o matching the above cases

% e.g. [’=’,’O ’], or ring element (w/ former carbonyl group) ,...

% ignore from giving a chirality symbol

smile_config_symb(CfgSymb ,ChiralityCombis ,

RingIndex ,

[Ch_El|SList],

[Ch_El|SListNew ]) :-

smile_config_symb(CfgSymb ,ChiralityCombis ,RingIndex ,SList ,SListNew).

%%% smile_config_symb /3:

% lonely config.symbol w/o config.prefix ,

% happens to appear before trivial names ,

% which means that a config.prefix has already been applied

% lonely should mean , that there is no ring connection in SMILES

% string

% no need to change config in SMILES string

smile_config_symb(’D’,SList ,SList) :- !.

% L changes @ into @@ and @@ into @

smile_config_symb(’L’,

[chain_el(El ,Loc ,Branches ,FList)|SList],

[chain_el(El ,Loc ,Branches ,[chir(OtherChir)|FListNew ])|SListNew ]) :-

% Loc > 1, %% has to be some but the 1st element? (treated below)

\+ member(ring_el1(_L),FList),

\+ member(ring_el2(_L),FList),

select(chir(Chir),FList ,FListNew), %% 1st has no chir -Feature

!,

lex_smile(Chir ,OtherChir),

smile_config_symb(’L’,SList ,SListNew).

% done ( traversed whole SMILES list)

smile_config_symb(’L’ ,[],[]) :- !.

% otherwise (there is no chirality here;

% it’s the 1st chain -atom ;...)
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smile_config_symb(’L’,[Ch_El|SList],[Ch_El|SListNew ]) :-

smile_config_symb(’L’,SList ,SListNew).

%%% smile_config_anom /4:

% chirality sign and appropriate notation at anomeric centre

% call w/ arguments: (ChirSymb ,_RingIndex ,SmileList , SmileListNew )

smile_config_anom(_Chir ,_RingIndex ,[] ,[]) :- !.

% done

% (no further config.prefix processed ,

% and its ’s not a ring element)

smile_config_anom(_Chir ,_RingIndex ,

[chain_el(El ,Loc ,Branches ,FList)|SListRest],

[chain_el(El ,Loc ,Branches ,FList)|SListRest ]) :-

Loc > 1,

\+ member(chir(_C),FList),

\+ member(ring_el1(_RLoc),FList),

\+ member(ring_el2(_RLoc),FList),

!.

% location of 1st RingElement at locant 1 (Pos .1 in C-chain)

smile_config_anom(Chir ,1,

[chain_el(El ,1,[], FList)|SList],

[chain_el(El ,1,[[’[H]’],[’O’]],[chir(OtherChir)|FList ])|SListNew ]) :-

member(ring_el1 (1),FList),

!,

lex_smile(Chir ,OtherChir),

smile_config_anom(Chir ,1,SList ,SListNew).

% location of 1st RingElement (not at 1st locant)

smile_config_anom(Chir ,RingIndex ,

[chain_el(El ,RingIndex ,[], FList)|SList],

[chain_el(El ,RingIndex ,[[’O’]],[chir(OtherChir)|FList ])|SListNew ]) :-

member(ring_el1(RingIndex),FList),

RingIndex =\= 1,

!,

lex_smile(Chir ,OtherChir),

smile_config_anom(Chir ,RingIndex ,SList ,SListNew).

% location of 2nd RingElement

smile_config_anom(Chir ,RingIndex ,

[chain_el(El ,Loc2 ,[[ring -’O’]],FList)|SList],

[chain_el(El ,Loc2 ,[[’[H]’],[ring -’O’]],[chir(Chir)|FList ])|SListNew ]) :-

% member(ring_el2( RingIndex),FList), % not necessary , theres a ring -’O’

!,

smile_config_anom(Chir ,RingIndex ,SList ,SListNew).

% any other ... : go on

smile_config_anom(Chir ,RingIndex ,

[Ch_El|SList],

[Ch_El|SListNew ]) :-

smile_config_anom(Chir ,RingIndex ,SList ,SListNew).

%% lex_smile /2:

% lexicon for

% prefix -chirality -combinations ,

% chirality -sign at anomeric centre

% Chirality combinations list ,

% given in D-configuration , starting from C1

lex_smile(glycero ,[’@’]).

lex_smile(erythro ,[’@’,’@’]).

lex_smile(threo ,[’@@’,’@’]).

lex_smile(ribo ,[’@’,’@’,’@’]).

lex_smile(arabino ,[’@@’,’@’,’@’]).

lex_smile(xylo ,[’@’,’@@’,’@’]).

lex_smile(lyxo ,[’@@’,’@@’,’@’]).

lex_smile(allo ,[’@’,’@’,’@’,’@’]).

lex_smile(altro ,[’@@’,’@’,’@’,’@’]).

lex_smile(gluco ,[’@’,’@@’,’@’,’@’]).

lex_smile(manno ,[’@@’,’@@’,’@’,’@’]).
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lex_smile(gulo ,[’@’,’@’,’@@’,’@’]).

lex_smile(ido ,[’@@’,’@’,’@@’,’@’]).

lex_smile(galacto ,[’@’,’@@’,’@@’,’@’]).

lex_smile(talo ,[’@@’,’@@’,’@@’,’@’]).

% chirality at anomeric centre

lex_smile(alpha -’D’,’@’). % formally cis to last C (D is in smiles.pl @)

lex_smile(alpha -’L’,’@@’).% L is here @@

lex_smile(beta -’D’,’@@’). % formally trans to last C (D is in smiles.pl @)

lex_smile(beta -’L’,’@’). % L is here @@

% other chirality

lex_smile(’@’,’@@’).

lex_smile(’@@’,’@’).

% Actions for specified prefixes

lex_smile(deoxy ,substitute ,[’O’,deoxy -’[H]’]).

lex_smile(amino ,substitute ,[deoxy -’[H]’,’N’]).

lex_smile(thio ,substitute ,[’O’,’S’]).

lex_smile(thio ,substitute ,[ring -’O’,ring -’S’]). % may be ring connection

lex_smile(seleno ,substitute ,[’O’,’Se’]).

%% lex_triv /3:

% lexicon for trivial names associating

% their correpsonding systematic name and

% their corresponding semantic representation

% D-Ribose

lex_triv(ribose ,’D-ribo -pentose ’,compd(ose (?? *[??] ,5*’C’),pref([cfg([’D’-ribo])]),suff ([]))).

lex_triv(fructose ,’D-arabino -Hex -2-ulose ’,compd(ulose (?? *[2] ,6*’C’),pref([cfg([’D’-arabino ])]),

suff ([]))).

lex_triv(glucose ,’D-gluco -Hexose ’,compd(ose(?? *[??] ,6*’C’),pref([cfg([’D’-gluco ])]),suff ([]))).
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A.4 Classes Module

A.4.1 File classes.pl

% ------------------------------------------- %

% File: classes.pl %

% Author: Stefanie Anstein %

% Purpose: classifier %

% ------------------------------------------- %

%%% determine classes from semantic representation term

%% Prolog call: classes(Sem_Repr_Term ,ClassList).

%%%% fully specified names

%%% main rule for class calculus

classes(compd(Par ,pref(PrefPredList),suff(SuffPredList)),ClassList) :-

parpredlist(Par ,ParPredList),

predlistscomb2classes(ParPredList ,PrefPredList ,SuffPredList ,ClassList1),

addsuperclasses(ClassList1 ,ClassList),

!.

%%%% class/ underspecified names

%% class names w/o affixes

% e.g. alkene: compd( class_name (alkene),pref ([]) ,suff ([]))

classes(compd(class_name(ClassNameforList),pref ([]),suff ([])) ,[ClassNameforList ]) :- !.

%% class names w/ affixes

% e.g. 2-alkene: compd ((?? *[2] , class_name (alkene)),pref ([]) ,suff ([]))

classes(compd (( _Mult*_Locs ,class_name(ClassNameforList)),pref ([]),suff ([])),[ClassNameforList ])

:- !.

%% class names ’within ’ functional group suffix

% e.g. pentanoic anhydride:

% compd(ane (5*’C ’),pref ([]) ,suff ([??? *[??] -( adj_suff(oic)+ class_name (anhydride))]))

classes(compd(Par ,

pref ([]),

suff([ _Mult1*_Locs -( adj_suff(_AdjSuff)+class_name(ClassName))])),

[ClassName ,SecClassName ]) :-

parpredlist(Par ,ParPredList),

member(_Mult2*_Elem -ParPred ,ParPredList),

prefchangeclass(ParPred ,none ,none ,SecClassName),

!.

%% class names in ’radiofunctional nomenclature ’

% e.g. methyl alcohol:

% compd(compd(yl (?? *[??] , ane (1*’C ’)),pref ([]) ,suff ([]))+ class_name (alcohol),pref ([]) ,suff ([]))

classes(compd(compd(_PAR ,_PREF ,_SUFF)+class_name(ClassName),pref ([]),suff ([])) ,[ClassName ]) :- !.

% more complex

classes(compd(compd(_PAR1 ,_PREF1 ,_SUFF1)+compd(_PAR2 ,_PREF2 ,_SUFF2)+class_name(ClassName),pref

([]),suff ([])) ,[ClassName ]) :- !.

%%%% trivial names

%% trivial names: lookup

% e.g. benzene: compd(triv_name (benzene),pref ([]) ,suff ([]))

classes(compd(triv_name(benzene),pref ([]),suff ([])),[’AROMATIC ’]) :- !.

%%% cases not covered

classes(_Compd_Expression ,[’NO CLASSES ’]).

%% collect all predicates from parent argument in a list

% stop at deepest embedding

parpredlist(_Mult*_Locs ,[]) :-

!.

parpredlist(ClassName ,[]) :-
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atom(ClassName), !.

% add functors; proceed with second ...

parpredlist(Term ,[Arg1 -Functor|List]) :-

Term =.. [Functor |[Arg1 ,Arg2]],

parpredlist(Arg2 ,List).

% ... or with first (only) argument

parpredlist(Term ,[Arg1 -Functor|List]) :-

Term =.. [Functor |[Arg1]],

parpredlist(Arg1 ,List).

%%% rules for ’predicate interaction ’ (order important !)

%% (a) specific combination of par , pref and suff

% e.g. 5-deoxypentan -5-ol:

% compd(ane (5*’C ’),pref ([?? *[5] - deoxy ]),suff ([?? *[5] -ol]))

predlistscomb2classes(ParPredList ,PrefPredList ,SuffPredList ,Class) :-

member(_Mult*_Elem -ParPred ,ParPredList),

member(_Mult*[Loc|_Rest]-PrefPred ,PrefPredList),

member(_Mult*[Loc|_Rest]-SuffPred ,SuffPredList),

prefchangeclass(ParPred ,PrefPred ,SuffPred ,Class),

!.

%% (b) only combination of par and pref , no suff

% e.g. 2-oxahexane :

% compd(ane (6*’C ’),pref ([?? *[2] - oxa ]),suff ([]))

predlistscomb2classes(ParPredList ,PrefPredList ,[], Class) :-

member(_Loc*_Elem -ParPred ,ParPredList),

member(_Mult*_Locs -PrefPred ,PrefPredList),

prefchangeclass(ParPred ,PrefPred ,none ,Class),

!.

% e.g. 1-methyl -hexane:

% compd(ane (6*’C ’),pref ([?? *[1] - compd(yl (?? *[?] , ane (1*’C ’)),pref ([]) ,suff ([]))]),suff ([]))

predlistscomb2classes(ParPredList ,PrefPredList ,[], Class) :-

member(_Loc*_Elem -ParPred ,ParPredList),

member(_Mult*_Locs -_compd_Any ,PrefPredList),

prefchangeclass(ParPred ,compd(_Any),none ,Class),

!.

% e.g. 5- hydroxypentane :

% compd(ane (5*’C ’),pref ([?? *[5] - hydroxy ]),suff ([]))

predlistscomb2classes(ParPredList ,PrefPredList ,[], Class) :-

member(Loc*_Elem -ParPred ,ParPredList),

member(_Mult*[Loc|_Rest]-PrefPred ,PrefPredList),

prefchangeclass(ParPred ,PrefPred ,none ,Class),

!.

% e.g. 2,3- dihydropent -2-ene:

% compd(ene (?? *[2] , ane (5*’C ’)),pref ([2*[2 ,3] - hydro ]),suff ([]))

% e.g. 2,3- dihydropent -2-yne:

% compd(yne (?? *[2] , ane (5*’C ’)),pref ([2*[2 ,3] - hydro ]),suff ([]))

% e.g. 1,2- didehydropent -1-ene:

% compd(ene (?? *[1] , ane (5*’C ’)),pref ([2*[1 ,2] - dehydro ]),suff ([]))

predlistscomb2classes(ParPredList ,PrefPredList ,[], Class) :-

member(_Mult*[ CommonLoc|_Rest]-ParPred ,ParPredList),

member (2*[ CommonLoc ,FollowingLoc|_Rest]-PrefPred ,PrefPredList),

prefchangeclass(ParPred ,PrefPred ,none ,Class),

FollowingLoc is CommonLoc +1.

% e.g. 1,2- didehydropentane :

% compd(ane (5*’C ’),pref ([2*[1 ,2] - dehydro ]),suff ([]))

predlistscomb2classes(ParPredList ,PrefPredList ,[], Class) :-

member(_Mult*’C’-ParPred ,ParPredList),

member (2*[Loc ,FollowingLoc|_Rest]-PrefPred ,PrefPredList),

prefchangeclass(ParPred ,PrefPred ,none ,Class),

FollowingLoc is Loc+1.

%% (c) only combination of par and suff , no pref

% e.g. methanolate :

% compd(ane (1*’C ’),pref ([]) ,suff ([?? *[?] -ol ,?? *[?] - ate ]))

predlistscomb2classes(ParPredList ,[], SuffPredList ,Class) :-
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member(_Mult*_Elem -ParPred ,ParPredList),

member(_Mult1*_Locs -SuffPred1 ,SuffPredList),

member(_Mult1*_Locs -SuffPred2 ,SuffPredList),

prefchangeclass(ParPred ,none ,[SuffPred1 ,SuffPred2],Class),

!.

% e.g. pentan -5-ol: compd(ane (5*’C ’),pref ([]) ,suff ([?? *[5] -ol]))

predlistscomb2classes(ParPredList ,[], SuffPredList ,Class) :-

member(Loc*_Elem -ParPred ,ParPredList),

member(_Mult*[Loc|_Rest]-SuffPred ,SuffPredList),

prefchangeclass(ParPred ,none ,SuffPred ,Class),

!.

% e.g. propanal: compd(ane (3*’C ’),pref ([]) ,suff ([?? *[?] -al]))

predlistscomb2classes(_ParPredList ,[], SuffPredList ,Class) :-

member(_Mult*[_Loc|_Rest]-SuffPred ,SuffPredList),

prefchangeclass(_ParPred ,none ,SuffPred ,Class),

!.

%% (d) neither pref nor suff

% e.g. hexane: compd(ane (6*’C ’),pref ([]) ,suff ([]))

predlistscomb2classes ([ _Mult*_Elem -ane],[],[],[’ALKANE ’]).

% e.g. methyl pentane:

% compd(add(yl (?? *[?] , ane (1*C)),ane (5*C)),pref ([]) ,suff ([]))

predlistscomb2classes(ParPredList ,[],[], Class) :-

member(_AddPart -ParPred1 ,ParPredList),

member(_Mult*_Elem -ParPred2 ,ParPredList),

prefchangeclass ([ParPred1 ,ParPred2],none ,none ,Class),

!.

% e.g. 3-penten -1-yne:

% compd(yne (?? *[1] , ene (?? *[3] , ane (5*’C ’))),pref ([]) ,suff ([]))

predlistscomb2classes(ParPredList ,[],[], Class) :-

member(_Mult1*_Loc1 -ParPred1 ,ParPredList),

member(_Mult2*_Loc2 -ParPred2 ,ParPredList),

prefchangeclass ([ParPred1 ,ParPred2],none ,none ,Class),

!.

% e.g. hex -2-ene: compd(ene (?? * [2], ane (6*’C ’)),pref ([]) ,suff ([]))

predlistscomb2classes(ParPredList ,[],[], Class) :-

member(_Mult*_Loc -ParPred ,ParPredList),

prefchangeclass(ParPred ,none ,none ,Class),

!.

% e.g. cyclopentane : compd(cyclo (?? *[1,5], ane (5*’C ’)),pref ([]) ,suff ([]))

predlistscomb2classes(ParPredList ,[],[], Class) :-

member(_Mult1*_Loc -ParPred1 ,ParPredList),

member(_Mult2*_Elem -ParPred2 ,ParPredList),

prefchangeclass ([ParPred1 ,ParPred2],none ,none ,Class),

!.

%% (e) only combination of par and suff , pref = any w/ exceptions

% e.g. 2-phosphapentan -5-ol:

% compd(ane (5*’C ’),pref ([?? *[2] - phospha ]),suff ([?? *[5] -ol]))

predlistscomb2classes(ParPredList ,PrefPredList ,SuffPredList ,Class) :-

member(Loc*_Elem -ParPred ,ParPredList),

member(_Mult*_LocList -PrefPred ,PrefPredList),

member(_Mult*[Loc|_Rest]-SuffPred ,SuffPredList),

prefchangeclass(ParPred ,PrefPred ,SuffPred ,Class),

!.

%%% ’lexicon entries ’ for predicate interaction (order important !!)

%%% listed for finite number of predicates and combinations

%% ’specials ’ (for class names ’within ’ functional group suffix)

prefchangeclass(ane ,none ,none ,’ALKANE ’).

%% (a) specific combination of par , pref and suff

prefchangeclass(ane ,deoxy ,ol ,[’ALKANE ’]).
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prefchangeclass(ene ,deoxy ,ol ,[’ALKENE ’]).

%% (b) only combination of par and pref , no suff

prefchangeclass(ane ,oxa ,none ,[’ALKANE ’]).

prefchangeclass(ane ,compd(_Any),none ,[’ALKANE ’]).

prefchangeclass(ane ,hydroxy ,none ,[’ALKANE ’,’PRIMARY ALCOHOL (-OH)’]).

prefchangeclass(ene ,hydro ,none ,[’ALKANE ’]).

prefchangeclass(yne ,hydro ,none ,[’ALKENE (double bond)’]).

prefchangeclass(ene ,dehydro ,none ,[’ALKYNE (triple bond)’]).

prefchangeclass(ane ,dehydro ,none ,[’ALKENE (double bond)’]).

prefchangeclass(ane ,amino ,none ,[’ALKANE ’,’AMINE (-NH2)’]).

%% (c) only combination of par and suff , no pref

prefchangeclass(ane ,none ,[ol ,ate],[’ALKANE ’,’ALCOHOLATE ’,’PHENOLATE ’]).

prefchangeclass(ane ,none ,ol ,[’ALKANE ’,’PRIMARY ALCOHOL (-OH)’]).

prefchangeclass(ene ,none ,ol ,[’ALKENE ’,’PRIMARY ALCOHOL (-OH)’]).

prefchangeclass(ane ,none ,al ,[’ALKANE ’,’ALDEHYDE (-CHO)’]).

prefchangeclass(ene ,none ,al ,[’ALKENE ’,’ALDEHYDE (-CHO)’]).

prefchangeclass(ane ,none ,aldehyde ,[’ALKANE ’,’ALDEHYDE (-CHO)’]).

prefchangeclass(ane ,none ,carbaldehyde ,[’ALKANE ’,’ALDEHYDE (-CHO)’]).

prefchangeclass(ane ,none ,one ,[’ALKANE ’,’KETONE (>(C)=O)’]).

prefchangeclass(ane ,none ,amide ,[’ALKANE ’,’AMIDE (-CO -NH2)’]).

prefchangeclass(ane ,none ,carboxamide ,[’ALKANE ’,’AMIDE (-CO -NH2)’]).

prefchangeclass(ane ,none ,amine ,[’ALKANE ’,’AMINE (-NH2)’]).

prefchangeclass(ane ,none ,olate ,[’ALKANE ’,’ALCOHOLATE ’,’PHENOLATE ’]).

%% (d) neither pref nor suff

prefchangeclass ([add ,ane],none ,none ,[’ALKANE ’]).

prefchangeclass ([yne ,ene],none ,none ,[’ALKENE (double bond)’,’ALKYNE (triple bond)’]).

prefchangeclass(ene ,none ,none ,[’ALKENE (double bond)’]).

prefchangeclass(yne ,none ,none ,[’ALKYNE (triple bond)’]).

prefchangeclass(yl ,none ,none ,[’ALKYL ’]).

prefchangeclass ([cyclo ,ene],none ,none ,[’CYCLOALKENE ’]).

prefchangeclass ([cyclo ,ane],none ,none ,[’CYCLOALKANE ’]).

%% (e) only combination of par and suff , pref = any w/ exceptions

prefchangeclass(ane ,AnyPref ,ol ,[’ALKANE ’,’PRIMARY ALCOHOL (-OH)’]) :-

no_change(AnyPref).

prefchangeclass(ene ,AnyPref ,ol ,[’ALKENE ’,’PRIMARY ALCOHOL (-OH)’]) :-

no_change(AnyPref).

prefchangeclass(ane ,AnyPref ,one ,[’ALKANE ’,’KETONE (>(C)=O)’]) :-

no_change(AnyPref).

no_change(phospha).

no_change(oxa).

no_change(thia).

no_change(hydroxy). % TBC; define different categories of prefixes

%%% add superclasses for a class hierarchy

% e.g. PRIMARY ALCOHOLS are ALCOHOLS

addsuperclasses(ClassList ,[’ALCOHOL (-OH)’|ClassList ]) :-

member(’PRIMARY ALCOHOL (-OH)’,ClassList).

% none

addsuperclasses(ClassList ,ClassList) :- !.
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B EBNF and Testsuite

B.1 EBNF for the Semantic Representation

B.1.1 File ebnf.semrep.txt

% ------------------------------------------- %

% File: ebnf.semrep.txt %

% Author: Stefanie Anstein , Gerhard Kremer %

% Purpose: definition of sem. representation %

% ------------------------------------------- %

COMPD = "compd", "(", PAR_PHR ,

"pref", "(", P_LIST , ")",

"suff", "(", S_LIST , ")", ")";

PAR_PHR = OP1_CONSTRUCT

| OP2_CONSTRUCT

| OP3_CONSTRUCT % sugar -specific

| OP4_CONSTRUCT

| OP5_CONSTRUCT

| CLOSED_CLASS;

P_LIST = "[", {PREF_CONSTRUCT}, "]"

| "[", PREF_CONSTRUCT , {",", PREF_CONSTRUCT}, "]"

| "[", "]"; % no prefix

S_LIST = "[", {SUFF_CONSTRUCT}, "]";

| "[", SUFF_CONSTRUCT , {",", SUFF_CONSTRUCT}, "]"

| "[", "]"; % no suffix

OP1_CONSTRUCT = OP1 , "(", STRUCT , ")";

OP2_CONSTRUCT = OP2 , "(", LOCS_MULT , ",", STRUCT , ")";

OP3_CONSTRUCT = OP3 , "(", LOCS_MULT , ",", NUM , ",", STRUCT , ")";

OP4_CONSTRUCT = "(", LOCS_MULT , ",", CLOSED_CLASS , ")";

OP5_CONSTRUCT = COMPD , {"+", COMPD}, "+", CLOSED_CLASS;

CLOSED_CLASS = CLOSED_CLASS_PRED , "(", CLOSED_CLASS_MORPH , ")";

PREF_CONSTRUCT = LOCS_MULT , "-", PREFS

| LOCS_MULT , "-", COMPD;

SUFF_CONSTRUCT = LOCS_MULT , "-", SUFF

| LOCS_MULT , "-", ADJSUFF;

STRUCT = PAR_PHR

| NUM , "*", ELEMENTS;

LOCS_MULT = NUM , "*", "[", NUMS , "]"

| UNKNO , "*", "[", NUMS , "]"

| NUM , "*", "[", UNKNO , "]"

| UNKNO , "*", "[", UNKNO , "]";

PREFS = PREF

| ELEMENT , "-", PREF; % sugar -specific (?)

ADJSUFF = ADJSUFF_PRED , "(", ADJSUFF_MORPH , ")",

"+", CLASSNAME_PRED , "(", CLASSNAME_MORPH , ")";

ELEMENTS = ELEMENT

| "(", ELEMENT , "+", ELEMENT , ")";

NUMS = NUM

| NUM , {",", NUM};
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B.2 Testsuite

B.2.1 File testsuite.txt

% ------------------------------------------- %

% File: testsuite.txt %

% Author: Stefanie Anstein , Gerhard Kremer %

% Purpose: testsuite for compd.pl %

% ------------------------------------------- %

% allowed are:

% organic chemical compound names

% (w/ whitespaces at end of line , capitals , alpha , etc.),

% comment lines beginning with %,

% empty lines / lines containing only whitespace

%%% parents (nonsugar)

%% systematic names saturated , acyclic

hexane

phosphane

% replacement operation

pentaphosphane

% alternating elements

tetraarsazane

%% systematic names unsaturated

ethene

2-pentene

pent -2-ene

pent -2,3-diene

hex -3-yne

% double parent suffix

3-penten -1-yne

%% systematic names saturated , cyclic

cyclopentane

cyclopentaoxane

cyclotetraarsazane

% trivial names

benzene

% and corresponding systematic names

cyclohexatriene

cyclohex -1,3,5-triene

% semisystematic names

1,2- dihydrobenzene

% and corresponding systematic names

1,2-dihydrocyclohex -1,3,5-triene

% underspecified names

ethene

butene

% radicals

methyl

%%% organic compounds (nonsugar)

% multi -word; radiofunctional nomenclature

methyl alcohol

ethyl methyl ketone

% w/ prefix(es) (substitutive operation)

2-oxahexane

2,4,8- trioxaundecane

oxacyclopentane

2,4-dioxa -6,8- diphosphadecane

1,2-didehydrocyclohex -1,3,5-triene

1-methyl -hexane

1-(methyl)-hexane

1,2-dimethyl -hexane

2,3-dihydropent -2-ene
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2,3-dihydropent -2-yne

1,2-didehydropent -1-ene

1,2- didehydropentane

5-hydroxypentane

5-deoxypentan -5-ol

% w/ suffix

methanol

propanal

propan -2-al

propan -2,3-dial

butanone

pentanoic acid

hexanaldehyde

hexancarbaldehyde

pentanoic anhydride

heptanamine

octanamide

octancarboxamide

methanolate

% w/ prefix(es) and suffix

2-oxahex -4-enol

%%% miscellaneous

% synonymous names

2-aminopentane

pent -2-yl-amine

pentane -2-amine

2-propylamine

propaneamine

2-propyl -2-amine

% class names

alkene

2-alkene

2,3-dialkene

% stereochemistry/orientation

cis -but -2-ene

(E)-but -2-ene

% element names

oxygen

% ------------------------------------------- %

%% sugar parents %%

hexose

hexodialdose

% altern. nomenclature (CAS):

3-pentulose

%

pent -2-ulose

hepto -2,3- diulose

hexos -3-ulose

hexopyranose

hex -3- ulooxirose

hexodialdo -6,3- furanose

hexodialdo -6,3-furanose -1,5- pyranose

hexopyranos -4-ulose

hexos -2-ulo -2,5- furanose

%% par_sugar w/ configuration %%

D-glycero -L-gulo -heptose

L-threo -tetrodialdose

D-arabino -hex -2-ulose

alpha -D-altro -hept -2- ulopyranose

meso -xylo -hepto -2,6-diulose

alpha -D-threo -Hexo -2,4-diulo -2,5- furanose

L-glycero -L-manno -Nono -2,7-diulose

D-arabino -hexos -3-ulose
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%% deoxy sugars %%

% ... systematic names: %

2-Deoxy -alpha -D-allo -heptopyranose

4-Deoxy -beta -D-xylo -hexopyranose

2-Deoxy -D-ribo -hexose

1-Deoxy -L-glycero -D-altro -oct -2-ulose

% ... chiral centres divided into two centres: %

3-Deoxy -D-ribo -hexose

5-Deoxy -D-arabino -hept -3-ulose

6-Deoxy -L-gluco -oct -2-ulose

% ... derived from trivial names %

2-deoxyribose

2-Deoxy -D-erythro -pentofuranose

%% amino sugars %%

2-amino -2-deoxy -D-galacto -hexose

% ... other amino -prefixes %

%

% ... w/ triv_name -parent %

2-amino -2-deoxy -D-galactose

2-amino -2,6-dideoxy -D-glucose

2,4-diamino -2,4,6-trideoxy -D-glucose

%% thio sugars and other chalcogen analogues %%

4-Thio -beta -D-galacto -hexopyranose

% ... w/ triv_name -Teil %

4-Thio -beta -D-galactopyranose

5-Thio -beta -D-glucopyranose

%% trivial names %%

% ... trivial names w/o configuration %

glucose

glucopyranose

% ... trivial names w/ configuration %

D-ribose

L-Ribose

D-ribulose

D-fructose

alpha -D-glucooxirose

%% underspecified/class names %%

pyranose

ketose

aldohexose

%deoxy sugar

deoxypentose

% aminodeoxypentose %

amino -3- deoxypentose

%% embedded compound %%

% made -up name; for testing SMILES

2-deoxy -2-methyl -hexose
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B.2.2 File testsuite.out

hexane

[h,e,x,a,n,e]

compd(ane(6*C),pref ([]),suff ([]))

NO SMILES

ALKANE

---

phosphane

[p,h,o,s,p,h,a,n,e]

compd(ane(1*P),pref ([]),suff ([]))

NO SMILES

ALKANE

---

pentaphosphane

[p,e,n,t,a,p,h,o,s,p,h,a,n,e]

compd(ane(5*P),pref ([]),suff ([]))

NO SMILES

ALKANE

---

tetraarsazane

[t,e,t,r,a,a,r,s,a,z,a,n,e]

compd(ane (4*(As+N)),pref ([]),suff ([]))

NO SMILES

ALKANE

---

ethene

[e,t,h,e,n,e]

compd(ene(?? *[??], ane(2*C)),pref ([]),suff ([]))

NO SMILES

ALKENE (double bond)

---

2-pentene

[2,-,p,e,n,t,e,n,e]

compd(ene(?? *[2],ane (5*C)),pref ([]),suff ([]))

NO SMILES

ALKENE (double bond)

---

pent -2-ene

[p,e,n,t,-,2,-,e,n,e]

compd(ene(?? *[2],ane (5*C)),pref ([]),suff ([]))

NO SMILES

ALKENE (double bond)

---

pent -2,3-diene

[p,e,n,t,-,2,,,3,-,d,i,e,n,e]

compd(ene(2*[2 ,3] , ane (5*C)),pref ([]),suff ([]))

NO SMILES

ALKENE (double bond)

---

hex -3-yne

[h,e,x,-,3,-,y,n,e]

compd(yne(?? *[3],ane (6*C)),pref ([]),suff ([]))

NO SMILES

ALKYNE (triple bond)

---

3-penten -1-yne

[3,-,p,e,n,t,e,n,-,1,-,y,n,e]

compd(yne(?? *[1],ene (?? *[3],ane (5*C))),pref ([]),suff ([]))

NO SMILES

ALKENE (double bond),ALKYNE (triple bond)

---

cyclopentane

[c,y,c,l,o,p,e,n,t,a,n,e]

compd(cyclo (?? *[??], ane(5*C)),pref ([]),suff ([]))

NO SMILES
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CYCLOALKANE

---

cyclopentaoxane

[c,y,c,l,o,p,e,n,t,a,o,x,a,n,e]

compd(cyclo (?? *[??], ane(5*O)),pref ([]),suff ([]))

NO SMILES

CYCLOALKANE

---

cyclotetraarsazane

[c,y,c,l,o,t,e,t,r,a,a,r,s,a,z,a,n,e]

compd(cyclo (?? *[??], ane (4*(As+N))),pref ([]),suff ([]))

NO SMILES

CYCLOALKANE

---

benzene

[b,e,n,z,e,n,e]

compd(triv_name(benzene),pref ([]),suff ([]))

NO SMILES

AROMATIC

---

cyclohexatriene

[c,y,c,l,o,h,e,x,a,t,r,i,e,n,e]

compd(cyclo (?? *[??], ene (6*[??] , ane(3*C))),pref ([]),suff ([]))

NO SMILES

CYCLOALKENE

---

compd(cyclo (?? *[??], ene (3*[??] , ane(6*C))),pref ([]),suff ([]))

NO SMILES

CYCLOALKENE

---

cyclohex -1,3,5-triene

[c,y,c,l,o,h,e,x,-,1,,,3,,,5,-,t,r,i,e,n,e]

compd(cyclo (?? *[??], ene(3*[1,3,5],ane (6*C))),pref ([]),suff ([]))

NO SMILES

CYCLOALKENE

---

1,2- dihydrobenzene

[1,,,2,-,d,i,h,y,d,r,o,b,e,n,z,e,n,e]

compd(triv_name(benzene),pref ([2*[1 ,2] - hydro ]),suff ([]))

NO SMILES

NO CLASSES

---

1,2-dihydrocyclohex -1,3,5-triene

[1,,,2,-,d,i,h,y,d,r,o,c,y,c,l,o,h,e,x,-,1,,,3,,,5,-,t,r,i,e,n,e]

compd(cyclo (?? *[??], ene(3*[1,3,5],ane (6*C))),pref ([2*[1 ,2] - hydro ]),suff ([]))

NO SMILES

ALKANE

---

ethene

[e,t,h,e,n,e]

compd(ene(?? *[??], ane(2*C)),pref ([]),suff ([]))

NO SMILES

ALKENE (double bond)

---

butene

[b,u,t,e,n,e]

compd(ene(?? *[??], ane(4*C)),pref ([]),suff ([]))

NO SMILES

ALKENE (double bond)

---

methyl

[m,e,t,h,y,l]

compd(yl(?? *[??] , ane (1*C)),pref ([]),suff ([]))

C([H])([H])([H])

ALKYL

---
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methyl alcohol

[m,e,t,h,y,l, ,a,l,c,o,h,o,l]

compd(compd(yl(?? *[??] ,ane (1*C)),pref ([]),suff ([]))+class_name(alcohol),pref ([]),suff ([]))

NO SMILES

alcohol

---

ethyl methyl ketone

[e,t,h,y,l, ,m,e,t,h,y,l, ,k,e,t,o,n,e]

compd(compd(yl(?? *[??] ,ane (2*C)),pref ([]),suff ([]))+compd(yl(?? *[??] , ane (1*C)),pref ([]),suff

([]))+class_name(ketone),pref ([]),suff ([]))

NO SMILES

ketone

---

2-oxahexane

[2,-,o,x,a,h,e,x,a,n,e]

compd(ane(6*C),pref ([?? *[2]-oxa]),suff ([]))

NO SMILES

ALKANE

---

2,4,8- trioxaundecane

[2,,,4,,,8,-,t,r,i,o,x,a,u,n,d,e,c,a,n,e]

compd(ane (11*C),pref ([3*[2 ,4 ,8]- oxa]),suff ([]))

NO SMILES

ALKANE

---

oxacyclopentane

[o,x,a,c,y,c,l,o,p,e,n,t,a,n,e]

compd(cyclo (?? *[??], ane(5*C)),pref ([?? *[??] - oxa]),suff ([]))

NO SMILES

ALKANE

---

2,4-dioxa -6,8- diphosphadecane

[2,,,4,-,d,i,o,x,a,-,6,,,8,-,d,i,p,h,o,s,p,h,a,d,e,c,a,n,e]

compd(ane (10*C),pref ([2*[2 ,4] -oxa ,2*[6 ,8]- phospha ]),suff ([]))

NO SMILES

ALKANE

---

1,2-didehydrocyclohex -1,3,5-triene

[1,,,2,-,d,i,d,e,h,y,d,r,o,c,y,c,l,o,h,e,x,-,1,,,3,,,5,-,t,r,i,e,n,e]

compd(cyclo (?? *[??], ene(3*[1,3,5],ane (6*C))),pref ([2*[1 ,2] - dehydro ]),suff ([]))

NO SMILES

ALKYNE (triple bond)

---

1-methyl -hexane

[1,-,m,e,t,h,y,l,-,h,e,x,a,n,e]

compd(ane(6*C),pref ([?? *[1]- compd(yl(?? *[??] ,ane (1*C)),pref ([]),suff ([]))]),suff ([]))

NO SMILES

ALKANE

---

1-(methyl)-hexane

[1,-,(,m,e,t,h,y,l,) ,-,h,e,x,a,n,e]

compd(ane(6*C),pref ([?? *[1]- compd(yl(?? *[??] ,ane (1*C)),pref ([]),suff ([]))]),suff ([]))

NO SMILES

ALKANE

---

1,2-dimethyl -hexane

[1,,,2,-,d,i,m,e,t,h,y,l,-,h,e,x,a,n,e]

compd(ane(6*C),pref ([2*[1 ,2] - compd(yl(?? *[??] ,ane (1*C)),pref ([]),suff ([]))]),suff ([]))

NO SMILES

ALKANE

---

2,3-dihydropent -2-ene

[2,,,3,-,d,i,h,y,d,r,o,p,e,n,t,-,2,-,e,n,e]

compd(ene(?? *[2],ane (5*C)),pref ([2*[2 ,3] - hydro]),suff ([]))

NO SMILES
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ALKANE

---

2,3-dihydropent -2-yne

[2,,,3,-,d,i,h,y,d,r,o,p,e,n,t,-,2,-,y,n,e]

compd(yne(?? *[2],ane (5*C)),pref ([2*[2 ,3] - hydro]),suff ([]))

NO SMILES

ALKENE (double bond)

---

1,2-didehydropent -1-ene

[1,,,2,-,d,i,d,e,h,y,d,r,o,p,e,n,t,-,1,-,e,n,e]

compd(ene(?? *[1],ane (5*C)),pref ([2*[1 ,2] - dehydro ]),suff ([]))

NO SMILES

ALKYNE (triple bond)

---

1,2- didehydropentane

[1,,,2,-,d,i,d,e,h,y,d,r,o,p,e,n,t,a,n,e]

compd(ane(5*C),pref ([2*[1 ,2] - dehydro ]),suff ([]))

NO SMILES

ALKENE (double bond)

---

5-hydroxypentane

[5,-,h,y,d,r,o,x,y,p,e,n,t,a,n,e]

compd(ane(5*C),pref ([?? *[5]- hydroxy ]),suff ([]))

NO SMILES

ALCOHOL (-OH),ALKANE ,PRIMARY ALCOHOL (-OH)

---

5-deoxypentan -5-ol

[5,-,d,e,o,x,y,p,e,n,t,a,n,-,5,-,o,l]

compd(ane(5*C),pref ([?? *[5]- deoxy]),suff ([?? *[5]-ol]))

NO SMILES

ALKANE

---

methanol

[m,e,t,h,a,n,o,l]

compd(ane(1*C),pref ([]),suff ([?? *[??] -ol]))

NO SMILES

ALCOHOL (-OH),ALKANE ,PRIMARY ALCOHOL (-OH)

---

propanal

[p,r,o,p,a,n,a,l]

compd(ane(3*C),pref ([]),suff ([?? *[??] -al]))

NO SMILES

ALKANE ,ALDEHYDE (-CHO)

---

propan -2-al

[p,r,o,p,a,n,-,2,-,a,l]

compd(ane(3*C),pref ([]),suff ([?? *[2]-al]))

NO SMILES

ALKANE ,ALDEHYDE (-CHO)

---

propan -2,3-dial

[p,r,o,p,a,n,-,2,,,3,-,d,i,a,l]

compd(ane(3*C),pref ([]),suff ([2*[2 ,3] -al]))

NO SMILES

ALKANE ,ALDEHYDE (-CHO)

---

butanone

[b,u,t,a,n,o,n,e]

compd(ane(4*C),pref ([]),suff ([?? *[??] -one]))

NO SMILES

ALKANE ,KETONE (>(C)=O)

---

pentanoic acid

[p,e,n,t,a,n,o,i,c, ,a,c,i,d]

compd(ane(5*C),pref ([]),suff ([?? *[??] -( adj_suff(oic)+class_name(acid))]))
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NO SMILES

acid ,ALKANE

---

hexanaldehyde

[h,e,x,a,n,a,l,d,e,h,y,d,e]

compd(ane(6*C),pref ([]),suff ([?? *[??] - aldehyde ]))

NO SMILES

ALKANE ,ALDEHYDE (-CHO)

---

hexancarbaldehyde

[h,e,x,a,n,c,a,r,b,a,l,d,e,h,y,d,e]

compd(ane(6*C),pref ([]),suff ([?? *[??] - carbaldehyde ]))

NO SMILES

ALKANE ,ALDEHYDE (-CHO)

---

pentanoic anhydride

[p,e,n,t,a,n,o,i,c, ,a,n,h,y,d,r,i,d,e]

compd(ane(5*C),pref ([]),suff ([?? *[??] -( adj_suff(oic)+class_name(anhydride))]))

NO SMILES

anhydride ,ALKANE

---

heptanamine

[h,e,p,t,a,n,a,m,i,n,e]

compd(ane(7*C),pref ([]),suff ([?? *[??] - amine ]))

NO SMILES

ALKANE ,AMINE (-NH2)

---

octanamide

[o,c,t,a,n,a,m,i,d,e]

compd(ane(8*C),pref ([]),suff ([?? *[??] - amide ]))

NO SMILES

ALKANE ,AMIDE (-CO-NH2)

---

octancarboxamide

[o,c,t,a,n,c,a,r,b,o,x,a,m,i,d,e]

compd(ane(8*C),pref ([]),suff ([?? *[??] - carboxamide ]))

NO SMILES

ALKANE ,AMIDE (-CO-NH2)

---

methanolate

[m,e,t,h,a,n,o,l,a,t,e]

compd(ane(1*C),pref ([]),suff ([?? *[??] - olate ]))

NO SMILES

ALKANE ,ALCOHOLATE ,PHENOLATE

---

compd(ane(1*C),pref ([]),suff ([?? *[??] -ol ,?? *[??]- ate]))

NO SMILES

ALKANE ,ALCOHOLATE ,PHENOLATE

---

2-oxahex -4-enol

[2,-,o,x,a,h,e,x,-,4,-,e,n,o,l]

compd(ene(?? *[4],ane (6*C)),pref ([?? *[2]-oxa]),suff ([?? *[??] -ol]))

NO SMILES

ALCOHOL (-OH),ALKENE ,PRIMARY ALCOHOL (-OH)

---

2-aminopentane

[2,-,a,m,i,n,o,p,e,n,t,a,n,e]

compd(ane(5*C),pref ([?? *[2]- amino]),suff ([]))

NO SMILES

ALKANE ,AMINE (-NH2)

---

pent -2-yl-amine

[p,e,n,t,-,2,-,y,l,-,a,m,i,n,e]

compd(yl(?? *[2],ane(5*C)),pref ([]),suff ([?? *[??]- amine]))

NO SMILES

ALKANE ,AMINE (-NH2)
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---

pentane -2-amine

[p,e,n,t,a,n,e,-,2,-,a,m,i,n,e]

compd(ane(5*C),pref ([]),suff ([?? *[2]- amine ]))

NO SMILES

ALKANE ,AMINE (-NH2)

---

2-propylamine

[2,-,p,r,o,p,y,l,a,m,i,n,e]

compd(yl(?? *[2],ane (3*C)),pref ([]),suff ([?? *[??] - amine ]))

NO SMILES

ALKANE ,AMINE (-NH2)

---

propaneamine

[p,r,o,p,a,n,e,a,m,i,n,e]

compd(ane(3*C),pref ([]),suff ([?? *[??] - amine ]))

NO SMILES

ALKANE ,AMINE (-NH2)

---

2-propyl -2-amine

[2,-,p,r,o,p,y,l,-,2,-,a,m,i,n,e]

compd(yl(?? *[2],ane(3*C)),pref ([]),suff ([?? *[2]- amine ]))

NO SMILES

ALKANE ,AMINE (-NH2)

---

alkene

[a,l,k,e,n,e]

compd(class_name(alkene),pref ([]),suff ([]))

NO SMILES

alkene

---

2-alkene

[2,-,a,l,k,e,n,e]

compd ((?? *[2], class_name(alkene)),pref ([]),suff ([]))

NO SMILES

alkene

---

2,3-dialkene

[2,,,3,-,d,i,a,l,k,e,n,e]

compd ((2*[2 ,3] , class_name(alkene)),pref ([]),suff ([]))

NO SMILES

alkene

---

cis -but -2-ene

[c,i,s,-,b,u,t,-,2,-,e,n,e]

compd(cis(ene(?? *[2],ane (4*C))),pref ([]),suff ([]))

NO SMILES

ALKENE (double bond)

---

(E)-but -2-ene

[(,e,) ,-,b,u,t,-,2,-,e,n,e]

compd(stereo:e(ene (?? *[2],ane(4*C))),pref ([]),suff ([]))

NO SMILES

ALKENE (double bond)

---

oxygen

[o,x,y,g,e,n]

compd(elem_name(oxygen),pref ([]),suff ([]))

NO SMILES

NO CLASSES

---

hexose

[h,e,x,o,s,e]

compd(ose(?? *[??] ,6*C),pref ([]),suff ([]))

C(=O)C([H])(O)C([H])(O)C([H])(O)C([H])(O)C([H])(O)
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NO CLASSES

---

hexodialdose

[h,e,x,o,d,i,a,l,d,o,s,e]

compd(ose (2*[??] ,6*C),pref ([]),suff ([]))

C(=O)C([H])(O)C([H])(O)C([H])(O)C([H])(O)C(=O)

NO CLASSES

---

3-pentulose

[3,-,p,e,n,t,u,l,o,s,e]

compd(ulose (?? *[3] ,5*C),pref ([]),suff ([]))

C([H])(O)C([H])(O)C(=O)C([H])(O)C([H])(O)

NO CLASSES

---

pent -2-ulose

[p,e,n,t,-,2,-,u,l,o,s,e]

compd(ulose (?? *[2] ,5*C),pref ([]),suff ([]))

C([H])(O)C(=O)C([H])(O)C([H])(O)C([H])(O)

NO CLASSES

---

hepto -2,3- diulose

[h,e,p,t,o,-,2,,,3,-,d,i,u,l,o,s,e]

compd(ulose (2*[2 ,3] ,7*C),pref ([]),suff ([]))

C([H])(O)C(=O)C(=O)C([H])(O)C([H])(O)C([H])(O)C([H])(O)

NO CLASSES

---

hexos -3-ulose

[h,e,x,o,s,-,3,-,u,l,o,s,e]

compd(ulose (?? *[3],ose (?? *[??] ,6*C)),pref ([]),suff ([]))

C(=O)C([H])(O)C(=O)C([H])(O)C([H])(O)C([H])(O)

NO CLASSES

---

hexopyranose

[h,e,x,o,p,y,r,a,n,o,s,e]

compd(anose (?? *[??],6,ose(?? *[??] ,6*C)),pref ([]),suff ([]))

C1C([H])(O)C([H])(O)C([H])(O)C(O1)C([H])(O)

NO CLASSES

---

hex -3- ulooxirose

[h,e,x,-,3,-,u,l,o,o,x,i,r,o,s,e]

compd(anose (?? *[??],3, ulose (?? *[3] ,6*C)),pref ([]),suff ([]))

C([H])(O)C([H])(O)C3C(O3)C([H])(O)C([H])(O)

NO CLASSES

---

hexodialdo -6,3- furanose

[h,e,x,o,d,i,a,l,d,o,-,6,,,3,-,f,u,r,a,n,o,s,e]

compd(anose (?? *[6,3],5,ose (2*[??] ,6*C)),pref ([]),suff ([]))

C(=O)C([H])(O)C3C([H])(O)C([H])(O)C(O3)

NO CLASSES

---

hexodialdo -6,3-furanose -1,5- pyranose

[h,e,x,o,d,i,a,l,d,o,-,6,,,3,-,f,u,r,a,n,o,s,e,-,1,,,5,-,p,y,r,a,n,o,s,e]

compd(anose (?? *[6,3],5, anose (?? *[1,5],6,ose (2*[??] ,6*C))),pref ([]),suff ([]))

C1C([H])(O)C3C([H])(O)C(O1)C(O3)

NO CLASSES

---

hexopyranos -4-ulose

[h,e,x,o,p,y,r,a,n,o,s,-,4,-,u,l,o,s,e]

compd(ulose (?? *[4], anose (?? *[??],6,ose (?? *[??] ,6*C))),pref ([]),suff ([]))

C1C([H])(O)C([H])(O)C(=O)C(O1)C([H])(O)

NO CLASSES

---

hexos -2-ulo -2,5- furanose

[h,e,x,o,s,-,2,-,u,l,o,-,2,,,5,-,f,u,r,a,n,o,s,e]

compd(anose (?? *[2,5],5, ulose (?? *[2],ose(?? *[??] ,6*C))),pref ([]),suff ([]))
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C(=O)C2C([H])(O)C([H])(O)C(O2)C([H])(O)

NO CLASSES

---

D-glycero -L-gulo -heptose

[d,-,g,l,y,c,e,r,o,-,l,-,g,u,l,o,-,h,e,p,t,o,s,e]

compd(ose(?? *[??] ,7*C),pref([cfg([D-glycero ,L-gulo])]),suff ([]))

C(=O)[C@]([H])(O)[C@@]([H])(O)[C@]([H])(O)[C@@ ]([H])(O)C([H])(O)C([H])(O)

NO CLASSES

---

L-threo -tetrodialdose

[l,-,t,h,r,e,o,-,t,e,t,r,o,d,i,a,l,d,o,s,e]

compd(ose (2*[??] ,4*C),pref([cfg([L-threo ])]),suff ([]))

C(=O)[C@]([H])(O)[C@@]([H])(O)C(=O)

NO CLASSES

---

D-arabino -hex -2-ulose

[d,-,a,r,a,b,i,n,o,-,h,e,x,-,2,-,u,l,o,s,e]

compd(ulose (?? *[2] ,6*C),pref([cfg([D-arabino ])]),suff ([]))

C([H])(O)C(=O)[C@@ ]([H])(O)[C@]([H])(O)[C@]([H])(O)C([H])(O)

NO CLASSES

---

alpha -D-altro -hept -2- ulopyranose

[a,l,p,h,a,-,d,-,a,l,t,r,o,-,h,e,p,t,-,2,-,u,l,o,p,y,r,a,n,o,s,e]

compd(anose (?? *[??],6, ulose (?? *[2] ,7*C)),pref([cfg([alpha -D-altro ])]),suff ([]))

C([H])(O)[C@@ ]2(O)[C@@ ]([H])(O)[C@]([H])(O)[C@]([H])(O)[C@]([H])(O2)C([H])(O)

NO CLASSES

---

meso -xylo -hepto -2,6-diulose

[m,e,s,o,-,x,y,l,o,-,h,e,p,t,o,-,2,,,6,-,d,i,u,l,o,s,e]

compd(ulose (2*[2 ,6] ,7*C),pref([cfg([meso -xylo])]),suff ([]))

C([H])(O)C(=O)[C@]([H])(O)[C@@ ]([H])(O)[C@]([H])(O)C(=O)C([H])(O)

NO CLASSES

---

alpha -D-threo -Hexo -2,4-diulo -2,5- furanose

[a,l,p,h,a,-,d,-,t,h,r,e,o,-,h,e,x,o,-,2,,,4,-,d,i,u,l,o,-,2,,,5,-,f,u,r,a,n,o,s,e]

compd(anose (?? *[2,5],5, ulose (2*[2 ,4] ,6*C)),pref([cfg([alpha -D-threo])]),suff ([]))

C([H])(O)[C@@ ]2(O)[C@@ ]([H])(O)C(=O)C(O2)C([H])(O)

NO CLASSES

---

L-glycero -L-manno -Nono -2,7-diulose

[l,-,g,l,y,c,e,r,o,-,l,-,m,a,n,n,o,-,n,o,n,o,-,2,,,7,-,d,i,u,l,o,s,e]

compd(ulose (2*[2 ,7] ,9*C),pref([cfg([L-glycero ,L-manno ])]),suff ([]))

C([H])(O)C(=O)[C@@ ]([H])(O)[C@]([H])(O)[C@@ ]([H])(O)[C@@ ]([H])(O)C(=O)C([H])(O)C([H])(O)

NO CLASSES

---

D-arabino -hexos -3-ulose

[d,-,a,r,a,b,i,n,o,-,h,e,x,o,s,-,3,-,u,l,o,s,e]

compd(ulose (?? *[3],ose (?? *[??] ,6*C)),pref([cfg([D-arabino ])]),suff ([]))

C(=O)[C@@ ]([H])(O)C(=O)[C@]([H])(O)[C@]([H])(O)C([H])(O)

NO CLASSES

---

2-Deoxy -alpha -D-allo -heptopyranose

[2,-,d,e,o,x,y,-,a,l,p,h,a,-,d,-,a,l,l,o,-,h,e,p,t,o,p,y,r,a,n,o,s,e]

compd(anose (?? *[??],6,ose(?? *[??] ,7*C)),pref ([?? *[2]-deoxy ,cfg([alpha -D-allo])]),suff ([]))

[C@@ ]1([H])(O)[C@]([H])([H])[C@]([H])(O)[C@]([H])(O)[C@]([H])(O1)C([H])(O)C([H])(O)

NO CLASSES

---

4-Deoxy -beta -D-xylo -hexopyranose

[4,-,d,e,o,x,y,-,b,e,t,a,-,d,-,x,y,l,o,-,h,e,x,o,p,y,r,a,n,o,s,e]

compd(anose (?? *[??],6,ose(?? *[??] ,6*C)),pref ([?? *[4]-deoxy ,cfg([beta -D-xylo])]),suff ([]))

[C@]1([H])(O)[C@]([H])(O)[C@@]([H])(O)[C@]([H])([H])[C@@ ]([H])(O1)C([H])(O)

NO CLASSES

---

2-Deoxy -D-ribo -hexose

[2,-,d,e,o,x,y,-,d,-,r,i,b,o,-,h,e,x,o,s,e]
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compd(ose(?? *[??] ,6*C),pref ([?? *[2]-deoxy ,cfg([D-ribo])]),suff ([]))

C(=O)[C@]([H])([H])[C@]([H])(O)[C@]([H])(O)C([H])(O)C([H])(O)

NO CLASSES

---

1-Deoxy -L-glycero -D-altro -oct -2-ulose

[1,-,d,e,o,x,y,-,l,-,g,l,y,c,e,r,o,-,d,-,a,l,t,r,o,-,o,c,t,-,2,-,u,l,o,s,e]

compd(ulose (?? *[2] ,8*C),pref ([?? *[1]-deoxy ,cfg([L-glycero ,D-altro ])]),suff ([]))

C([H])([H])C(=O)[C@@ ]([H])(O)[C@]([H])(O)[C@]([H])(O)[C@]([H])(O)C([H])(O)C([H])(O)

NO CLASSES

---

3-Deoxy -D-ribo -hexose

[3,-,d,e,o,x,y,-,d,-,r,i,b,o,-,h,e,x,o,s,e]

compd(ose(?? *[??] ,6*C),pref ([?? *[3]-deoxy ,cfg([D-ribo])]),suff ([]))

C(=O)[C@]([H])(O)[C@]([H])([H])[C@]([H])(O)C([H])(O)C([H])(O)

NO CLASSES

---

5-Deoxy -D-arabino -hept -3-ulose

[5,-,d,e,o,x,y,-,d,-,a,r,a,b,i,n,o,-,h,e,p,t,-,3,-,u,l,o,s,e]

compd(ulose (?? *[3] ,7*C),pref ([?? *[5]-deoxy ,cfg([D-arabino ])]),suff ([]))

C([H])(O)[C@@ ]([H])(O)C(=O)[C@]([H])(O)[C@]([H])([H])C([H])(O)C([H])(O)

NO CLASSES

---

6-Deoxy -L-gluco -oct -2-ulose

[6,-,d,e,o,x,y,-,l,-,g,l,u,c,o,-,o,c,t,-,2,-,u,l,o,s,e]

compd(ulose (?? *[2] ,8*C),pref ([?? *[6]-deoxy ,cfg([L-gluco ])]),suff ([]))

C([H])(O)C(=O)[C@@ ]([H])(O)[C@]([H])(O)[C@@ ]([H])(O)[C@@ ]([H])([H])C([H])(O)C([H])(O)

NO CLASSES

---

2-deoxyribose

[2,-,d,e,o,x,y,r,i,b,o,s,e]

compd(triv_name(ribose),pref ([?? *[2]- deoxy]),suff ([]))

C(=O)[C@]([H])([H])[C@]([H])(O)[C@]([H])(O)C([H])(O)

NO CLASSES

---

2-Deoxy -D-erythro -pentofuranose

[2,-,d,e,o,x,y,-,d,-,e,r,y,t,h,r,o,-,p,e,n,t,o,f,u,r,a,n,o,s,e]

compd(anose (?? *[??],5,ose(?? *[??] ,5*C)),pref ([?? *[2]-deoxy ,cfg([D-erythro ])]),suff ([]))

C1[C@]([H])([H])[C@]([H])(O)C(O1)C([H])(O)

NO CLASSES

---

2-amino -2-deoxy -D-galacto -hexose

[2,-,a,m,i,n,o,-,2,-,d,e,o,x,y,-,d,-,g,a,l,a,c,t,o,-,h,e,x,o,s,e]

compd(ose(?? *[??] ,6*C),pref ([?? *[2]-amino ,?? *[2]-deoxy ,cfg([D-galacto ])]),suff ([]))

C(=O)[C@]([H])(N)[C@@]([H])(O)[C@@]([H])(O)[C@]([H])(O)C([H])(O)

NO CLASSES

---

2-amino -2-deoxy -D-galactose

[2,-,a,m,i,n,o,-,2,-,d,e,o,x,y,-,d,-,g,a,l,a,c,t,o,s,e]

compd(triv_name(galactose),pref ([?? *[2]-amino ,?? *[2]-deoxy ,cfg([D])]),suff ([]))

NO SMILES

NO CLASSES

---

2-amino -2,6-dideoxy -D-glucose

[2,-,a,m,i,n,o,-,2,,,6,-,d,i,d,e,o,x,y,-,d,-,g,l,u,c,o,s,e]

compd(triv_name(glucose),pref ([?? *[2]-amino ,2*[2 ,6]-deoxy ,cfg([D])]),suff ([]))

C(=O)[C@]([H])(N)[C@@]([H])(O)[C@]([H])(O)[C@]([H])(O)C([H])([H])

NO CLASSES

---

2,4-diamino -2,4,6-trideoxy -D-glucose

[2,,,4,-,d,i,a,m,i,n,o,-,2,,,4,,,6,-,t,r,i,d,e,o,x,y,-,d,-,g,l,u,c,o,s,e]

compd(triv_name(glucose),pref ([2*[2 ,4] -amino ,3*[2,4,6]-deoxy ,cfg([D])]),suff ([]))

C(=O)[C@]([H])(N)[C@@]([H])(O)[C@]([H])(N)[C@]([H])(O)C([H])([H])

NO CLASSES

---

4-Thio -beta -D-galacto -hexopyranose
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[4,-,t,h,i,o,-,b,e,t,a,-,d,-,g,a,l,a,c,t,o,-,h,e,x,o,p,y,r,a,n,o,s,e]

compd(anose (?? *[??],6,ose(?? *[??] ,6*C)),pref ([?? *[4]-thio ,cfg([beta -D-galacto ])]),suff ([]))

[C@]1([H])(O)[C@]([H])(O)[C@@]([H])(O)[C@@]([H])(S)[C@@]([H])(O1)C([H])(O)

NO CLASSES

---

4-Thio -beta -D-galactopyranose

[4,-,t,h,i,o,-,b,e,t,a,-,d,-,g,a,l,a,c,t,o,p,y,r,a,n,o,s,e]

compd(anose (?? *[??],6, triv_name(galactose)),pref ([?? *[4]-thio ,cfg([beta -D])]),suff ([]))

NO SMILES

NO CLASSES

---

5-Thio -beta -D-glucopyranose

[5,-,t,h,i,o,-,b,e,t,a,-,d,-,g,l,u,c,o,p,y,r,a,n,o,s,e]

compd(anose (?? *[??],6, triv_name(glucose)),pref ([?? *[5]-thio ,cfg([beta -D])]),suff ([]))

NO SMILES

NO CLASSES

---

glucose

[g,l,u,c,o,s,e]

compd(triv_name(glucose),pref ([]),suff ([]))

C(=O)[C@]([H])(O)[C@@]([H])(O)[C@]([H])(O)[C@]([H])(O)C([H])(O)

NO CLASSES

---

glucopyranose

[g,l,u,c,o,p,y,r,a,n,o,s,e]

compd(anose (?? *[??],6, triv_name(glucose)),pref ([]),suff ([]))

NO SMILES

NO CLASSES

---

D-ribose

[d,-,r,i,b,o,s,e]

compd(triv_name(ribose),pref([cfg([D])]),suff ([]))

C(=O)[C@]([H])(O)[C@]([H])(O)[C@]([H])(O)C([H])(O)

NO CLASSES

---

L-Ribose

[l,-,r,i,b,o,s,e]

compd(triv_name(ribose),pref([cfg([L])]),suff ([]))

C(=O)[C@@ ]([H])(O)[C@@ ]([H])(O)[C@@ ]([H])(O)C([H])(O)

NO CLASSES

---

D-ribulose

[d,-,r,i,b,u,l,o,s,e]

compd(triv_name(ribulose),pref([cfg([D])]),suff ([]))

NO SMILES

NO CLASSES

---

D-fructose

[d,-,f,r,u,c,t,o,s,e]

compd(triv_name(fructose),pref([cfg([D])]),suff ([]))

C([H])(O)C(=O)[C@@ ]([H])(O)[C@]([H])(O)[C@]([H])(O)C([H])(O)

NO CLASSES

---

alpha -D-glucooxirose

[a,l,p,h,a,-,d,-,g,l,u,c,o,o,x,i,r,o,s,e]

compd(anose (?? *[??],3, triv_name(glucose)),pref([cfg([alpha -D])]),suff ([]))

NO SMILES

NO CLASSES

---

pyranose

[p,y,r,a,n,o,s,e]

ketose

[k,e,t,o,s,e]

compd(class_name(ketose),pref ([]),suff ([]))

NO SMILES
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ketose

---

aldohexose

[a,l,d,o,h,e,x,o,s,e]

deoxypentose

[d,e,o,x,y,p,e,n,t,o,s,e]

compd(ose(?? *[??] ,5*C),pref ([?? *[??] - deoxy ]),suff ([]))

underspecified(C(=O)C([H])(O)C([H])(O)C([H])(O)C([H])(O) ,[??*{2,3,4,5}- deoxy])

NO CLASSES

---

amino -3- deoxypentose

[a,m,i,n,o,-,3,-,d,e,o,x,y,p,e,n,t,o,s,e]

compd(ose(?? *[??] ,5*C),pref ([?? *[??] -amino ,?? *[3]- deoxy]),suff ([]))

underspecified(C(=O)C([H])(O)C([H])([H])C([H])(O)C([H])(O) ,[??*{3}- amino])

NO CLASSES

---

2-deoxy -2-methyl -hexose

[2,-,d,e,o,x,y,-,2,-,m,e,t,h,y,l,-,h,e,x,o,s,e]

compd(ose(?? *[??] ,6*C),pref ([?? *[2]-deoxy ,?? *[2]- compd(yl(?? *[??], ane(1*C)),pref ([]),suff ([])

)]),suff ([]))

C(=O)C([H])(C([H])([H])([H]))C([H])(O)C([H])(O)C([H])(O)C([H])(O)

NO CLASSES

---

2-Deoxy -D-erythro -pentofuranose

[2,-,d,e,o,x,y,-,d,-,e,r,y,t,h,r,o,-,p,e,n,t,o,f,u,r,a,n,o,s,e]

compd(anose (?? *[??],5,ose(?? *[??] ,5*C)),pref ([?? *[2]-deoxy ,cfg([D-erythro ])]),suff ([]))

C1[C@]([H])([H])[C@]([H])(O)C(O1)C([H])(O)

NO CLASSES

---
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