Cognitively Salient Relations for Multilingual Lexicography

Gerhard Kremer[▲] Andrea Abel[☆] Marco Baroni[▲]

▲CIMeC, University of Trento

[☆]EURAC. Bolzano

August 24, 2008

Background

Lexicography: words related to each other

• Computer use:

electronic dictionaries

- Psychology: salient relations
 - in semantic norms collection

G. Kremer, A. Abel, M. Baroni

Background

- Lexicography: words related to each other
- Computer use:
 - electronic dictionaries
- Psychology: salient relations in semantic norms collectio

Background

- Lexicography: words related to each other
- Computer use: electronic dictionaries
- Psychology: salient relations in semantic norms collection

Conclusion

Project Aims

Systematically extract

- ... cognitively most salient relations
- ... for concept classes (nouns, preliminary)
- ... based on the languages German and Italian

First step:

concept description elicitation experiment

Project Aims

Systematically extract

- ... cognitively most salient relations
- ... for concept classes (nouns, preliminary)
- ... based on the languages German and Italian

First step:

concept description elicitation experiment

Experiment Purpose

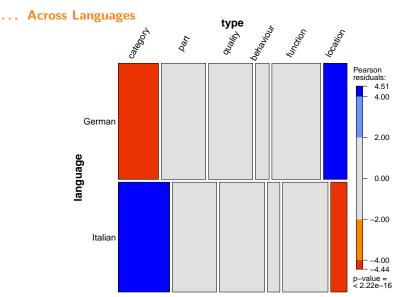
- Relation type distributions: stable across languages?
- Different relations for different concept classes?
 - Which relation types are most salient?
 - At which level of class granularity?
- ⇒ Basis for corpus-based extraction of concept-class-specific relation instances

Experiment Outline

Subjects: High school students from South Tyrol

- Stimuli: 50 concepts (from 10 hierarchically organised classes)
 - **Task:** Describe concept to alien in short phrases, in 1 minute

Conclusion

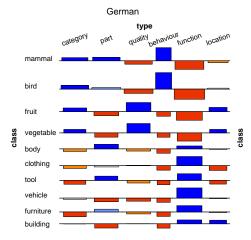

Data Preparation

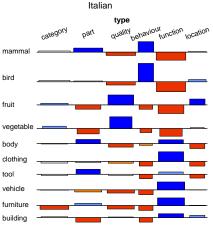
- Splitting of phrases
- Normalisation
- Transcription into English
- Mapping to relation types

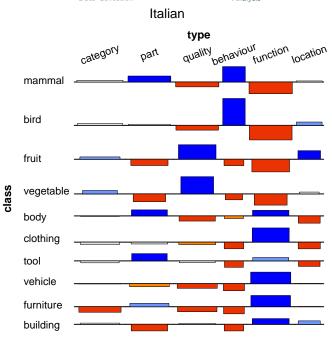
Data Snippet

Birne	pear	fruit	eine Frucht	a_fruit	ch
Birne	pear	fruit	gelbgrün	is_yellow-green	ese
Birne	pear	fruit	ist weich	is_soft	ese
Birne	pear	fruit	hat Kerne im Inneren	has_seeds	eci

Property Type Distributions




G. Kremer, A. Abel, M. Baroni


Cognitively Salient Relations

Property Type Distributions

... Across Classes

G. Kremer, A. Abel, M. Baroni

Clustering

Unsupervised clustering (cluto tool):

- Best solution with 3-way clustering
- 3 super-classes:
 - mammals & birds,
 - fruit & vegetable,
 - all other man-made objects & body parts
- Exception: horse (misclustered in Italian)

Summary

- Similar type distributions between German and Italian
- Distinct patterns among concept classes
- Robust clustering into 3 super-classes

Conclusion

Conclusion

- Next: perception experiment
- Relation extraction from corpora
- Application: electronic dictionary ELDIT

Thank you

G. Kremer, A. Abel, M. Baroni

Bibliography

McRae, K., Cree, G. S., Seidenberg, M. S., and McNorgan, C. (2005).

Semantic Feature Production Norms for a Large Set of Living and Nonliving Things.

Behaviour Research Methods, Instruments & Computers, 37(4):547–559.

Vinson, D. P. and Vigliocco, G. (2008).

Semantic Feature Production Norms for a Large Set of Objects and Events.

Behaviour Research Methods, 40(1):183–190.

Classes and Concepts Used

mammal: dog, horse, rabbit, bear, monkey bird: seagull, sparrow, woodpecker, owl, goose fruit: apple, orange, pear, pineapple, cherry vegetable: corn, onion, spinach, peas, potato body part: eye, finger, head, leg, hand clothing: chemise, jacket, sweater, shoes, socks tool: comb, broom, sword, paintbrush, tongs vehicle: bus, ship, airplane, train, truck furniture: table, bed, chair, closet, armchair building: garage, bridge, skyscraper, church, tower

