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Abstract

We employ a graph-theoretical approach to evaluate and improve a German

derivational lexicon, DERIVBASE. We represent derivational families (that is,

groups of derivationally related words) as labelled directed graphs in which

words (friend, friendly) are nodes and derivational relationships (friend →
friendly) between words are directed edges, labeled with the derivation rule

(-ly).

This graph-theoretical approach allows us to carry out a large-scale com-

parison of the structure of different derivational families and identify, in a

completely automatic fashion, possible errors in the resource. We conduct a

manual evaluation of the predictions of our method and find that it successfully

identifies instances which are missing from DERIVBASE; the predictions of

our approach can be interpreted as the result of interplay among productivity

constraints.

1 Introduction

Derivational lexicons encode knowledge about derivational relations between words.

Minimally, they group lemmas into derivational families, but optionally provide

additional information, such as semantic transparency, morphological structure, or

instantiation of specific derivational rules. Examples include CELEX for English,

German and Dutch (Baayen et al. [1]), CatVar for English (Habash and Dorr,

[3]), DERIVBASE for German (Zeller et al. [13]), DERIVBASE.HR for Croat-

ian (Šnajder [11]), Démonette for French (Hathout and Namer [4]), and DeriNet

(Žabokrtský et al. [12]) for Czech. Derivational lexicons are employed in NLP

applications (Shnarch et al. [9], Padó et al. [7]) and can serve for the selection of

the experimental items in psycholinguistic experiments and corpus-based modeling

(Smolka et al. [10], Padó et al. [8]). In particular when extracted automatically or

semi-automatically, they enable large-scale investigations of the structure of the

underlying morphological systems (Lazaridou et al. [5], Padó et al. [6]). At the

same time, (semi-)automatically constructed derivational lexicons cannot guarantee
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completeness: any resource is likely to both miss some instances of derivational re-

lations and to contain spurious instances. It is therefore crucial to properly evaluate

them and, ideally, improve them by both removing incorrect derivations and filling

in missing derivations.

In this paper, we introduce a graph-theoretical approach for the targeted eval-

uation and improvement of derivational lexicons. We apply our method to DE-

RIVBASE (Zeller et al. [13]), a high-coverage German derivational lexicon. Our

approach is however applicable to any derivational lexicon that can be interpreted

as a graph with lemmas as nodes and derivational relations as labeled edges.

Our method is centered around the concept of a fingerprint of a derivational

family, a structure which represents morphological connections between words,

while abstracting away individual words. Our central assumption in this paper is

that if the fingerprints of two families are shared almost, but not completely, this is

a strong indication that (at least) one of the two families is incorrect. We further

hypothesize that the decision of which of the families is correct can again be made

automatically on the basis of frequency information: If one family misses a node

that is present in a large number of families, this is an indicator of a false negative

(missing family member). Conversely, a rare surplus node that a family adds to a

frequent fingerprint indicates a false positive (spurious family member). We discuss

below to what extent these assumptions are warranted.

2 Data

DERIVBASE is a derivational lexicon for German (Zeller et al. [13]). It is based

on a set of 158 finite state rules describing German derivation patterns (including

prefixation, suffixation, stem changes, and combinations thereof). The rules were

hand-crafted to maximize coverage and minimize errors on a development set.

DERIVBASE forms a large directed graph. Its nodes are the 280k lemmas that

occur in SdeWaC (Faaß and Eckart [2]) with a frequency of four or more. They

are annotated automatically with part-of-speech and gender information. Edges

connect derivationally related words, and each edge is labeled with one of the rules.

The edges group the 280k nodes into 20k non-singleton derivational families, and

220k singleton families.1 DERIVBASE edges are created whenever a word pair in

SdeWaC matched a rule; edges therefore express morphological (but not necessarily

semantic) relatedness. Even at the morphological level, though, errors arise from

the fully automatic construction of the resource. DERIVBASE was evaluated against

a small manually annotated sample in (Zeller et al. [13]) and was found to have

a precision of 83% and recall of 71%. The imperfect precision results from false

positives, that is, spurious edges that arise from chance matches (e.g., Celle (German

town) → Cellist (cello player)). The imperfect recall indicates missing edges, which

1The high number of singleton families is due to the prevalence of compounding in German. As

DERIVBASE does not group compounds together with their bases, and compounds typically exhibit

less derivation than the bases, these compounds tend to form singleton families.
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grafisch

Grafik

Grafiker

Grafikerin

-isch → -ik

-isch → -iker

-er -in -isch → -ik

-isch → -iker

-er -in

Figure 1: Illustration of a German derivational family (left) and its fingerprint (right)

are due to a range of factors, including lemmatization problems, words being too

infrequent, or simply orthographic variation that was overlooked in the formulation

of the rules.

3 Method

We begin by finding the fingerprints of the families in DERIVBASE. A family’s

fingerprint is a representation of the derivational relationships within a family, which

abstracts away information about individual words. This can best be understood

in the context of graphs – if a family is taken as a directed graph as described in

Section 2, its fingerprint is simply the same graph with all node labels removed.

Figure 1 illustrates the derivational family of the word Grafik, and that family’s

fingerprint. Two families which undergo the same patterns of derivation will have

the same fingerprint. For example, the family above shares its fingerprint with the

families {Musik, musisch, Musiker, Musikerin} and {Tragik, tragisch, Tragiker,

Tragikerin}, among many others. Mathematically, two families will share their

fingerprint if and only if their graphs are isomorphic.

The 20k non-singleton families of DERIVBASE were grouped into equivalence

classes, with families grouped together if and only if they shared a fingerprint. As the

database contained 4539 distinct fingerprints, 4539 such classes were constructed,

with an average of 4.5 families per class. Families’ fingerprints were compared by

checking for graph isomorphism.2

As motivated in Section 1, our hypothesis is that the (semi-)regularity of mor-

phology leads to consistency across derivational families: the structures of any two

families should either be identical or show major differences; conversely, minor
differences are indicators of mistakes. While there are a number of potential ways

to operationalize what counts as a minor difference, in this paper we focus on one

type of difference, namely the presence or absence of exactly one node, respectively.

Formally, this corresponds to the concept of induced subgraphs.

2We used the Python3 package networkx for all graph-theoretical operations. While no

polynomial-time algorithm is known for the problem of graph isomorphism, the general small

size of derivational families made asymptotic complexity largely irrelevant.
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≤

Hamburg

Hamburger

-er

Celle

Celler

Cellist-er
-ist

Figure 2: The left family is an induced subgraph of the right one: it is isomorphic to

the right family sans Cellist.

An induced subgraph G′ of a graph G is obtained by removing one or more

nodes from G and removing all edges adjacent to the removed nodes. Our procedure

is therefore as follows. We consider all pairs of fingerprints (F1,F2) where F2 is

an induced subgraph of F1 such that ||V (F2)||= ||V (F1)||−1, that is, they differ in

one node. We call these pairs of fingerprints our error candidates. Our linguistic

interpretation of the pairs in this set is determined by the ratio of the number of

derivational families in the F1 and F2 equivalence classes, respectively. Our concrete

hypotheses are as follows:

1. If the larger fingerprint was found for many more families than the smaller

one, the smaller one is very likely to be incomplete: this is a false negative.

2. If, conversely, the smaller fingerprint was found more often than the larger

one, the larger one is likely to contain an incorrect node: this is a false

positive.

3. When both fingerprints occur roughly equally often, we cannot make a judg-

ment, and they may be equally valid.

Figure 2 illustrates this on a concrete example of a family (right) and an induced

subfamily with one node less (left). If the fingerprint of the right-hand family were

much more frequent, we would (incorrectly) infer that the left-hand family were

missing the node *Hamburgist. However, since the fingerprint of the left-hand

family is in fact much more frequent, we can (correctly) infer that Cellist is a

spurious member of this family.

This method has a number of convenient properties. In contrast to other error

detection methods, it does not compare individual families, but equivalence classes

of families. As a result, it can take consistency across families in account. In

addition, due to the isomorphism underlying the induced subgraph relation, the

method can pinpoint exactly where in the family there is a potential gap (or spurious

node, respectively) and which derivation rule is responsible. Note that we do

not consider the prediction of a concrete surface form for a missing node. In

the case of DERIVBASE, this would be possible by applying the morphological

transformation that the resource associates with each derivation rule. However, since

these transformations typically overgenerate, this would require a disambiguation

setup that goes beyond the focus of this paper. At any rate, during our manual

evaluation (described in Section 4), we found that native annotators have no trouble

whatsoever judging the appropriateness of proposed derivations even without a
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Figure 3: The ratio of the number of families for each error candidate, plotted by list

index. Ratios are plotted on a logarithmic scale, so as to better illustrate differences

in ratios which lie very close to zero.

concrete surface form proposal.

In closing, we note that there is reason to believe that there is an assymetry

between cases (1) and (2) that is due to the semi-regularity of derivational morphol-

ogy. While some derivational rules are applicable almost universally within their

domain (e.g., almost all verbs can be nominalized), other rules apply only to very

specific semantic classes (e.g., nationalities: Schweden → Schwede, Polen → Pole
etc.). Thus, the absence of a frequent node from a family (as in (1)) is presumably

a more reliable indicator than the presence of a rare node in a family (as in (2)).

Fortunately, the evaluation numbers for DERIVBASE reported above indicate that

false negatives, which are found by (1), are also a larger problem in practice than

false positives.

4 Annotation

When we applied the fingerprint computation and comparison method to DE-

RIVBASE, we obtained 2471 fingerprints and 3882 error candidates. We ranked the

error candidates by the ratio of the number of participating families. The ratio is

18 : 1 for the top-ranked error candidate, and 1 : 2005 for the bottom-ranked error

candidate. Figure 3 shows how these ratios vary with list position.

Since a full annotation of all error candidates was impractical, we extracted

the top and bottom 250 error candidates, since these should be most interesting

according to our hypotheses. For each class present in these error candidates, we

selected one family at random to represent that class. In order to avoid annotator

biases about predominant case types at the top and bottom of the list, we shuffled

these 500 error candidates. In addition, candidates from both samples had to be

77



presented in exactly the same form. We chose an “analogy-style” presentation as

follows:

[LHS-1] [rule]→ [LHS-2] :: [RHS-1] [rule]→ ???

In these analogies, LHS-2 is the word in the larger family which has no correspond-

ing node in the smaller family. LHS-1 and rule are populated with values from

some edge adjacent to LHS-2.3 RHS-1 is the word in the smaller family which

corresponds to LHS-1. We will use the name RHS-2 to describe the hypothetical

word, which might exist in the place of (???) in the analogy.

A native speaker with graduate-level knowledge in linguistics was presented

with the 500 analogies and asked to categorize each analogy according to the

following schema:

FN is the false-negative case, where RHS-2 is correct but missing from the resource.

According to our hypothesis (1), these cases should predominate at the top of

the sorted candidate list.

FP is the corresponding false-positive case, where LHS-2 is not a derivation of

LHS-1 even though it is present in the resource. According to our hypothesis

(2), these cases should predominate at the bottom of the sorted candidate list.

OK is the case where the left-hand derivation is correct but the right-hand derivation

is not. This corresponds to cases in which DERIVBASE was correct as-is,

and no error was present to be identified. We expect theses cases to be rare,

since they run counter to our assumption that “small differences” between

fingerprints are generally errors.

LER, RER are cases where linguistic preprocessing (lemmatization or gender

determination) failed either on the left-hand side or the right-hand side, re-

spectively.

Table 1 shows examples for each of these categories.

5 Results

The main results are shown in Table 2. We first discuss the percentage of the

annotation labels in the top-250 and bottom-250 lists shown in the first two rows.

The Top-250 candidates. In this list, false negatives (FN, gaps in the resource)

account for 79% of the error candidate pairs. This is a very strong confirmation

of our hypothesis (1) from above: almost 80% of the instances that our method

3We attempt to choose an edge at random which points towards LHS-2. If no such edge exists,

we select a random edge which points away from LHS-2. In these cases, rule was marked with an

asterisk, to notate the reversed direction of derivation.
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Tag Definition LHS-1 LHS-2 RHS-1 (RHS-2)

FN RHS-2 valid

derivation for

RHS-1

Ehrenbürger

honorary

citizen (m.)

Ehrenbürgerin

honorary

citizen (f.)

Einzeltäter

lone offender

(m.)

Einzeltäterin

lone offender

(f.)

FP words on LHS

unrelated

pazifisch

pacific

Pazifismus

pacifism

ökosozial

eco-social

Ökosozialismus

eco-socialism

LER preprocessing

error on LHS

niedersächsisch

low saxonian

*Niedersachs westfälisch

westphalian

N/A

OK RHS-2 not a

derivation of

RHS-1

Unterwanderung

subversion

unterwandert

subverted

Bergwanderung

mountain tour

*bergwandert

RER preprocessing

error on RHS

Dusel

fluke

duselig

flukey

*Hark N/A

Table 1: Annotation categories and examples (RHS-2 as determined by annotator)

FN FP LER OK RER

percentage in top 250 78.8 1.2 3.2 14.4 2.4

percentage in bottom 250 8.0 4.4 8.8 78.8 0.0

Pearson’s r with list rank -0.6432 0.0920 0.1384 0.5720 -0.0900

p-values <0.0001 0.04 0.002 <0.0001 0.04

Table 2: Results: Tag frequency and correlation with list rank

identifies as gaps in DERIVBASE are indeed gaps. Of the rest, only 1% is due

to erroneous entries in DERIVBASE, some 5% are due to preprocessing errors

(lemmatization and gender detection), and 14% are cases where the small difference

is actually correct. To illustrate this category, consider

(1) Geschäftspartner
business partner (m.)

dNN02→
dNN02→

Geschäftspartnerin
business partner (f.)

::

::

Ort
place

dNN02→
dNN02→

???
???

where dNN02 is the rule deriving a female from a male profession or role noun,

which is appropriate for LHS-1 (business partner) but not for RHS-1 (place), which

belongs to another semantic category. The next example,

(2) abschieben
to deport

dVN07→
dVN07→

Abschiebung
deportation

::

::

anfliegen
to approach

dVN07→
dVN07→

???
???

arises from the fact that German has several nominalization patterns, including

the −ung suffix (dVN07 in DERIVBASE), which is however not applicable to all

verbs. Thus, for anfliegen the derivation ∗Anfliegung is not attested; instead, the

stem nominalization Anflug (dNV09) is used. These examples illustrate two limits

of our current schema: (a) the derivation rules do not take semantic classes into

account that affect their applicability; (b) the fingerprint comparison does not take

relations among derivation rules into account.
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The Bottom-250 candidates. The bottom-250 candidate list shows a very dif-

ferent picture. According to our hypothesis (2), we would expect the majority of

analogies to fall into category FP/false positives: cases where the existing (LHS)

derivation relation is incorrect. This however turns out to be true for only some 4%

of all cases, a lower percentage than even the false negatives (FN, 8%) and prepro-

cessing errors (LER+RER, 8.8%) account for. The majority of bottom candidates

actually consists of cases where the (rare) LHS is a valid and the (frequent) RHS

an invalid derivation.4 In other words, the bottom end of the error candidate list

consists of edges that are rather rare, but still valid, and which can not be generalized

to other families.

A qualitative analysis of the OK cases found that about 80% of them could

be grouped into three main classes. The largest class, accounting for about 40%,

consisted of borderline derivation/composition instances like

(3) Wehrdienstleistende
conscript

dNN46.1→
dNN46.1→

Grundwehrdienstleistende
conscript in basic training

::

::

Nächstenliebe
altruism

dNN46.1→
dNN46.1→

???
???

where the prefix Grund- ’basic’ is only applicable to a very specific set of base

nouns, and ∗Grundnächstenliebe does not exist.

The second class (20%) was composed of cases of morphological alternatives

(e.g. multiple nominalization rules) similar to those we found for the top-250 candi-

dates. The third class (20%) concerned a specific problem in German morphology,

namely prefix verbs. These behave in many respects like base verbs, but not with

regard to further prefixation:

(4) stöpseln
to plug

dVV22.2→
dVV22.2→

einstöpseln
to plug in

::

::

errechnen
to compute

dVV22.2→
dVV22.2→

???
???

Here, the prefix verb errechnen cannot serve as a base to derive ∗einerrechnen, while

this is possible for its base verb rechnen > einrechnen / to calculate > to include.

These observations support and strengthen our caveat from above regarding the

semi-regularity of derivational morphology, even though to a considerably more

extreme degree that we initially assumed.

Correlation Analysis. A correlation analysis, shown in the lower half of Table 2,

bolsters this picture. We compute the Pearson correlation r between the occurrence

of the different categories and the rank in the list.5 We find that there is an extremely

strong negative correlation for FN, that is, false negatives occur overwhelmingly

towards the top of the list. There is an almost equally strong positive correlation

for OK, that is, idiosyncratic yet valid edges tend strongly to occur towards the end

4The fact that the percentages of Y for top-250 and NN for bottom-250 are identical is purely

coincidental.
5We use the ranks of entries in the original list of 3882 error candidates, not the ranks in our list of

500 annotated entries
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of the list. As the p-values show, the values for the remaining categories (FP, LER,

RER) are also significant, but considerably less so. We conclude that preprocessing

errors and false positives tend to occur towards the end of the list, but much less

strongly so.

6 Discussion and Conclusion

We have presented a graph-theoretical method to evaluate derivational lexicons;

through a manual classification of the predictions of our model on a German lexicon,

DERIVBASE, we have shown that we can predict with high confidence those cases

where possible derived words are missing from the resource. Our predictions

concerning spurious words in the resource turned out to be less strikingly correct,

and current work targets a better understanding of our treatment of false positives.

A further potential improvement of our method is the identification better score to

rank the candidates, beyond the simple ratio of the cardinality of the equivalence

classes. Future work also targets the automatic integration of the gaps identified

through our method.
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