
Derived	words	tend	to	be	polysemous
• We	focus	on –ment derivatives:

• Eventive (assessment)	vs.	non	eventive (pavement)	reading
• Context often	determines	the	reading	of	a	derived	word	

• Some	nominalizations,	however,	remain	ambiguous	even	in	
context

Question:	to	which	extent	does	context	determine	the	readings	
of	derived	words?
• We	try	to	answer	this	question	for	newly	derived,	non-

lexicalized	words,	using	manual	annotation and	corpus-based	
modeling

Selection	of	sentences containing	low-frequency	–ment nouns:
• Sources:	COCA,	GloWBE,	WebCorp,	BNC,	Wikipedia,	Google,	…
• Data:	401	tokens,	56	types
• Base	verbs:	change-of-state,	force,	psych,	putting
• Annotation:	

• EVENTIVE: In	many	places,	emplacement	of	granite	
plutons	is	synchronous	to	volcanic	eruptions

• NON	EVENTIVE:	I	set	down	the	scrap	of	doll’s	dress,	a	
bedragglement of	loose	lace	hem	

• AMBIGUOUS:	[…]	when	it	is	evoked	by	a	man	who	has	
suffered	its	most	horrible	debauchments

Distributional	Semantics	(DS):
difference	in	meaning	=	difference	in	distribution	

DS	meaning	à word	vector
list	of	words	which	occur	in	the	context	of	a	target

DS	successful	in	modeling	
word	similarity	but…
known	challenges:	
polysemy	and	unattested	
or	low	frequency	words

strategy:	use	context	
words to	approximate	the	
meaning	of	the	target	
when	the	target	vector	is	
unreliable	(low	frequency)	
or	unattested

CORPUS

TRAINING NOUNS
accidentà EVENT
bike	à NOT	EVENT

ACCIDENT.23 :	EVT
“An	accidenthappened
in	the	night”
BIKE.17 :	NON.EVT
“The	kid fixed	
the	wheel of	his	bike	”

CORPUS

LEMMA	VECTORSTRAINING	SENTENCES

CONTEXT	VECTORS

ACCIDENT.23 7 3 1
BIKE.17 2 12 1

happen

night
ACCIDENT.3:	EVT

CLASSIFIER

TEST	SENTENCES

ANNOYMENT.1 :	?
“Such	an	annoyment
already happened”
ANNOYMENT.2 :	?
“Fix this	annoyment!”

ü Training	nouns:	WordNet
• EVENTIVE	

state,	feeling,	process,	phenomenon,	event,	act	
• NON	EVENTIVE

STRICT	OBJECT:	object,	substance,	food,	location,	
artefact,	body
LAX	OBJECT:	communication,	quantity,	relation,	
social	relation,	possession
LIVING:	person,	animal,	plant	

ü Corpus:	BNC	+	Ukwac +Wikipedia	

ü Lemma	vectors:	state-of-the	art	DS	model

ü Context	vectors:		window	size	2 (most	immediate	context)	
vs.	8 (wider	context:	more	info,	more	noise?)

ü Classifier:	support	vector	classifier	(tested	in	many	configurations)
F-score:	high	if	the	classifier	captures	all	instances	of	class	A	
and	not	too	many	non-instances	of	A

ANALYSIS	1:	can	we	correctly	classify	training	nouns	and	their	
contexts	as	EVT	vs.	NON	EVT?		

ANALYSIS	2:	based	on	context,	can	we	correctly	classify	-ment
instances?	

night 6 2 1
happen 8 4 1
kid 1 10 1
wheel 2 20 1
fix 3 6 1
accident 10 2 1
bike 4 8 1

EVT + - =
NON.EVT - + =

ANNOYMENT.1:	
EVT
ANNOYMENT.2 :	
NON.EVT

LEMMA
VECTORS
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SUIT.1 :	 “The	suit
is	close	to	the	tie
and	the	t-shirt”

SUIT.2 :	 “The	
lawyer filed	a	suit
to	the	judge”

t-shirt

judge

law

wear

CONTEXT
VECTORS

tie

lawyer

law

wear t-shirt

tie

judge

SUIT.1

SUIT.2

Result:	yes,	very	well
• All	classifiers	are	above	baseline
• Performance	matches	linguistic	

intuitions
• Context	vectors:	lower	performance	

than	lemma	vectors	(task	more	
difficult:	target	not	used)	

• Slight	preference	for	larger	windows

Result:	yes,	but	the	task	is	difficult	
(lemma	vectors	are	not	available)
• All	classifiers	above	baseline
• Small	window	the	best	choice:	newly	

derived	words	have	more	
informative	immediate	context	than	
training	nouns

• AMBIGUOUS	mostly	classified	as	EVT

DS	vectors	can	successfully	disambiguate	newly	derived	-ment
nominalizations. Future	work:	
• qualitative evaluation	of	the	predictions
• quantitative investigation	of	the	factors	which	determine	

the	predictions	of	the	classifier	(e.g.,	frequency)

LEMMA	VECTORS
CONTEXT	VECTORS
APPLY	CLASSIFIER
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