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Abstract

A tree series over a semiring with partially ordered carrier set can be considered as
a fuzzy set. We investigate conditions under which it can also be understood as a
fuzzi�ed recognizable tree language. In this sense, su�cient conditions are presented
which, when imposed, ensure that every cut set, i.e., the pre-image of a prime �lter
of the carrier set, is a recognizable tree language. Moreover, such conditions are also
presented for cut sets of recognizable tree series.

1 Introduction

There are two sources for the investigations in this paper, namely (i) fuzzy
sets and (ii) tree series and recognizable tree series, in particular. Both sources
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are derivatives of the concept of characteristic functions, where as usual, given
a set S every characteristic function χ : S → {0, 1} on S identi�es the subset
{ s ∈ S | χ(s) = 1 } of S.

The �rst source is the concept of fuzzy sets. In most common settings (in-
troduced at the beginning of fuzzy set theory by Zadeh), a fuzzy set is a
mapping from a set into the unit interval [0, 1], ordered as usual by ≤ for real
numbers. Under this ordering the unit interval is a partially ordered set (for
short: poset), moreover it is a lattice. This fact is used in other, more general
de�nitions of fuzzy sets in which the co-domain is a lattice (Goguen [1])
or simply a poset (see [2], [3] and references given there). In our approach a
fuzzy set is a mapping ϕ : S → A with (A,≤) being a poset, usually with the
top and the bottom element. Fuzzy sets generalize the notion of characteristic
functions by shifting the correspondence �characteristic function�subset� to
the correspondence �fuzzy set�family of cut sets�, where for every a ∈ A, the
a-cut of the fuzzy set ϕ is the set ϕa = { s ∈ S | ϕ(s) ≥ a }. These cut sets
or a-cuts are among the basic tools for investigating fuzzy structures. Indeed,
many important properties of fuzzy structures are cut-worthy, thereby repre-
senting a bridge between fuzzy world and crisp structures [4,2]. In addition, if
a fuzzy set is de�ned over some algebraic structure, then the notion of the cor-
responding fuzzy algebra is obtained. Cut sets in this case are crisp (ordinary)
subalgebras of the starting structure.

The second source is the concept of (recognizable) tree series. Here, the connec-
tion to the concept of characteristic functions can be explained by performing
one restriction and one generalization as follows. The set S is restricted to the
set TΣ of terms over a �nite, nonempty operator domain Σ; such terms and
operator domains are called trees and ranked alphabets, respectively (cf. page
87 of [5]). The generalization amounts to a consideration of an arbitrary car-
rier set A of a semiring instead of the set {0, 1} of truth values. That is, a tree
series is a mapping ϕ : TΣ → A where A = (A,⊕,�,0,1) is a semiring. The
tree series ϕ is recognizable, if there exists a bottom-up �nite state weighted
tree automaton M which accepts ϕ (cf., e.g., De�nition 3.3 of [6]). By now,
the concept of recognizable tree series has been intensively studied [7�13]. If
the chosen semiring A is the Boolean semiring Bool = ({0, 1},∨,∧, 0, 1), then
a recognizable tree series is the characteristic function of a recognizable tree
language (cf. [5,14] for a survey on the theory of recognizable tree languages).

In summary, fuzzy sets (structures) and (recognizable) tree series generalize
characteristic functions with domain TΣ by replacing the set of truth values
by a poset (A,≤) and by a semiring A = (A,⊕,�,0,1), respectively. We
note that the connection between fuzzy sets and (�nite-state) weighted string
automata has already been addressed in [15,16] (also cf. [17�19]).

In this paper we combine the two concepts of fuzziness and tree series by
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considering fuzzy sets, whose domain is TΣ and co-domain is a poset or a
partially ordered semiring.

The motivation for the present investigation originates in the following simple
facts. Tree series over an ordered set can be considered as fuzzy sets. Within
this new framework, these classical objects from automata theory become
poset-valued (fuzzy) structures. Consequently, these can be treated and inves-
tigated by appropriate (fuzzy) techniques. As it is usual in such investigations,
the outcomes could point to two directions: there might be some new results in
the classical theory, and on the other hand the fuzzy aspect may provide some
unknown insight into the topic. In our case, the cut sets approach turned out
to be a successful tool. We were able to show that under particular conditions
the foregoing structures can be viewed as fuzzi�ed recognizable tree languages.
In addition to this new fuzzy aspect of tree series, some new properties of these
objects were deduced.

In our investigation, we focus attention to cut sets of the considered tree series,
and in particular, we investigate the following two questions.

Let (A,≤) be a poset, a ∈ A, and ϕ : TΣ → A be a fuzzy set.

• Under which conditions is the cut ϕa a recognizable tree language (i.e., ϕa is
accepted by some bottom-up �nite-state tree automaton)?

• How do such conditions look like if we additionally require that ϕ is a
recognizable tree series over some semiring A?

We will partially answer these questions by proving su�cient conditions in
Section 3.1. More precisely, we prove that ϕa is a recognizable tree language
if one of the following conditions holds:

• ϕ is order-preserving (where TΣ is partially ordered by the subtree relation)
and compatible with top-concatenation, and A\↑a is �nite, where ↑a is the
prime �lter of a (cf. Theorem 6),

• ϕ is order-preserving and compatible with top-concatenation, and ϕ(TΣ) is
�nite (cf. Theorem 7).

In Section 3.2 we start with the additional requirement that ϕ is recognizable.
First we show an example of a recognizable tree series, of which the cut sets
are not recognizable as tree languages (cf. Example 8). Then we prove that
ϕa is a recognizable tree language if one of the following conditions holds:

• A is a locally �nite semiring (cf. Theorem 9),
• A is non-decreasing with respect to ≤ and A \ ↑a is �nite (cf. Theorem 10).

The paper is organized as follows. In Section 2 we �x notions and notations,
which we use in Section 3. There we provide su�cient conditions which, if
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imposed, guarantee that every cut set of a fuzzy set is a recognizable tree
language. We conclude this paper in Section 4 by stating open problems and
discussing the converse problem, which, in fuzzy terms, is known as the synthe-
sis problem. Namely, starting with a collection of recognizable tree languages,
we ask for the existence of a formal tree series whose cuts are precisely the
members of the collection. Within this, further open problems are unearthed.

2 Preliminaries

2.1 Partial orders and fuzzy sets

In this section we brie�y review well-known facts on posets and fuzzy sets. For
more details we refer the reader to [20,2].

Given a nonempty set A, a binary relation ≤ ⊆ A× A is called partial order
(on A), if ≤ is re�exive, antisymmetric, and transitive. As usual, the fact
(a, b) ∈ ≤ is denoted in�x, i.e, by a ≤ b, and the relation < ⊆ A×A is de�ned
for every a, b ∈ A by a < b if and only if a ≤ b and a 6= b. Moreover, the
pair (A,≤) is called partially ordered set (for short: poset). For the rest of
this section let (A,≤) be a poset. A poset (B,≤B) is a sub-poset of (A,≤), if
B ⊆ A and ≤B is the restriction of ≤ to B, i.e., ≤B = ≤∩ (B×B). The poset
(A,≤) is termed �nite if A is �nite. Now let S ⊆ A. An element m ∈ S is
called maximal element of S, if for every s ∈ S the fact m ≤ s implies m = s.
Moreover, an element u ∈ A is termed upper bound of S, if s ≤ u for every
s ∈ S. The set of all upper bounds of S is denoted by ↑S; if S = {s} then we
write ↑s. The smallest element of ↑S, i.e., the element u ∈ ↑S which satis�es
u ≤ v for every v ∈ ↑S, is called supremum of S and denoted by sup S, if it
exists. Analogously, a minimal element of S, a lower bound of S, the set ↓S of
lower bounds of S, the largest element of ↓S, and the in�mum of S, denoted
by inf S, are de�ned.

Let us now turn to particular classes of posets and thereby approach a �nite-
ness-condition, which we assume in several of our recognizability results of
Section 3. We call a poset (A,≤) chain (also: linearly or totally ordered) if
all elements are comparable via ≤, i.e., a ≤ b or b ≤ a for every a, b ∈ A.
Moreover, the chain (C,≤C) is a sub-chain of (A,≤), if (C,≤C) is a sub-poset
of (A,≤). An anti-chain is a poset in which there are no comparable distinct
elements, i.e., a poset (A, idA) where idA = { (a, a) | a ∈ A }. The width of
the poset (A,≤) is the cardinality of a maximal anti-chain in (A,≤), when
such an anti-chain exists, and is∞ otherwise. The following is known (see any
extensive book on ordered sets and lattices, e.g. [21]).
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Lemma 1 A poset is �nite if and only if it has �nite width and no in�nite
chains.

The poset (A,≤) satis�es the descending chain condition (for short: DCC ) if
each descending chain c1 > c2 > . . . in (A,≤) is �nite. Moreover, we call (A,≤)
up-chain connected if it satis�es the following condition: for every a ∈ A and
every in�nite sub-chain (C,≤C) of (A,≤) the set (↑a) ∩ C is in�nite. It is
easy to see that (A,≤) satis�es the DCC, whenever it is up-chain connected.
Moreover, if (A,≤) is a chain, then the descending chain condition coincides
with up-chain connectedness. Finally, (A,≤) is called F-poset if it is up-chain
connected and has �nite width.

Lemma 2 The following are equivalent for every poset (A,≤).

(i) For every a ∈ A the set A \ ↑a is �nite.
(ii) (A,≤) is an F-poset.

PROOF. (i) ⇒ (ii): Suppose (A,≤) satis�es that for every a ∈ A the set
A\↑a is �nite. If it has an in�nite anti-chain (D, idD), then for every a ∈ D the
set A\↑a is in�nite, which is a contradiction. Further, if (A,≤) is not up-chain
connected, then there is an element a ∈ A and an in�nite sub-chain (C,≤C)
of (A,≤) such that (↑a)∩C is �nite. Since C is in�nite, it follows that C\↑a is
in�nite and hence A \ ↑a is also in�nite, which contradicts the assumption.

(ii) ⇒ (i): If (A,≤) does not satisfy Property (i), then there are in�nitely
many elements in A \ ↑a for some a ∈ A. Let ≤′ be the restriction of ≤
to A \ ↑a. Then, by Lemma 1, either (A \ ↑a,≤′) has in�nite width or there is
an in�nite chain in this sub-poset. In both cases (A,≤) is not an F-poset. 2

Let us recall fuzzy sets, cuts and fuzzy (algebraic) structures. A fuzzy set (also:
A-fuzzy set, poset-valued fuzzy set) is a mapping ϕ : S → A such that S is a
nonempty set and A is the carrier set of some poset (A,≤). A cut set (also:
cut) of S is a set ϕa = { s ∈ S | ϕ(s) ≥ a } for some a ∈ A. If S is the universe
(underlying set) of some algebraic structure S (e.g., a group or a ring), then
a fuzzy set ϕ : S → A is a fuzzy subalgebra of S if each cut set is a crisp
subalgebra of S. In particular, if A is a lattice, then ϕ : S → A is a fuzzy
subalgebra of S if and only if ϕ(f(x1, . . . , xn)) ≥ inf{ϕ(x1), . . . , ϕ(xn)} for
every fundamental operation f on S.

We conclude this section by considering mappings between posets. For this
purpose let (A,≤A) and (B,≤B) be two posets. A mapping f : A → B is
order-preserving (also: isotone) if f(a1) ≤B f(a2) for every a1, a2 ∈ A with
a1 ≤A a2.
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2.2 Semirings

We now present notions and notations concerning semirings, which we fre-
quently use throughout this paper. For a more detailed presentation the reader
may consult [22,23]. A semiring is an algebra A = (A,⊕,�,0,1) such that
(A,⊕,0) is a commutative monoid, (A,�,1) is a monoid, the distributivity
laws (a1 ⊕ a2)� b = (a1 � b)⊕ (a2 � b) and b� (a1 ⊕ a2) = (b� a1)⊕ (b� a2)
hold, and 0 is an absorptive element. By convention, we assume that mul-
tiplication � has a higher (binding) priority than addition ⊕, e.g., we read
a1⊕a2�a3 as a1⊕(a2�a3). An example of a semiring is the Boolean semiring
Bool = (B,∨,∧, 0, 1) where B = {0, 1} is the set of truth values and ∨ and ∧
denote the disjunction and conjunction, respectively. Throughout this section
let A = (A,⊕,�,0,1) be a semiring. We call A locally �nite, if for every �nite
subset B ⊆ A the smallest sub-semiring containing B, whose carrier set is
denoted by 〈B〉, is still �nite.

The semiring A is naturally ordered, if for every a, b, c ∈ A the condition
a⊕ b⊕ c = a implies a⊕ b = a. Suppose that A is naturally ordered, then the
relation v ⊆ A× A, which is de�ned for every a, b ∈ A by

a v b ⇐⇒ (∃c ∈ A) : a⊕ c = b ,

is a partial order [22]. Note that each additively idempotent semiring is nat-
urally ordered. Now let ≤ be an arbitrary partial order on A. We say that
⊗ ∈ {⊕,�} is non-decreasing (with respect to ≤), if for every a, b ∈ A it holds

(ND⊗) a ≤ a⊗ b whenever b 6= 0.

The semiring A is called non-decreasing (with respect to ≤), if both ⊕ and �
are non-decreasing with respect to ≤. Note that in every naturally ordered
semiring A = (A,⊕,�,0,1) the operation ⊕ is non-decreasing with respect
to v.

Let us conclude this section by considering mappings between semirings. For
this purpose let A = (A,⊕,�,0A,1A) and B = (B, +, ·,0B,1B) be two semi-
rings and f : A → B be a mapping. We call f semiring-homomorphism
(from A to B), if f is compatible with the semiring operations, i.e., for every
a, b ∈ A it holds that f(a⊕b) = f(a)+f(b), f(a�b) = f(a)·f(b), f(0A) = 0B,
and f(1A) = 1B.
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2.3 Tree languages and tree series

Now we recall notions and notations concerning tree languages and tree series
as well as their relation to each other (cf. [5,14] for tree languages and [7] for
tree series). Some of the basic concepts which we will use in this paper (like
ranked alphabet and tree) are known from universal algebra under di�erent
names (�nite, nonempty operator domain and term, respectively). However,
we will use the notions which are established in the theory of formal languages
and automata theory.

A ranked alphabet is a pair (Σ, rk), where Σ is a �nite, nonempty set and
rk : Σ → N associates to every symbol of Σ its rank (from the viewpoint of
universal algebra, a ranked alphabet is a �nite, nonempty operator domain,
cf. e.g. page 48 of [24]). We note that 0 ∈ N. For every k ∈ N we de�ne
Σ(k) = {σ ∈ Σ | rk(σ) = k }. In the following, we will usually assume that the
mapping rk is implicitly given and we denote a ranked alphabet by Σ only.
Throughout the paper, we assume that Σ(0) 6= ∅.

If Σ is a ranked alphabet, then an algebra A of type Σ (or equivalently: a
Σ-algebra) is an ordered pair (A, F ), where A is a nonempty set and F is a
family of operations on A indexed by the ranked alphabet Σ, such that there
is an n-ary operation fA on A corresponding to each symbol from Σ of rank n.

Given a ranked alphabet Σ, we de�ne the set of trees over Σ, denoted by TΣ, in-
ductively as follows: (i) if α ∈ Σ(0), then α ∈ TΣ and (ii) if k ≥ 1, σ ∈ Σ(k), and
t1, . . . , tk ∈ TΣ, then σ(t1, . . . , tk) ∈ TΣ. (Thus, from the viewpoint of universal
algebra, trees are terms over a �nite, nonempty operator domain.) A tree lan-
guage is a subset of TΣ. For every s, t ∈ TΣ we denote the fact that s is a subtree
of t by s v t. Observe that (TΣ,v) is a poset. Now let k ∈ N and σ ∈ Σ(k). The
top-concatenation with σ is the operation topσ : TΣ×· · ·×TΣ → TΣ with k ar-
guments de�ned for every t1, . . . , tk ∈ TΣ by topσ(t1, . . . , tk) = σ(t1, . . . , tk).
The term algebra over Σ is the Σ-algebra TΣ = (TΣ, { topσ | σ ∈ Σ }). We
note that TΣ is the initial object in the class of all Σ-algebras, i.e., for ev-
ery other Σ-algebra B = (B, { fσ | σ ∈ Σ }) there is a uniquely determined
homomorphism h : TΣ → B from TΣ to B.

Let us now brie�y review the notion of tree series. To this end, let A be a semi-
ring. Every mapping ϕ : TΣ → A is called (formal) tree series (over Σ and A).
We use A〈〈TΣ〉〉 to denote the set of all formal tree series over Σ and A. Given a
tree t ∈ TΣ, we usually write (ϕ, t), termed the coe�cient of t, instead of ϕ(t)
and

⊕
t∈TΣ

(ϕ, t) t instead of the tree series ϕ. Moreover, the support of a tree
series ϕ ∈ A〈〈TΣ〉〉 is the set supp(ϕ) = { t ∈ TΣ | (ϕ, t) 6= 0 }. We extend supp
to sets of tree series in the usual manner. Observe that supp(ϕ) is a tree lan-
guage and supp(B〈〈TΣ〉〉) is the set of all tree languages. Conversely, given a
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tree language L ⊆ TΣ and a semiring A = (A,⊕,�,0,1), the characteristic
mapping of L and A is the formal tree series χAL =

⊕
t∈L 1 t.

Observe that, if ≤ is a partial order on A, then every tree series ϕ ∈ A〈〈TΣ〉〉
is also a fuzzy set. We call a tree series ϕ compatible with top-concatenation, if
for every k ∈ N, σ ∈ Σ(k), and k pairs (si, ti) ∈ TΣ×TΣ satisfying ϕ(si) = ϕ(ti)
for every i ∈ [k] it holds that ϕ(σ(s1, . . . , sk)) = ϕ(σ(t1, . . . , tk)).

2.4 Recognizable tree languages and recognizable tree series

Let us now present the automata-theoretic concept which we investigate in this
paper. More precisely, in this section we recall notions concerning bottom-up
�nite-state weighted tree automata, recognizable tree series, and recognizable
tree languages. For more details on recognizable tree series, we refer the reader
to [7,25,26,9,6,13] and the reader may consult [5,14] for more details on rec-
ognizable tree languages.

Let Q be a �nite set (of states), Σ a ranked alphabet (of input symbols), and
A a set (of weights). A (bottom-up) tree representation (over Q, Σ, and A)
is a family µ = ( µk )k∈N of mappings µk : Σ(k) → AQk×Q. Let F ⊆ Q,
A = (A,⊕,�,0,1) be a semiring, and µ be a tree representation over Q, Σ,
and A. The tuple M = (Q, Σ, F,A, µ) is called bottom-up �nite state weighted
tree automaton (over A) (for short: bu-w-fta), where F is the set of �nal states.
Let us now de�ne the semantics of a bu-w-fta M = (Q, Σ, F,A, µ). For this
purpose let us consider the Σ-algebra

DM = (AQ, {µ(σ) : AQ × · · · × AQ → AQ | σ ∈ Σ }) ,

where for every k ∈ N, σ ∈ Σ(k), q ∈ Q, and v1, . . . , vk ∈ AQ, the opera-
tion µ(σ) is de�ned by

µ(σ)(v1, . . . , vk)q =
⊕

q1,...,qk∈Q

(v1)q1 � · · · � (vk)qk
� µk(σ)(q1,...,qk),q .

Since DM is a Σ-algebra, there is a uniquely determined homomorphism h
from TΣ to DM ; in the sequel, h will be denoted just by hµ : TΣ → AQ. The
tree series ϕM that is accepted or recognized by M is de�ned pointwise for every
t ∈ TΣ by (ϕM , t) =

⊕
q∈F hµ(t)q. Moreover, we denote by Arec〈〈TΣ〉〉 the class

of all tree series which are accepted by bu-w-fta. In particular, a tree language
L ⊆ TΣ is recognizable (in the sense of [5]) if and only if L ∈ supp(Brec〈〈TΣ〉〉).
The class of all recognizable tree languages is denoted by RECOG.

Let us now show that the recognizability of a tree series is preserved by ap-
plying a semiring-homomorphism to it.
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Lemma 3 Let A = (A,⊕,�,0A,1A) and B = (B, +, ·,0B,1B) be two semi-
rings and f : A → B be a homomorphism from A to B. If ϕ ∈ Arec〈〈TΣ〉〉, then
f(ϕ) ∈ Brec〈〈TΣ〉〉, where f is extended to a mapping f : A〈〈TΣ〉〉 → B〈〈TΣ〉〉 as
usual by setting (f(ϕ), t) = f(ϕ, t) for every ϕ ∈ A〈〈TΣ〉〉 and t ∈ TΣ.

PROOF. Let M = (Q, Σ, F,A, µ) be a bu-w-fta which accepts ϕ. We con-
struct a bu-w-fta M ′ = (Q, Σ, F,B, µ′) with µ′k(σ)(q1,...,qk),q = f(µk(σ)(q1,...,qk),q)
for every k ∈ N, σ ∈ Σ(k), and q, q1, . . . , qk ∈ Q. We show that M ′ ac-
cepts f(ϕ). For this purpose, one can prove that, for every t ∈ TΣ and q ∈ Q,
the equation hµ′(t)q = f(hµ(t)q) holds. The proof can be done by induction
on t and it is left to the reader. Using the aforementioned equation let us now
show that M ′ accepts f(ϕ). We have for every t ∈ TΣ that

(ϕM ′ , t) =
∑
q∈F

hµ′(t)q =
∑
q∈F

f(hµ(t)q) = f
(⊕

q∈F

hµ(t)q

)
= f(ϕ, t) .

Hence M ′ accepts f(ϕ), i.e., f(ϕ) ∈ Brec〈〈TΣ〉〉. 2

In the following we recall the well-known theorem of Myhill and Nerode,
which characterizes the class of recognizable tree languages (cf. [27�29]). For
this, let θ ⊆ TΣ×TΣ be an equivalence relation, i.e., a re�exive, symmetric, and
transitive relation. Then θ is a congruence relation (with respect to the initial
term algebra), if for every k ∈ N, σ ∈ Σ(k), and t1, . . . , tk, s1, . . . , sk ∈ TΣ with
ti θ si for every i ∈ [k] it holds that σ(t1, . . . , tk) θ σ(s1, . . . , sk). Let B ⊆ TΣ.
Then θ saturates B if B is the union of some equivalence classes of θ.

Theorem 4 (Myhill-Nerode theorem [27�29]) Let L ⊆ TΣ be a tree
language. Then the following two statements are equivalent.

(1) L is a recognizable tree language.
(2) There exists a congruence relation θ on TΣ which has �nite index and

saturates L.

3 Recognizability of cut sets

In this section, we investigate the question under which conditions a cut set
of a given fuzzy set ϕ, which is de�ned on TΣ, is a recognizable tree language.
In this way we obtain a fuzzy structure � a kind of a fuzzy recognizable tree
language.

We pursue two approaches. In Section 3.1 we require that the fuzzy set ϕ,
which has domain TΣ and a poset as co-domain, satis�es several order-theoretic
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assumptions, e.g., isotonicity or compatibility with top-concatenation. In Sec-
tion 3.2 we additionally assume that ϕ ∈ Arec〈〈TΣ〉〉 is a recognizable tree series
over a semiring, which has a partially ordered carrier set, and show which of
the conditions of Section 3.1 can be dropped or replaced by others.

3.1 Recognizability of cut sets of fuzzy sets

Let ϕ : TΣ → A be a fuzzy set over TΣ, and let a ∈ A. We begin this
section by proving that a cut set ϕa of ϕ is a recognizable tree language, if
ϕ satis�es several order-theoretic assumptions. Speci�cally, these assumptions
are: (i) ϕ is isotone where the order on TΣ is v, and (ii) ϕ is compatible
with top-concatenation. Recall that recognizable tree languages are recognized
by bottom-up �nite-state weighted tree automata over the Boolean semiring.
The �nite number of states is re�ected in an additional assumption, which we
require for recognizability of ϕa, viz., (i) ϕ(TΣ)\↑a is a �nite set (cf. Lemma 5)
or (ii) (A,≤) is an F-poset (cf. Theorem 6). Moreover, if the range of ϕ is a
�nite set, then the isotonicity requirement can be dropped (cf. Theorem 7).

First we prove that, given a poset (A,≤), an isotone fuzzy set ϕ : TΣ → A,
which is compatible with top-concatenation, and a ∈ A such that ϕ(TΣ)\↑a is
a �nite set, the cut set ϕa is recognizable. This statement is a consequence of
the Theorem of Myhill and Nerode (cf. Theorem 4); we de�ne a congruence
relation θ on the initial term algebra (TΣ, { topσ | σ ∈ Σ }) by setting s θ t
if and only if either (i) s and t are mapped to the same element by ϕ or
(ii) both s and t are mapped to elements greater or equal to a. It turns
out that θ saturates ϕa and thus, by the Myhill-Nerode theorem, ϕa is a
recognizable tree language.

Lemma 5 Let (A,≤) be a poset. Moreover, let ϕ : TΣ → A be an isotone
fuzzy set which is compatible with top-concatenation. Then, for every a ∈ A
such that ϕ(TΣ) \ ↑a is �nite, the cut set ϕa is a recognizable tree language.

PROOF. Let a ∈ A such that ϕ(TΣ)\↑a is a �nite set. Consider the relation
θ ⊆ TΣ × TΣ, which is de�ned for every s, t ∈ TΣ by s θ t if and only if
(i) ϕ(s) = ϕ(t) 6≥ a or (ii) ϕ(s) ≥ a and ϕ(t) ≥ a. Note that, for every
s, t ∈ TΣ, the equation ϕ(s) = ϕ(t) implies s θ t. Apparently, θ is re�exive
and symmetric. To prove that θ is transitive, let t1, t2, t3 ∈ TΣ such that t1 θ t2
and t2 θ t3. From t1 θ t2 it follows that either (i) ϕ(t1) = ϕ(t2) 6≥ a or
(ii) ϕ(t1) ≥ a and ϕ(t2) ≥ a. In Case (i) we deduce from the facts ϕ(t2) 6≥ a
and t2 θ t3 that ϕ(t1) = ϕ(t2) = ϕ(t3) 6≥ a, i.e., t1 θ t3. In Case (ii) it
follows from the facts ϕ(t2) ≥ a and t2 θ t3 that ϕ(t3) ≥ a and thus, also
applying the assumption ϕ(t1) ≥ a, it holds that t1 θ t3. Hence θ is transitive,
and consequently, it is an equivalence relation. Let us now show that θ is a

10



congruence relation (with respect to the initial term algebra). For this purpose
let k ∈ N, σ ∈ Σ(k), and s1, . . . , sk, t1, . . . , tk ∈ TΣ such that s1 θ t1, . . . , sk θ tk.
We show σ(s1, . . . , sk) θ σ(t1, . . . , tk) by the following case analysis.

(α) First assume that ϕ(s1) = ϕ(t1) 6≥ a, . . . , ϕ(sk) = ϕ(tk) 6≥ a. Since ϕ is
compatible with top-concatenation, it holds that

ϕ(σ(s1, . . . , sk)) = ϕ(σ(t1, . . . , tk)) .

Consequently, σ(s1, . . . , sk) θ σ(t1, . . . , tk).
(β) Now assume that there exists an i ∈ [k] such that ϕ(si) ≥ a and ϕ(ti) ≥ a.

Apparently, since ϕ is order-preserving, it holds that ϕ(σ(s1, . . . , sk)) ≥ a
and ϕ(σ(t1, . . . , tk)) ≥ a. Then σ(s1, . . . , sk) θ σ(t1, . . . , tk).

Thus θ is a congruence relation. Next we show that θ has �nite index. Consider
the mapping πθ : TΣ/θ → (ϕ(TΣ)\↑a)∪{a}, which is de�ned by πθ([t]θ) = ϕ(t)
if ϕ(t) 6≥ a and πθ([t]θ) = a if ϕ(t) ≥ a. Clearly, πθ is well-de�ned and
injective. Thus,

card(TΣ/θ) = card(πθ(TΣ/θ)) ≤ card(ϕ(TΣ) \ ↑a) + 1,

and since ϕ(TΣ) \ ↑a is a �nite set by assumption, also TΣ/θ is a �nite set.
Hence θ has �nite index. Moreover, θ saturates ϕa, because ϕa is either the
empty set or it is one equivalence class. Applying the theorem of Myhill and
Nerode (cf. Theorem 4) shows that ϕa is a recognizable tree language. 2

Next we replace the requirement of Lemma 5, i.e., ϕ(TΣ) \ ↑a is a �nite set,
by a restriction on the underlying poset, which ensures that for every a ∈ A
the set ϕ(TΣ) \ ↑a is �nite.

Theorem 6 Let (A,≤) be an F-poset. Moreover, let ϕ : TΣ → A be an isotone
fuzzy set, which is compatible with top-concatenation. Then for every a ∈ A
the cut set ϕa is a recognizable tree language.

PROOF. Let a ∈ A. By Lemma 2 we have that A \ ↑a is a �nite set. Since
ϕ(TΣ) \ ↑a ⊆ A \ ↑a, also ϕ(TΣ) \ ↑a is a �nite set. Then, by Lemma 5, ϕa is
a recognizable tree language. 2

Last in this section, we consider fuzzy sets with �nite range. It turns out that
if the underlying fuzzy set is compatible with top-concatenation, then every
cut set is recognizable; note that in contrast to Lemma 5 and Theorem 6 we
do not require the underlying fuzzy set to be isotone. The proof of the claimed
statement, which is similar to the proof of Lemma 5, is based on an application
of the Myhill-Nerode theorem (cf. Theorem 4); the considered congruence
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relation on the initial term algebra is the kernel of ϕ, i.e., two trees s and t
are equivalent if and only if they are mapped to the same element.

Theorem 7 Let (A,≤) be a poset. Moreover, let ϕ : TΣ → A be a fuzzy set
which is compatible with top-concatenation and such that ϕ(TΣ) is a �nite set.
Then, for every a ∈ A, the cut set ϕa is recognizable.

PROOF. Let θ ⊆ TΣ×TΣ be the relation which is de�ned for every two trees
s, t ∈ TΣ by s θ t if and only if ϕ(s) = ϕ(t). Clearly, θ is an equivalence
relation, and since ϕ is compatible with top-concatenation, θ is a congruence
relation on TΣ. Moreover, by the de�nition of θ, the cardinalities of the two
sets TΣ/θ and ϕ(TΣ) are equal. Since, by assumption, ϕ(TΣ) is a �nite set,
also TΣ/θ is a �nite set, and consequently, θ has �nite index. Let us now show
that θ saturates ϕa. We compute as follows:

ϕa = { t ∈ TΣ | ϕ(t) ≥ a } = ϕ−1(↑a) =
⋃

b∈↑a
ϕ−1({b}).

Observe that, for every b ∈ ϕ(TΣ), there exists a tree t ∈ TΣ such that
ϕ−1({b}) = [t]θ, and for every b ∈ A \ ϕ(TΣ) it holds that ϕ−1({b}) = ∅.
Hence ϕa is the union of some equivalence classes of θ, i.e., θ saturates ϕa.
Thus, the Theorem of Myhill and Nerode (cf. Theorem 4) implies that
ϕa is a recognizable tree language. 2

3.2 Recognizability of cut sets of recognizable tree series

In this section we start from recognizable tree series, and we investigate the
question under which additional requirements we can drop, from the results
of Section 3.1, the assumptions that ϕ is an isotone fuzzy set and that ϕ is
compatible with top-concatenation.

First however, we show an example of a recognizable tree series, of which the
cut sets are not recognizable (as tree languages).

Example 8 Let Σ = {σ(2), α(0), β(0)} and Trop = (Z ∪ {∞}, min, +,∞, 0) be
the tropical semiring of integers. Consider the bu-w-fta M = (Q, Σ, F, Trop, µ)
with Q = {α, β, q}, F = {q}, and

µ0(α)(),α = 1 µ0(β)(),β = −1

µ0(α)(),β = 0 µ0(β)(),α = 0

µ2(σ)(α,α),α = µ2(σ)(β,β),β = µ2(σ)(α,β),q = 0

and all remaining entries of µ are supposed to be ∞. Figure 1 shows this
bu-w-fta. Clearly, for every t ∈ TΣ, hµ(t)α is the number of α-labeled nodes
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α β

α/1

β/0

σ/0

σ/0

σ/0

α/0 β/−1

Fig. 1. Bu-w-fta M which recognizes a tree series/fuzzy set with a non-recognizable
cut set.

of t, which we denote by |t|α. Similarly, it holds that hµ(t)β = −|t|β, where
|t|β denotes the number of β-labeled nodes of t. Hence we obtain that

(ϕM , σ(t1, t2)) = hµ(σ(t1, t2))q = |t1|α − |t2|β

for all t1, t2 ∈ TΣ. Now let us consider the cut set (ϕM)0, which is de�ned to
be the set { t ∈ TΣ | (ϕM , t) ≥ 0 }. Obviously, σ(t1, t2) ∈ (ϕM)0 if and only if
(ϕM , σ(t1, t2)) ≥ 0. The latter holds if and only if |t1|α ≥ |t2|β. This is not a
recognizable property, which can easily be shown using the pumping lemma for
recognizable tree languages (cf., e.g., [5]). Consequently, the cut set (ϕM)0 is
not a recognizable tree language.

For the following considerations, let ϕ be a recognizable tree series over a
semiring A = (A,⊕,�,0,1), whose carrier set A is partially ordered by ≤.
Clearly, ϕ is a fuzzy set whose co-domain is an ordered semiring, and this
allows us to prove similar results as in Section 3.1. Firstly we prove a result
on locally �nite semirings. Namely, given a recognizable tree series ϕ over
a locally �nite semiring A = (A,⊕,�,0,1), then for every a ∈ A the cut
set ϕa is a recognizable tree language. Roughly speaking, from the bu-w-
fta M recognizing ϕ we construct a bu-w-fta over Bool, which performs the
computation of the weight in its state set. Then we set all those states to �nal
states, where the summation of the weights yields a result greater than or equal
to a. Our construction is a straightforward generalization of the construction
found in the proof of Theorem 2.1 in [18]. There complete lattices S, which
ful�l the additional constraint that for each �nite set S of lattice elements
the sublattice generated by S is still �nite, are considered. However, such
lattices are locally �nite semirings. It is shown in Theorem 2.1 of [18] that
for each fuzzy automaton (i.e., �nite-state weighted string automaton over S)
a deterministic fuzzy automaton recognizing the same fuzzy language can
be constructed. We extend the construction to bu-w-fta over locally �nite
semirings in a straightforward manner and adapt the �nal states according to
our purposes. In this way, we also obtain a deterministic device. Altogether,
we obtain a result which parallels Theorem 7.
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Theorem 9 Let A = (A,⊕,�,0,1) be a locally �nite semiring, (A,≤) be a
poset, ϕ ∈ Arec〈〈TΣ〉〉 be a recognizable tree series, and a ∈ A. Then the cut
set ϕa is a recognizable tree language.

PROOF. Let M = (Q, Σ, F,A, µ) be a bu-w-fta such that ϕM = ϕ. We
construct a bu-w-fta M ′ over the Boolean semiring such that supp(ϕM ′) = ϕa.
Therefore, let

• C = {µk(σ)(q1,...,qk),q | k ∈ N, σ ∈ Σ(k), q, q1, . . . , qk ∈ Q },
• Q′ = 〈C〉Q, and
• F ′ = { v ∈ Q′ | a ≤ ⊕

q∈F v(q) }.

Clearly, C is a �nite set, and so, by local �niteness, also Q′ is a �nite set.
Moreover, for every k ∈ N, σ ∈ Σ(k), and v, v1, . . . , vk ∈ Q′ we let

µ′k(σ)(v1,...,vk),v = 1

⇐⇒ (∀q ∈ Q) : v(q) =
⊕

q1,...,qk∈Q

v1(q1)� · · · � vk(qk)� µk(σ)(q1,...,qk),q.

Then M ′ = (Q′, Σ, F ′, Bool, µ′) is a bu-w-fta over the Boolean semiring Bool
such that for every t ∈ TΣ and v ∈ Q′ we have hµ′(t)v = 1 if and only if
hµ(t) = v. We prove this statement inductively. Let t = σ(t1, . . . , tk) for some
k ∈ N, symbol σ ∈ Σ(k), and t1, . . . , tk ∈ TΣ.

hµ(σ(t1, . . . , tk)) = v

⇐⇒ (∀q ∈ Q) :
⊕

q1,...,qk∈Q

hµ(t1)q1 � · · · � hµ(tk)qk
� µk(σ)(q1,...,qk),q = v(q)

⇐⇒ (∀i ∈ [k])(∃vi ∈ Q′)(∀q ∈ Q) : hµ(ti)q = vi(q) and⊕
q1,...,qk∈Q

v1(q1)� · · · � vk(qk)� µk(σ)(q1,...,qk),q = v(q)

⇐⇒ (by the de�nition of µ′)

(∀i ∈ [k])(∃vi ∈ Q′)(∀q ∈ Q) : hµ(ti)q = vi(q) and

(µ′)k(σ)(v1,...,vk),v = 1

⇐⇒ (by induction hypothesis)

(∀i ∈ [k])(∃vi ∈ Q′) : hµ′(ti)vi
= 1, (µ′)k(σ)(v1,...,vk),v = 1

⇐⇒
∨

v1,...,vk∈Q′
hµ′(t1)v1 ∧ · · · ∧ hµ′(tk)vk

∧ (µ′)k(σ)(v1,...,vk),v = 1

⇐⇒ hµ′(σ(t1, . . . , tk))v = 1
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Hence we continue with

t ∈ supp(ϕM ′)

⇐⇒
∨

v∈F ′
hµ′(t)v = 1

⇐⇒ (∃v ∈ F ′) : hµ′(t)v = 1

⇐⇒ (∃v ∈ F ′) : hµ(t) = v

⇐⇒ (∃v ∈ Q′) : hµ(t) = v and a ≤
⊕
q∈F

v(q)

⇐⇒ a ≤
⊕
q∈F

hµ(t)q

⇐⇒ a ≤ ϕM(t)

⇐⇒ t ∈ ϕa ,

which proves that ϕa is a recognizable tree language. 2

>From the previous theorem we now derive statements similar to Lemma 5
and Theorem 6. Therefore, we observe that, given a non-decreasing semiring
A = (A,⊕,�,0,1) with respect to ≤ and an element a ∈ A, then the mapping
h : A → A, de�ned for every a′ ∈ A by (i) h(a′) = a, if a ≤ a′, and
(ii) h(a′) = a′ otherwise, is a homomorphism to a semiring with carrier set
(A \ ↑a) ∪ {a}. Consequently, if we demand that A \ ↑a is a �nite set, then
this semiring is �nite and Theorem 9 is applicable.

Theorem 10 Let (A,≤) be a poset and A = (A,⊕,�,0,1) be a semiring
which is non-decreasing with respect to ≤. Moreover, let ϕ ∈ Arec〈〈TΣ〉〉 be a
recognizable tree series and a ∈ A. If A \ ↑a is �nite, then the cut set ϕa is a
recognizable tree language.

PROOF. Let D = (A \ ↑a) ∪ {a} and de�ne the operations +, · : D2 → D
for every d1, d2 ∈ D as follows.

d1 + d2 =

a , if a ≤ d1 ⊕ d2

d1 ⊕ d2 , otherwise

d1 · d2 =

a , if a ≤ d1 � d2

d1 � d2 , otherwise

Further, let h : A → D be the mapping de�ned for every a′ ∈ A by

h(a′) =

a , if a ≤ a′

a′ , otherwise
.
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Using the non-decreasing property of A, we can easily prove that h is a semi-
ring homomorphism. Here we only show h(a1 ⊕ a2) = h(a1) + h(a2) for every
a1, a2 ∈ A. The proof for the multiplication is similar.

h(a1 ⊕ a2) =

a , if a ≤ a1 ⊕ a2

a1 ⊕ a2 , otherwise

=


a , if a ≤ a1 or a ≤ a2

a , if a ≤ a1 ⊕ a2, a 6≤ a1, and a 6≤ a2

a1 ⊕ a2 , otherwise

(because A is non-decreasing)

=


a , if a = h(a1) or a = h(a2)

a , if a = h(a1) + h(a2), a 6≤ a1, and a 6≤ a2

h(a1) + h(a2) , otherwise

= h(a1) + h(a2)

Hence D = (D, +, ·, h(0), h(1)) is a �nite semiring. Let ϕ′ = h(ϕ), i.e,
ϕ′ =

∑
t∈TΣ

h((ϕ, t)) t. Since recognizable tree series are closed under semiring
homomorphisms (cf. Lemma 3), we conclude that ϕ′ ∈ Drec〈〈TΣ〉〉. Moreover,
we note that ϕa = ϕ′a, because for every t ∈ TΣ

t ∈ ϕa ⇐⇒ a ≤ (ϕ, t) ⇐⇒ a = h((ϕ, t)) ⇐⇒ a = (ϕ′, t) ⇐⇒ t ∈ ϕ′a .

Hence by Theorem 9 it follows that ϕa is a recognizable tree language. 2

Finally, we consider non-decreasing semirings A such that the �niteness con-
dition is ful�lled. Then it follows from Theorem 10 that every cut set of a
recognizable tree series ϕ ∈ Arec〈〈TΣ〉〉 is recognizable.

Corollary 11 Let (A,≤) be an F-poset and A = (A,⊕,�,0,1) be a semiring
which is non-decreasing with respect to ≤. Moreover, let ϕ ∈ Arec〈〈TΣ〉〉 be a
recognizable tree series. Then for every a ∈ A the cut set ϕa is a recognizable
tree language.

PROOF. Since (A,≤) is an F-poset, it holds for every a ∈ A that A \ ↑a is
a �nite set. The claim now follows from Theorem 10. 2

4 Conclusion and open questions

We have presented a connection between the theory of fuzzy sets and struc-
tures on one side and automata theory (in particular: recognizable tree series)
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on the other side. For this purpose we considered a class of fuzzy sets, namely
the fuzzy sets ϕ : TΣ → A whose domain is the set of all trees over a given
ranked alphabet Σ and whose co-domain is the carrier set of some poset (A,≤)
satisfying various �niteness conditions. Our aim was to obtain a fuzzy struc-
ture which fuzzi�es the notion of a recognizable tree language, in the sense
that its cut sets are crisp recognizable tree languages. We have shown that
every cut set of ϕ is a recognizable tree language provided that (i) ϕ is isotone
and compatible with top-concatenation (cf. Subsection 3.1) or (ii) A is the
carrier set of some non-decreasing semiring and ϕ is a recognizable tree series
(cf. Subsection 3.2). Clearly, these are su�cient conditions, so we also consider
it interesting to �nd out necessary and su�cient conditions.

Moreover, it is an interesting question under which conditions an inverse the-
ory can be established. More precisely, given a collection S of recognizable
tree languages, does there exist a semiring A = (A,⊕,�,0,1), a partial or-
der ≤ on A, and a recognizable tree series ϕ over A, i.e., a fuzzy set, such
that the collection ϕS of cut sets equals the given collection S of tree lan-
guages. One could also investigate an extended version of the aforementioned
problem and ask for conditions under which ϕ is a fuzzy sub-algebra of the
initial term algebra (TΣ, { topσ | σ ∈ Σ }) such that ϕS = S where a fuzzy
sub-algebra of the initial term algebra is a fuzzy set ϕ : TΣ → A ful�ll-
ing ϕ(σ(t1, . . . , tk)) ≥ inf{ϕ(t1, ), . . . , ϕ(tk)} for every k ∈ N, σ ∈ Σ(k), and
t1, . . . , tk ∈ TΣ. We leave these questions open, but refer the reader to Propo-
sition 2 of [4]. There it is proved in a more general framework that, given a
collection S of subsets (ordered by inclusion) of some nonempty set D which
is closed under centralized intersection, i.e.,

⋂{S ∈ S | d ∈ S } ∈ S for every
d ∈ D, and which covers D, i.e.,

⋃S = D, the fuzzy set ϕ : D → S sending
every d ∈ D to the set

⋂{S ∈ S | d ∈ S } induces the family of cut sets ϕS
being equal to the given collection S of subsets of D. In order to approach an
answer to the question under which conditions ϕ is a fuzzy sub-algebra, let us
now additionally assume that D is the carrier set of some algebra D = (D, F )
and that ≤ is a partial order on D, which is order-preserving with respect to
all operations of F . From Proposition 2 of [4] it straightforwardly follows that,
if every S ∈ S is an up-set, i.e., S = ↑S, then the above speci�ed mapping ϕ
is a fuzzy sub-algebra of D. Apparently, these two general statements can be
instantiated to S being a collection of tree languages and hence ϕ being a tree
series. It is still open which requirements have to be made to ensure that ϕ is
recognizable.
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