
Extended Multi Bottom-Up Tree Transducers

Joost Engelfriet1, Eric Lilin2, and Andreas Maletti3;?

1 Leiden Institute of Advanced Computer Science
Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands

engelfri@liacs.nl
2 Universit�e des Sciences et Technologies de Lille
UFR IEEA 59655, Villeneuve d'Ascq, France

eric.lilin@lifl.fr
3 International Computer Science Institute

1947 Center Street, Suite 600, Berkeley, CA 94704, USA
maletti@icsi.berkeley.edu

Abstract. Extended multi bottom-up tree transducers are de�ned and
investigated. They are an extension of multi bottom-up tree transducers
by arbitrary, not just shallow, left-hand sides of rules; this includes rules
that do not consume input. It is shown that such transducers can com-
pute any transformation that is computed by a linear extended top-down
tree transducer. Moreover, the classical composition results for bottom-
up tree transducers are generalized to extended multi bottom-up tree
transducers. Finally, a characterization in terms of extended top-down
tree transducers is presented.

1 Introduction

In the �eld of natural language processing, Knight [1, 2] proposed the following
criteria that any reasonable formal tree-to-tree model of syntax-based machine
translation [3] should ful�l:

(a) It should be a genuine generalization of �nite-state transducers [4]; this in-
cludes the use of epsilon rules, i.e., rules that do not consume any part of
the input tree.

(b) It should be e�ciently trainable.
(c) It should be able to handle rotations (on the tree level).
(d) Its induced class of transformations should be closed under composition.

Graehl and Knight [5] proposed the linear and nondeleting extended (top-
down) tree transducer (ln-xtt) [6, 7] as a suitable formal model. It ful�ls (a){(c)
but fails to ful�l (d). Further models were proposed but, to the authors' knowl-
edge, they all fail at least one criterion. Table 1 shows some important models
and their properties.

? Author was supported by a fellowship within the Postdoc-Programme of the German
Academic Exchange Service (DAAD).

Table 1. Overview of formal models with respect to desired criteria. \x" marks ful�l-
ment; \{" marks failure to ful�l. A question mark shows that this remains open though
we conjecture ful�lment.

Model n Criterion (a) (b) (c) (d)

Linear and nondeleting top-down tree transducer [8, 9] { x { x
Quasi-alphabetic tree bimorphism [10] { ? { x
Synchronous context-free grammar [11] x x { x
Synchronous tree substitution grammar [12] x x x {
Synchronous tree adjoining grammar [13{15] x x x {
Linear and complete tree bimorphism [15] x x x {
Linear and nondeleting extended top-down tree transducer [5{7] x x x {
Linear multi bottom-up tree transducer [16{18] { ? x x
Linear extended multi bottom-up tree transducer [this paper] x ? x x

We propose a formal model that satis�es criteria (a), (c), and (d), and has
more expressive power than the ln-xtt. The device is called linear extended multi
bottom-up tree transducer, and it is as powerful as the linear model of [16{18]
enhanced by epsilon rules (as shown in Theorem 5). In this paper we formally
de�ne and investigate the extended multi bottom-up tree transducer (xmbutt)
and various restrictions (e.g., linear, nondeleting, and deterministic). Note that
we consider the xmbutt in general, not just its linear restriction.

We start with normal forms for xmbutts. First, we construct for every xmbutt
an equivalent nondeleting xmbutt (see Theorem 3). This can be achieved by
guessing the required translations. Though the construction preserves linearity,
it obviously destroys determinism. Next, we present a one-symbol normal form
for xmbutts (see Theorem 5): each rule of the xmbutt either consumes one input
symbol (without producing output), or produces one output symbol (without
consuming input). This normal form preserves all three restrictions above.

Our main result (Theorem 13) states that the class of transformations com-
puted by xmbutts is closed under pre-composition with transformations com-
puted by linear xmbutts and under post-composition with those computed by
deterministic xmbutts. In particular, we also obtain that the classes of trans-
formations computed by linear and/or deterministic xmbutts are closed under
composition. These results are analogous to classical results (see [19, Theorems
4.5 and 4.6] and [20, Corollary 7]) for bottom-up tree transducers [21, 19] and
thus show the \bottom-up" nature of xmbutts. Also, they generalize the com-
position results of [18, Theorem 11]. As in [18], our proof essentially uses the
principle set forth in [20, Theorem 6], but the one-symbol normal form allows us
to present a very simple composition construction for xmbutts and verify that
it is correct, provided that the �rst input transducer is linear or the second is
deterministic. We observe here that the \extension" of a tree transducer model
(or even just the addition of epsilon rules) can, in general, destroy closure un-
der composition, as can be seen from the linear and nondeleting top-down tree
transducer. This seems to be due to the non-existence of a one-symbol normal
form in the top-down case.

We verify that linear xmbutts have su�cient power for syntax-based machine
translation. This is because, as mentioned before (and shown in Theorem 8),
they can simulate all ln-xtts. Thus, we have a lower bound to the power of
linear xmbutts. In fact, even the composition closure of the class of transforma-
tions computed by ln-xtts is strictly contained in the class of transformations
computed by linear xmbutts. Finally, we also present exact characterizations
(Theorems 7 and 14): xmbutts are as powerful as compositions of an ln-xtt with
a deterministic top-down tree transducer. In the linear case the latter trans-
ducer has the so-called single-use property [22{26], and similar results hold in
the deterministic case. Thus, the composition of two extended top-down tree
transducers forms an upper bound to the power of the linear xmbutt. As a side-
result we obtain that linear xmbutts admit a semantics based on recognizable
rule tree languages. This suggests that linear xmbutts also satisfy criterion (b).

2 Preliminaries

Let A;B;C be sets. A relation from A to B is a subset of A�B. Let �1 � A�B
and �2 � B � C. The composition of �1 and �2 is the relation �1 ; �2 given by
�1 ; �2 = f(a; c) j 9b 2 B : (a; b) 2 �1; (b; c) 2 �2g. This composition is lifted to
classes of relations in the usual manner.

The nonnegative integers are denoted by N and fi j 1 � i � kg is denoted
by [k]. A ranked set is a set � of symbols with a relation rk � � �N such that
fk j (�; k) 2 rkg is �nite for every � 2 �. Commonly, we denote the ranked set
only by � and the set of k-ary symbols of � by �(k) = f� 2 � j (�; k) 2 rkg. We
also denote that � 2 �(k) by writing �(k). Given two ranked sets � and � with
associated rank relations rk� and rk�, respectively, the set � [� is associated
the rank relation rk� [rk�. A ranked set � is uniquely-ranked if for every
� 2 � there exists exactly one k such that (�; k) 2 rk. For uniquely-ranked
sets, we denote this k simply by rk(�). An alphabet is a �nite set, and a ranked
alphabet is a ranked set � such that � is an alphabet.

Let � be a ranked set. The set of �-trees, denoted by T� , is the smallest
set T such that �(t1; : : : ; tk) 2 T for every k 2 N, � 2 �(k), and t1; : : : ; tk 2 T .
We write � instead of �() if � 2 �(0). Let � � � and H � T� . By � (H) we
denote f
(t1; : : : ; tk) j
 2 � (k); t1; : : : ; tk 2 Hg. Now, let � be a ranked set. We
denote by T�(H) the smallest set T � T�[� such that H � T and �(T) � T .

Let t 2 T� . The set of positions of t, denoted by pos(t), is de�ned by
pos(�(t1; : : : ; tk)) = f"g [fiw j i 2 [k]; w 2 pos(ti)g for every � 2 �(k) and
t1; : : : ; tk 2 T� . Note that we denote the empty string by " and that pos(t) � N�.
Let w 2 pos(t) and u 2 T� . The subtree of t that is rooted in w is denoted by tjw,
the symbol of t at w is denoted by t(w), and the tree obtained from t by replacing
the subtree rooted at w by u is denoted by t[u]w. For every � � � and � 2 �,
let pos� (t) = fw 2 pos(t) j t(w) 2 �g and pos�(t) = posf�g(t).

Let X = fxi j i � 1g be a set of formal variables, each considered to have the
unique rank 0. A tree t 2 T�(X) is linear (respectively, nondeleting) in V � X
if card(posv(t)) � 1 (respectively, card(posv(t)) � 1) for every v 2 V . The

set of variables of t is var(t) = fv 2 X j posv(t) 6= ;g and the sequence of
variables is given by yieldX : T�(X) ! X� with yieldX(v) = v for every v 2 X
and yieldX(�(t1; : : : ; tk)) = yieldX(t1) � � � yieldX(tk) for every � 2 �(k) and
t1; : : : ; tk 2 T�(X). A tree t 2 T�(X) is normalized if yieldX(t) = x1 � � �xm for
some m 2 N. Every mapping � : X ! T�(X) is a substitution. We de�ne the
application of � to a tree in T�(X) inductively by v� = �(v) for every v 2 X
and �(t1; : : : ; tk)� = �(t1�; : : : ; tk�) for every � 2 �(k) and t1; : : : ; tk 2 T�(X).

An extended (top-down) tree transducer (xtt, or transducteur g�en�eralis�e de-
scendant) [6, 7] is a tuple M = (Q;�;�; I;R) where Q is a uniquely-ranked
alphabet such that Q = Q(1), � and � are ranked alphabets that are both
disjoint with Q [X, I � Q, and R is a �nite set of rules of the form l ! r
with l 2 Q(T�(X)) linear in X, and r 2 T�(Q(var(l))). The xtt M is linear
(respectively, nondeleting) if r is linear (respectively, nondeleting) in var(l) for
every l ! r 2 R. The semantics of the xtt is given by term rewriting. Let
�; � 2 T�(Q(T�)). We write �)M � if there exist a rule l ! r 2 R, a position
w 2 pos(�), and a substitution � : X ! T� such that �jw = l� and � = �[r�]w.
The tree transformation computed by M is the relation

�M = f(t; u) 2 T� � T� j 9q 2 I : q(t))�
M ug :

The class of all tree transformations computed by xtts is denoted by XTOP. We
use `l' and `n' to restrict to linear and nondeleting devices, respectively. Thus,
ln-XTOP denotes the class of all tree transformations computable by linear and
nondeleting xtts.

An xtt M = (Q;�;�; I;R) is a top-down tree transducer [8, 9] if for every
rule l ! r 2 R there exist q 2 Q and � 2 �(k) such that l = q(�(x1; : : : ; xk)).
The top-down tree transducer M is deterministic if (i) card(I) = 1 and (ii) for
every l 2 Q(�(X)) there exists at most one r such that l ! r 2 R. Finally, M
is single-use [22{25] if for every q(v) 2 Q(X), k 2 N, and � 2 �(k) there exist
at most one l ! r 2 R and w 2 pos(r) such that l(1) = � and rjw = q(v). We
use TOP and TOPsu to denote the classes of transformations computed by top-
down tree transducers and single-use top-down tree transducers, respectively.
We also use the pre�xes `l', `n', and `d' to restrict to linear, nondeleting, and
deterministic devices, respectively.

Finally, we recall top-down tree transducers with regular look-ahead [27]. We
use the standard notion of a recognizable (or regular) tree language [28, 29], and
we let Rec(�) = fL � T� j L recognizableg. A top-down tree transducer with
regular look-ahead is a pair hM; ci such that M = (Q;�;�; I;R) is a top-down
tree transducer and c : R ! Rec(�). We say that such a transducer hM; ci is
deterministic if (i) card(I) = 1 and (ii) for every l 2 Q(�(X)) and t 2 T� there
exists at most one r such that l! r 2 R, l(1) = t("), and t 2 c(l! r). Similarly,
hM; ci is single-use [26, De�nition 5.5] if for every q(v) 2 Q(X) and t 2 T� there
exist at most one l ! r 2 R and w 2 pos(r) such that l(1) = t("), t 2 c(l ! r),
and rjw = q(v). The semantics of hM; ci is de�ned in the same manner as for xtt
with the additional restriction that l�j1 2 c(l ! r). We use TOPR and TOPR

su

to denote the classes of transformations computed by top-down tree transducers
with regular look-ahead and single-use top-down tree transducers with regular

look-ahead, respectively. We use the pre�x `d' in the usual manner. For further
information on tree languages and tree transducers, we refer to [28, 29].

3 Extended Multi Bottom-up Tree Transducers

In this section, we de�ne S-transducteurs ascendants g�en�eralis�es [30], which are
a generalization of S-transducteurs ascendants (STA) [30, 31]. We choose to call
them extended multi bottom-up tree transducers here in line with [16{18], where
`multi' refers to the fact that states may have ranks di�erent from one.

De�nition 1. An extended multi bottom-up tree transducer (xmbutt) is a tuple
(Q;�;�; F;R) where

{ Q is a uniquely-ranked alphabet of states, disjoint with � [� [X;
{ � and � are ranked alphabets of input and output symbols, respectively,

which are both disjoint with X;
{ F � Q nQ(0) is a set of �nal states; and
{ R is a �nite set of rules of the form l ! r where l 2 T�(Q(X)) is linear

in X and r 2 Q(T�(var(l))).

A rule l! r 2 R is an epsilon rule if l 2 Q(X); otherwise it is input-consuming.
The sets of epsilon and input-consuming rules are denoted by R" and R�, re-
spectively.

An xmbuttM = (Q;�;�; F;R) is a multi bottom-up tree transducer (mbutt)
[respectively, an STA] if l 2 �(Q(X)) [respectively, l 2 �(Q(X)) [Q(X)] for
every l! r 2 R. Linearity and nondeletion of xmbutts are de�ned in the natural
manner. The xmbutt M is linear if r is linear in var(l) for every rule l! r 2 R.
Moreover, M is nondeleting if (i) F � Q(1) and (ii) r is nondeleting in var(l) for
every l! r 2 R. Finally, M is deterministic if (i) there do not exist two distinct
rules l1 ! r1 2 R and l2 ! r2 2 R, a substitution � : X ! X, and w 2 pos(l2)
such that l1� = l2jw, and (ii) there does not exist an epsilon rule l! r 2 R such
that l(") 2 F . Let us now present a rewrite semantics. In the rest of this section,
let M = (Q;�;�; F;R) be an xmbutt.

De�nition 2. Let �0 and �0 be ranked alphabets disjoint with Q. Moreover, let
�; � 2 T�[�0(Q(T�[�0)), and l ! r 2 R. We write �)l!r

M � if there exist
w 2 pos(�) and � : X ! T�[�0 such that �jw = l� and � = �[r�]w, and we
write �)M � if there exists � 2 R such that �)�

M �. The tree transformation
computed by M is �M = f(t; �j1) 2 T� � T� j � 2 F (T�); t)

�
M �g.

The xmbutt M 0 is equivalent to M if �M 0 = �M . We denote by XMBOT
the class of tree transformations computed by xmbutts. We use the pre�xes
`l', `n', and `d' to restrict to linear, nondeleting, and deterministic devices, re-
spectively. For example, l-XMBOT denotes the class of all tree transformations
computed by linear xmbutts.

If M is deterministic and t 2 T� , then there exists at most one � 2 Q(T�)
such that (i) t)�

M � and (ii) there exists no � such that �)M �. Hence, �M is a
partial function, if M is deterministic. Moreover, if M is a deterministic mbutt
and t 2 T� , then there exists at most one � 2 Q(T�) such that t)�

M �. A

deterministic mbutt M is total if for every t 2 T� there exists � 2 Q(T�) such
that t)�

M � (an equivalent static de�nition is easy to formulate).
Our �rst result shows that every xmbutt is equivalent to a nondeleting one.

Unfortunately, the construction does not preserve determinism.

Theorem 3. XMBOT = n-XMBOT and l-XMBOT = ln-XMBOT.

Proof. For the xmbutt M = (Q;�;�; F;R) we construct an equivalent non-
deleting xmbutt M 0 = (Q0; �;�; F 0; R0). The idea is that M 0 simulates M
but guesses at each moment which subtrees of the states will be deleted in
the remainder of M 's computation. The set Q0 of states of M 0 consists of all
pairs hq; Ji with q 2 Q(k) and J � [k], and the rank of hq; Ji is card(J);
moreover, F 0 = fhq; f1gi j q 2 Fg. The rules of M 0 are constructed such that
t)�

M 0 hq; Ji(ui1 ; : : : ; uim), where J = fi1; : : : ; img and i1 < � � � < im, if and
only if there exist ui 2 T� for every i 2 [k]nJ such that t)�

M q(u1; : : : ; uk). ut

The following normal form will be at the heart of our composition construc-
tion in the next section. It says that exactly one input or output symbol occurs
in every rule (such rules will be called one-symbol rules).

De�nition 4. The xmbutt M is in one-symbol normal form if for every rule
l! r 2 R we have card(pos�(l)) + card(pos�(r)) = 1.

Theorem 5. For every xmbutt M there exists an equivalent xmbutt N in one-
symbol normal form. Moreover, if M is linear (respectively, nondeleting, deter-
ministic), then so is N .

Proof. Let us assume, without loss of generality, that all left-hand sides of rules
of M are normalized. First we take care of the left-hand sides of rules and
decompose rules with more than one input symbol in the left-hand side into
several rules, cf. [30, Proposition II.B.5]. Take a uniquely-ranked set P and a
bijection f : T�(Q(X)) ! P such that (i) Q � P , (ii) f(q(x1; : : : ; xn)) = q for
every q 2 Q(n), and (iii) rk(f(l)) = card(var(l)) for every l 2 T�(Q(X)). In fact,
we will only use f(l) for normalized l 2 T�(Q(X)).

Let l ! r 2 R be input-consuming such that l =2 �(P (X)). Suppose that
l = �(l1; : : : ; lk) for some � 2 �(k) and l1; : : : ; lk 2 T�(Q(X)). Moreover, let
�1; : : : ; �k : X ! X be bijections such that li�i is normalized. Finally, for every
i 2 [k] let pi = f(li�i) and ri = pi(x1; : : : ; xm) where m = rk(pi). We construct
the xmbutt M1 = (Q [fp1; : : : ; pkg; �;�; F; (R n fl ! rg) [R1;1 [R1;2) where
R1;1 = fli�i ! ri j i 2 [k]; li =2 Q(X)g and R1;2 = fl0 ! rg, in which l0 is the
unique normalized tree of f�g(P (X)) such that l0(i) = pi for every i 2 [k] (note
that if li 2 Q(X), then pi = li(") and so l0ji = li). Repeated application of this
construction (keeping P and the mapping f �xed) eventually yields an equivalent
xmbutt M 0 = (Q0; �;�; F;R0) such that l 2 �(P (X)) for each input-consuming
rule l! r 2 R0.

Next, we remove all epsilon rules l! r 2 R0 such that r 2 Q0(X) in the stan-
dard way. Finally, we decompose the right-hand sides. LetM 00 = (S;�;�; F;R00)
be the xmbutt obtained so far and l ! r 2 R00 a rule that is not yet a

one-symbol rule. Let r = s(u1; : : : ; ui�1; �(u
0
1; : : : ; u

0
k); ui+1; : : : ; un) for some

s 2 S(n), i 2 [n], � 2 �(k), and u1; : : : ; ui�1; ui+1; : : : ; un; u
0
1; : : : ; u

0
k 2 T�(X).

Also, let q =2 S be a new state of rank k + n � 1. We construct the xmbutt
M 00

1 = (S [fqg; �;�; F;R00
1) with R00

1 = (R00 n fl ! rg) [R00
1;1 where R00

1;1

contains the two rules:

{ l! q(u1; : : : ; ui�1; u
0
1; : : : ; u

0
k; ui+1; : : : ; un) and

{ q(x1; : : : ; xk+n�1)! s(x1; : : : ; xi�1; �(xi; : : : ; xi+k�1); xi+k; : : : ; xk+n�1).

Repeated application of the procedure yields the desired xmbutt N . ut

Example 6. Let (Q;�; �;Q;R) be the xmbutt with Q = fq(1)g, � = f�(1); �(0)g,
� = f
(2); �(0)g, and R = f�(�) ! q(�); �(q(x1)) ! q(
(x1; �))g. Clearly, it
is linear, nondeleting, and deterministic. Applying the procedure of Theorem 5

we obtain the states q(1); q
(0)
1 ; q

(0)
2 ; q

(2)
3 ; q

(1)
4 and the rules � ! q1, �(q1) ! q2,

q2 ! q(�), �(q(x1))! q4(x1), q4(x1)! q3(x1; �), q3(x1; x2)! q(
(x1; x2)).

In the deterministic case we have an additional normal form: the deterministic
mbutt. This allows us to characterize the classes d-XMBOT and ld-XMBOT in
terms of top-down tree transducers, using the result of [16].

Theorem 7. For every deterministic xmbutt M there exists an equivalent total
deterministic mbutt N . Moreover, if M is linear, then so is N . Consequently,
d-XMBOT = d-TOPR and ld-XMBOT = d-TOPR

su.

Proof. Applying the �rst construction in the proof of Theorem 5 and then re-
moving all epsilon rules in the usual way, we obtain an equivalent deterministic
mbutt N . Obviously, by introducing a dummy state of rank 0, N can be made
total. To obtain a deterministic multi bottom-up tree transducer of [16] we also
have to add a special root symbol and add rules that, while consuming the spe-
cial root symbol, project on the �rst argument of a �nal state. It is proved in [16]
that such deterministic multi bottom-up tree transducers have the same power
as deterministic top-down tree transducers with regular look-ahead. The second
equality was already suggested in the Conclusion of [17]. We prove it by recon-
sidering (a minor variation of) the proofs of [16, Lemmata 4.1 and 4.2]. If the
mbutt is linear, then the corresponding top-down tree transducer with regular
look-ahead will be single-use and vice versa. ut

Finally, we verify that l-XMBOT is suitably powerful for applications in
machine translation. We do this by showing that all transformations of l-XTOP
are also in l-XMBOT. This shows that xmbutts can handle rotations [2].

Theorem 8. l-XTOP � l-XMBOT.

Proof. The inclusion can be proved in a similar manner as l-TOP � l-BOT [19,
Theorem 2.8], where l-BOT denotes the class of transformations computed by
linear bottom-up tree transducers [21, 19]. Every transformation of l-XTOP pre-
serves recognizability [18, Theorem 4], but there is a linear (deterministic) mbutt
that computes the transformation f(�(t); �(t; t)) j t 2 T�nf�gg where � 2 �(1)

and � 2 �(2). Hence, not every transformation of l-XMBOT preserves recogniz-
ability. ut

4 Composition Construction

In this section, we investigate compositions of tree transformations computed by
xmbutts. Let us �rst recall the classical composition results for bottom-up tree
transducers [19, 20]. Let M and N be bottom-up tree transducers. If M is linear
or N deterministic, then the composition of the transformations computed by
M and N can be computed by a bottom-up tree transducer. As a special case,
the classes of transformations computed by linear, linear and nondeleting, and
deterministic bottom-up tree transducers are closed under composition.

In our setting, let M and N be xmbutts. We will prove that if M is linear or
N is deterministic, then there is an xmbuttM ;N that computes �M ;�N . In par-
ticular, we prove that l-XMBOT, d-XMBOT, and ld-XMBOT are closed under
composition. The closure of l-XMBOT was �rst presented in [30, Propositions
II.B.5 and II.B.7]. The closure of d-XMBOT is also immediate from Theorem 7
and [27, Theorem 2.11]; in [31, Proposition 2.5] it was shown for a di�erent
notion of determinism. The closure of ld-XMBOT is to be expected from The-
orem 7 and the fact that the single-use restriction was introduced in [22, 23] to
guarantee the closure under composition of attribute grammar transformations
(see [25, Theorem 3]).

qhp1; p2i

t1 t2 t3

q

p1

t1

p2

t2 t3

Fig. 1. Tree homomorphism ' where q 2 Q(2), p1 2 P (1), and p2 2 P (2).

Let us prepare the composition construction. Let M = (Q;�; �; FM ; RM)
and N = (P; �;�; FN ; RN) be xmbutts such that Q, P , and � [� [� are
pairwise disjoint. We de�ne the uniquely-ranked alphabet

QhP i = fqhp1; : : : ; pni j q 2 Q(n); p1; : : : ; pn 2 Pg

such that rk(qhp1; : : : ; pni) =
Pn

i=1 rk(pi) for every q 2 Q(n) and p1; : : : ; pn 2 P .
Let � = � [� [� [X. We de�ne the mapping ' : T�[QhP i ! T�[Q[P such

that for every qhp1; : : : ; pni 2 QhP i(k), � 2 �(k), and t1; : : : ; tk 2 T�[QhP i

'(qhp1; : : : ; pni(t1; : : : ; tk)) = q(p1('(t1); : : : ; '(tl)); : : : ; pn('(tm); : : : ; '(tk)))

'(�(t1; : : : ; tk)) = �('(t1); : : : ; '(tk))

where l = rk(p1) and m = k � rk(pn) + 1. Thus, we group the subtrees be-
low the corresponding state pi (see Fig. 1). Note that ' is a linear and non-
deleting tree homomorphism, which acts as a bijection from T�(QhP i(T�(X)))
to T�(Q(P (T�(X)))). In the sequel, we will identify t with '(t) for all trees
t 2 T�(QhP i(T�(X))).

De�nition 9. Let M = (Q;�; �; FM ; RM) be an xmbutt in one-symbol normal
form and N = (P; �;�; FN ; RN) an STA. Moreover, let LHS(�) and LHS(")
be the sets of normalized trees of �(QhP i(X)) and QhP i(X), respectively. The
composition M ; N = (QhP i; �;�; FM hFN i; R) of M and N is the STA with
R = R1 [R2 [R3 where:

R1 = fl! r j l 2 LHS(�) and 9� 2 R�M : l)�
M rg;

R2 = fl! r j l 2 LHS(") and 9� 2 R"N : l)�
N rg; and

R3 = fl! r j l 2 LHS(") and 9�1 2 R"M ; �2 2 R�N : l ()�1
M ;)�2

N) rg:

To illustrate the implicit use of ', let us show the \o�cial" de�nition of R1:

R1 = fl! r j l 2 LHS(�); r 2 QhP i(T�(X)); and 9� 2 R�M : '(l))�
M '(r)g :

The construction preserves linearity; moreover, it preserves determinism if N is
an mbutt. In the rest of this section we investigate when �M ;N = �M ; �N , but
we �rst illustrate the construction on our small running example.

Example 10. Let M be the xmbutt of Example 6 in one-symbol normal form,
and let N = (fg(1); h(1)g; �;�; fgg; RN) be the STA with � = � [f�(1)g and

RN = f�! h(�); h(x1)! h(�(x1));
(h(x1); h(x2))! g(
(x1; x2))g :

Clearly, N computes f(
(�; �);
(�i(�); �j(�)) j i; j 2 Ng, and hence �M ; �N is
f(�(�(�));
(�i(�); �j(�)) j i; j 2 Ng. The states of M ;N will be

fqhgi(1); qhhi(1); q1hi
(0); q2hi

(0); q3hg; gi
(2); : : : ; q3hh; hi

(2); q4hgi
(1); q4hhi

(1)g ;

of which only qhgi is �nal. We present some relevant rules only [left in o�cial
form l! r; right in alternative notation '(l)! '(r)].

�! q1hi �! q1

�(q1hi)! q2hi �(q1)! q2

q2hi ! qhhi(�) q2 ! q(h(�))

qhhi(x1)! qhhi(�(x1)) q(h(x1))! q(h(�(x1)))

�(qhhi(x1))! q4hhi(x1) �(q(h(x1)))! q4(h(x1))

q4hhi(x1)! q3hh; hi(x1; �) q4(h(x1))! q3(h(x1); h(�))

q3hh; hi(x1; x2)! qhgi(
(x1; x2)) q3(h(x1); h(x2))! q(g(
(x1; x2)))

The �rst, second, and �fth rules are in R1 (of De�nition 9), the fourth rule is
in R2, and the remaining rules in R3. ut

Next, we will prove that �M ; �N is in XMBOT provided that (i) M is linear
or (ii) N is deterministic. We can assume that M is in one-symbol normal form,
by Theorem 5, and that it is nondeleting in case (i), by Theorem 3. We can also
assume that N is an STA in case (i), by Theorem 5, and a total deterministic

mbutt in case (ii), by Theorem 7. Thus, we meet the requirements of De�nition 9
and henceforth assume its notation.

We start with a simple lemma. It shows that in a derivation that uses steps
of M and N (like the derivations of M ;N) we can always perform all steps of M
�rst and only then perform the derivation steps of N . This already proves one
direction needed for the correctness of the composition construction.

Lemma 11. Let t 2 T� and � 2 Q(P (T�)). If t)
� � where) is)M [)N ,

then t ()�
M ;)�

N) �. In particular, �M ;N � �M ; �N .

Proof. It obviously su�ces to prove: For every �; � 2 T�(Q(T� (P (T�)))), if
� ()N ;)M) �, then � ()M ;)�

N) �. Its proof is easy. ut

Next we prove that �M ; �N � �M ;N under the above assumptions on M and
N , by a standard induction over the length of the derivation.

Lemma 12. Let t 2 T� and � 2 Q(P (T�)) be such that t ()�
M ;)�

N) �. If
(i) M is linear and nondeleting, or (ii) N is a total deterministic mbutt, then
t)�

M ;N �. With � 2 FM (FN (T�)) we obtain �M ; �N � �M ;N .

Theorem 13. The three classes l-XMBOT, d-XMBOT, and ld-XMBOT are
closed under composition. Moreover,

l-XMBOT ; XMBOT � XMBOT and XMBOT ; d-XMBOT � XMBOT :

Proof. The inequalities follow directly from Lemmata 11 and 12 using Theorems
3, 5, and 7 to establish the preconditions of De�nition 9 and Lemma 12. The
closure results follow from the fact that the composition construction preserves
linearity and determinism. ut

5 Relation to Top-down Tree Transducers

Now, let us focus on an upper bound to the power of xmbutts. By [18, Theo-
rem 14] every mbutt computes a transformation of ln-TOP ; d-TOP. Here we
prove a similar result for xmbutts.

Theorem 14.

l-XMBOT = ln-XTOP ; d-TOPsu and XMBOT = ln-XTOP ; d-TOP :

Proof. By Theorems 7, 8, and 13, the inclusions � are immediate. For the de-
composition results, we employ the standard idea of separating the input and
output behavior of the given xmbutt M (cf. [19, Theorem 3.15]). For each in-
put tree, the �rst xtt M1 outputs \rule trees" that encode which rules could
be applied. The second xtt M2 then deterministically executes these rules and
creates the output. Linearity of M implies that M2 is single-use. More formally,
if t)�

M q(u1; : : : ; um), then there is a \rule tree" ~t such that q(t))�
M1

~t and

n(~t))�
M2

un for every n 2 [m]. ut

We note that the direction � of all four equalities in Theorems 7 and 14 is
proved in essentially the same manner. If we compare the deterministic (Theo-
rem 7) to the nondeterministic case (Theorem 14), then in the former case there
exists at most one successful \rule tree", which can be constructed by a deter-
ministic, �nite-state bottom-up relabeling [19, 27] and has the shape of the input
tree. Thus, the deterministic top-down tree transducer can query its look-ahead
for the rule that labels its current position in the successful \rule tree".

By Theorem 14, the power of xmbutts is limited by two extended top-down
tree transducers. In particular, the �rst equation shows in a precise way how
much stronger l-XMBOT is with respect to ln-XTOP. But Theorem 14 also
shows that we can separate nondeterminism and state checking (performed by
the linear and nondeleting xtt) from evaluation (performed by the deterministic
top-down tree transducer). Since linear xtts preserve recognizability, the rule
trees mentioned in the proof of Theorem 14 form a recognizable tree language.
Formally, the set fu 2 TR j 9t 2 T� : (t; u) 2 �M1

g is recognizable, which shows
that the set of rule trees of an xmbutt is recognizable. This is a strong indication
toward the existence of e�cient training algorithms.

Conclusion and Open Problems We have shown that xmbutts are suitably
powerful to compute any transformation that can be computed by linear ex-
tended top-down tree transducers (see Theorem 8). Moreover, we generalized the
main composition results of [19, 20] for bottom-up tree transducers to xmbutts
(see Theorem 13). In particular, we showed that l-XMBOT and d-XMBOT are
closed under composition. Finally, we characterized XMBOT as the composi-
tion of ln-XTOP and d-TOP (see Theorem 14), which shows that, analogously
to bottom-up tree transducers, nondeterminism and evaluation can be separated.

Since linear xmbutts do not necessarily preserve recognizability whereas lin-
ear xtts do, it is clear that even the composition closure of l-XTOP is strictly con-
tained in l-XMBOT. This raises two questions: (a) Which xmbutts can be trans-
formed into an xtt? (b) Can we characterize the composition closure of l-XTOP?

References

1. Knight, K.: Criteria for reasonable syntax-based translation models. Personal
communication (2007)

2. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In: CICLing. Volume 3406 of LNCS, Springer (2005) 1{24

3. DeNeefe, S., Knight, K., Wang, W., Marcu, D.: What can syntax-based MT learn
from phrase-based MT? In: EMNLP & CoNLL. (2007) 755{763

4. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and
Computation. Addison Wesley (1979)

5. Graehl, J., Knight, K.: Training tree transducers. In: HLT-NAACL. (2004) 105{112
6. Arnold, A., Dauchet, M.: Transductions inversibles de forêts. Th�ese 3�eme cycle

M. Dauchet, Universit�e de Lille (1975)
7. Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP. Edinburgh Uni-

versity Press (1976) 74{86

8. Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3)
(1970) 257{287

9. Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci.
4(4) (1970) 339{367

10. Steinby, M., T̂�rn�auc�a, C.I.: Syntax-directed translations and quasi-alphabetic tree
bimorphisms. In: CIAA. Volume 4783 of LNCS, Springer (2007) 265{276

11. Aho, A.V., Ullman, J.D.: Syntax directed translations and the pushdown assem-
bler. J. Comput. System Sci. 3(1) (1969) 37{56

12. Shabes, Y.: Mathematical and Computational Aspects of Lexicalized Grammars.
PhD thesis, University of Pennsylvania (1990)

13. Shieber, S.M., Shabes, Y.: Synchronous tree-adjoining grammars. In: COLING.
(1990) 1{6

14. Shieber, S.M.: Unifying synchronous tree adjoining grammars and tree transducers
via bimorphisms. In: EACL. The Association for Computer Linguistics (2006) 377{
384

15. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d'arbres. Theoret. Comput.
Sci. 20 (1982) 33{93

16. F�ul�op, Z., K�uhnemann, A., Vogler, H.: A bottom-up characterization of determin-
istic top-down tree transducers with regular look-ahead. Inf. Process. Lett. 91(2)
(2004) 57{67

17. F�ul�op, Z., K�uhnemann, A., Vogler, H.: Linear deterministic multi bottom-up tree
transducers. Theoret. Comput. Sci. 347(1{2) (2005) 276{287

18. Maletti, A.: Compositions of extended top-down tree transducers. Inform. and
Comput. (2008) to appear.

19. Engelfriet, J.: Bottom-up and top-down tree transformations: A comparison. Math.
Systems Theory 9(3) (1975) 198{231

20. Baker, B.S.: Composition of top-down and bottom-up tree transductions. Inform.
and Control 41(2) (1979) 186{213

21. Thatcher, J.W.: Tree automata: An informal survey. In: Currents in the Theory
of Computing. Prentice Hall (1973) 143{172

22. Ganzinger, H.: Increasing modularity and language-independency in automatically
generated compilers. Sci. Comput. Prog. 3(3) (1983) 223{278

23. Giegerich, R.: Composition and evaluation of attribute coupled grammars. Acta
Inform. 25(4) (1988) 355{423

24. K�uhnemann, A.: Berechnungsst�arken von Teilklassen primitiv-rekursiver Pro-
grammschemata. PhD thesis, Technische Universit�at Dresden (1997)

25. K�uhnemann, A.: Bene�ts of tree transducers for optimizing functional programs.
In: FSTTCS. Volume 1530 of LNCS, Springer (1998) 146{157

26. Engelfriet, J., Maneth, S.: Macro tree transducers, attribute grammars, and MSO
de�nable tree translations. Inform. and Comput. 154(1) (1999) 34{91

27. Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems
Theory 10(1) (1977) 289{303

28. G�ecseg, F., Steinby, M.: Tree Automata. Akad�emiai Kiad�o, Budapest (1984)
29. G�ecseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages.

Volume 3. Springer (1997) 1{68
30. Lilin, E.: Une g�en�eralisation des transducteurs d'�etats �nis d'arbres: les S-

transducteurs. Th�ese 3�eme cycle, Universit�e de Lille (1978)
31. Lilin, E.: Propri�et�es de clôture d'une extension de transducteurs d'arbres d�eter-

ministes. In: CAAP. Volume 112 of LNCS, Springer (1981) 280{289

