
Computing all `-cover automata fast?

Artur Jeż1,?? and Andreas Maletti2,? ? ?

1 Institute of Computer Science, University of Wrocław
ul. Joliot-Curie 15, 50–383 Wrocław, Poland

aje@cs.uni.wroc.pl
2 Institute for Natural Language Processing, Universität Stuttgart

Azenbergstraße 12, 70174 Stuttgart, Germany
andreas.maletti@ims.uni-stuttgart.de

Abstract. Given a language L and a number `, an `-cover automaton
for L is a DFA M such that its language coincides with L on all words
of length at most `. It is known that an equivalent minimal `-cover au-
tomaton can be constructed in time O(n logn), where n is the number
of states of M . This is achieved by a clever and sophisticated variant
of Hopcroft’s algorithm, which computes the `-similarity inside the
main algorithm. This contribution presents an alternative simple algo-
rithm with running time O(n logn), in which the computation is split
into three phases. First, a compact representation of the gap table is
created. Second, this representation is enriched with information about
the length of a shortest word leading to the states. These two steps are
independent of the parameter `. Third, the `-similarity is extracted by
simple comparisons against `. In particular, this approach allows the cal-
culation of all the sizes of minimal `-cover automata (for all valid `) in
the same time bound.

1 Introduction

Deterministic finite automata (DFA) are widely used in computer science due to
their simplicity and flexibility. Their minimisation is one of the oldest problems
that is motivated both theoretically and practically and almost every DFA toolkit
implements it. More precisely, the DFA minimisation problem asks for a smallest
DFA that recognises the same language as a given input DFA M . The asymp-
totically best solution is due to Hopcroft [9, 7], who presented an O(n log n)
algorithm where n is the number of states of M . Whether an asymptotically
faster algorithm exists, remains one of the most challenging open questions in
the area. In many applications the desired language L is finite. It was observed
in [3] that membership of a word w in L can then be decided by: (i) checking
? This work was done when A. Maletti was visiting Wrocław University thanks to the
support of the “Visiting Professors” programme of the Municipality of Wrocław

?? Supported by the MNiSW grant N206 492638 2010–2012 and by the Young Re-
searcher scholarship of University of Wrocław.

? ? ? Supported by the German Research Foundation (DFG) grant MA/4959/1-1.

whether w is short (i.e., |w| ≤ ` where ` = max { |u| : u ∈ L}) and (ii) check-
ing it with a DFA M . This allows M to accept words that are longer than `,
which yields that M need not recognise L. Thus, we arrive at the notion of
‘cover automata’. We say that a DFA M is a deterministic finite cover automa-
ton (DFCA or cover automaton) for a finite language L if L(M) ∩ Σ≤` = L,
where ` = max{ |u| : u ∈ L} and Σ≤` contains all words of length at most `. It
is a minimal DFCA for L if no DFCA for L has (strictly) fewer states.

It is well-known that the minimal DFCA for L can be substantially smaller
than the minimal DFA for L. Already [3] presents a DFCA minimisation al-
gorithm that runs in time O(n2 · `2). It also allowed the input language to be
presented as a DFA M , which could potentially recognise an infinite language.
In that case, an explicit word length ` needs to be supplied. An `-DFCA for M
is simply a DFCA for L(M) ∩Σ≤`. Câmpeanu et al. [2] improved the minimi-
sation algorithm for finite languages to O(n2). Their algorithm can be trivially
extended to arbitrary DFA, but it then runs in time O(n2 · `2). The currently
fastest algorithm for DFCA minimisation is due to Körner [12], who developed
an algorithm that runs in time O(n log n), and is a clever and refined modifica-
tion of Hopcroft’s algorithm for DFA minimisation.

Minimal DFCA are theoretically characterised [3, 12, 4]. All known algorithms
for constructing a minimal `-DFCA are based on a similarity relation ∼` on
states, which is defined such that a minimal `-DFCA consists of pairwise dissim-
ilar states. The relation ∼` is defined using two very basic notions: (i) the level
of a state, which is the length of a shortest word leading to it, and (ii) the gap
between two states, which is the length of a shortest word on which they differ.

Lossy compression of DFA has received some attention recently, and DFCA
minimisation can be considered as an instance. Hyper-minimisation [1] is another
instance and aims to find a smallest DFA N for a given DFA M such that
L(M) and L(N) have finite symmetric difference. This notion was refined to
`-minimisation [5], where the languages are allowed to differ only on words of
length at most `. Yet another variant was proposed by Schewe [13].

It is noteworthy that `-minimisation and `-DFCA minimisation are dual. It
was already observed by Badr et al. [1] that there are languages L, which are
best represented by a pair consisting of an `-minimal automaton (that makes
errors on words of length at most `) and a minimal `-DFCA. This combination
can be substantially smaller than a single minimal DFA for L. An input word w
is processed by such a pair by selecting the authorative DFA based on the word’s
length.

In principle, this approach works for all possible values of `. Thus, it is
desirable to construct an algorithm that decides for which value of ` the size
of the representation is minimal. For this, we need to have algorithms that for a
given DFA M return the size of an `-minimal DFA and a minimal `-DFCA for
several values `. We note that such an algorithm is known for `-minimal DFA [6],
and the current contribution adds the algorithm for minimal `-DFCA.

In this paper, we give an alternative `-DFCA minimisation algorithm, which
proceeds in three phases. First, we calculate the function ‘gap’ and represent it

2

compactly in a gap-tree. We show that its computation can be done by a slightly
augmented version of Hopcroft’s algorithm, which means that it can be pre-
pared in the DFA minimisation step. Second, we take the level of states into
account and annotate the gap-tree. Up to this point, the computation is inde-
pendent of the value of `, and the obtained annotated gap-tree can be reused
for all `. In the third step, we identify the states that should be preserved in the
minimal `-DFCA (which naturally depends on `) and determine its transition
function. Our approach has several advantages. First, it is much easier to under-
stand, verify, and implement. Its first phase closely resembles Hopcroft’s al-
gorithm, which is well-known and understood. Second, since the first two phases
are independent of `, we can easily compute the size of all minimal `-DFCA (for
all valid `) without overhead. In addition, we present an algorithm that con-
structs (a compact representation of) minimal `-DFCA for consecutive values
of ` in time O(n log n).

We would like to point out that the minimisation algorithm presented in this
paper shares the general outline with the `-minimisation algorithm [6]: they both
divide the computation of the minimal (with respect to the proper relation) DFA
into phases, out of which only the last one depends on `. Moreover, in both cases
we present an ultrametric as an ultrametric tree and then annotate it. Due to
differences in the similarity relations, the details vary significantly.

2 Preliminaries

In the following, letM = 〈Q,Σ, δ, q0, F 〉 be a minimal DFA, and let m = |Q×Σ|
and n = |Q|. As usual, we let min ∅ = ∞. For every state q ∈ Q, we let
level(q) = min { |w| : δ(q0, w) = q} and call it the level of q. Given two states
p, q ∈ Q, we define their gap by

gap(p, q) = min { |w| : w ∈ L(p)4L(q)} ,

where4 is the symmetric difference operator. Note that d(p, q) = 2− gap(p,q) with
2−∞ = 0 defines an ultrametric. We continue to work with gap(p, q) because it
is used in the `-similarity relation ∼`, which is defined by

p ∼` q ⇐⇒ max(level(p), level(q)) + gap(p, q) > ` ,

for all p, q ∈ Q. The currently fastest algorithm [12] for calculating minimal
cover automata uses ∼`, which in general is not an equivalence relation, but
only a compatibility relation (i.e., reflexive and symmetric). Some additional,
useful properties of ∼` are presented in [4]. In particular, they allow us to form
an equivalence relation as follows.

Definition 1 (cf. [12, Definition 3]). Let π : Q → P be a mapping for some
P ⊆ Q such that π(p) = p for every p ∈ P . Then π is an `-similarity state
decomposition (`-SSD) of Q if

1. level(q) ≥ level(π(q)) for all q ∈ Q,

3

2. q ∼` π(q) for every q ∈ Q, and
3. p 6∼` p

′ for all p, p′ ∈ P with p 6= p′.

In other words, an `-SSD is a partition of Q into |P | blocks such that (1) each
block has a representative with minimal level, (2) all elements in a block are `-
similar to their representative, and (3) the representatives of different blocks are
pairwise `-dissimilar. It is easy to observe that an `-SSD π : Q → P contains
a maximal (with respect to set inclusion) set P of pairwise `-dissimilar states.
Consequently, every `-SSD π yields a minimal `-DFCA by taking the quotient
of M with respect to the equivalence relation π represents.

Theorem 2 (cf. [12, Theorem 1]). For every `-SSD π : Q → P , the DFA
(M/π) = 〈P,Σ, µ, π(q0), F∩P 〉 is a minimal `-DFCA, where µ(p, a) = π(δ(p, a))
for every p ∈ P and a ∈ Σ.

Körner’s algorithm constructs an `-SSD using a clever modification of
Hopcroft’s algorithm [9]. It initially partitions the states into F and Q \ F
and then refines this partition while preserving Property 3 of Definition 1. Once
the algorithm stops, also Property 2 of Definition 1 will be satisfied.

Part of the difficulty of Körner’s algorithm stems from the fact that it takes
both ‘gap’ and ‘level’ into account when refining the partition. Our approach
separates these two properties. We show that gap(p, q) can be calculated by
a standard run of Hopcroft’s algorithm. Moreover, the gap-matrix can be
compactly represented as a gap-tree G. With the help of G, we can then compute
an `-SSD in a simpler manner by only taking ‘level’ into account.

3 Gap-Trees

The gap-matrix has size Θ(n2), thus any algorithm that explicitly uses it is
doomed to run in time Ω(n2). To obtain a minimisation algorithm that runs in
time O(m log n) we need to represent it more compactly. This is achieved with
the help of the gap-tree G, which contains a leaf for each state of Q. The tree is
organised such that each subtree contains only states whose pairwise gap exceeds
a certain value. More precisely, for each subtree t′ there exists s ∈ IN such that

gap(p, q)

{
≥ s if p and q occur in t′

< s otherwise.

In the next section, it is shown that gap tree can be created during a standard
run of a slightly augmented variant of Hopcroft’s algorithm.

Before we start with the formal definition, we recall some notions on trees.
We generally use rooted trees, which are special undirected graphs with a ded-
icated vertex r (the root) such that there is exactly one path from each vertex
to r. Moreover, we use weighted edges, where the edge weights are nonnegative
integers. The sum of the edge weights along the unique path from a vertex v to
the root r is denoted by d(v) and called the depth of v. A leaf is a vertex with

4

C F I L

B E H J N

A D G Q M

A

C

J
3

G

G
2

M
4

L
4

C
2

A

B

B
1

H
3

I
4

N
5

D

E
2

D
1

A

F
3

A
0

Q
5

Fig. 1. Example DFA (left) and a gap-tree (right) for it.

only one adjacent edge. A tree is an ultrametric tree [8, 10, 11] if the depth of all
leaves is equal. Finally, for two vertices v and v′, their join v ∨ v′ is the lowest
common ancestor (i.e., the deepest vertex such that both v and v′ occur in its
subtree).

Definition 3. An ultrametric tree for gap (for short: gap tree) is an ultrametric
tree with leaves Q such that gap(p, q) = d(p ∨ q) for all p, q ∈ Q with p 6= q.

Next, we want to determine representatives of similarity blocks. Since each
vertex of the gap-tree determines a subtree and thus a block of states, which are
the states that occur in the subtree, we assign a state to each vertex. To satisfy
Property 1 of Definition 1, we select a state with minimal level among all states
assigned to the direct subtrees. Formally, given a gap-tree G with vertices V ,
we let state : V → Q be a mapping such that (i) state(q) = q for all q ∈ Q,
(ii) state(v) = state(v′) for all v ∈ V \ Q, where v′ is some direct child vertex
of v, and (iii) level(state(v)) ≤ level(state(v′)) for all v ∈ V and v′ being a direct
child vertex of v. Note there can be several mappings ‘state’ that fulfill the
requirements (i)–(iii), which correspond to different choices of representatives.
In the following, we assume that ‘state’ is any such mapping.

The selected mapping ‘state’ labels all vertices of G with a state of Q. Recall
that state(q) = q for every q ∈ Q. Consequently, for every q ∈ Q there exists
a minimal (i.e., of minimal depth) vertex vq 6= q such that state(v) = q for all
vertices besides vq along the path (towards the root) starting in the leaf q to vq.
Note that the vertex vq is unique, and called the termination vertex of q. The
termination state of q ∈ Q is state(vq). Recall that r is the root vertex. Note that
the termination state of q is always different from q unless q = state(r). Moreover,
for all states q 6= state(r) we have gap(q, state(vq)) = d(q ∨ state(vq)) = d(vq),
which motivates the following definitions.

Definition 4. For every q ∈ Q, let

– the state-gap g(q) be such that

g(q) =

{
−∞ if q = state(r),

d(vq) otherwise.

5

– value(q) = level(q) + g(q).

Example 5. Let us consider the minimal DFA and the gap-tree for it that are
displayed in Fig. 1. Below the leaves of the gap-tree we annotated the state’s
level. In addition, we already labelled the inner nodes with states. Now, we can
determine the termination state for each state. For example, C is the termination
state of G because it is the first label on the path from the leaf G towards the root
that differs from G. Consequently, g(G) = d(vG) = 1 and value(G) = 2 + 1 = 3.
Overall, we obtain:

value(A) = −∞ value(B) = 2 value(C) = 2 value(D) = 2 value(E) = 4

value(F) = 5 value(G) = 3 value(H) = 5 value(I) = 6 value(J) = 4

value(L) = 5 value(M) = 6 value(N) = 7 value(Q) = 7.

It is important to note that all the previous notions on the gap-tree are
independent of the selection of `. Nevertheless, we can use them to transform
the gap-tree G into an `-SSD. Let P = { q ∈ Q : value(q) ≤ `}. Note that P 6= ∅
because state(r) ∈ P . For every state q ∈ Q, its `-state π(q) is the label state(v)
of the first vertex v on the path from q to the root r such that value(state(v)) ≤ `.

Lemma 6. The `-state mapping π is an `-SSD.

Proof. We have to show the conditions of Definition 1. For every p ∈ P we have
value(p) ≤ `. Consequently, their `-state π(p) is p. Moreover, for every q ∈ Q
we have level(q) ≥ level(π(q)) because π(q) is the label of an ancestor of q. Let
us continue with Condition 2 of Definition 1. It trivially holds for q = π(q),
so suppose that q ∈ Q is such that q 6= π(q). Consequently, q /∈ P . Let p
be the label of the last vertex v on the path from q to the root r such that
value(state(v)) > `. Clearly, the next vertex along this path is the `-vertex of q,
which is labelled π(q). Note that p = q is possible. Then q ∨ π(q) = p∨ π(q) and
thus gap(q, π(q)) = g(p). In addition, level(q) ≥ level(p) ≥ level(π(q)). These
two estimations together yield that

max(level(q), level(π(q)) + gap(q, π(q))

= level(q) + g(p) ≥ level(p) + g(p) = value(p) > ` ,

which proves q ∼` π(q).
Finally, we have to show Condition 3 of Definition 1. Let p, p′ ∈ P be such

that p 6= p′. Consequently, value(p) ≤ ` and value(p′) ≤ `. Without loss of
generality, suppose that (i) level(p) ≥ level(p′), (ii) p ∨ p′ is not labelled with
p. If these conditions are not met for the pair (p, p′), then they are met for the
pair (p′, p). Since state(p∨p′) 6= p, the termination vertex of p is on the path from
p to p ∨ p′ and so g(p) ≥ d(p ∨ p′) = gap(p, p′). Taking this and assumption (i)
into account, we obtain

max(level(p), level(p′)) + gap(p, p′)

≤ level(p) + g(p) = value(p) ≤ ` ,

which proves p 6∼` p
′. ut

6

C F I L

B E H J N

A D G Q M

C

B E J

A D G

Fig. 2. Example DFA (left) and a minimal 4-DFCA (right) for it.

Example 7 (Example 5 continued). Take ` = 4, then P = {A,B,C,D,E,G, J}.
Besides the obvious entries (identity on P) we have:

π(F) = π(Q) = A π(H) = π(I) = π(N) = B π(L) = C π(M) = G .

The resulting minimal 4-DFCA is displayed in Fig. 2.

Lemma 6 shows that the gap-tree with the help of ‘value’ indeed contains
a characterisation of ∼` for all potential `. This allows a fast construction of
a minimal `-DFCA for M whenever a gap-tree G is provided. We say that a
gap-tree G with vertices V is small if |V | ∈ O(n).

Theorem 8. Given a small gap-tree G with d(q) = s for all q ∈ Q, we can

1. calculate the sizes of all minimal `-DFCA (for all valid `) in time O(m+ s),
2. construct a minimal `-DFCA for a given ` in time O(m), and
3. iteratively construct (representations of) minimal `-DFCA for all ` in time
O(m log n+ s)

Proof. Let V be the set of vertices of G. First, we compute a proper state la-
belling state : V → Q in the obvious manner. This can be done in time O(n)
because G is small. Similarly, we can compute ‘level’ in time O(m) because every
transition needs to be considered only once. A simple bottom-up procedure on G
can calculate value(q) for every state q using ‘level’ and ‘state’. Overall, we can
complete these steps in time O(m).

For the first claim, we sort the elements of Q by their ‘value’ in time O(n+s)
using, for example, Counting-Sort. We know that value(q) ≤ n+ s for every
q ∈ Q, hence we can obtain the mentioned time-bound for sorting. From this
sorted list of states, we can now determine the sizes of all minimal `-DFCA in
time O(n+s) by iteration over the list because for a given ` the size of a minimal
`-DFCA is |{ q : value(q) ≤ `}|.

Next, let us move to the second claim. Theorem 2 and Lemma 6 show that
given an efficient representation of an `-state mapping π, we can construct a

7

minimal `-DFCA in time O(m). Consequently, it only remains to determine an
`-state mapping π : Q → P . Clearly, the set P = { q : value(q) ≤ `} can
be constructed in time O(n) by a simple iteration over Q. Finally, we need to
determine π. To this end, we traverse the gap-tree G top-down. Every time, we
encounter a vertex v′ such that value(state(v′)) > ` but value(state(v)) ≤ `,
where v is the direct ancestor of v′, we set π(q) = state(v) for all states q ∈ Q
that occur in the subtree of v′. Overall, this can be achieved in time O(|V |).
Since G is small, we obtain the time bound O(m).

Finally, we have to show how to create minimal `-DFCA sequentially, so that
the total execution time is O(m log n+s). Let `max+1 = maxq∈Q value(q). In each
step ` ∈ {`max, . . . , 1, 0} our algorithm keeps the states P` = { q : value(q) ≤ `}.
Consequently, it merges each state q ∈ P`+1 such that value(q) = ` + 1 into its
terminating state p, which by construction satisfies

value(p) = level(p) + g(p) ≤ level(q) + (g(q)− 1) = value(q)− 1 ≤ ` .

However, to obtain the stated running time, we need to organise the process
properly. First, we note that there is a change in at most n steps because there
can be at most n merges. Thus, we first filter out the steps, in which no changes
occur. This can be done in time O(s). Second, we represent the DFA as a list of
transitions. For each state q, we keep a list of all pairs (a, p) such that δ(q, a) = p,
where p is implemented as a pointer to a pointer to the actual state p, which
allows a fast modification of all transitions leading to p by simply replacing the
final pointer to p. In addition, for every state q, we keep a counter c(q), which is
initially 1 and counts how many states were merged into q. Now assume that we
want to merge the state q into p. First, we assume that c(q) ≤ c(p). In this case,
we simply redirect each incoming transition of q to p (by a constant-time pointer
replacement). However, if c(q) > c(p), then we redirect each incoming transition
of p to q (i.e., we do not merge q into p, but rather merge p into q). In addition,
we replace the outgoing transitions of q by the outgoing transitions of p, which
can be done in constant time by simply replacing the pointer to the list. We
complete this case by renaming q to p. Finally, in both cases we update c(p) by
c(p) ← c(p) + c(q). In this manner, every time the transition target δ(q, a) is
modified due to a merge, the value c(δ(q, a)) at least doubles. Since c(q) ≤ n for
each q ∈ Q, each transition can be modified at most log n times. Consequently,
we obtain the overall running time O(m log n+ s). ut

Note that the third statement of Theorem 8 only provides a (compact) repre-
sentation of the minimal `-DFCA in the presented running time O(m log n+ s).
If we output the obtained DFCA for all `, then we require time O(m2 log n)
because we need O(m) steps for each output DFCA. The summand s disappears
due to the fact that it can always be chosen such that s ≤ n2 ≤ m2.

4 Computing a gap-tree

We already showed that we can easily construct minimal `-DFCA provided that
we have access to a small gap-tree G for M . In this section, we show how to

8

J

G M

L C

B H I N E D F

A Q

•

•

J •

G M

L C

•

•

B H I N

•

E D

•

F A Q

Fig. 3. The pre-gap tree (left) for the DFA of Fig. 1. The gap-tree (right) of Fig. 1 can
be obtained from it by merging appropriate nodes, which are marked in grey. The edges
labelled with different ‘gap’ were drawn in different styles (dashed = 0, normal = 1,
thick = 2).

construct such a G. Actually, a simple modification of Hopcroft’s algorithm [9]
can perform the construction for us. Roughly speaking, we keep track of the
length of words that cause a split of a set of states in the run of the algorithm.
Already Körner’s algorithm [12] followed a similar strategy. Our modification
is less drastic and yields a solution that is simpler and easier to understand.

Algorithm 1 presents the slightly modified version of Hopcroft’s algorithm
that is suitable for our purposes. It creates a pre-gap tree, which keeps track of
how the final partition was obtained. In particular, it stores the lengths of the
used splitting words. The length of such a splitting word coincides with the gap
between the affected states. The obtained pre-gap tree (see Fig. 3) is basically a
binarisation of a gap-tree. It can easily be transformed into a gap-tree by merging
appropriate nodes.

We marked the modifications (compared to a standard implementation of
Hopcroft’s algorithm) by .. Clearly, all lines referring to gap calculations are
new. However, they do neither affect the correctness of the overall algorithm nor
the analysis of its run-time. In addition, the queue T is restricted to a FIFO-
queue, which is essential for our purposes. Finally, although we split Q′ into
Qr−1 and Qr in line 11, we do not replace Q′ in T . When vQ′ is extracted
from T , we no longer have Q′ as an element of P . However, we can recreate it by
listing all the states that occur in the subtree of vQ′ . A similar approach was also
used by Körner [12], who proved that this does not affect the running time.

Next, we show that the pre-gap tree has the following properties:

1. It is a binary tree.
2. The states p and q point to the same node if and only if p = q.
3. If p and q with p 6= q point, respectively, to vp and vq, then the edges to
vp ∨ vq are labelled with gap(p, q).

The first statement follows clearly from Hopcroft’s strategy. Every time
a leaf turns into an inner node in line 13, two children are created. Moreover,

9

Algorithm 1 Modification of Hopcroft’s algorithm
1: Q1 ← F , Q2 ← Q \ F , r ← 2, P ← {Q \ F, F}
2: T ← {(vF , 1)} . FIFO queue
3: create vQ and its children vF , vQ\F , gap(vF , vQ)← gap(vQ\F , vQ)← 0 .
4: put two-way pointers vF ↔ F and vQ\F ↔ Q \ F .
5: while T 6= ∅ do
6: (vQi , ki)← first from T
7: for a ∈ Σ do
8: Qa = { q : δ(q, a) ∈ Qi}
9: for Q′ ∈ P such that Q′ 6⊆ Qa and Q′ ∩Qa 6= ∅ do
10: r ← r + 2
11: Qr−1 ← Q′ ∩Qa, Qr ← Q′ \Qa

12: P ← (P \ {Q′}) ∪ {Qr−1, Qr}
13: create nodes vQr−1 , vQr and edges (vQr−1 , vQ′), (vQr , vQ′) .
14: gap(vQr−1 , vQ′)← gap(vQr , vQ′)← ki .
15: if |Qr−1| > |Qr| then
16: add (vQr , ki + 1) to T . Do not remove Q′ from T
17: else
18: add (vQr−1 , ki + 1) to T
19: for Q′ ∈ P do
20: for q ∈ Q′ do
21: add pointer from q to v, where Q′ points to v . Partition of states

the previous line removed the corresponding set from P , which yields that the
vertex is never split again. In particular, this statement yields that the pre-gap
tree is small. The second statement is the correctness of Hopcroft’s algorithm,
so we do not reprove it. Before, we can prove the third (and essential) statement,
we first identify some properties of the maintained data structure.

Lemma 9 (cf. [12, Lemma 4]). Let (vQ1
, k1), . . . , (vQs

, ks) be the complete
sequence of elements added to T during the run of Algorithm 1. Then ki−1 ≤ ki
for all i ∈ {2, . . . , s}.

Proof. We prove the statement by induction. For i = 2 it is obvious because
k1 = 1 and k2 = 2. Now, let i ≥ 3. The element (vQi

, ki) was put into T
while processing (vQj

, kj) for some j ≤ i − 1. Due to the FIFO strategy, its
predecessor (vQi−1

, ki−1) was put into T while processing (vQj′ , kj′) for some
j′ ≤ j. By the induction assumption, we have kj′ ≤ kj . Consequently, we obtain
that ki−1 = kj′ + 1 ≤ kj + 1 = ki. ut

Lemma 10. For any two inequivalent states p, q ∈ Q there is a set Q′ ∈ P at
some point during the execution of Algorithm 1 that is split into Qr−1 and Qr

with p ∈ Qr−1 and q ∈ Qr. The corresponding edges (vQr−1 , vQ′) and (vQr , vQ′)
are labelled by gap(p, q).

Proof. Since p and q are inequivalent, the states p and q will be split. Thus, the
setQ′ with the given properties exists. It remains to prove the property about the

10

gap. Let gap′(p, q) = gap(vQr−1
, vQ′). Next, we show that gap(p, q) = gap′(p, q).

To this end, we first show that gap(p, q) ≤ gap′(p, q) and then demonstrate that
gap(p, q) ≥ gap′(p, q), which will conclude the proof.

The first part is shown by induction on the number i of elements of T consid-
ered by the algorithm. If i = 0, then gap(p, q) = 0 because exactly one of {p, q}
is in F . Since line 3 assigns the same gap, the claim holds. The inequivalent
states p and q are eventually split by the algorithm. Let Q′ ∈ P be the element
such that {p, q} ⊆ Q′ before they are split. Intuitively, the element (vQ′′ , k) of T
that caused the split has the property that there exists a letter a ∈ Σ such that
exactly one of the states pa = δ(p, a) and qa = δ(q, a) is in Q′′. Consequently,
pa 6= qa and gap(pa, qa) ≤ gap′(pa, qa) by the induction hypothesis (because
pa and qa must have been split in a previous iteration). Then

gap(p, q) ≤ gap(pa, qa) + 1 ≤ gap′(pa, qa) + 1 = k = gap′(p, q) ,

which proves the induction step.
Finally, we show that gap′(p, q) ≤ gap(p, q) for all pairs (p, q) of states with

p 6= q. Let w = a1 · · · am be the shortest string such that exactly one of the
states δ(p, w) and δ(q, w) is in F . Moreover, let (i) p0 = p and q0 = q, and
(ii) pi = δ(pi−1, ai) and qi = δ(qi−1, ai) for every i ∈ {1, . . . ,m}. Let us con-
sider the maximal i such that gap(pi, qi) < gap′(pi, qi). Trivially, we have i < m
because gap(pm, qm) = gap′(pm, qm) = 0, which follows because exactly one
of {pm, qm} is in F . By the first statement and the maximality of i, we have
gap(pi+1, qi+1) = gap′(pi+1, qi+1). Due to the algorithm, there exists an ele-
ment (vQ′′ , k) of T and a ∈ Σ such that gap′(pi, qi) = k, where p′ = δ(pi, a),
q′ = δ(qi, a), and exactly one of {p′, q′} is in S. The latest the split can happen
is due to (pi+1, qi+1), but it can happen earlier, which allows us to conclude by
Lemma 9 that

gap′(pi, qi) = k ≤ gap′(pi+1, qi+1) + 1 = gap(pi+1, qi+1) + 1

= gap(pi, qi) ,

where the last equality follows from the fact that w is the shortest word. Con-
sequently, gap′(pi, qi) ≤ gap(pi, qi), which contradicts the assumption and com-
pletes the proof. ut

Now Property 3 of the pre-gap tree is an easy corollary of Lemma 10: consider
any two inequivalent states p and q. The set Q′ from Lemma 10 corresponds to
the node vp ∨ vq in the pre-gap tree. Furthermore the lemma asserts that the
edges to vp ∨ vq are labelled by gap(p, q).

To obtain a gap-tree G from the pre-gap tree for the DFA M , it is enough to
merge connected parts of the pre-gap tree with incoming edges labelled with the
same value k into a single vertex v such that d(v) = k (see Fig. 3). Moreover,
Lemma 10 shows that d(q) ≤ n for every q ∈ Q, which allows us to state our
main theorem.

Theorem 11. For all DFA M = 〈Q,Σ, δ, q0, F 〉 with m = |Q×Σ| and n = |Q|,
we can perform the following in time O(m log n):

11

1. Calculate the sizes of all minimal `-DFCA (for all valid `).
2. Construct a minimal `-DFCA for a given `.
3. Iteratively construct (representations of) minimal `-DFCA for all `.

References

1. Badr, A., Geffert, V., Shipman, I.: Hyper-minimizing minimized deterministic finite
state automata. RAIRO Theoret. Inform. Appl. 43(1), 69–94 (2009)

2. Câmpeanu, C., Paun, A., Yu, S.: An efficient algorithm for constructing minimal
cover automata for finite languages. Int. J. Found. Comput. Sci. 13(1), 83–97 (2002)

3. Câmpeanu, C., Santean, N., Yu, S.: Minimal cover-automata for finite languages.
Theor. Comput. Sci. 267(1–2), 3–16 (2001)

4. Champarnaud, J.M., Guingne, F., Hansel, G.: Similarity relations and cover au-
tomata. RAIRO Theoret. Inform. Appl. 39(1), 115–123 (2005)

5. Gawrychowski, P., Jeż, A.: Hyper-minimisation made efficient. In: Proc. 34th Int.
Symp. Mathematical Foundations of Computer Science. LNCS, vol. 5734, pp. 356–
368. Springer (2009)

6. Gawrychowski, P., Jeż, A., Maletti, A.: On minimising automata with errors. Corr
abs/1102.5682 (2011)

7. Gries, D.: Describing an algorithm by Hopcroft. Acta Inf. 2(2), 97–109 (1973)
8. Hartigan, J.A.: Representation of similarity matrices by trees. J. Amer. Statist.

Assoc. 62(320), 1140–1158 (1967)
9. Hopcroft, J.E.: An n logn algorithm for minimizing states in a finite automaton.

In: Kohavi, Z. (ed.) Theory of Machines and Computations, pp. 189–196. Academic
Press (1971)

10. Jardine, C.J., Jardine, N., Sibson, R.: The structure and construction of taxonomic
hierarchies. Math. Biosci. 1(2), 173–179 (1967)

11. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254
(1967)

12. Körner, H.: A time and space efficient algorithm for minimizing cover automata
for finite languages. Int. J. Found. Comput. Sci. 14(6), 1071–1086 (2003)

13. Schewe, S.: Beyond hyper-minimisation — Minimising DBAs and DPAs is NP-
complete. In: Proc. Ann. Conf. Foundations of Software Technology and Theoret-
ical Computer Science. LIPIcs, vol. 8, pp. 400–411. Schloss Dagstuhl (2010)

12

