
Minimizing Deterministic Weighted Tree Automata

Andreas Maletti?

International Computer Science Institute
1947 Center Street, Suite 600
Berkeley, CA 94704, USA

maletti@icsi.berkeley.edu

Abstract. The problem of e�ciently minimizing deterministic weighted tree automata
(wta) is investigated. Such automata have found promising applications as language models
in Natural Language Processing. A polynomial-time algorithm is presented that given
a deterministic wta over a commutative semi�eld, of which all operations including the
computation of the inverses are polynomial, constructs an equivalent minimal (with respect
to the number of states) deterministic and total wta. If the semi�eld operations can be
performed in constant time, then the algorithm runs in time O(rmn4) where r is the
maximal rank of the input symbols, m is the number of transitions, and n is the number
of states of the input wta.

1 Introduction

Weighted tree automata (wta) [1{4] are a joint generalization of weighted string automata [5]
and tree automata [6, 7]. Weighted string automata have successfully been applied as language
models in Natural Language Processing largely due to their ability to easily incorporate n-gram
models. Several toolkits (e.g., Carmel [8], Fire Station [9], and OpenFst [10]) enable lan-
guage engineers to rapidly prototype and develop language models because of the standardized
implementation model and the consolidated algorithms made available by the toolkits.

In recent years, the trend toward more syntactical approaches in Natural Language Pro-
cessing [11] sparked renewed interest in tree-based devices. The weighted tree automaton is the
natural tree-based analogue of the weighted string automaton. First experiments with toolkits
(e.g., Tiburon [12]) based on tree-based devices show that the situation is not as consolidated
here. In particular, many basic algorithms are missing in the weighted setting.

In general, a wta processes a given input tree stepwise using a locally speci�ed transition
behavior. During this process transition weights are combined using the operations (addition
and multiplication) of a semiring to form the weight associated with the input tree. Altogether,
the wta thus recognizes (or computes) a mapping ' : T� ! A where T� is the set of all input trees
and A is the carrier set of the semiring. Such a mapping is also called a tree series, and if it can
be computed by a wta, then it is recognizable. The deterministically recognizable tree series are
exactly those recognizable tree series that can be computed by deterministic wta. Recognizable
and deterministically recognizable tree series have been thoroughly investigated (see [3, 13] and
references provided therein). In fact, [4] and [14] show which recognizable tree series are also
deterministically recognizable.

In this contribution, we consider deterministically recognizable tree series. To the author's
knowledge, we propose the �rst polynomial-time minimization algorithm for deterministic wta
over semi�elds. A Myhill-Nerode theorem for tree series recognized by such automata is

? Author on leave from Technische Universit�at Dresden, Faculty of Computer Science, 01062 Dresden,

Germany with the help of �nancial support by a DAAD (German Academic Exchange Service) grant.

known [15]. However, it only asserts the existence of a unique, up to slight changes of repre-
sentation, minimal (with respect to the number of states) deterministic wta recognizing a given
tree series. The construction of such a wta, which is given in [15], is not e�ective, but with the
help of the pumping lemma of [16] an exponential-time algorithm, which given a deterministic
wta constructs an equivalent minimal deterministic and total wta, could easily be derived. For
(not necessarily deterministic) wta over �elds the situation is similar. In [1, 17] the existence of a
unique, up to slight changes of representation, minimal wta is proved. Moreover, [17] shows that
minimization is e�ective by providing the analogue to the pumping argument already mentioned
above in this more general setting. However, the trivially obtained algorithm is exponential.

Angluin [18] learning algorithms exist for both general [19] and deterministic [20, 21] wta.
In principle, those polynomial-time learning algorithms could also be used for minimization since
they produce minimal wta recognizing the taught tree series. However, this also requires us to
implement the oracle, which answers coe�cient and equivalence queries. Although equivalence is
decidable in polynomial time in both cases [22, 16], a simple implementation would return coun-
terexamples of exponential size, which would yield an exponential-time minimization algorithm.
Clearly, this can be avoided by the method presented in this contribution.

Finally, let us mention the minimization procedures [23, 24] for deterministic weighted string
automata. They rely on a weight normal-form obtained by a procedure called pushing. After
this normal form is obtained, the weight of a transition is treated as an input symbol and the
automaton is minimized as if it were unweighted. We do not follow this elegant approach here
because we might have to explore several distributions of the weight to the input states of a
transition (in a tree automaton a transition can have any number of input states whereas in
a string automaton it has exactly one) during pushing. It remains open whether there is an
e�cient heuristic that prescribes how to distribute the weight such that we obtain a minimal
deterministic wta recognizing the given series after the unweighted minimization.

Here we give a direct minimization construction, which uses partition re�nement as in the
unweighted case [25]. To this end, we �rst de�ne the Myhill-Nerode relation on states of
the deterministic input wta. This de�nition, as well as the Myhill-Nerode relation on tree
series [15], will include a scaling factor and Algorithm 2 will determine those scaling factors.
In the re�nement process (see De�nition 13) we check for the congruence property (as in the
unweighted case) and the consistency of the weight placement on the transitions. Overall, our
algorithm runs in time O(rmn4) where r is the maximal rank of the input symbols, m is the
number of transitions, and n is the number of states of the input wta.

2 Preliminaries

The set of nonnegative integers is IN. Given l; u 2 IN we denote fi 2 IN j l � i � ug simply
by [l; u]. Let n 2 IN and Q a set. We write Qn for the n-fold Cartesian product of Q. The empty
tuple () 2 Q0 is sometimes displayed as ". We reserve the use of a special symbol � =2 Q. The
set of n-ary contexts over Q, denoted by Cn(Q), is

S
i+j+1=nQ

i � f�g �Qj . Given C 2 Cn(Q)
and q 2 Q we write C[q] to denote the tuple of Qn obtained from C by replacing � by q.

An equivalence relation � on Q is a re
exive, symmetric, and transitive subset of Q2. Let
� and �0 be equivalence relations on Q. Then � is a re�nement of �0 if � � �0. The equivalence
class of q 2 Q is [q]� = fq0 2 Q j q0 � qg. Whenever � is obvious from the context, we simply
omit it. The system (Q=�) = f[q] j q 2 Qg actually forms a partition of Q; i.e., a system � of
subsets (also called blocks) of Q such that

S
P2� P = Q and P \ P 0 = ; for every P; P 0 2 �

with P 6= P 0. A mapping r : (Q=�) ! Q is a representative mapping if r(P) 2 P for every
P 2 (Q=�). The number of blocks of (Q=�) is denoted by index(�). Let � be any partition
on Q and F � Q. The equivalence relation �� on Q is de�ned for every p; q 2 Q by p �� q if

and only if fp; qg � P for some block P 2 �. We say that � saturates F if �� is a re�nement
of �fF;QnFg; i.e.,

S
P2�0 P = F for some � 0 � �.

An alphabet is a �nite and nonempty set of symbols. A ranked alphabet (�; rk) is an alpha-
bet � and a mapping rk: � ! IN. Whenever rk is clear from the context, we simply drop it. The
subset of n-ary symbols of� is�n = f� 2 � j rk(�) = ng. The set T�(Q) of�-trees indexed byQ
is inductively de�ned to be the smallest set such that Q � T�(Q) and �(t1; : : : ; tn) 2 T�(Q) for
every � 2 �n and t1; : : : ; tn 2 T�(Q). We write T� for T�(;). The mapping var : T�(Q)! P(Q),
where P(Q) is the power set of Q, is inductively de�ned by var(q) = fqg for every q 2 Q and
var(�(t1; : : : ; tn)) =

Sn

i=1 var(ti) for every � 2 �n and t1; : : : ; tn 2 T�(Q). For every P � Q,
we use varP (t) as a shorthand for var(t) \ P . Moreover, we use jtjq to denote the number of
occurrences of q 2 Q in t 2 T�(Q). Finally, we de�ne the height and size of a tree with the
help of the mappings ht; size : T�(Q) ! IN inductively for every q 2 Q by ht(q) = size(q) = 1
and ht(�(t1; : : : ; tn)) = 1 +maxfht(ti) j i 2 [1; n]g and size(�(t1; : : : ; tn)) = 1 +

Pn

i=1 size(ti) for
every � 2 �n and t1; : : : ; tn 2 T�(Q). Note that max ; = 0.

The set C�(Q) of �-contexts indexed by Q is de�ned as the smallest set such that � 2 C�(Q)
and �(t1; : : : ; ti�1; C; ti+1; : : : ; tn) 2 C�(Q) for every � 2 �n with n � 1, index i 2 [1; n],
t1; : : : ; tn 2 T�(Q), and C 2 C�(Q). We write C� for C�(;). Note that C�(Q) � T�(Q[f�g).
Next we recall substitution. Let V be an alphabet (possibly containing �), v1; : : : ; vn 2 V be
pairwise distinct, and t1; : : : ; tn 2 T�(V). Then we denote by t[vi ti j 1 � i � n] the tree
obtained from t by replacing every occurrence of qi by ti for every i 2 [1; n]. We abbreviate
C[� t] simply by C[t] for every C 2 C�(Q) and t 2 T�(V).

A (commutative) semiring is a tuple A = (A;+; �; 0; 1) such that (A;+; 0) and (A; �; 1) are
commutative monoids; a � 0 = 0 = 0 � a for every a 2 A; and � distributes over + from both sides.
The semiring A is a semi�eld if for every a 2 A n f0g there exists a�1 2 A such that a � a�1 = 1.
A tree series is a mapping ' : T ! A where T � T�(Q). The set of all such tree series is denoted
by AhhT ii. For every ' 2 AhhT ii and t 2 T , the coe�cient '(t) is usually denoted by ('; t).

A weighted tree automaton [1{4] (for short: wta) is a tupleM = (Q;�;A; �; �) such that (i) Q
is an alphabet of states; (ii) � is a ranked alphabet; (iii) A = (A;+; �; 0; 1) is a (commutative)
semiring; (iv) � = (�n)n�0 with �n : �n ! AQn�Q; and (v) � 2 AQ is a �nal weight vector. The
semantics of M is the tree series 'M 2 AhhT�ii given by ('M ; t) =

P
q2Q h�(t)q � �q (or simply

the scalar product h�(t) � �) where h� : T� ! AQ is inductively de�ned by

h�(�(t1; : : : ; tn))q =
X

q1;:::;qn2Q

�n(�)(q1;:::;qn);q �
nY
i=1

h�(ti)qi

for every � 2 �n, q 2 Q, and t1; : : : ; tn 2 T� . The wta M is said to recognize 'M and two wta
are equivalent if they recognize the same tree series.

The wta M is deterministic and total [4] if for every � 2 �n and w 2 Qn there ex-
ists exactly one q 2 Q such that �n(�)w;q 6= 0. Since we will exclusively deal with deter-
ministic and total wta over semi�elds from now on, we will use the following representation:
M = (Q;�;A; �; c; �) where � �

S
n�0Q

n � �n �Q is �nite and c : � ! A n f0g. In particular,
(w; �; q) 2 � if and only if �n(�)w;q 6= 0, and for every � = (w; �; q) 2 � we have c(�) = �n(�)w;q.
The determinism and totality restriction ensures that � can be represented as (��)�2� with
�� : Q

n ! Q. We extend � to a mapping � : T�(Q)! Q as follows: �(q) = q for every q 2 Q and
�(�(t1; : : : ; tn)) = ��(�(t1); : : : ; �(tn)) for every � 2 �n and t1; : : : ; tn 2 T�(Q). A state q 2 Q
is useful if there exists t 2 T� such that �(t) = q. The deterministic and total wta M is said to
have no useless states if all states of Q are useful.

Similarly, c can be represented as (c�)�2� with c� : Q
n ! A n f0g. Due to the semi�eld

restriction, this can be extended to a mapping c : T�(Q)! A n f0g by c(q) = 1 for every q 2 Q

and c(�(t1; : : : ; tn)) = c�(�(t1); : : : ; �(tn)) �
Qn

i=1 c(ti) for every � 2 �n and t1; : : : ; tn 2 T�(Q).
It is then easy to show that ('M ; t) = c(t) � ��(t) for every t 2 T� . In fact, we extend 'M to
a tree series of AhhT�(Q)ii by de�ning ('M ; t) = c(t) � ��(t) for every t 2 T�(Q). The following
property, which will be used without explicit mention in the sequel, follows immediately.

Proposition 1 (cf. [15, Theorem 1]). We have ('M ; t) = 0 if and only if ��(t) = 0 for every

t 2 T�(Q). Moreover, c(t[qi ti j 1 � i � n]) = c(t) �
Qn

i=1 c(ti)
jtjqi for all pairwise distinct

q1; : : : ; qn 2 Q and t1; : : : ; tn 2 T�(Q) such that �(ti) = qi for every i 2 [1; n].

Finally, let us recall theMyhill-Nerode congruence relation [15] for tree series. To this end,
we �rst recall �-algebras and congruences. A �-algebra (S; f) consists of a carrier set S and
f = (f�)�2� such that f� : S

n ! S for every � 2 �n. The term �-algebra is given by (T� ; �)
where � = (�)�2� with �(t1; : : : ; tn) = �(t1; : : : ; tn) for every � 2 �n and t1; : : : ; tn 2 T� . In
the sequel, we will drop the overlining. Note that (Q; �) is a �-algebra. Let � be an equivalence
relation on S. Then � is a congruence of (S; f) if for every � 2 �n and s1; : : : ; sn; t1; : : : ; tn 2 S
such that si � ti for every i 2 [1; n] we also have f�(s1; : : : ; sn) � f�(t1; : : : ; tn).

Let ' 2 AhhT�ii. The Myhill-Nerode [15] relation �' � T� � T� is de�ned for every
t; u 2 T� by t �' u if and only if there exists a 2 A n f0g such that (';C[t]) = a � (';C[u]) for
every C 2 C� . We note that �' is a congruence of (T� ; �) [15, Lemma 5].

3 Myhill-Nerode relation

In this section, we recall the theoretical foundations for the minimization procedure and introduce
theMyhill-Nerode relation on states of a deterministic and total wta. We keep it short because
most of the material is only slightly adapted. Readers who are familiar with theMyhill-Nerode

congruence �' for a tree series ' may decide to read only De�nition 2 and proceed to the next
section. For the rest of the paper, let M = (Q;�;A; �; c; �) be a deterministic and total wta
without useless states and A = (A;+; �; 0; 1) a semi�eld, of which multiplication and calculation
of inverses can be performed in constant time. Note that, depending on the actual semi�eld used,
this might be an unrealistic assumption, but it simpli�es the complexity analysis and is typically
true for the �xed-precision arithmetic implemented on stock hardware. Finally, let ' = 'M .

De�nition 2 (cf. [15, page 8]). The Myhill-Nerode relation � � Q�Q is de�ned for every
p; q 2 Q by p � q if and only if there exists a 2 A n f0g such that (';C[p]) = a � (';C[q]) for
every C 2 C�. We denote such a scaling factor a by ap;q for every p; q 2 Q such that p � q.

Note the similarity with the de�nition of the Myhill-Nerode relation �' [15]. This simi-
larity allows us to retain some of the useful properties of �'. In the remainder of this section, we
show some of those properties. We start with the fact that � is a congruence relation on (Q; �).

Proposition 3 (cf. [15, Lemma 5]). The relation � is a congruence relation on (Q; �).

The next lemma introduces a more restricted variant of � and relates it to �. The more
restricted variant will be very useful in the sequel and allows us to avoid an exponential blow-up.

Lemma 4. The relation �0 � Q�Q, which is given for every p; q 2 Q by p �0 q if and only if
there exists a 2 Anf0g such that (';C[p]) = a � (';C[q]) for every C 2 C�(Q), coincides with �.

In fact, for every p; q 2 Q such that p � q the scaling factor ap;q also veri�es p �0 q. This
leads to the second main property (the �rst being the congruence property) that we will later
use for re�nement (see Proposition 12). The �nal lemma of this section establishes the relation
of � to �'. Note that index(�') coincides with the number of states of a minimal deterministic
and total wta recognizing ' [15, Theorem 3].

Lemma 5. index(�) = index(�').

Proof. Let t; u 2 T� such that t �' u. There exists a 2 A n f0g such that (';C[t]) = a � (';C[u])
for every C 2 C� . We reason as follows:

c(t) � (';C[�(t)]) = (';C[t]) = a � (';C[u]) = a � c(u) � (';C[�(u)]) :

Since a � c(t)�1 � c(u) does not depend on C, we obtain �(t) � �(u). Since M has no useless states,
� thus has at most as many equivalence classes as �'. For the converse, let p; q 2 Q such that
p � q. Moreover, let t; u 2 T� be such that �(t) = p and �(u) = q. Then analogous to the above
we can prove that t �' u. Hence, index(�) and index(�') coincide. ut

4 Minimization algorithm

In this section, we will develop our minimization algorithm for deterministic wta. Throughout,
let F = fq 2 Q j �q 6= 0g. Note that any deterministic wta M 0 can be converted in linear time (in
the number of transitions) into an equivalent deterministic and total wta without useless states.
In contrast to the classical minimization algorithm for deterministic unweighted tree automata,
we need to determine the scaling factor ap;q (see De�nition 2) for each pair (p; q) of equivalent
states. We will use the concept of a sign of life to help us determine it.

De�nition 6. A state q 2 Q is live if �(C[q]) 2 F for some context C 2 C�(Q). Such a context
is called a sign of life of q. If no sign of life of q exists, then q is dead.

Roughly speaking, a state q is live if some �nal state can be reached from it. A sign of life of q
shows one such path. Note that the sign-of-life context may contain states. Our �rst task is to
determine signs of life for all states. This also identi�es live and dead states. Let n be the number
of states of M , m the number of transitions of M , and r the maximal rank of the symbols in �.
To simplify the complexity statements, suppose that r � 1. Note that consequently m � n.

Algorithm 1 ComputeSoL(M): Compute signs of life and initial partition.

Require: deterministic and total wta M = (Q;�;A; �; c; �)
D Q n F // unexplored states

2: sol f(q;�) j q 2 Fg // �nal states have trivial sign of life
T f(w; �; q) 2 � j q 2 Fg // add all transitions leading to a �nal state to FIFO queue

4: while T 6= ; do
let � = ((q1; : : : ; qk); �; q) 2 T // get �rst element in FIFO queue T

6: I fi 2 [1; k] j qi 2 D;8j 2 [1; i� 1] : qj 6= qig // select indexes of unexplored states
sol sol [f(qi; sol(q)[�(q1; : : : ; qi�1;�; qi+1; : : : ; qk)]) j i 2 Ig // add signs of life

8: P fqi j i 2 Ig // new live states
D D n P // remove new live states from unexplored states

10: T (T n f�g) [f(w;
; p) 2 � j p 2 Pg // add all transitions leading to new live states
end while

12: � ffq 2 Q nD j ht(sol(q)) = ig j i � 1g [fDg // group states by height of sign of life
return (�; sol; D)

Algorithm 1 returns an initial partition �, signs of life sol, and the set D of dead states. Let
us make two remarks. First, it is essential that T is handled as a FIFO queue with additions at
the end and removal at the beginning. This guarantees that the height of the constructed signs of
life is minimal. Second, ; might be an element of �. To avoid complicated case distinctions, we
permit this slightly nonstandard behavior, which does not a�ect the correctness of our algorithms.

Lemma 7. Let (�; sol; D) be the result of running Algorithm 1 on M . Then sol(q) is a sign of
life of q of size at most rn for every state q of QnD, D is the set of all dead states, � saturates F ,
and � is a re�nement of �� . Moreover, Algorithm 1 can be implemented to run in time O(rm).

Proof. Lines 1{3 run in time O(m) because m � n. Clearly, each transition can be added at
most once to T , so lines 4{11 can be executed at most m times. Lines 6{8 can be executed in
time O(r); note that this requires a list representation of the signs of life (i.e., a sign of life is a
list of pairs consisting of a transition and an integer indicating the position of �) to avoid the
creation and/or copying of transitions. If we suppose that access to the list of transitions leading
to a certain state is constant (which can be achieved by a O(m) preprocessing step sorting the
transitions in n buckets), then line 10 can be executed in O(r) time. Since r � 1, we obtain
a running time of O(rm). Finally, we note that the partition constructed in line 12 could have
been constructed during the loop at no additional expense; we presented it this way for clarity.

Next, we prove that sol(q) is indeed a sign of life of q for every q 2 Q n D. The trivial
contexts added for each �nal state in line 2 are obviously signs of life. It remains to show that C,
the second component in the pair of line 7, is a sign of life of qi. By induction hypothesis, we
may assume that sol(q) is a sign of life of q; i.e., �(sol(q)[q]) 2 F . Since M is deterministic and
((q1; : : : ; qk); �; q) 2 �, we obtain �(C[qi]) = �(sol(q)[q]) 2 F and thus C is a sign of life of qi. It
is obvious that � saturates F . We leave the proof of the fact that D is indeed the set of all dead
states to the reader.

Clearly, �nal states are assigned a sign of life of height 1 and size 1 � r. Further signs of life
are always constructed as C = sol(q)[�(q1; : : : ; qi�1;�; qi+1; : : : ; qk)] (see line 7). Thus, the height
(respectively, the size) of the new sign of life C is 1 (respectively, at most r) greater than that of
the sign of life sol(q). Consequently, height and size of every sign of life sol(q) with q 2 Q nD are
at most n and rn, respectively. Finally, we have to show that � is a re�nement of �� . To this
end, we have to show that p � q implies that p �� q for every p; q 2 Q. Let p; q 2 Q be such
that p � q. Clearly, p and q share all signs of life (see Lemma 4). Consequently, if p is dead, then
also q must be dead, and in that case, p �� q. Otherwise, p and q are live. We already remarked
that Algorithm 1 computes signs of life that are minimal in height; the proof of that statement
is left as an exercise. The height-minimal sign of life sol(p) must be a sign of life of q as well, and
consequently, ht(sol(p)) = ht(sol(q)), which yields p �� q. ut

We allow contexts of C�(Q) instead of only contexts of C� as signs of life in order to obtain
the linear size complexity given in Lemma 7. The more common approach to use contexts of C�
would yield signs of life, whose size might be exponential in n. Since we will run M on signs of
life, this would have led to an exponential time complexity.

The principal approach of the minimization algorithm is partition re�nement as, for ex-
ample, in the classical minimization algorithm for minimizing unweighted deterministic tree
automata [25]. We successively re�ne the initial partition returned by Algorithm 1 until � is
reached. Before we turn to more detail, let us introduce the main data structure.

De�nition 8. Let � be a partition of Q that saturates F , L � Q be the set of live states,
sol : L ! C�(Q) be such that sol(q) is a sign of life of q for every q 2 L, f : L ! A n f0g, and
r : (� n f;; Q n Lg)! Q a representative mapping. Then (�; sol; f; r) is a stage if

(i) � is a re�nement of �� ;
(ii) sol(q) = � for every q 2 F ; and
(iii) for every q 2 L we have ('; sol(p)[q]) = f(q) � ('; sol(p)[p]) where p = r([q]).

The stage is stable if additionally

(iv) �� is a congruence of (Q; �); and

(v) for every q 2 L, � 2 �n, and C 2 Cn(Q) such that ��(C[q]) 2 L

f(q)�1 � c�(C[q]) � f(��(C[q])) = c�(C[p]) � f(��(C[p]))

where p = r([q]).

In a stage, we have a partition, signs of life, and two new components. The mapping r assigns
to each nonempty block (apart from the block of dead states) of the partition a representative
and the mapping f assigns to each live state the scaling factor to the representative of its block
[see Condition (iii)]. A stable stage additionally requires �� to be a congruence of (Q; �) and
Condition (v), which is of paramount importance in the implementation (as a wta) of a stable
stage. Let us show how to derive a deterministic and total wta recognizing ' from a stable stage.

De�nition 9 (cf. [15, De�nition 4]). Let S = (�; sol; f; r) be a stable stage and D the set of
dead states. The wta MS = (� n f;g; �;A; �0; c0; �0) is constructed as follows: for every � 2 �k

and q1; : : : ; qk 2 Q let

{ �0�([q1]; : : : ; [qk]) = [��(q1; : : : ; qk)];
{ c0�([q1]; : : : ; [qk]) = 1 if ��(q1; : : : ; qk) 2 D and otherwise

c0�([q1]; : : : ; [qk]) =

kY
i=1

f(qi)
�1 � c�(q1; : : : ; qk) � f(��(q1; : : : ; qk))

{ �0B = �r(B) for every B 2 � n f;; Dg and if D 2 � n f;g, then �0D = 0.

The construction of MS can be implemented to run in time O(rm). However, some remarks
are required here. First, �0 is well-de�ned because �� is a congruence on (Q; �). Second, let us
consider the de�nition of c0. Suppose that p1; : : : ; pk; q1; : : : ; qk 2 Q such that pi �� qi for every
i 2 [1; k]. By the congruence property and Condition (i) of De�nition 8, the case distinction is
well-de�ned. We show that

kY
i=1

f(pi)
�1 � c�(p1; : : : ; pk) � f(��(p1; : : : ; pk))

=

kY
i=2

f(pi)
�1 � c�(r([p1]); p2; : : : ; pk) � f(��(r([p1]); p2; : : : ; pk))

= : : :

= c�(r([p1]); : : : ; r([pk])) � f(��(r([p1]); : : : ; r([pk])))

= c�(r([q1]); : : : ; r([qk])) � f(��(r([q1]); : : : ; r([qk])))

= : : :

=

kY
i=2

f(qi)
�1 � c�(r([q1]); q2; : : : ; qk) � f(��(r([q1]); q2; : : : ; qk))

=

kY
i=1

f(qi)
�1 � c�(q1; : : : ; qk) � f(��(q1; : : : ; qk))

by repeated application of Condition (v) of De�nition 8, which proves the well-de�nedness of c0.
It is obvious that MS has index(��) many states. We should �nally show that MS recognizes '.

Theorem 10. Let S = (�; sol; f; r) be a stable stage and MS = (Q0; �;A; �0; c0; �0). Then MS

is a minimal deterministic and total wta recognizing '.

Proof. Let us �rst show that MS recognizes '. From the classical minimization construction it
should be clear that �(t) 2 �0(t) for every t 2 T� . We prove the statement c(t) = c0(t) � f(�(t))�1

by induction on t. Let t = �(t1; : : : ; tk) for some � 2 �k and t1; : : : ; tk 2 T� . By de�nition

c(t) = c�(�(t1); : : : ; �(tk)) �
kY
i=1

c(ti) = c�(�(t1); : : : ; �(tk)) �
kY
i=1

�
c0(ti) � f(�(ti))

�1
�

where the last equality is by induction hypothesis. We �nish the proof of the auxiliary statement
using the de�nition of c0 and �(ti) 2 �

0(ti)

c(t) = c0�(�
0(t1); : : : ; �

0(tk)) �
kY
i=1

c0(ti) � f(��(�(t1); : : : ; �(tk)))
�1 = c0(t) � f(�(t))�1 :

We now continue for every t 2 T� with a case distinction. Let q = �(t). If q =2 F , then
('; t) = 0 and ('MS

; t) = 0 because �0[q] = 0 (recall that � saturates F). If q 2 F , then

('MS
; t) = c0(t) � �0[q] = c(t) � f(q) � �r([q]) = c(t) � �q = ('; t)

by Conditions (ii) and (iii) of De�nition 8 since sol(r([q])) = �. Thus, we proved that MS

recognizes '. By Lemma 5 and [15, Theorem 3], index(�) is the number of states of a minimal
deterministic and total wta recognizing '. The wtaMS has index(��) states and by Condition (i)
of De�nition 8, � is a re�nement of �� , hence index(��) � index(�). Consequently, ��
coincides with � and MS is a minimal deterministic and total wta recognizing '. ut

Note that the above theorem also shows that (�; sol; f; r) can only be a stable stage if ��
coincides with �. Since we already have a suitable initial partition that saturates F along with
suitable signs of life, our next step is to determine the scaling factors (see De�nition 2). To
this end, we employ Algorithm 2, which is given a partition and computes the scaling factor for
each element relative to a chosen representative of its block. If it cannot compute such a scaling
factor (which only happens when the sign of life of the representative is not a sign of life of
the considered state), then it splits the state from its current block. The algorithm completely
ignores the block of dead states. This can be done because the block of dead states will never be
split (since p � q whenever both p and q are dead). The idea of our minimization algorithm is
to re�ne the initial partition returned by Algorithm 1 until we reach �. Algorithm 2 completes
a suitable partition to a stage.

Lemma 11. Given signs of life of Algorithm 1 and a partition � such that � is a re�nement
of �� , Algorithm 2 can be implemented to run in time O(rn3) and returns a stage (� 0; sol; f; r)
such that ��0 is a re�nement of �� .

Proof. We defer correctness for the moment. The loop in lines 5{12 can be executed at most
n times as each time at least one state is processed. Evaluating the sign of life takes at most O(rn)
since the size of any sign of life is at most rn. Thus, lines 7-8 execute in O(rn2) and the whole
algorithm runs in time O(rn3). Now, let us consider correctness. It should be clear that Con-
dition (ii) holds and Condition (iii) holds because it is enforced in line 8. It remains to check
Condition (i). Clearly, ��0 is a re�nement of �� and by assumption � is a re�nement of �� .
Let p; q 2 Q such that p � q. Consequently, p �� q. Let p0 2 Q be such that p �� p0 (cf. the se-
lection in line 6). Then �(sol(p0)[p]) 2 F if and only if �(sol(p0)[q]) 2 F because ('; sol(p0)[p]) 6= 0
if and only if ('; sol(p0)[q]) 6= 0 by p � q. This yields that independently of the selection of the
representative in line 6, p and q cannot be split in line 7, and hence p ��0 q. ut

Algorithm 2 Complete(M;�; sol; D): Compute scaling factors.

Require: deterministic and total wta M = (Q;�;A; �; c; �), set D of dead states, sign of life sol(q) for
every q 2 Q nD, and a partition � such that � is a re�nement of ��

f ; // map of scaling factors
2: r ; // map of representatives

� � n fDg // remove block of dead states
4: � 0 fDg // output partition containing block of dead states

while � 6= ; and � 6= f;g do
6: let P 2 � and p 2 P // select new block and representative

P 0 fq 2 P j �(sol(p)[q]) 2 Fg // collect states that share sign of life sol(p)
8: f f [f(q; c(sol(p)[q]) � c(sol(p)[p])�1) j q 2 P 0g // add scaling factors

r r [f(P 0; p)g // add representative for P 0

10: � 0 � 0 [fP 0g // block P 0 is processed
� (� n fPg) [fP n P 0g // remove old block and add new block P n P 0

12: end while

return (� 0; sol; f; r)

Note that � 0 saturates F whenever � does because ��0 is a re�nement of �� . As in the
unweighted case [25], we use a partition re�nement algorithm to compute the Myhill-Nerode

relation. To this end, we start with the initial partition computed by Algorithm 1 and complete
it to a stage with the help of Algorithm 2. Then we re�ne according to Conditions (iv) and (v)
of De�nition 8. For this to work, variants of these conditions should also be ful�lled by �. We
already proved in Proposition 3 that � is a congruence of (Q; �) as in the classical unweighted
case. Second, the weights of transitions from equivalent states leading to live states must obey a
certain compatibility requirement, which we show in the next proposition.

Proposition 12. For every � 2 �k, C 2 Ck(Q), and p; q 2 Q such that p � q and ��(C[p]) is
live, we have a�1p;q � c�(C[p]) � ap0;q0 = c�(C[q]) where p

0 = ��(C[p]) and q0 = ��(C[q]).

Proof. Since p0 is live, there exists a context C 0 2 C�(Q) such that �(C 0[p0]) 2 F . Con-
sider the context C 00 = C 0[�(C)]. Since p � q, and thus p �0 q by Lemma 4, it follows that
(';C 00[p]) = ap;q � (';C

00[q]). In addition, p0 � q0 because � is a congruence. Now we compute as
follows:

c�(C[p]) � (';C
0[p0]) = (';C 00[p]) = ap;q � (';C

00[q])

= ap;q � c�(C[q]) � (';C
0[q0]) = ap;q � c�(C[q]) � a

�1
p0;q0 � (';C

0[p0]) :

Since (';C 0[p0]) 6= 0 because �(C 0[p0]) 2 F , we obtain the statement by cancelling (';C 0[p0]). ut

In the classical unweighted case, only the congruence property is used to re�ne. The additional
constraint basically restricts the weights on the transitions whereas the congruence property only
restricts the presence/absence of transitions. Altogether, the previous proposition suggests the
following re�nement step.

De�nition 13. Let (�; sol; f; r) be a stage and D be the set of dead states. Then the re�nement
Refine(M;�; sol; f; r;D) is de�ned to be the partition � 0 such that for every p; q 2 Q we have
p ��0 q if and only if p �� q and for every � 2 �k and C 2 Ck(Q)

(i) ��(C[p]) �� ��(C[q]); and
(ii) f(p)�1 � c�(C[p]) � f(��(C[p])) = f(q)�1 � c�(C[q]) � f(��(C[q])), if ��(C[p]) is live.

The following lemma shows thatRefine re�nes in the desired manner. In particular, whenever
� is a re�nement of �� , then � is also a re�nement of ��0 . Thus, we only re�ne to the level of �
and never beyond. This simple property follows in a straightforward manner from De�nition 13
and Proposition 12.

Lemma 14. Let (�; sol; f; r) be a stage and D the set of dead states. Refine(M;�; sol; f; r;D)
can be implemented to run in time O(rmn2). Moreover, the resulting partition � 0 is such that
��0 is a re�nement of �� , and if � is a re�nement of �� , then � is a re�nement of ��0 .

Again note that whenever � saturates F , then also � 0 saturates F simply because ��0 is a
re�nement of �� . We are now ready to state the main minimization algorithm.

Algorithm 3 Minimization of deterministic wta

Require: deterministic and total wta M = (Q;�;A; �; c; �) without useless states
(� 0; sol; D) ComputeSoL(M) // see Algorithm 1; complexity: O(rm)

2: repeat
(�; sol; f; r) Complete(M;� 0; sol; D) // see Algorithm 2; complexity: O(rn3)

4: � 0 Refine(M;�; sol; f; r;D) // see De�nition 13; complexity: O(rmn2)
until � 0 = �

6: return M(�;sol;f;r) // see De�nition 9; complexity O(rm)

Theorem 15. A minimal deterministic and total wta M 0 recognizing ' can be obtained in
time O(rmn4).

Proof. The loop in lines 2{5 in Algorithm 3 can be entered at most n times, which immediately
yields the required time bound using Lemmata 7, 11, and 14. The initial partition � 0 in line 1
saturates F and so does every subsequent partition. Moreover, by Lemmata 11 and 14, � is
a re�nement of every subsequent �� and ��0 because � is a re�nement of ��0 in line 1
by Lemma 7. Consequently, every � is a stage by Lemma 11, and if � = � 0 in line 5, then
(�; sol; f; r) is a stable stage. By Theorem 10, the wta returned in line 6 is a minimal deterministic
and total wta recognizing '. ut

5 A small example

Let us discuss the example of [21] (with one minor modi�cation), which presents a simplistic wta
for simple English sentences. It penalizes long sentences by decreasing their score. The score will
be a real number and we will use (IR;+; �; 0; 1) as the underlying �eld. Our ranked alphabet is

� = f�;Alice;Bob; loves; hates;ugly; nice;meang

of which � is binary and all other symbols have rank 0. We abbreviate the multi-letter symbols
by their �rst letter (e.g., Alice by just A). As states we have Q = fNN;VB;ADJ;VP;NP; S;?g
of which only S is �nal (with �S = 1). Transitions and transition weights are given as follows:

��(NN;VP) = S ��(NP;VP) = S ��(VB;NN) = VP ��(VB;NP) = VP

c�(NN;VP) = 0:5 c�(NP;VP) = 0:5 c�(VB;NN) = 0:5 c�(VB;NP) = 0:5

��(ADJ;NN) = NP ��(ADJ;NP) = NP

c�(ADJ;NN) = 0:5 c�(ADJ;NP) = 0:5

and

�A() = NN �B() = NN �l() = VB �h() = VB �u() = ADJ �n() = ADJ �m() = ADJ

cA() = 0:5 cB() = 0:5 cl() = 0:5 ch() = 0:5 cu() = 0:33 cn() = 0:33 cm() = 0:33 :

For all remaining combinations (x; y) we set ��(x; y) = ? and c�(x; y) = 1. Now, we completely
speci�ed our deterministic and total input wta M , which has no useless states.

Next, we compute signs of life according to Algorithm 1. It may return (� 0; sol; f?g) where
� 0 = ffSg; fVP;NP;NNg; fADJ;VBg; f?gg and the signs of life are

sol(S) = � sol(NP) = �(�;VP) sol(ADJ) = �(�(�;NN);VP)

sol(VP) = �(NN;�) sol(NN) = �(�;VP) sol(VB) = �(NN; �(�;NN)) :

Next, we call Complete(M;� 0; sol; f?g), which may return the stage (�; sol; f; r) where

{ � = ffSg; fVPg; fNP;NNg; fADJg; fVBg; f?gg;
{ f(x) = 1 for all live states x; and
{ r(fNP;NNg) = NP and r(fxg) = x for all other live states x.

Finally, we re�ne this partition, but NP and NN will not be split. Thus, we construct the deter-
ministic and total wta M(�;sol;f;r) = (�;�; IR; �0; c0; �0) with the �nal state fSg (with �0fSg = 1).

Transitions and transition weights are given as follows (we drop the parentheses from the single-
ton sets):

�0A() = fNN;NPg �B() = fNN;NPg �0l() = VB �h() = VB �0u() = ADJ

c0A() = 0:5 c0B() = 0:5 c0l() = 0:5 c0h() = 0:5 c0u() = 0:33

�0n() = ADJ �0m() = ADJ

c0n() = 0:33 c0m() = 0:33

and

�0�(fNN;NPg;VP) = S �0�(VB; fNN;NPg) = VP �0�(ADJ; fNN;NPg) = fNN;NPg

c0�(fNN;NPg;VP) = 0:5 c0�(VB; fNN;NPg) = 0:5 c0�(ADJ; fNN;NPg) = 0:5 :

For all remaining combinations (x; y) we have �0�(x; y) = f?g and c0�(x; y) = 1. Note that a
di�erent minimal deterministic wta was obtained in [21]; note that this di�erent wta cannot be
obtained by our algorithm (since all transitions not involving NP and NN are essentially kept).

Conclusion and open problems

We presented the �rst polynomial-time minimization algorithm for deterministic weighted tree
automata over semi�elds. If we suppose that the semi�eld operations can be performed in con-
stant time, then our algorithm runs in time O(rmn4). In fact, our algorithm works equally well
for wta with �nal states (i.e., �q 2 f0; 1g for every q 2 Q) because it then returns a mini-
mal equivalent wta with �nal states. This contrasts the situation encountered with the pushing
strategy of [23, 24], which needs �nal weights in general.

Finally, let us mention some open problems. Can a Hopcroft-like strategy [26] improve
the presented algorithm? A more detailed complexity analysis should be conducted to obtain
a tighter bound on the time complexity of the algorithm. Can minimization be performed in a
similar manner as presented in [23, 24] for deterministic weighted string automata? This might
lead to an algorithm that outperforms our algorithm. Finally, the theoretical foundations for
minimization of (even nondeterministic) weighted tree automata over �elds have been laid in [1,
17], but to the author's knowledge a polynomial-time minimization algorithm is still missing.

References

1. Bozapalidis, S., Louscou-Bozapalidou, O.: The rank of a formal tree power series. Theoret. Comput.
Sci. 27(1{2) (1983) 211{215

2. Bozapalidis, S.: Equational elements in additive algebras. Theory Comput. Systems 32(1) (1999)
1{33

3. Kuich, W.: Formal power series over trees. In: Proc. 3rd Int. Conf. Developments in Language
Theory, Aristotle University of Thessaloniki (1998) 61{101

4. Borchardt, B., Vogler, H.: Determinization of �nite state weighted tree automata. J. Autom. Lang.
Combin. 8(3) (2003) 417{463

5. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. Volume 5 of Monographs in Theoretical
Computer Science. An EATCS Series. Springer (1986)

6. G�ecseg, F., Steinby, M.: Tree Automata. Akad�emiai Kiad�o, Budapest (1984)
7. G�ecseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages. Volume 3. Springer

(1997) 1{68
8. Graehl, J.: Carmel �nite-state toolkit. ISI/USC, http://www.isi.edu/licensed-sw/carmel. (1997)
9. Frishert, M., Cleophas, L.G., Watson, B.W.: Fire station: An environment for manipulating �nite

automata and regular expression views. In: Proc. 9th Int. Conf. Implementation and Application of
Automata. Volume 3317 of LNCS., Springer (2004) 125{133

10. Allauzen, C., Riley, M., Schalkwyk, J., Skut, W., Mohri, M.: OpenFst | a general and e�cient
weighted �nite-state transducer library. In: Proc. 12th Int. Conf. Implementation and Application
of Automata. Volume 4783 of LNCS., Springer (2007) 11{23

11. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing.
In: Proc. 6th Int. Conf. Computer Linguistics and Intelligent Text Processing. Volume 3406 of LNCS.,
Springer (2005) 1{24

12. May, J., Knight, K.: Tiburon: A weighted tree automata toolkit. In: Proc. 11th Int. Conf. Imple-
mentation and Application of Automata. Volume 4094 of LNCS., Springer (2006) 102{113

13. Borchardt, B.: The Theory of Recognizable Tree Series. PhD thesis, Technische Universit�at Dresden
(2005)

14. May, J., Knight, K.: A better n-best list: Practical determinization of weighted �nite tree automata.
In: Proc. North American Chapter of the Association for Computational Linguistics. (2006) 351{358

15. Borchardt, B.: The Myhill-Nerode theorem for recognizable tree series. In: Proc. 7th Int. Conf.
Developments in Language Theory. Volume 2710 of LNCS., Springer (2003) 146{158

16. Borchardt, B.: A pumping lemma and decidability problems for recognizable tree series. Acta
Cybernet. 16(4) (2004) 509{544

17. Bozapalidis, S.: E�ective construction of the syntactic algebra of a recognizable series on trees. Acta
Inform. 28(4) (1991) 351{363

18. Angluin, D.: Learning regular sets from queries and counterexamples. Inform. and Comput. 75(2)
(1987) 87{106

19. Habrard, A., Oncina, J.: Learning multiplicity tree automata. In: Proc. 8th Int. Colloquium Gram-
matical Inference. Volume 4201 of LNAI., Springer (2006) 268{280

20. Drewes, F., Vogler, H.: Learning deterministically recognizable tree series. J. Autom. Lang. Combin.
(2007) to appear.

21. Maletti, A.: Learning deterministically recognizable tree series | revisited. In: Proc. 2nd Int. Conf.
Algebraic Informatics. Volume 4728 of LNCS., Springer (2007) 218{235

22. Seidl, H.: Deciding equivalence of �nite tree automata. SIAM J. Comput. 19(3) (1990) 424{437
23. Mohri, M.: Minimization algorithms for sequential transducers. Theoret. Comput. Sci. 234(1{2)

(2000) 177{201
24. Eisner, J.: Simpler and more general minimization for weighted �nite-state automata. In: Human

Language Technology Conf. of the North American Chapter of the Association for Computational
Linguistics. (2003) 64{71

25. Comon-Lundh, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree automata|techniques and applications. see: http://tata.gforge.inria.fr/ (2007)

26. Hopcroft, J.E.: An n logn algorithm for minimizing states in a �nite automaton. In: Theory of
Machines and Computations. Academic Press (1971) 189{196

