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Abstract. We investigate the tree-series-to-tree-series (ts-ts) transfor-
mation computed by tree series transducers. Unless the used semiring is
complete, this transformation is, in general, not well-defined. In practice,
many used semirings are not complete (like the probability semiring). We
establish a syntactical condition that guarantees well-definedness of the
ts-ts transformation in arbitrary commutative semirings. For positive
(i. €., zero-sum and zero-divisor free) semirings the condition actually
characterizes the well-definedness, so that well-definedness is decidable
in this scenario.

1 Introduction

Tree series transducers [1,2] are a generalization of tree transducers [3—
7]. The framework TIBURON [8] implements a generalization of top-down
tree series transducers [2] using various weight structures such as the
BOOLEAN semiring ({0,1},V,A) and the probability semiring (R, +, ).
Such tree series transducers compute both a tree-to-tree-series (t-ts) and
a tree-series-to-tree-series (ts-ts) transformation, where a tree series is
a mapping assigning a weight to each tree. The t-ts transformation is
always well-defined, but the ts-ts transformation is well-defined only for
complete semirings [9,10] such as the BOOLEAN semiring. However, for
the probability semiring the ts-ts transformation need not be well-defined
because infinite sums might occur. Of course, some incomplete semirings
(e. g., positive semirings) can be extended by a new element oo, which
is the result of all nontrivial infinite sums. However, such a definition is
clearly not practical and does not work for the probability semiring.

A standard application of the ts-ts transformation is the computation
of the image of a recognizable tree series [11-14]. This is, for example,
used to translate a language model (parses of an input sentence) to a
language model (resp., parses of output sentences) in another language.
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For some tree series transducers the image is again a recognizable tree
series [15, 16]. In fact, the image operation is implemented in TIBURON for
the BOOLEAN semiring. However, in the probability semiring, the image
operation is only meaningful if the ts-ts transformation is well-defined.

In this contribution we investigate for which tree series transducers
the ts-ts transformation is well-defined following the approach of [17,18]
for weighted finite-state transducers. To this end, we develop a general
notion of convergence that can serve as a baseline for all semirings. More
refined notions for particular semirings can be derived in the same man-
ner. Thereafter we present a syntactical condition, which in general, guar-
antees that the ts-ts transformation is well-defined (using the baseline
notion of convergence mentioned). In fact, the condition is such that we
obtain a characterization for certain tree series transducers over positive
(i. e., zero-sum and zero-divisor free) semirings. This yields that well-
definedness of the ts-ts transformation is decidable for certain tree series
transducers over positive semirings. This also applies to tree series trans-
ducers over the BOOLEAN semiring (i. e., tree transducers).

2 Preliminaries

The nonnegative integers are denoted by N and N, = N\ {0}. We use
[k,n] for {i | k < i < n} where the ¢ are either integers or reals depending
on the context. In the former case, we abbreviate [1,n] to [n]. An alphabet
is a finite set of symbols. A ranked alphabet is an alphabet 3 together with
a mapping rk: X — N, which assigns to each symbol a rank. The set of
symbols of rank k is denoted by Y. For convenience we assume fixed sets
X={x;|7€N,} and Z = {2 | t € N} of variables. For k € N we use
X ={x; |7 € [k]} and Z, = {z; | i € [k]}. Given V C XUZ, the set T (V)
of X-trees indexed by V is the smallest set T such that V C T and for
every 0 € Xy and ty,...,t € T also o(t1,...,tg) € T. We generally
assume that X U Z is disjoint with any considered ranked alphabet, so
we usually write « instead of «() whenever o € Y. Moreover, we also
use Ty for T (0). Let t,tq,...,tx € Tx(Z). We denote by t[t1,..., 1] the
tree obtained from ¢ by replacing for every i € [k| every z;-leaf in ¢ by the
tree t;. The tree t is nondeleting (resp., linear) in V C Z, if each v € V
occurs at least (resp., at most) once in £. The set of variables occurring
in ¢ is var(t) and the size of ¢ (i. e., the number of nodes in t) is size(t).
Finally, the height of a tree is inductively defined by height(v) = 1 for
every v € V and height(o(t1,...,t)) = 1 + max{height(¢;) | 7 € [k]} for
every 0 € X and t1,...,t, € Tx(V).



An algebraic structure (A, +) is a monoid if 4+ is an associative (bi-
nary) operation on A that permits a neutral element. A (commutative)
semiring (A, +,-) consists of two commutative monoids (A, +) and (A4, )
such that - distributes over + and the neutral element 0 of (A, +) is ab-
sorbing with respect to - (i.e., a-0 =0 = 0-a for every a € A). The
neutral element of an additive operation is usually denoted by 0 and that
of multiplicative operation by 1. We also use the summation } ,_; a; for
an index set I and a family (a; | ¢ € T) of semiring elements. Such a sum-
mation is well-defined if a; = 0 for almost all 4 € I. The actual sum is
then defined in the obvious way. A semiring A = (A, +,-) is zero-sum
free, whenever a + b = 0 implies that a = 0 for every a,b € A, and zero-
divisor free, whenever @ - b = 0 implies that 0 € {a,b}. A zero-sum and
zero-divisor free semiring is positive.

Let A = (A, +,") be a semiring. Every mapping ¢: T'— A for some
T CTx(V) is a tree series. We denote the set of those by A(T")). We usu-
ally write the coefficient o(t) of t in ¢ as (p,t). Moreover, we write ¢ as
the formal sum ), (¢, t) t. We extend both operations of A componen-
twise to tree series, i. e., (¢ +1,t) = (¢, t) + (¢, t) for every o, € A(T))
and t € T. The support of ¢ is supp(¢) = {t | (p,t) # 0}. The set of
tree series with finite support is denoted by A(T). For every a € A, the
tree series @ is such that (a,¢) = a for every ¢ € T. The tree series ¢ is
nondeleting (resp., linear) in V| if every t € supp(¢) is nondeleting (resp.,
linear) in V. We use var(i) as a shorthand for (J;eq,pp(e) var(t).

Let ¢ € A(Ta(Z)) and ¢1,...,¢r € A(TA(Z)). The pure substitu-
tion [19,2] of (¢1,...,1) into ¢ is defined by

(b1, o) = S (e t@ntn) - (W te) b, t]

tt1 stk €TA(Z)

Let A be a semiring, 3’ and A be ranked alphabets, and @) a finite
set. A (polynomial) representation [2] is a family p = (ug | k € N) of
i Xy — A(Ta(2))9*(@*X6)" guch that for every o € X and ¢ € Q

(i) pe(0)gw € ATa(Zyy)) for every w € (Q x Xi)* and
(ii) 11x(0)gw = O for almost all w € (Q x X;)*.

A (polynomial) tree series transducer [1,2] is a tuple (Q, X, A, A, I, u)
such that p is a representation and I C Q. It is top-down (resp., bottom-
up) [2] if p1g(0)qw is nondeleting and linear in Z, [resp., if there exist
qi,---,qr € Q such that w = (q1,x1) - - - (qk, xx)] for every o € Xy, q € Q,
and w € (Q x Xj)* such that pug(0)gw # 0. Let hy: Tr — A(TA)? be



defined for every o € Xy, t1,...,t € Iy, and ¢ € Q by

hu(a(tl,---,tk))q = Z /'[’k(o—)(Ia"U(_(hM(til)QI"“’h’,u(tin)%‘b) :

we(QxXp)*,
w:(ql sXiq )"'(anxin)

The transducer M computes the free-to-tree-series transformation (t-ts
transformation) 7a7: Tv — A{Th)) defined by 7ar(t) = > c; hu(t)q for
every ¢t € Ix. Both h, and the t-ts transformation 7y, are well-defined. Fi-
nally, the tree-series-to-tree-series transformation (ts-ts transformation)
computed by M is Tar(p) = D eq (9,1) - T (t) for every ¢ € A(Tx),
whenever this sum is well-defined. We say that 737 is well-defined when-
ever T (¢p) is well-defined for every ¢ € A(Tx)).

3 Convergence

In this section, we will explore when the ts-ts transformation of a tree
series transducer M = (Q, X, A, A, I, 1) is well-defined. Roughly speak-
ing, it is well-defined if every output tree v € T)A can be generated [i. e.,
u € supp(7a(t))] by only finitely many input trees ¢ € Tx. Note that
our definition of well-definedness works in any semiring; for particular
semirings like (R, +,+,0,1) other notions of well-definedness (or equiva-
lently, convergence) might be more realistic. However, those more refined
notions typically include our notion of well-definedness (i. e., any sum
that is well-defined according to our definition is also well-defined in the
refined setting and the sums coincide), so that our approach can be seen
as a general baseline. We first show that 7,7 is well-defined if and only if
v (1) is well-defined. Thus, subsequent investigations need not consider
the actual input tree series.

Proposition 1. The ts-ts transformation Ty is well-defined if and only
if T (1) is well-defined.

Proof. Let ¢ € A(1x)) and u € Ta. One direction is trivial. In the
other direction, the sum 7y/(1) is well-defined by assumption. Hence,
(tp(t),w) = 0 for almost all ¢t € T'y,. Thus, 7as(¢) is well-defined. 0

Let us take a closer look at 7/(1). By definition, it is D, 7 7a(2).
This is well-defined if it is not possible to transform large (with respect
to the size) input trees to small output trees. Let us introduce the no-
tion of convergence [18] that we will use. For every ¢ € A{(TA(Z))) let
ol = maxyegupp(yp) size(t)~!. We call ||¢]|| the norm of . Intuitively, the



norm of ¢ is the inverse of the size of a smallest tree in the support of .
Thus, the norm of 0 is 0.

Proposition 2. For every ¢,v € A(TA(Z))

(i) llell = 0 if and only if ¢ = 0.
(i) Nlo + 9l < llpll + Nl

Actually, it can be shown that ||-|| is a monoid-homomorphism from
(A(TA(Z)),+) to (]0,1], max) if A is zero-sum free. We derive the dis-
tance dj.| on A{Ta(Z))), which is given by dy;(¢,%) = | l|lell — [|¢[ | for

every ¢, 4 € A(Ta(2))-

Proposition 3. The distance d defines a pseudometric on A(Ta(Z))).

With the help of this pseudometric, we can now introduce the usual
notion of CAuUcHY-convergence for sequences of tree series.

Definition 4. Let ¥ = (¢; | i € N) be a family of ; € A(Ta(Z)). It
converges (using the pseudometric d ) if

(3 € A(TA(Z)) (Ve > 0)(Fje € N)(V] > )= djpy (95, 9) < e .

If ¥ converges, then ¥ in the above display is a limit of ¥ and we say
that ¥ converges to v or symbolically ¥ — .

Convergence to 0 will play a central role. In fact, ¥ converges to 0if

(Vn € N)(Jj, € N)(Vj > jn): min size(t) >n .
tesupp(y;)
Let T = (t; | i € N) be a family of ¢; € Tx. It is an enumeration of Ty, if
for every ¢ € T's; there exists exactly one 7 € N such that ¢; = ¢, and it is
size-compliant if size(t;) < size(t;) for all i < j. We write 7,(T) for the

family (7ar(¢;) | @ € N). Next we characterize when 7a/(1) is well-defined
in terms of size-compliant enumerations.

Theorem 5. The following are equivalent:

(i) Ta is well-defined.
(i) Tm(T) — 0 for every size-compliant enumeration T of Ty;.
(i1i) Tp(T) — O for some size-compliant enumeration T of Tx.

Proof. The existence of at least one size-compliant enumeration of Ty is
self-evident, so (ii) clearly implies (iii). Let us assume that there exists a
size-compliant enumeration T' = (¢; | ¢ € N) such that 73;(T) converges
to 0. We know that for every n € N there exists a j, € N such that



for all j > jn we have that min,cgupp(ry,(¢)) Size(u) > n, or equivalently,
u ¢ supp(7ar(t;)) for all u € Ty with size(u) < n. In particular, for every
u € T there exists n, € N such that u ¢ supp(7a(t,)) for all n > n,.
Thus, 73/(1) and by Proposition 1 also 73, are well-defined.

Conversely, suppose that 73y and hence TM(T) are well-defined (see
Proposition 1). There exists a finite subset S,, C T for every tree u € Th
such that u ¢ supp(7as(¢)) forevery ¢t ¢ Sy. Let n € Nand T = (¢; | i € N)
be a size-compliant enumeration of Tx. Let U, = {u € T | size(u) < n}
and S, = UueUn Sy. Clearly, U, and thus also S, are finite. Finally, let
My = Maxeg, size(t) + 1 and j, be an index such that size(t;,) > m.,.
It remains to prove that mingegupp(ry(t;)) size(u) > n for every j > jp.
Suppose that v € supp(7a(t;)) and size(u) < n. Thus u € U,. By this,
we obtain that ¢; € S, and t; € S,. It follows that m, > size(t;) + 1.
By the size-compliance condition, size(t;) > size(t;,) > m,. With the
previous inequality, we obtain size(t;) > size(t;) + 1. Thus, there exists
no u € supp(7ar(t;)) with size(u) < n, which proves that 7a/(T') — 0. O

The previous theorem is clear if A is zero-sum free, but in other cases
one might be tempted to assume that the theorem only holds because of
our peculiar (or even deficient) definition of well-defined sums. Let us show
on an example that this is indeed not the case. Let X = A = {1, a0}
and A = Z. Moreover, let 73/(t) = (—1)/h o. Now one might argue that
(1) is well-defined and equal to 0 because T (7" (@))+71ar (7" H(a)) = 0
for every even n. However, the last property also holds for each odd n,
which yields 757(1) = T (@) + 2 en foy TM (1) = Tar(e). Thus, we argued
for two different results of the sum, which shows that it is not well-defined.

4 Towards a syntactical property

Next, we present a syntactic condition that guarantees that the ts-ts
transformation computed by a tree series transducer is well-defined. Let
M = (Q,X, A A I u) be a tree series transducer. Note that we could
reduce the problem to unweighted tree transducers, but we avoid this for
two reasons: (i) It is rather unintuitive that \/;.y1 is not well-defined
in the BOOLEAN semiring ({0,1},V,A) and (ii) we lack the space to in-
troduce them (using the standard set notation). We generally follow the
approach of [17,18] by the analysis is slightly more complicated by the
tree structure. First we introduce some important notions like the depen-
dency relations P,R C @ x Q. For every p,q € Q, let (p,q) € P (resp.,

(p.q) € R) if z; € supp(pk(0)puw (resp., supp(ug(o)pw) # ) for some
o€ X and w € (Q x X;)* such that w; = (¢,x;) for some 1 < j < |w].



Let C and C (resp., < and <) be the transitive and reflexive, transitive
closure of P (resp., of R), respectively. Note that in general C and < are
not partial orders. Then the following definitions are natural (note that
our reading is top-down).

Definition 6. Let g € Q.

— If qC q (resp., q < q), then q is circular (resp., self-replicating).

— If there exists p € I such that p < q, then ¢ is accessible.

— If there exist p € Q and o € Xy such that po(a), . # 0 and ¢ < p,
then g s co-accessible.

The tree series transducer M 1is reduced if every state is accessible and
co-acceessible. Finally, M 1s non-circular if no state g € Q is circular.

Note that 7 is trivially well-defined if M has no self-replicating state
(the latter can easily be checked). In the sequel, we assume that M has
at least one self-replicating state. It is also obvious that we can construct
a reduced tree series transducer M’ that is equivalent to M. We simply
remove all states that are not accessible or not co-accessible. It should be
clear that this procedure does not change the computed tree series.

Proposition 7. There exists a reduced tree series transducer M' such
that Tap = Tar.

Next, we introduce an essential notion: deletion points. A deletion
point is a pair (p,q) of states such that one of the transitions into p
deletes a subtree potentially processed in q.

Definition 8. We say that (p,q) € Q? is a deletion point if there exist
o€ X, we (QxXy)", u€supp(ur(o)pw), and i € [k] such that

— there does not exist 1 < j < |w| and r € Q such that wj = (r,%;), or
— z; ¢ var(u) for some 1 < j < |w| such that wj = (g, x;).

The conditions could be called input- and output-deleting, respectively.

Note that top-down and bottom-up tree series transducers have a
deletion point if and only if they are deleting [2]. Note that if a top-
down tree transducer has the deletion point (p,q), then it also has the
deletion point (p,r) for every r € Q. Let us illustrate the notion on a
small example.

Ezample 9. Let M = ({x, L}, X, ¥ N, {x}, 1) be the tree series trans-
ducer with ¥ = {¢®, a0} and



po(@)pe = la 12(0) 1 (1 x1)(1Lxe) = L o(21,22)

12(0) s, (aix0) (Lixo) = L 0(21,0)  12(0) 0 (Lixy) (o) = 1 0(t, 22)
for every p,q € {x, L}. Then only (x, L) is a deletion point.

Definition 10 (see, e. g., [18]). The tree series transducer M is reg-
ulated if it is non-circular and there exists no deletion point (p,q) such
that ¢ < r for some self-replicating r € Q.

Note that it is clearly decidable whether a tree series transducer is
regulated. A regulated top-down tree series transducer is nondeleting [2].
This is due to the fact that a deleting top-down tree series transducer has
a deletion point (p,q) and thus also the deletion point (p,r) where r is a
self-replicating state.

Theorem 11. Let M be a regulated tree series transducer. Then Tas 1
well-defined.

Proof. Let M = (Q, X, A, A, I, 1). By Theorem 5, it is sufficient to show
that for an arbitrary size-compliant enumeration T' = (¢; | ¢ € N) the fam-
ily 727(T) converges to 0. Let mx = max{k | £} # 0} and n = card(Q).
We will prove that |height(t)/n] — n < height(u) for every t € Tx
and u € supp(7as(t)). Consider a maximal path in ¢ (which defines the
height). Since M is non-circular, it may erase at most n — 1 input sym-
bols along this path before it produces output. It might also decide to
delete the translation incurred along a suffix of the path. However, the
length of such a suffix is limited by n because otherwise M has a dele-
tion point that leads to a self-replicating state. Note that if M is a top-
down tree series transducer, then it may not delete (because regulated
implies nondeletion). Thus, in this case the bound could be improved
to | height(¢)/n| < height(u). The formal proof of both bounds is straight-
forward and hence omitted. With the given lower bound, it is clear that
7 (T) converges to 0 because height(u) < size(u) for every u € T and
size(t) < mx"EM () for every ¢ € Ty. Thus, 7 is well-defined. O

We will show the converse only for positive semirings. The main ben-
efit of this approach is that the problem can essentially be reduced to
unweighted transducers. We need an additional notion. The tree series
transducer M is input-linear if for every ¢ € Q, 0 € Xy, and w € (QxXp)*
such that pg(0)gw # 0 there exists at most one 1 < j < |w| such that
wj = (p,z) for every z € X;. Note that bottom-up implies input-linear.
The following lemma shows that every tree series transducer can be turned



into an input-nondeleting one (see Definition 8). In fact, we will only need
it for input-linear tree series transducers.

Lemma 12 (see [20, Lemma 1(1)]). If M is input-linear, then there
exists a bottom-up tree series transducer M’ such that Ty = 7.

Proof. 1t follows directly by reconsidering the proof of [20, Lemma 1(1)].
The top-down tree series transducer constructed in this proof will be the
identity if M is input-linear (as already noted before [20, Theorem 4]).
Finally, note that the completeness-assumption is not necessary in our
case because our tree series transducers are always polynomial [20]. O

Consequently, we will only deal with bottom-up tree series transduc-
ers. For those there exists a decomposition result [2, Lemma 5.6], which
states that every bottom-up tree series transducer can be decomposed
into a relabeling tree series transducer and a {0, 1}-weighted homomor-
phism tree series transducer (see [2] for the definitions of those notions).
Roughly speaking, the relabeling tree series transducer annotates each
node of the input tree by an applicable entry of p. Such relabeled in-
put trees are called runs. The homomorphism then simply evaluates the
run thereby creating the output tree. We use this decomposition in the
following informal argument.

Lemma 13. Let M be a reduced bottom-up tree series transducer over a
positive semiring. If Tar is well-defined, then M is regulated.

Proof. Suppose that M = (Q, X, A, A, I, 1) is not regulated. Since A is
positive, we restrict ourselves to the unweighted (i. e., BOOLEAN-semiring
weighted) bottom-up tree transducer M’ obtained by replacing every
nonzero semiring coefficient in 4 by 1. By a minor extension of [21,
Corollary 3] we have supp(7az (t)) = supp(ras(t)) for every t € Tx. We
will identify M and M’ in the following discussion. If M has a deletion
point (p, q), then there exists a subtree u of a run, which is deleted by
the evaluation homomorphism, because p is accessible and co-accessible.
Note that we can replace u by any run that arrives in the state p at the
root. If there exists a self-replicating state r such that p < r, then it is
immediately clear that there exist infinitely many such runs, and conse-
quently, infinitely many suitable input trees. Since the subrun is deleted
all those input trees can be transformed to the same output tree. On the
other hand, if M is circular, then we can transform infinitely many input
trees into the same output tree by using the circle any number of times.
The formal proof is again straightforward and omitted. O



Theorem 14. Let M be a reduced input-linear tree series transducer over
a positive semiring. Then Ty is well-defined if and only of M 1is regulated.

Proof. Tt follows from Theorem 11 and Lemmata 12 and 13. O
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