
Syntax-Directed Translations and

Quasi-alphabetic Tree Bimorphisms � Revisited

Andreas Maletti? and C t lin Ionuµ Tîrn uc ??

Universitat Rovira i Virgili
Departament de Filologies Romàniques

Av. Catalunya 35, 43002 Tarragona, Spain
andreas.maletti@urv.cat

catalinionut.tirnauca@estudiants.urv.cat

Abstract. Quasi-alphabetic tree bimorphisms [Steinby, Tîrn uc :
De�ning syntax-directed translations by tree bimorphisms. Theor. Com-

put. Sci., to appear. http://dx.doi.org/10.1016/j.tcs.2009.03.009,
2009] are reconsidered. It is known that the class of (string) transla-
tions de�ned by such bimorphisms coincides with the class of syntax-
directed translations. This result is extended to a smaller class of tree
bimorphisms namely (linear and complete) symbol-to-symbol tree bi-
morphisms. Moreover, it is shown that the class of simple syntax-directed
translations coincides with the class of translations de�ned by alphabetic
tree bimorphisms (also known as �nite-state relabelings). This proves
that alphabetic tree bimorphisms are not su�ciently powerful to model
all syntax-directed translations. Finally, it is shown that the class of tree
transformations de�ned by quasi-alphabetic tree bimorphisms is closed
under composition. The corresponding result is known in the variable-free
case. Overall, the main results of [Steinby,Tîrn uc] are strengthened.

Key words: syntax-directed translation, regular tree language, tree bi-
morphism, natural language processing

1 Introduction

The �eld of syntax-based machine translation was established by the de-
manding need of systems used in practical translations between natural
languages (for example, Arabic to English). Modern systems should be
able to perform local rotations and capture syntax-sensitive transforma-
tions (i.e, tree transformations). Another important property that such a
system should possess is composability. This property allows us to split

? This author was �nancially supported by the Ministerio de Educación y Ciencia

(MEC) grant JDCI-2007-760.
?? This author is indebted to the MEC project MTM-2007-63422 which made this work

possible.

the system into subsystems, which are easier to handle, train, and study.
Those subsystems can then be assembled into a large system by an auto-
matic composition construction [1, 2].

Two powerful tools that de�ne tree transformations have been pro-
posed during the past decades in the formal language community: tree
transducers and tree bimorphisms (see [3, 4] for surveys). The former de-
vices are operational and easy to implement but closure under composition
only holds for few classes of tree transformations [5, 3, 2]. This closure is
easier to establish using the latter devices by imposing suitable restric-
tions on their constituents [6�9], but tree bimorphisms are more di�cult
to implement. More precisely, a tree bimorphism is formed by two tree
homomorphisms and a center tree language. The tree transformation is
obtained by applying both homomorphisms to elements of the center tree
language. One homomorphism yields the input tree and the other homo-
morphism yields the corresponding output tree. If we take the yield of the
input and output tree, then we obtain a (string) translation.

Synchronous grammars [10�12] are another way to de�ne tree trans-
formations. They easily capture even di�cult local rotations that are re-
quired by pairs of natural languages with very di�erent syntax-structures
(e.g., Chinese and English). A synchronous grammar basically consists of
two grammars, in which the productions have associated nonterminals.
The derivations are then obtained by applying two suitable rules, one of
each grammar, to associated nonterminals. Again one side produces the
input tree and the other side produces the output tree in this fashion. Un-
fortunately, few closure under composition results were known about such
grammars until [13] related synchronous grammars and tree bimorphisms.

One synchronous grammar device is the syntax-directed translation
schema (SDTS), which appeared �rst as a simple model of a compiler [10]
(see [14] for a survey). In the spirit of [13], quasi-alphabetic tree bimor-
phisms [15] were shown to be as powerful as SDTSs for string translations.
Moreover, for quasi-alphabetic tree bimorphisms, in which the center tree
language does not permit variables, the class of tree transformations (and
thus also the class of string translations) de�ned by them is shown to be
closed under composition [15].

Here we sharpen the connection between SDTSs and tree bimorphisms.
The class of all translations de�ned by SDTSs coincides with the class of
all translations de�ned by (linear and complete) symbol-to-symbol tree
bimorphisms (see Section 3). The latter devices de�ne a strictly smaller
class of tree transformations than quasi-alphabetic tree bimorphisms. In
addition, simple SDTSs [16, 17] are equally powerful as alphabetic tree

bimorphisms [3] (�nite-state relabelings [5]). Finally, we strengthen the
closure under composition result of quasi-alphabetic tree bimorphisms by
showing that the class of tree transformations de�ned by them remains
closed under composition even if we allow variables in the center tree
language (see Section 4).

2 Preliminaries

The nonnegative integers are denoted by IN. For every k ∈ IN, the set
{i ∈ IN | 1 6 i 6 k} is denoted by [k]. Let R, S, and T be sets and
ρ ⊆ R × S a relation. We occasionally write r ρ s instead of (r, s) ∈ ρ.
The inverse of ρ is ρ−1 = {(s, r) | r ρ s} and the re�exive and transitive
closure of % is denoted by %∗. The composition of ρ with τ ⊆ S × T is
ρ ; τ = {(r, t) | ∃s ∈ S : r ρ s τ t}. Finally, |S| is the cardinality of the
(�nite) set S.

For a set V , we denote by V ∗ the set of all strings over V and by ε
the empty string. An alphabet is a �nite set (of symbols). A ranked alpha-

bet (Σ, rk) is an alphabet Σ together with a mapping rk : Σ → IN. Often
we leave rk implicit. For every k ∈ IN, let Σk = {f ∈ Σ | rk(f) = k}.

Let Σ be a ranked alphabet and T a set. Then

Σ(T) = {f(t1, . . . , tk) | f ∈ Σk, t1, . . . , tk ∈ T} .

The set TΣ(V) of all Σ-trees indexed by variables V is the smallest set T
such that V ⊆ T and Σ(T) ⊆ T . Subsets of TΣ(V) are tree languages.
Such a tree language L is variable-free (respectively, almost variable-free)
if L ⊆ TΣ (respectively, L ⊆ TΣ ∪ V). Generally, for all considered
trees t ∈ TΣ(V) we assume that Σ ∩ V = ∅, so that we can safely
write c instead of c() for every c ∈ Σ0. For every tree t ∈ TΣ(V), the
set pos(t) ⊆ IN∗ of positions of t is inductively de�ned by pos(v) = {ε}
for every v ∈ V , and

pos(f(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)}

for every f ∈ Σk and t1, . . . , tk ∈ TΣ(V). Let w ∈ pos(t). The label

of t at w, the subtree of t at w, and the replacement of that subtree
by s ∈ TΣ(V) are denoted by t(w), by t|w, and by t[s]w, respectively.

A tree t ∈ TΣ(V) is linear (respectively, nondeleting) in Y ⊆ V if every
y ∈ Y occurs at most (respectively, at least) once in t. Let D ⊆ V ∪ Σ0.
The D-yield of t is de�ned inductively by ydD(d) = d for every d ∈ D,
ydD(v) = ε for every v ∈ V \D, and

ydD(f(t1, . . . , tk)) = ydD(t1) · · · ydD(tk)

for every f ∈ Σk \D and t1, . . . , tk ∈ TΣ(V).
We �x a set X = {xi | i > 1} of formal variables (disjoint to all

other ranked alphabets and variables considered). For every n ∈ IN, we
let Xn = {xi | i ∈ [n]}. For all t, t1, . . . , tn ∈ TΣ(V ∪ Xn), we denote
by t[t1, . . . , tn] the result obtained by replacing, for every i ∈ [n], every
occurrence of xi in t by ti. For every v ∈ V , we denote by t[v ← (t1, . . . , tn)]
the result of replacing, for every i ∈ [n], the i-th (with respect to the
lexicographic order on the positions) occurrence of v by ti.

A regular tree grammar is a tuple G = (N,Σ, V, P, S) consisting of

� an alphabet N of nonterminal symbols such that N ∩ (Σ ∪ V) = ∅,
� a �nite set P of productions of the form A → r where A ∈ N and
r ∈ TΣ(N ∪ V), and

� a start symbol S ∈ N .

The size of G, denoted by |G|, is |G| = |P |. For any s, t ∈ TΣ(N ∪ V), we
write s⇒G t if there exists A→ r ∈ P such that t can be obtained from s
by replacing one occurrence of A by r. The tree language generated by
G is L(G) = {t ∈ TΣ(V) | S ⇒∗G t}. A tree language L is recognizable if
there exists a regular tree grammar G such that L = L(G). The family of
all recognizable (respectively, recognizable variable-free and recognizable
almost variable-free) tree languages is denoted by Rec (respectively, Recvf
and Recavf).

A tree homomorphism ϕ : TΣ(V) → T∆(Y) can be presented by a
mapping ϕV : V → T∆(Y) and mappings ϕk : Σk → T∆(Y ∪Xk) for every
k ∈ IN as follows:

� vϕ = ϕV (v) for every v ∈ V , and
� f(t1, . . . , tk)ϕ = ϕk(f)[t1ϕ, . . . , tkϕ] for every t1, . . . , tk ∈ TΣ(V) and
f ∈ Σk.

We say that it is normalized if for every f ∈ Σk there exists n ∈ IN such
that ydX(ϕk(f)) = x1 · · ·xn. Moreover, such a homomorphism ϕ is

� linear [3, 7, 18] (respectively, complete [18]) if ϕk(f) is linear (respec-
tively, nondeleting) in Xk for every f ∈ Σk,

� quasi-alphabetic [15] if it is linear and complete, ϕV (v) ∈ Y for every
v ∈ V , and ϕk(f) ∈ ∆(Y ∪Xk) for every f ∈ Σk,

� symbol-to-symbol [18] if it is quasi-alphabetic and ϕk(f) ∈ ∆(Xk) for
every f ∈ Σk, and

� alphabetic [3, 18] if it is symbol-to-symbol and normalized.

Note that our `symbol-to-symbol' corresponds to �linear, complete, and
symbol-to-symbol� of [18], and `alphabetic' homomorphisms are some-
times called relabelings [5]. We denote by qaH, ssH, and aH the classes
of all quasi-alphabetic, symbol-to-symbol, and alphabetic tree homomor-
phisms, respectively.

A tree bimorphism is a triple B = (ϕ,L, ψ) where L ⊆ TΓ (Z) is
a tree language, ϕ : TΓ (Z) → TΣ(V) and ψ : TΓ (Z) → T∆(Y) are tree
homomorphisms, called input and output homomorphism, respectively.
The size of B, denoted by |B|, is de�ned to be the size of a representation
(e.g., by a regular tree grammar) of L. The tree transformation de�ned

by B is τB = {(tϕ, tψ) | t ∈ L}. We reserve the special variable e. The
translation de�ned by B is

yd(τB) = {(ydV \{e}(s), ydY \{e}(t)) | (s, t) ∈ τB} .

Note the special treatment of e. It is never output but acts as the empty
string. For all classes H1 and H2 of tree homomorphisms and every class
L of tree languages, we denote by B(H1,L,H2) the class of tree transfor-
mations τB where B = (ϕ,L, ψ) with ϕ ∈ H1, L ∈ L, and ψ ∈ H2. In
particular, we say that a tree bimorphism (ϕ,L, ψ) is quasi-alphabetic (re-
spectively, symbol-to-symbol, alphabetic, and normalized) if both ϕ and ψ
have this property and L ∈ Rec. Moreover, a bimorphism (ϕ,L, ψ) is
variable-free (respectively, almost variable-free) if L is so.

A system M = (Q,Σ,∆, F,R) is a bottom-up tree transducer [19, 5] if

� Q = Q1 is a unary ranked alphabet of states,

� Σ and ∆ are an input and an output alphabet, respectively,

� F ⊆ Q is a set of �nal states, and

� R is a �nite set of rules of the form f(q1(x1), . . . , qk(xk)) → r where
f ∈ Σk, q1, . . . , qk ∈ Q, and r ∈ Q(T∆(Xk)).

The bottom-up tree transducer M = (Q,Σ,∆, F,R) is linear (respec-
tively, nondeleting) if r is linear (respectively, nondeleting) in Xk for every
f(q1(x1), . . . , qk(xk)) → r ∈ R. The one-step derivation relation ⇒M is
de�ned as follows. For every ζ, ξ ∈ TΣ(Q(T∆)) we have ζ ⇒M ξ if and only
if there exists a rule f(q1(x1), . . . , qk(xk))→ r ∈ R, a position w ∈ pos(ζ),
and s1, . . . , sk ∈ T∆ such that ζ|w = f(q1(s1), . . . , qk(sk)) and ξ = ζ[s]w
with s = r[s1, . . . , sn]. The tree transformation computed by M is

τM = {(s, t) ∈ TΣ × T∆ | ∃q ∈ F : s⇒∗M q(t)} .

3 Syntax-directed Translation Schema

In this section, we explore the connection between quasi-alphabetic tree bi-
morphisms and syntax-directed translation schemata (SDTSs) [10, 16, 17].
It was shown in [15] that quasi-alphabetic tree bimorphisms and SDTSs
are equally powerful when we consider them as translation devices for
strings. This close connection is the main motivation for quasi-alphabetic
tree bimorphisms [15]. Here we show that the mentioned connection al-
ready holds between SDTSs and symbol-to-symbol tree bimorphisms, a
class that is smaller and well-known. Moreover, we show that simple SDTS
correspond to alphabetic tree bimorphisms (also called �nite-state rela-
belings [5]). The latter result proves that alphabetic tree bimorphisms are
strictly less powerful than SDTSs.

Roughly speaking, a syntax-directed translation schema consists of two
context-free grammars (CFGs) over a common set of nonterminals. A pro-
duction of an SDTS is of the form A→ u ;w such that A→ u and A→ w
are CFG productions, and additionally, the same nonterminals occur in
u and w. Formally, a syntax -directed translation schema (SDTS) is a sys-
tem T = (N,V, Y, P, S) where

� N is an alphabet of nonterminals disjoint with V ∪ Y ,
� V and Y are an input and output alphabet, respectively,
� P is a �nite set of productions of the form A → u ; w where A ∈ N ,
u ∈ (N ∪ V)∗, w ∈ (N ∪ Y)∗, and the nonterminals in w are a permu-
tation of the nonterminals in u, and

� S ∈ N is a start symbol.

An SDTS is called simple if the nonterminals occur in same order in
u and w for each production A→ u;w in P . Finally, the size of T , denoted
by |T |, is de�ned as the numbers of its productions (i.e., |T | = |P |).

To present the semantics of SDTS, we use the slightly informal notion
of associated nonterminals. Whenever we apply a production in a deriva-
tion, we have to apply it to two �associated� nonterminals. This notion
can easily be formalized, but we avoid this here to present the matter
without excessive detail. The translation forms of T , which are elements
of (N ∪ V)∗ × (N ∪ Y)∗, are de�ned inductively as follows:

� (S, S) is a translation form and the two nonterminals S are associated.
� If (u1Au2, w1Aw2) is a translation form in which the two explicit in-

stances of A are associated and A→ u ; w is a production in P , then
(u1Au2, w1Aw2) ⇒T (u1uu2, w1ww2) and the latter is a translation
form. The nonterminals of u and w are associated exactly as they are

associated in the production and the nonterminals of u1 and u2 are
associated with those of w1 and w2 in the new translation form exactly
as in the original one.

The translation de�ned by T is the relation

τT = {(u,w) ∈ V ∗ × Y ∗ | (S, S)⇒∗T (u,w)} .

A major normal form for CFGs is the Chomsky normal form, but
unfortunately its analogue cannot be achieved for SDTSs. However, [17]
shows that we can obtain the following normal form. Note that we changed
the de�nition slightly and demand that at most one terminal symbol oc-
curs in each part of a production.

De�nition 1. An SDTS (N,V, Y, P, S) is in normal form if

� u,w ∈ N∗ or
� u ∈ V ∪ {ε} and w ∈ Y ∪ {ε} for every production A→ u ; w in P .

Proposition 2 (cf. [17, Lemma 3.1]). For every SDTS T there exists

an SDTS T ′ in normal form such that τT = τT ′. If T is simple, then T ′

can be chosen to be simple as well.

Proof. Let T = (N,V, Y, P, S) be an SDTS. We construct the SDTS
T ′ = (N ′, V, Y, P ′, S) where

� N ′ = N ∪ {v | v ∈ V } ∪ {y | y ∈ Y } with v and y being new
nonterminals,

� for every v ∈ V and y ∈ Y the following two rules are in P ′

v → v ; ε and y → ε ; y ,

� and for every production of P with associated nonterminal permuta-
tion σ : [n]→ [n]

A→ u0A1u1 · · ·Anun ; w0Aσ(1)w1 · · ·Aσ(n)wn

where u0, . . . , un ∈ V ∗, w0, . . . , wn ∈ Y ∗, and A,A1, . . . , An ∈ N , the
following production is in P ′

A→ u0w0A1u1w1 · · ·Anunwn ; u0w0Aσ(1)u1w1 · · ·Aσ(n)unwn

where for every v1, . . . , vk ∈ V and y1, . . . , ym ∈ Y we de�ne

v1 · · · vk = v1 · · · vk and y1 · · · ym = y1 · · · ym .

� The set P ′ does not contain any further productions.

Obviously, T ′ is in normal form. Moreover, it is simple if T is so. Finally,
it is easy to see that τT ′ = τT . ut

Let us consider the complexity of the construction in the proof of
Proposition 2. Clearly, the number of productions of T ′ is |P |+ |V |+ |Y |.
Thus, the size of T ′ is |T |+ |V |+ |Y |. It is a reasonable assumption that
for every v ∈ V (respectively, y ∈ Y) there is at least one production
in P in which v (respectively, y) occurs (otherwise we can simply drop
the o�ending v or y). Consequently, |V | + |Y | 6 2|T | and |T ′| ∈ O(|T |),
which proves that the size of T ′ is linear in the size of T .

Before we proceed with the mentioned connection between SDTSs
and quasi-alphabetic tree bimorphisms, let us recall the well-known link
between SDTSs and simple SDTSs.

Theorem 3 (see [16, Theorem 2]). The class of all translations de-

�ned by simple SDTSs is properly contained in the class of all translations

de�ned by SDTSs.

In [15, Theorem 5.7] it was shown that SDTSs and quasi-alphabetic
tree bimorphisms de�ne the same (string) translations. The correspon-
dence is very close since the derivations of an SDTS can be obtained
from the tree transformation of the corresponding bimorphism. However,
we will show that this correspondence already exists between SDTSs and
symbol-to-symbol tree bimorphisms. Moreover, we will show that simple
SDTSs and alphabetic tree bimorphisms de�ne the same class of transla-
tions. Let us �rst consider the direction in which we construct a tree bi-
morphism for an SDTS. Since the only di�erence between quasi-alphabetic
and symbol-to-symbol tree bimorphisms is in their homomorphisms, let us
reconsider the construction of those homomorphisms from [15, Sect. 5]. We
only change the behavior on productions that only have terminal symbols
on the right-hand sides.

De�nition 4. Let T = (N,V, Y, P, S) be an SDTS in normal form. For

every production p = (A → u ; w) ∈ P let rk(p) = n be such that

u ∈ NnV ∗. This turns the set P into a ranked alphabet. Moreover, let

P ′ =
⋃
k>1 Pk. We construct the homomorphisms

ϕ : TP ′(P0)→ TP ′(V ′) and ψ : TP ′(P0)→ TP ′(Y ′)

where V ′ = V ∪{e} and Y ′ = Y ∪{e} as follows: Let p = (A→ u ;w) ∈ P .

� If p ∈ P0, then

ϕP0(p) =

{
e if u = ε

u if u ∈ V
and ψP0(p) =

{
e if w = ε

w if w ∈ V.

� If p ∈ P ′k, then ϕk(p) = p(x1, . . . , xk) and ψk(p) = p(xσ(1), . . . , xσ(k))
where σ : [k]→ [k] is the nonterminal permutation of p.

By Proposition 2 we can assume normal form without loss of generality.
Our construction is very similar to the construction of [15] if we restrict
ourselves to SDTSs in normal form. The constructed homomorphisms
ϕ and ψ are symbol-to-symbol, and if T is simple, then they are alphabetic.
Thus, a minor modi�cation of a principal result of [15, Sect. 5] yields our
�rst result.

Lemma 5 (cf. [15, Prop. 5.5]). For every SDTS T , there exists a

symbol-to-symbol tree bimorphism B such that yd(τB) = τT . If T is simple,

then B can be chosen to be alphabetic.

Let us consider the size of the resulting bimorphism. The construction
in the proof of [15, Prop. 5.5] yields a local center tree language L ⊆ TP
(the symbols are productions and their rank is determined by the number
of nonterminals as in De�nition 4). Roughly speaking, the language L con-
tains all legal derivations (i.e., the nonterminals in productions match).
For this tree language L we can construct the following regular tree gram-
mar G = (N,P, ∅, P ′, S), where for every production p ∈ Pn (note that
we assume that T is in normal form) with associated nonterminal permu-
tation σ : [n]→ [n] such that

p = A→ A1 · · ·Anv ;Aσ(1) · · ·Aσ(n)y

for some A,A1, . . . , An ∈ N , v ∈ V ∪ {ε}, and y ∈ Y ∪ {ε}, the set P ′

contains the production A → p(A1, . . . , An). All productions of P ′ are
constructed in this manner. Obviously, the size of G is the same as the
size of T . Thus, the size of the bimorphism B constructed in Lemma 5 is
linear in the size of the input SDTS T .

For the converse, we can again reconsider [15]. In [15, Prop. 5.6] it is
proved that for every quasi-alphabetic tree bimorphism B there exists an
SDTS T such that τT = yd(τB). Clearly, every symbol-to-symbol bimor-
phism is quasi-alphabetic, and moreover, it is an easy exercise to con�rm
that the SDTS constructed in [15, Prop. 5.6] is simple if B is alphabetic.
Our minor modi�cation of the de�nition of the translation de�ned by a
tree bimorphism (the special treatment of the symbol e) requires only a
minor change in the proof of [15, Prop. 5.6].

Lemma 6. For every symbol-to-symbol tree bimorphism B, there exists

an SDTS T such that τT = yd(τB). If B is alphabetic, then T can be

chosen to be simple.

In the construction of [15, Prop. 5.6] the center tree language is rep-
resented as a local tree language, but in the same spirit the construction
can be done if the center tree language is represented by a regular tree
grammar. Every production of the tree grammar yields a production of
the constructed SDTS. Thus, the size of the constructed SDTS is linear
in the size of the input bimorphism (see, for example, [20, Theorem 4] on
how to handle the regular tree grammar).

This yields the following relations between SDTSs and symbol-to-
symbol tree bimorphisms. It was shown in [15] that the class of all transla-
tions de�ned by SDTSs coincides with the class of all translations de�ned
by quasi-alphabetic tree bimorphisms. Here we sharpen this result.

Theorem 7. The class of translations de�ned by arbitrary (respectively,

simple) SDTSs coincides with the class of translations de�ned by symbol-

to-symbol (respectively, alphabetic) tree bimorphisms.

If we consider Theorems 3 and 7 together, we obtain that the class of
all translations de�ned by alphabetic tree bimorphisms is properly con-
tained in the class of all translations de�ned by symbol-to-symbol tree
bimorphisms.

4 Closure under Composition

In this section we reconsider the problem of closure under composition
for the class of tree transformations de�ned by quasi-alphabetic tree bi-
morphisms. It was shown in [15] that if we restrict ourselves to quasi-
alphabetic tree bimorphisms with a variable-free center tree language,
then the resulting class of tree transformations is closed under composi-
tion. Here we want to extend this result to include variables. The following
proposition is trivial, but indicates why closure under composition is pos-
sible whereas closure under intersection fails [21].

Proposition 8. For every quasi-alphabetic bimorphism B, there exist a

quasi-alphabetic bimorphism B1 with a normalized input homomorphism

and a quasi-alphabetic bimorphism B2 with a normalized output homomor-

phism such that τB = τB1 = τB2. If B is variable-free (almost variable-free,

respectively), then B1 and B2 can be chosen such that they are variable-free

(almost variable-free, respectively).

So we showed that one homomorphism of a quasi-alphabetic bimor-
phism can always be normalized. As a �nal step we try to get rid of the
variables as much as possible.

Lemma 9. B(qaH,Recavf, qaH) = B(qaH,Rec, qaH)

Proof. Let B = (ϕ,L, ψ) be a quasi-alphabetic tree bimorphism with
L ⊆ TΓ (Z). Moreover, let Y be a set and h : Z → Y be a bijection.
Finally, letM = (Q,Γ ′, Ω′, Q,R) be the linear bottom-up tree transducer
with

� Q = Y ∪ {?},
� Γ ′k = Γk for every k > 1 and Γ ′0 = Γ0 ∪ Z,
� Ω′k = {t ∈ Γ (Q) | k = |t|?} for every k > 1 and Ω′0 = Γ0 ∪ Z.
� The set R of rules is given as follows:

• For every z ∈ Z, let z → q(z) be a rule of R where q = h(z).
• For every f ∈ Γk and q1, . . . , qk ∈ Q, let

f(q1(x1), . . . , qk(xk))→ ?(ω(xi1 , . . . , xin))

be a rule of R where ω = f(q1, . . . , qk), i1 < · · · < in, and
{i1, . . . , in} = {i ∈ [k] | qi = ?}.

Let L′ = τM (L) be the image of L under τM . Clearly, L′ is almost variable-
free, and by [3, Lemma IV.6.5], the tree language L′ is recognizable. We
construct the bimorphism B′ = (ϕ′, L′, ψ′) such that ϕ′Z = ϕZ , ψ

′
Z = ψZ ,

and

ϕ′k(t) = ϕ(t[?← (x1, . . . , xk)]) and ψ′k(t) = ψ(t[?← (x1, . . . , xk)])

for every t ∈ Ωk. Clearly, ϕ′ and ψ′ are quasi-alphabetic. Thus, B′ is an
almost variable-free quasi-alphabetic bimorphism. Note that M is deter-
ministic and total and thus τM is a mapping [5]. Finally, let us prove that
τB′ = τB. For this, we prove that tϕ = τM (t)ϕ′ and tψ = τM (t)ψ′ for
every t ∈ TΓ (Z). Clearly, it is su�cient to prove the former statement
since the argument is totally symmetric. First, let t ∈ Z. Then

tϕ = τM (t)ϕ = τM (t)ϕ′ .

Now, let t = f(t1, . . . , tk) for some f ∈ Σk and t1, . . . , tk ∈ TΓ (Z). More-
over, for every i ∈ [k], let qi = h(ti) if ti ∈ Z and qi = ? otherwise.

Then

τM (f(t1, . . . , tk))ϕ′ = ω(τM (ti1), . . . , τM (tin))ϕ′

= ϕ′n(ω)[τM (ti1)ϕ
′, . . . , τM (tin)ϕ′]

= ϕ(f(q1, . . . , qk)[?← (x1, . . . , xn)])[ti1ϕ, . . . , tinϕ]
= f(q1, . . . , qk)[?← (ti1 , . . . , tin)]ϕ
= f(t1, . . . , tk)ϕ

with ω = f(q1, . . . , qk), i1 < · · · < in, and {i1, . . . , in} = {i ∈ [k] | qi = ?}.
This completes the proof. ut

It is proved in [15, Theorem 7.4] that B(qaH,Recvf, qaH) is closed
under composition. Let us take another look at composition closure re-
sults. First, we point out why it is far easier to prove the closure only
for tree transformations de�ned by variable-free or almost variable-free
quasi-alphabetic bimorphisms.

Lemma 10. Let ϕ : TΣ(V) → TΓ (Z) and ψ : T∆(Y) → TΓ (Z) be nor-

malized quasi-alphabetic tree homomorphisms, and let s ∈ TΣ ∪ V and

t ∈ T∆ ∪ Y . If sϕ = tψ, then pos(s) = pos(t).

Proof. First, let s ∈ V . Then sϕ ∈ Z. Since sϕ = tψ, it follows that
t ∈ Y and hence pos(s) = pos(t). Second, let s = f(s1, . . . , sk) for some
f ∈ Σk and s1, . . . , sk ∈ TΣ . Then sϕ = ϕk(f)[s1ϕ, . . . , skϕ] = tψ. Since
ϕ and ψ are quasi-alphabetic, we have siϕ /∈ Z for every i ∈ [k]. If we
additionally take into account that sϕ = tψ, then we can conclude that
t = g(t1, . . . , tk) for some g ∈ ∆k and t1, . . . , tk ∈ T∆. Moreover, since
ϕ and ψ are normalized, it also follows that ϕk(f) = ψk(g). Using the
induction hypothesis, we thus obtain pos(s) = pos(t). ut

The previous proposition essentially states that all almost variable-free
trees with the same image under two normalized quasi-alphabetic tree ho-
momorphisms can be paired up in a product data structure TΣ×∆(V ×Y).
Let us plug the statements together and establish the relation to closure
under composition.

Lemma 11. B(qaH,Rec, qaH) is closed under composition if

{t ∈ TΩ ∪ V | tϕ = tψ} (†)

is a recognizable tree language for every ranked alphabet Ω, set V of vari-

ables, and pair (ϕ,ψ) of normalized quasi-alphabetic tree homomorphisms.

Proof. Let B1 = (ϕ1, L1, ψ1) and B2 = (ϕ2, L2, ψ2) be quasi-alphabetic
bimorphisms. Without loss of generality, let B1 and B2 be almost variable-
free by Lemma 9. Moreover, suppose that ψ1 and ϕ2 are normalized by
Proposition 8. Let

τ = τB1 ; τB2

= {(s, r) | ∃t : (s, t) ∈ τB1 , (t, r) ∈ τB2}
= {(tϕ1, rψ2) | t ∈ L1, r ∈ L2, tψ1 = rϕ2} .

Since tψ1 = rϕ2, it follows by Lemma 10 that pos(t) = pos(r). Hence
the quanti�ed t and r in the last displayed equation can be stored in a
tree s ∈ TΣ×∆ ∪ (V × Y) such that sπ1 = t and sπ2 = r where π1 and π2

are the usual projections to the �rst and second component.
Let T = TΣ×∆∪ (V ×Y). We can continue the displayed equations by

τ = {(tπ1ϕ1, tπ2ψ2) | t ∈ T, tπ1 ∈ L1, tπ2 ∈ L2, tπ1ψ1 = tπ2ϕ2}
= {(tπ1ϕ1, tπ2ψ2) | t ∈ π−1

1 (L1) ∩ π−1
2 (L2) ∩ L}

where L = {t ∈ T | tπ1ψ1 = tπ2ϕ2}. It is easily seen that the tree homo-
morphisms π1ϕ1, π2ψ2, π1ψ1, and π2ϕ2 are quasi-alphabetic. Moreover,
π1ψ1, and π2ϕ2 are normalized. By assumption, L is thus recognizable,
and π−1

1 (L1) and π−1
2 (L2) are recognizable by [3, Theorem II.4.18]. Con-

sequently, π−1
1 (L1) ∩ π−1

2 (L2) ∩ L is recognizable by [3, Theorem II.4.2],
and hence, τ ∈ B(qaH,Rec, qaH), which completes the proof. ut

So whenever the equality sets [the sets (†) in Lemma 11] are recog-
nizable, we can construct a quasi-alphabetic bimorphism that computes
the composition of two given quasi-alphabetic bimorphisms. It remains to
prove that the equality sets are recognizable (the premise of Lemma 11).

Lemma 12. Let ϕ : TΩ(Z)→ TΣ(V) and ψ : TΩ(Z)→ TΣ(V) be normal-

ized quasi-alphabetic tree homorphisms. Then L = {t ∈ TΩ ∪Z | tϕ = tψ}
is recognizable.

Proof. We construct the regular tree grammar G = ({S}, Ω′, P, S) where

� Ω′k = Ωk for every k > 1 and Ω′0 = Ω0 ∪ Z, and
� P = P1 ∪ P2 with

P1 = {S → z | z ∈ Z, zϕ = zψ}
P2 = {S → f(S, . . . , S) | f ∈ Ωk, ϕk(f) = ψk(f)} .

Then L = L(G)∩ (TΩ ∪Z), which is recognizable [3, Theorem II.4.2]. ut

We are now ready to state our main result. Let Loc (respectively,
Locvf) be the class of all local (respectively, local variable-free) tree lan-
guages [3]. Note that [15, Theorem 7.4] proves that B(qaH,Locvf, qaH) is
closed under composition. Since every recognizable tree language is the
image of a local tree language under an alphabetic tree homomorphism [3,
Theorem II.9.5], we immediately obtain

B(qaH,Locvf, qaH) = B(qaH,Recvf, qaH)
B(qaH,Loc, qaH) = B(qaH,Rec, qaH) .

The closure of B(qaH,Recvf, qaH) is thus proved in [15] and here we prove
it for B(qaH,Rec, qaH). Note that our approach is slightly di�erent.

Theorem 13 (cf. [15, Theorem 7.4]). B(qaH,Rec, qaH) is closed un-

der composition.

Proof. Follows directly from Lemmata 11 and 12. ut

Acknowledgements

The authors are grateful to Magnus Steinby for fruitful discussions
regarding Section 3. In addition, the authors appreciate the e�ort of the
reviewers, who pointed out several inconsistencies and mistakes.

References

1. Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural
language processing. In: Proc. CICLing. Volume 3406 of LNCS., Springer (2005)
1�24

2. Knight, K.: Capturing practical natural language transformations. Machine Trans-
lation 21(2) (2007) 121�133

3. Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
4. Nivat, M., Podelski, A., eds.: Tree Automata and Languages. North-Holland (1992)
5. Engelfriet, J.: Bottom-up and top-down tree transformations: A comparison. Math.

Syst. Theory 9(3) (1975) 198�231
6. Arnold, A., Dauchet, M.: Morphismes et bimorphismes d'arbres. Theor. Comput.

Sci. 20(1) (1982) 33�93
7. Bozapalidis, S.: Alphabetic tree relations. Theor. Comput. Sci. 99(2) (1992) 177�

211
8. Takahashi, M.: Primitive transformations of regular sets and recognizable sets. In:

Proc. ICALP, North-Holland (1972) 475�480
9. Steinby, M.: On certain algebraically de�ned tree transformations. In: Proc. Al-

gebra, Combinatorics and Logic in Computer Science. Volume 42 of Colloquia
Mathematica Societatis János Bolyai., North-Holland (1986) 745�764

10. Irons, E.T.: A syntax directed compiler for ALGOL 60. Comm. ACM 4(1) (1961)
51�55

11. Shieber, S.M., Schabes, Y.: Synchronous tree-adjoining grammars. In: Proc. COL-
ING, ACL (1990) 253�258

12. Satta, G., Peserico, E.: Some computational complexity results for synchronous
context-free grammars. In: Proc. HLT/EMNLP, ACL (2005) 803�810

13. Shieber, S.M.: Synchronous grammars as tree transducers. In: Proc. TAG+7.
(2004) 88�95

14. Aho, A.V., Ullman, J.D.: Parsing. Volume 1 of The Theory of Parsing, Translation,
and Compiling. Prentice Hall (1972)

15. Steinby, M., Tîrn uc , C.I.: De�ning syntax-directed translations by tree bimor-
phisms. Theor. Comput. Sci. (2009) to appear.
http://dx.doi.org/10.1016/j.tcs.2009.03.009.

16. Aho, A.V., Ullman, J.D.: Properties of syntax directed translations. J. Comput.
Syst. Sci. 3(3) (1969) 319�334

17. Aho, A.V., Ullman, J.D.: Syntax directed translations and the pushdown assem-
bler. J. Comput. Syst. Sci. 3(1) (1969) 37�56

18. Comon-Lundh, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Löding,
C., Tison, S., Tommasi, M.: Tree automata�techniques and applications. available
at: http://tata.gforge.inria.fr/ (2007)

19. Thatcher, J.W.: Tree automata: An informal survey. In: Currents in the Theory
of Computing. Prentice Hall (1973) 143�172

20. Maletti, A.: Compositions of extended top-down tree transducers. Inf. Comput.
206(9�10) (2008) 1187�1196

21. Maletti, A., Tîrn uc , C.I.: Properties of quasi-alphabetic tree bimorphisms. un-
published, available at: http://arxiv.org/abs/0906.2369v1 (2009)

