Tree Series Transducers
and Weighted Tree Automata

Andreas Maletti, Heiko Vogler

December 2, 2003

1. Basic Definitions
2. A Strange Semiring
3. Equivalence Result
4. Conclusions and Outlook
Generalization Hierarchy

- **Weighted Automaton**
 \[L \in A \langle T_\Sigma \rangle \]
 \[\tau : \Sigma^* \rightarrow A \langle \Delta^* \rangle \]

- **Weighted Tree Automaton**
 \[L \in A \langle T_\Sigma \rangle \]

- **Tree Series Transducer**
 \[\tau : T_\Sigma \rightarrow A \langle T_\Delta \rangle \]

- **Tree Automaton**
 \[L \subseteq T_\Sigma \]

- **Tree Transducer**
 \[\tau : T_\Sigma \rightarrow \mathcal{P}(T_\Delta) \]

- **String Automaton**
 \[L \subseteq \Sigma^* \]

- **Generalized Sequential Machine**
 \[\tau : \Sigma^* \rightarrow \mathcal{P}(\Delta^*) \]

Basic Definitions 2 December 2, 2003
Bottom-Up Tree Series Transducers

\[M = (Q, \Sigma, \Delta, A, F, \mu) \]

- **input and output ranked alphabet** \(\Sigma = \Delta = \{ \sigma(2), \alpha(0), \beta(0) \} \),
- **states and final states** \(Q = F = \{ p, q \} \),
- **semiring** \(A = \mathbb{P} = (\mathcal{P}(\mathbb{N}^*_1), \cup, \circ, \emptyset, \{\varepsilon\}) \) with \(P_1 \circ P_2 = \{ ab \mid a \in P_1, b \in P_2 \} \), and
- **tree representation** \(\mu \)

\[\begin{align*}
\alpha & \rightarrow q \\
\beta & \rightarrow q \\
\sigma & \rightarrow \{\varepsilon\} \sigma \\
\sigma & \rightarrow \{ i \} x_i
\end{align*} \]
• a tree series φ is a mapping of type $T_\Delta(V) \rightarrow A$; (φ, t) is used to denote $\varphi(t)$

• the class of all tree series is denoted $A \langle \langle T_\Delta(V) \rangle \rangle$

• the support of a tree series φ is defined to be $\text{supp}(\varphi) = \{ t \in T_\Delta(V) \mid (\varphi, t) \neq 0 \}$

• φ is polynomial iff its support is finite; the corresponding class is $A(T_\Delta(V))$

• Let $\varphi \in A \langle \langle T_\Delta(X_k) \rangle \rangle$, $(\psi_1, \ldots, \psi_k) \in A \langle \langle T_\Delta(V) \rangle \rangle^k$. Substitution of (ψ_1, \ldots, ψ_k) into φ is

$$
\varphi \leftarrow (\psi_1, \ldots, \psi_k) = \sum_{\substack{t \in \text{supp}(\varphi) \\
(\forall i \in [k]): t_i \in \text{supp}(\psi_i) \}} \left((\varphi, t) \circ (\psi_1, t_1) \circ \cdots \circ (\psi_k, t_k) \right) t[t_1, \ldots, t_k].
$$
Bottom-up Tree Series Transducers

\[M = (Q, \Sigma, \Delta, A, F, \mu), \] where

- \(Q \) and \(F \subseteq Q \) are \textit{finite} sets of states and final states, resp.,
- \(\Sigma \) and \(\Delta \) are the input and output ranked alphabets, resp.,
- \(A = (A, \oplus, \odot, 0, 1) \) is a semiring
- \(\mu \) is a family of mappings \((\mu_k)_{k \in \mathbb{N}} \) of type
 \[\mu_k : \Sigma^{(k)} \rightarrow A^{\llbracket T_\Delta(X_k) \rrbracket Q \times Q^k}. \]
Semantics of Bottom-up Tree Series Transducers

\[\mu_k(\sigma) : (A\langle\langle T_\Delta \rangle\rangle^Q)^k \rightarrow A\langle\langle T_\Delta \rangle\rangle^Q \]

\[\mu_k(\sigma)(R_1, \ldots, R_k)_q = \sum_{(q_1, \ldots, q_k) \in Q^k} \mu_k(\sigma)_{q,(q_1,\ldots,q_k)} \leftarrow ((R_1)_{q_1}, \ldots, (R_k)_{q_k}). \]

Initial homomorphism: \(h_\mu : T_\Sigma \rightarrow A\langle\langle T_\Delta \rangle\rangle^Q \)

\[h_\mu(\sigma(s_1, \ldots, s_k)) = \mu_k(\sigma)(h_\mu(s_1), \ldots, h_\mu(s_k)) \]

tree-to-tree-series transformation computed by \(M \) is \(\tau_M : T_\Sigma \rightarrow A\langle\langle T_\Delta \rangle\rangle \)

\[\tau_M(s) = \sum_{q \in F} h_\mu(s)_q \]
Bottom-up Weighted Tree Automata

\[M = (Q, \Sigma, A, F, \mu), \]
where

- \(Q \) and \(F \subseteq Q \) are finite sets of states and final states, respectively,
- \(\Sigma \) is the input ranked alphabet, respectively,
- \(A = (A, \oplus, \odot, 0, 1) \) is a semiring,
- \(\mu \) is a family of mappings \((\mu_k)_{k \in \mathbb{N}} \) of type \(\mu_k : \Sigma^{(k)} \rightarrow A^{Q \times Q^k} \).

Semantics is similarly defined as it is for bottom-up tree series transducers.
Let \(A = (A, \oplus, \odot, 0, 1) \) be a semiring. We define the following algebraic structure.

\[
B = A\langle T \rangle^* \odot (\{\varepsilon\} \cup \{(n, \varphi) \mid n \in \mathbb{N}_+, \varphi \in A\langle T \Delta(X_n) \rangle\}) \quad S = \mathbb{N}^B
\]

\(S = (S, \cup, \circ, \emptyset, \{\varepsilon\}) \) with addition being defined for every element \(b \in B \) and every two semiring elements \(S_1, S_2 \in S \) by

\[
(S_1 \cup S_2)(b) = S_1(b) + S_2(b).
\] (1)

This addition is trivially associative, commutative, and has unit element \(\emptyset : B \rightarrow \mathbb{N} \) which is defined for every \(b \in B \) to be \(\emptyset(b) = 0 \).

The multiplication is defined for every element \(b \in B \) and every two semiring elements \(S_1, S_2 \in S \) by

\[
(S_1 \circ S_2)(b) = \sum_{b_1, b_2 \in B, b = b_1 \leftrightarrow b_2} S_1(b_1) \cdot S_2(b_2).
\] (2)
Wrapping Substitution

On B we define the following operation $\leftarrow : B^2 \rightarrow B$:

$$a \leftarrow b = a.b$$

if $a \in A\langle T_\Delta \rangle^*$ or $b = \varepsilon$,

$$a.(1, \phi) \leftarrow \psi.b = a.(\phi \leftarrow_0 \psi).b,$n

$$a.(n, \phi) \leftarrow \psi.b = a.(n-1, \phi \leftarrow_0 \psi) \leftarrow b$$

, if $n > 1$,

$$a.(n, \phi) \leftarrow (m, \psi) = a.(n-1+m, \phi \leftarrow_m \psi).$$

The substitutions $(\leftarrow_k : A\langle T_\Delta (X) \rangle \times A\langle T_\Delta (X_k) \rangle \rightarrow A\langle T_\Delta (X) \rangle \mid k \in \mathbb{N})$ are defined as follows.

$$a \leftarrow_k b = a[x_i/x_{i+k-1} \mid i > 1] \leftarrow (b)$$

Lemma: $(a \leftarrow b) \leftarrow c = a \leftarrow (b \leftarrow c)$.

Lemma: $(\phi \leftarrow_m \psi) \leftarrow_k \tau = \phi \leftarrow_{m-1+k} (\psi \leftarrow_k \tau)$ with $m \neq 0$.
Remaining Questions and Literature

- Deterministic tree series transducers?
- Tree transducers, i.e., polynomial tree series transducers over \(\mathbb{B} \)
- Top-down tree series transducers?
- \(\sigma \)-substitution?

Some References:

Seidl: *Finite Tree Automata with Cost Functions*, 1994
Kuich: *Formal Power Series over Trees*, 1997
Engelfriet, Fülöp, Vogler: *Bottom-up and Top-down Tree Series Transformations*, 2002
Fülöp, Vogler: *Tree Series Transformations that Respect Copying*, 2003
Fülöp, Vogler: *Weighted Tree Transducers*, 2003