

Deutsche Forschungsgemeinschaft **DFG**

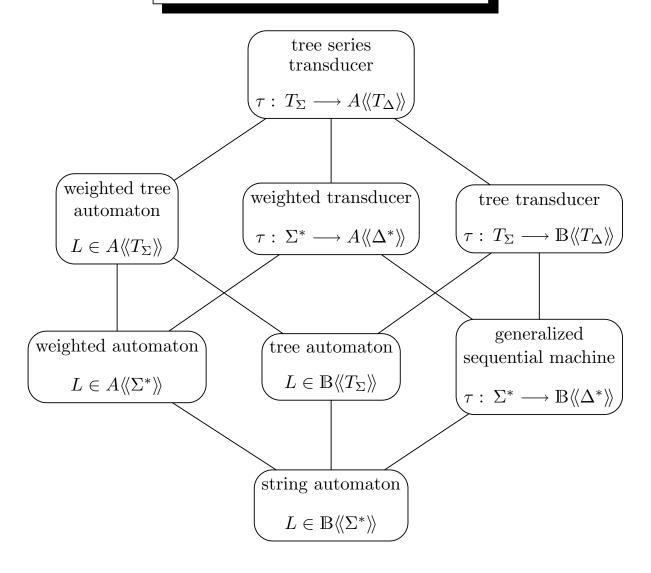
Relating Tree Series Transducers and Weighted Tree Automata

Andreas Maletti

November 16, 2004

- 1. Motivation and Introductory Example
- 2. Semirings and DM-Monoids
- 3. Bottom-Up DM-Monoid Weighted Tree Automata
- 4. Establishing a Relationship

Generalization Hierarchy



Known Relations and Problems

• String-based:

Theorem: Every gsm-mapping can be computed by a weighted automaton.

Proof Idea: Extend monoid $(\Delta^*, \circ, \varepsilon)$ to semiring $(\mathcal{P}(\Delta^*), \cup, \circ, \emptyset, \{\varepsilon\})$

Theorem: Weighted transductions can be computed by weighted automata.

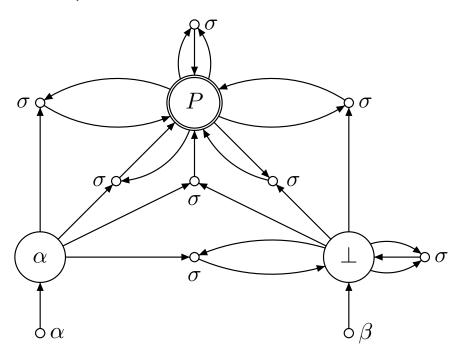
• Tree-based:

Problem: Are tree transductions computable by weighted tree automata?

Problem: Are tree series transformations computable by weighted tree automata?

Tree Pattern Matching

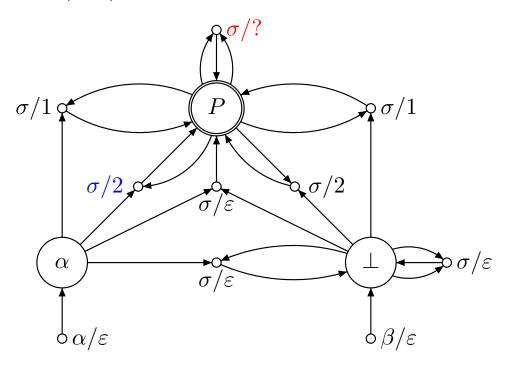
A deterministic (bottom-up) tree automaton matching the pattern $\sigma(\alpha,x)$



If pattern found, accepts tree. Otherwise reject.

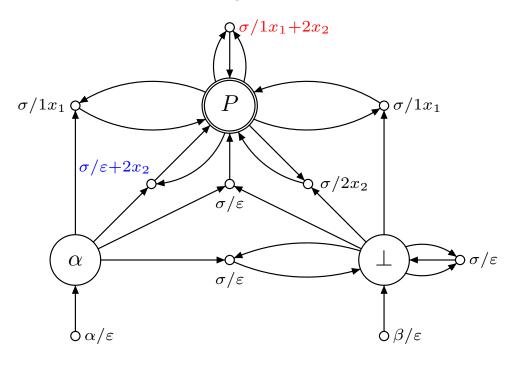
Extended Tree Pattern Matching

Towards a deterministic (bottom-up) weighted tree automaton computing the occurences of pattern $\sigma(\alpha,x)$



Extended Tree Pattern Matching

A deterministic tree transducer computing the occurrences of pattern $\sigma(\alpha,x)$



Computes the set of occurrences of $\sigma(\alpha,x)$ in input tree.

Complete Monoids

- $A = (A, \bigoplus)$ complete monoid, iff
- (C1) $\bigoplus_{i\in\{j\}} a_i = a_j$,
- (C2) $\bigoplus_{j \in J} (\bigoplus_{i \in I_j} a_i) = \bigoplus_{i \in I} a_i$, if $I = \bigcup_{j \in J} I_j$ is a partition.
- ullet $\mathcal A$ naturally ordered, iff \sqsubseteq is partial order

$$a \sqsubseteq b \iff (\exists c \in A) : a \oplus c = b$$

ullet ${\cal A}$ continuous, iff ${\cal A}$ naturally ordered and complete and

$$\bigoplus_{i \in I} a_i \sqsubseteq a \iff \bigoplus_{i \in E} a_i \sqsubseteq a \text{ for all finite } E \subseteq I$$

- $(A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring, iff
 - (i) $(A, \oplus, \mathbf{0})$ commutative monoid,
 - (ii) $(A, \odot, \mathbf{1})$ monoid,
- (iii) $\mathbf{0}$ absorbing element with respect to \odot , and
- (iv) \odot (left and right) distributes over \oplus .
- $(A, \odot, \mathbf{0}, \mathbf{1}, \bigoplus)$ complete semiring, iff
- (S1) $(A, \oplus, \odot, \mathbf{0}, \mathbf{1})$ semiring,
- (S2) (A, \bigoplus) complete monoid, and
- (S3) $a \odot (\bigoplus_{i \in I} a_i) = \bigoplus_{i \in I} (a \odot a_i)$ and $(\bigoplus_{i \in I} a_i) \odot a = \bigoplus_{i \in I} (a_i \odot a)$.

8

Examples of Semirings

- ullet complete natural numbers semiring $\mathbb{N}_{\infty}=(\mathbb{N}\cup\{\infty\},+,\cdot,0,1)$,
- \bullet tropical semiring $\mathrm{Trop} = (\mathbb{N} \cup \{\infty\}, \min, +, \infty, 0)$,
- Boolean semiring $\mathbb{B} = (\{\bot, \top\}, \lor, \land, \bot, \top)$,
- formal language semiring $\mathrm{Lang}_{\Sigma} = (\mathcal{P}(\Sigma^*), \cup, \circ, \emptyset, \{\varepsilon\})$

Semiring	commutative	complete	naturally ordered	continuous
${ m I\!N}_{\infty}$	yes	yes	yes	yes
Trop	yes	yes	yes	yes
$\mathbb B$	yes	yes	yes	yes
Lang_Σ	NO	yes	yes	yes

Excursion: Tree Series

 (A, \bigoplus) complete monoid, Σ ranked alphabet, and $X_k = \{x_1, \dots, x_k\}$.

- Tree series is mapping $\psi: T_{\Sigma}(X_k) \longrightarrow A$
- $A\langle\langle T_{\Sigma}(X_k)\rangle\rangle$ set of all tree series
- Sum $(\bigoplus_{i \in I} \psi_i, t) = \bigoplus_{i \in I} (\psi_i, t)$
- $(A\langle\langle T_{\Sigma}(X_k)\rangle\rangle, \bigoplus)$ complete monoid

 $(A, \odot, \mathbf{0}, \mathbf{1}, \bigoplus)$ complete semiring

• Tree series substitution of $\psi_1, \ldots, \psi_k \in A(\langle T_\Sigma \rangle)$ into $\psi \in A(\langle T_\Sigma(X_k) \rangle)$ is

$$\psi \longleftarrow (\psi_1, \dots, \psi_k) = \bigoplus_{\substack{t \in T_{\Sigma}(X_k), \\ (\forall i \in [k]): t_i \in T_{\Sigma}}} \left((\psi, t) \odot \bigodot_{i \in [k]} (\psi_i, t_i) \right) t[t_1, \dots, t_k]$$

Complete DM-Monoids

 (D, \sum) complete monoid, Ω ranked set

• (D, Ω, Σ) distributive multi-operator monoid (DM-monoid), iff

$$\omega(\sum_{i_1 \in I_1} d_{i_1}, \dots, \sum_{i_k \in I_k} d_{i_k}) = \sum_{(\forall j \in [k]): i_j \in I_j} \omega(d_{i_1}, \dots, d_{i_k}).$$

Examples:

ullet (A, igoplus) complete monoid, $\Omega_{(k)} = \{ \underline{a}_{(k)} \mid a \in A \}$ with

$$\underline{a}_{(k)}(d_1,\ldots,d_k) = a \odot d_1 \odot \cdots \odot d_k$$

Then (A, Ω, \bigoplus) complete DM-monoid

• $(A, \odot, \mathbf{0}, \mathbf{1}, \bigoplus)$ complete semiring, $\Omega_{(k)} = \{ \underline{\psi}_{(k)} \mid \psi \in A \langle \langle T_{\Delta}(X_k) \rangle \rangle \}$ with

$$\underline{\psi}_{(k)}(\psi_1,\ldots,\psi_k) = \psi \longleftarrow (\psi_1,\ldots,\psi_k)$$

Then $(A\langle\langle T_{\Delta}\rangle\rangle, \Omega, \bigoplus)$ complete DM-monoid

DM-Monoid Weighted Tree Automata — Syntax

Σ ranked alphabet, I, Ω non-empty sets

• Tree representation over I, Σ , and Ω is $\mu = (\mu_k \mid k \in \mathbb{N})$ such that

$$\mu_k: \Sigma_{(k)} \longrightarrow \Omega^{I \times I^k}$$

- $M=(I,\Sigma,\mathcal{D},F,\mu)$ (bottom-up) DM-monoid weighted tree automaton (DM-wta), iff
 - -I non-empty set of states,
 - $-\Sigma$ ranked alphabet of input symbols,
 - $\mathcal{D} = (D, \Omega, \sum)$ complete DM-monoid,
 - $F: I \longrightarrow \Omega_{(1)}$ final weight map, and
 - μ tree representation over I, Σ , and Ω such that $\mu_k: \Sigma_{(k)} \longrightarrow \Omega_{(k)}{}^{I \times I^k}$

DM-Monoid Weighted Tree Automata — Semantics

 $\mathcal{D}=(D,\Omega,\Sigma)$ complete DM-monoid, $M=(I,\Sigma,\mathcal{D},F,\mu)$ DM-wta.

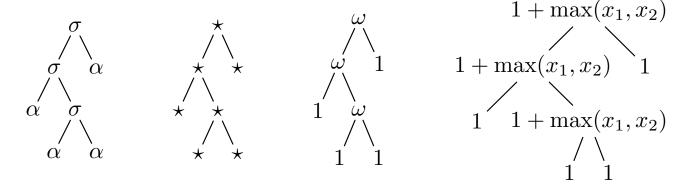
• Define $h_{\mu}: T_{\Sigma} \longrightarrow D^{I}$ by

$$h_{\mu}(\sigma(t_1,\ldots,t_k))_i = \sum_{i_1,\ldots,i_k \in I} \mu_k(\sigma)_{i,(i_1,\ldots,i_k)} (h_{\mu}(t_1)_{i_1},\ldots,h_{\mu}(t_k)_{i_k})$$

• $(\|M\|, t) = \sum_{i \in I} F_i(h_\mu(t)_i)$ is tree series recognized by M

Example DM-wta

- $\Sigma = {\sigma, \alpha}$ and $\Omega = {\omega, id, 1}$ and $\omega(n_1, n_2) = 1 + \max(n_1, n_2)$,
- $\mathcal{N} = (\mathbb{N} \cup \{\infty\}, \Omega, \min)$ complete DM-monoid
- DM-wta $M_E = (\{\star\}, \Sigma, \mathcal{N}, F, \mu)$ with $F_{\star} = \mathrm{id}$, $\mu_0(\alpha)_{\star} = 1$, and $\mu_2(\sigma)_{\star,(\star,\star)} = \omega$



• $(\|M_E\|, t) = \text{height}(t)$

Weighted Tree Automata & Tree Series Transducers

 $M=(I,\Sigma,\mathcal{D},F,\mu)$ DM-wta and $(A,\odot,\mathbf{0},\mathbf{1},\bigoplus)$ complete semiring

• M is weighted tree automaton (wta), iff $\mathcal{D}=(A,\Omega,\bigoplus)$ with $\Omega_{(k)}=\{\,\underline{a}_{(k)}\mid a\in A\,\}$ and

$$\underline{a}_{(k)}(d_1,\ldots,d_k) = a \odot d_1 \odot \cdots \odot d_k$$

• M is tree series transducer (tst), iff $\mathcal{D} = (A\langle\langle T_{\Delta}\rangle\rangle, \Omega, \bigoplus)$ with $\Omega_{(k)} = \{ \underline{\psi}_{(k)} \mid \psi \in A\langle\langle T_{\Delta}(X_k)\rangle\rangle \}$ and

$$\underline{\psi}_{(k)}(\psi_1,\ldots,\psi_k) = \psi \longleftarrow (\psi_1,\ldots,\psi_k)$$

Constructing a Monoid (I)

$$\mathcal{D}=(D,+,0,\Omega)$$
 DM-monoid, $\Omega X=\{\overline{\omega}(x_1,\ldots,x_k)\mid k\in\mathbb{N},\omega\in\Omega_{(k)}\}$

Theorem: There exists monoid $(B, \leftarrow, \varepsilon)$ such that $D \cup \Omega X \subseteq B$ and for all $d_1, \ldots, d_k \in D$

$$\omega(d_1,\ldots,d_k) = \overline{\omega}(x_1,\ldots,x_k) \leftarrow d_1 \leftarrow \cdots \leftarrow d_k$$

Proof sketch: Let $\Omega' = \Omega \cup D$.

• Define $h: T_{\Omega'}(X) \longrightarrow T_{\Omega'}(X)$ for every $v \in D \cup X$ by

$$h(v) = v$$

$$h(\omega(s_1, \dots, s_k)) = \begin{cases} \omega(h(s_1), \dots, h(s_k)) & \text{, if } h(s_1), \dots, h(s_k) \in D \\ \overline{\omega}(h(s_1), \dots, h(s_k)) & \text{, otherwise} \end{cases}$$

• $h(s) \in \widehat{T_{\Omega'}}(X_n)$, whenever $s \in \widehat{T_{\Omega'}}(X_n)$.

Constructing a Monoid (II)

- Let $s(t) = s[t, x_{k+1}, x_{k+2}, \dots, x_{k+n-1}]$ for $s \in \widehat{T_{\Sigma}}(X_n)$ and $t \in \widehat{T_{\Sigma}}(X_k)$ (non-identifying tree substitution).
- $B = D^* \cup \bigcup_{n \in \mathbb{N}_+} D^* \cdot \widehat{T_{\Omega'}}(X_n).$
- Define \leftarrow : $B^2 \longrightarrow B$ for every $a \in D^*$, $b \in B$, $s \in \widehat{T_{\Omega'}}(X_n)$, $t \in D \cup \widehat{T_{\Omega'}}(X_n)$ by

$$a \leftarrow b = a \cdot b$$

$$a \cdot s \leftarrow \varepsilon = a \cdot s$$

$$a \cdot s \leftarrow t \cdot b = a \cdot (h(s(t))) \leftarrow b.$$

- $(B, \leftarrow, \varepsilon)$ is a monoid.
- $\omega(d_1,\ldots,d_k) = \overline{\omega}(x_1,\ldots,x_k) \leftarrow d_1 \leftarrow \cdots \leftarrow d_k$.

From a Monoid to a Semiring (I)

 $\mathcal{A}=(A,\oplus,\odot,\mathbf{0},\mathbf{1})$ semiring, DM-monoid $\mathcal{D}=(D,+,0,\Omega)$ complete semimodule of $\mathcal{A},\,\varphi_1,\ldots,\varphi_k\in A\langle\!\langle D\rangle\!\rangle$.

- Lift mapping \leftarrow : $B^2 \longrightarrow B$ to a mapping \leftarrow : $A\langle\!\langle B \rangle\!\rangle^2 \longrightarrow A\langle\!\langle B \rangle\!\rangle$ by $\psi_1 \leftarrow \psi_2 = \bigoplus_{b_1,b_2 \in B} \left((\psi_1,b_1) \odot (\psi_2,b_2) \right) (b_1 \leftarrow b_2).$
- $\bullet \ \ \text{Define sum of a series } \varphi \in A\langle\!\langle D \rangle\!\rangle \ \ \text{(summed in } D) \ \ \text{by } \sum : \ A\langle\!\langle D \rangle\!\rangle \longrightarrow D$ $\sum \varphi = \sum_{d \in D} (\varphi,d) \cdot d.$
- Theorem:
 - (i) $\sum (\bigoplus_{i \in I} \varphi_i) = \sum_{i \in I} \sum \varphi_i$ for every family $(\varphi_i \mid i \in I)$ of series and
 - (ii) $\omega(\sum \varphi_1, \dots, \sum \varphi_k) = \sum (\overline{\omega}(x_1, \dots, x_k) \leftarrow \varphi_1 \leftarrow \dots \leftarrow \varphi_k).$

From a Monoid to a Semiring (II)

 $\mathcal{D}=(D,+,0,\Omega)$ continuous DM-monoid. $M_1=(I,\Sigma,\mathcal{D},F_1,\mu_1)$ DM-wta.

- Theorem: There exists a semiring $(C, \oplus, \leftarrow, \widetilde{\mathbf{0}}, \varepsilon)$ such that $D \cup \Omega X \subseteq C$ and for all $d_1, \ldots, d_k \in D$
 - (i) $\omega(d_1,\ldots,d_k) = \overline{\omega}(x_1,\ldots,x_k) \leftarrow d_1 \leftarrow \cdots \leftarrow d_k$
 - (ii) $\sum (\bigoplus_{i \in I} d_i) = \sum_{i \in I} d_i$.

Proof sketch: Let $\mathcal{A}=(A,\oplus,\odot,\mathbf{0},\mathbf{1})$ semiring such that \mathcal{D} is a complete semimodule of \mathcal{A} . There exists a monoid $(B,\leftarrow,\varepsilon)$ such that (i) holds. Let $C=A\langle\!\langle B \rangle\!\rangle$ and $\leftarrow:C^2\longrightarrow C$ be the extension of \leftarrow on B.

• Theorem: There exists a wta $M = (I, \Sigma, \mathcal{B}, F, \mu)$ such that $||M_1|| = \sum ||M||$.

Establishing a Relationship

- Theorem: For every tst M_1 , there exists a wta M such that $\sum ||M|| = ||M_1||$.
- Theorem: For every deterministic tst M_2 , there exists a deterministic wta M such that $||M|| = ||M_2||$.
- Theorem: For every tree transducer M_3 , there exists a wta M such that $||M|| = ||M_3||$.
- Theorem: For every tst M_4 over an idempotent, continuous semiring, there exists a wta M such that $||M|| = ||M_4||$.

Pumping Lemma for DM-wta

$$\mathcal{D}=(D,+,0,\Omega)$$
 DM-monoid, $L\in\mathcal{L}^d_\Sigma(\mathcal{D})$, and $\Omega'=\Omega\cup D$.

Theorem: There exists $m \in \mathbb{N}$ such that for every $t \in \operatorname{supp}(L)$ with $\operatorname{height}(t) \geq m+1$ there exist $C, C' \in \widehat{T_{\Sigma}}(X_1)$, $s \in T_{\Sigma}$, and $a, a' \in \widehat{T_{\Omega'}}(X_1)$, and $d \in D$ such that

- t = C[C'[s]],
- $\operatorname{height}(C[s]) \leq m+1$ and $C \neq x_1$, and
- $(L, C'[C^n[s]]) = a' \leftarrow a^n \leftarrow d$ for every $n \in \mathbb{N}$.

Conclusions

- the study of arbitrary weighted tree automata provides results for tree series transducers
- e.g., a pumping lemma for tree series transducers can be derived from a pumping lemma for weighted tree automata
- unfortunately, few results for weighted tree automata over non-commutative semirings exist

Thank You for Your Attention.

Conclusions 22 November 16, 2004