Statistical Machine Translation

What works and what does not

Andreas Maletti

Universität Stuttgart

maletti@ims.uni-stuttgart.de

Stuttgart — May 14, 2013
Main notions

Machine translation (MT)

Automatic natural language *translation* (by a computer)

as opposed to:
- manual translation
- computer-aided translation (e.g., translation memory)

Statistical machine translation (SMT)

MT using systems *automatically* obtained from (many) *translations*

as opposed to:
- rule-based machine translation (old) *SYSTRAN*
- example-based machine translation translation by analogy
Main notions

Machine translation (MT)

Automatic natural language *translation* (by a computer)

as opposed to:
- manual translation
- computer-aided translation (e.g., translation memory)

Statistical machine translation (SMT)

MT using systems *automatically* obtained from (many) *translations*

as opposed to:
- rule-based machine translation (old) SYSTRAN
- example-based machine translation translation by analogy
Short history

Timeline

1. Dark age (60s–90s)
 - rule-based systems (e.g., SYSTRAN)
 - CHOMSKYAN approach
 - perfect translation, poor coverage

2. Reformation (1991–present)
 - phrase-based and syntax-based systems
 - statistical approach
 - cheap, automatically trained

3. Potential future
 - semantics-based systems (e.g., FRAMENET-based)
 - semi-supervised, statistical approach
 - basic understanding of translated text
Short history

Timeline

1. Dark age (60s–90s)
 - rule-based systems (e.g., SYSTRAN)
 - CHOMSKYAN approach
 - perfect translation, poor coverage

2. Reformation (1991–present)
 - phrase-based and syntax-based systems
 - statistical approach
 - cheap, automatically trained

3. Potential future
 - semantics-based systems (e.g., FRAMENET-based)
 - semi-supervised, statistical approach
 - basic understanding of translated text
Short history

Timeline

1. Dark age (60s–90s)
 - rule-based systems (e.g., SYSTRAN)
 - CHOMSKYAN approach
 - perfect translation, poor coverage

2. Reformation (1991–present)
 - phrase-based and syntax-based systems
 - statistical approach
 - cheap, automatically trained

3. Potential future
 - semantics-based systems (e.g., FRAMENECT-based)
 - semi-supervised, statistical approach
 - basic understanding of translated text
Standard pipeline

Schema

Input $\xrightarrow{}$ Translation model $\xrightarrow{}$ Language model $\xrightarrow{}$ Output

(the models are often integrated in practice)

Required resources

- bilingual text (sentences in both languages) 1.5M sent.
- monolingual text (in target language) 44M sent.
Standard pipeline

Input \rightarrow Translation model \rightarrow Language model \rightarrow Output

(the models are often integrated in practice)

Required resources

- bilingual text (sentences in both languages) 1.5M sent.
- monolingual text (in target language) 44M sent.
Standard pipeline

Schema

Input → Translation model → Language model → Output

(the models are often integrated in practice)

Required resources

- bilingual text (sentences in both languages) 1.5M sent.
- monolingual text (in target language) 44M sent.
Standard pipeline

Example (Source: GOOGLE translate)

- **Input:**

 What works and what does not

- **Segmentation:**

 What works *and what does not*

- **Translation model output:**

 Was funktioniert *und was nicht*
 Was am *und was nicht funktioniert*
 Was funktioniert am *und welche nicht*
 ist und was nicht
Example (Source: GOOGLE translate)

- **Input:**

 What works and what does not

- **Segmentation:**

 What works *and what does not*

- **Translation model output:**

 Was funktioniert *und was nicht*
 Was am *und was nicht funktioniert*
 Was funktioniert am *und welche nicht*
 ist und was nicht
Standard pipeline

Example (Source: GOOGLE translate)

- **Input:**

 What works and what does not

- **Segmentation:**

 What works and *what does not*

- **Translation model output:**

<table>
<thead>
<tr>
<th>Was funktioniert</th>
<th>und was nicht</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was am</td>
<td>und was nicht funktioniert</td>
</tr>
<tr>
<td>Was funktioniert am</td>
<td>und welche nicht</td>
</tr>
</tbody>
</table>
Standard pipeline

Example (Source: GOOGLE translate)

- **Input:**

 What works and what does not

- **Segmentation:**

 What works *and what does not*

- **Translation model output:**

 Was funktioniert *und was nicht*

 Was am *und was nicht funktioniert*

 Was funktioniert am *und welche nicht*

 ist und was nicht
Phrase-based machine translation

And then the matter was decided, and everything was put in place.
Phrase-based machine translation

And then the matter was decided, and everything was put in place

Extracted information

Segmentation:
And then the matter was decided, and everything was put in place

Phrase translation:

Reordering:
And then the matter was decided, and everything was put in place.
And then the matter was decided, and everything was put in place.
Phrase-based machine translation

And then the matter was decided, and everything was put in place

Extracted information

Segmentation:

And then 1 the matter 2 was decided 3, and everything 4 was put 5 in place 6

Phrase translation:

f kAn 1 Almwr 2 An tm AlHsm 3 w 4 wDEt 5 fy nSAb hA 6

Reordering: (1 3 4 5 2 6)
How it works

Technical talks

- Marion Weller
 phrase-based MT

- Daniel Quernheim and Nina Seemann
 syntax-based MT
Small players

Research at IMS

- **Phrase-based MT** (head: Dr. Alexander Fraser)
 - Fabienne Braune
 - Fabienne Cap
 - Anita Ramm
 - Marion Weller

- **Syntax-based MT** (head: Dr. Andreas Maletti)
 - Fabienne Braune
 - Daniel Quernheim
 - Nina Seemann
Small players

<table>
<thead>
<tr>
<th>Research at IMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phrase-based MT (head: Dr. Alexander Fraser)</td>
</tr>
<tr>
<td>- Fabienne Braune</td>
</tr>
<tr>
<td>- Fabienne Cap</td>
</tr>
<tr>
<td>- Anita Ramm</td>
</tr>
<tr>
<td>- Marion Weller</td>
</tr>
<tr>
<td>Syntax-based MT (head: Dr. Andreas Maletti)</td>
</tr>
<tr>
<td>- Fabienne Braune</td>
</tr>
<tr>
<td>- Daniel Quernheim</td>
</tr>
<tr>
<td>- Nina Seemann</td>
</tr>
</tbody>
</table>
Small players

Research at IMS

- **Phrase-based MT (head: Dr. Alexander Fraser)**
 - Fabienne Braune
 - Fabienne Cap
 - Anita Ramm
 - Marion Weller

- **Syntax-based MT (head: Dr. Andreas Maletti)**
 - Fabienne Braune
 - Daniel Quernheim
 - Nina Seemann
Big players

Commercial systems

- Language Studio
- Google translate
- WebSphere Translation Server
- BING translator
- OMNIFLUENT

- Google
- IBM
- Microsoft
- SAIC
- SYSTRAN
- ...
Big players

Commercial systems

<table>
<thead>
<tr>
<th>Company</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language Studio</td>
<td>Google translate</td>
</tr>
<tr>
<td>Odax</td>
<td>WebSphere Translation Server</td>
</tr>
<tr>
<td>Microsoft</td>
<td>BING translator</td>
</tr>
<tr>
<td>SAIC</td>
<td>OMNIFLUENT</td>
</tr>
<tr>
<td>SYSTRAN</td>
<td></td>
</tr>
<tr>
<td>eBay</td>
<td></td>
</tr>
</tbody>
</table>

Soon also eBay
Failures
The synchronous manifestation of lyrics is a procedure for can broadcasting the music, waiting the mp3 file at the same time showing the lyrics.

With the this kind method that the equipments that synchronous function of support up broadcast to make use of document create setup, you can pass the LCD window way the check at the document contents that broadcast. That procedure returns offerings to have to modify, and delete, and stick top, keep etc. edit function.
Failures

Applications

- Technical manuals

Example (An mp3 player)

The synchronous manifestation of lyrics is a procedure for can broadcasting the music, waiting the mp3 file at the same time showing the lyrics.

With the this kind method that the equipments that synchronous function of support up broadcast to make use of document create setup, you can pass the LCD window way the check at the document contents that broadcast.

That procedure returns offerings to have to modify, and delete, and stick top, keep etc. edit function.
Failures

Applications

- Technical manuals

Example (An mp3 player)

The synchronous manifestation of lyrics is a procedure for can broadcasting the music, waiting the mp3 file at the same time showing the lyrics. With the this kind method that the equipments that synchronous function of support up broadcast to make use of document create setup, you can pass the LCD window way the check at the document contents that broadcast.

That procedure returns offerings to have to modify, and delete, and stick top , keep etc. edit function.
Failures

Applications

- Technical manuals
- TripAdvisor

Example (Hotel Uppsala, Sweden)

— We stayed in rooms classified as “superior” because they had been renovated in the last year or two. Our rooms had wood floors and were roomy. You didn’t have to walk sideways to move around.
Failures

Applications
- Technical manuals
- tripadvisor
- US military

Example (JONES, SHEN, HERZOG 2009)

Soldier: Okay, what is your name?
Local: Abdul.
Soldier: And your last name?
Local: Al Farran.
Failures

Applications
- Technical manuals
- TripAdvisor
- US military

Example (JONES, SHEN, HERZOG 2009)

Soldier: Okay, what is your name?
Local: Abdul.
Soldier: And your last name?
Local: Al Farran.

Speech-to-text machine translation

Soldier: Okay, what’s your name?
Local: milk a mechanic and I am here I mean yes
Failures

Applications
- Technical manuals
- TripAdvisor
- US military

Example (Jones, Shen, Herzog 2009)

Soldier: Okay, what is your name?
Local: Abdul.
Soldier: And your last name?
Local: Al Farran.

Speech-to-text machine translation

Soldier: Okay, what's your name?
Local: milk a mechanic and I am here I mean yes
Soldier: What is your last name?
Local: every two weeks my son's name is ismail
Failures

Applications

- Technical manuals
- TripAdvisor
- US military
- MSDN, Knowledge Base
- ...

Statistical Machine Translation
But in many cases it actually works . . .
Selected application

Lecture translation

- real-time speech-to-text machine translation
- combines automatic speech recognition and SMT
- requires lecturer training and terminology training
- automatically provides subtitles to lecture video

Video

http://www.youtube.com/watch?v=x5lL0wpr-88
Selected application

Lecture translation

- real-time speech-to-text machine translation
- combines automatic speech recognition and SMT
- requires lecturer training and terminology training
- automatically provides subtitles to lecture video

Video

http://www.youtube.com/watch?v=x5L0wpr-88
Summary

SMT works well
- between similar languages (e.g., Spanish-English)
- between large resource languages (e.g., French-English)
- in-domain (training and test from the same domain)
 → access to foreign language

SMT could be better
- into morphologically rich / free word order languages (e.g., German)
- handling noisy inputs (e.g., chats, Twitter feeds)
- dealing with documents (instead of sentences)
 → precision / translation accuracy

Conclusion
SMT is a cheap way to access foreign material
Summary

SMT works well
- between similar languages (e.g., Spanish-English)
- between large resource languages (e.g., French-English)
- in-domain (training and test from the same domain)
→ access to foreign language

SMT could be better
- into morphologically rich / free word order languages (e.g., German)
- handling noisy inputs (e.g., chats, Twitter feeds)
- dealing with documents (instead of sentences)
→ precision / translation accuracy

Conclusion
SMT is a cheap way to access foreign material
Summary

SMT works well
- between similar languages (e.g., Spanish-English)
- between large resource languages (e.g., French-English)
- in-domain (training and test from the same domain)
→ access to foreign language

SMT could be better
- into morphologically rich / free word order languages (e.g., German)
- handling noisy inputs (e.g., chats, Twitter feeds)
- dealing with documents (instead of sentences)
→ precision / translation accuracy

Conclusion
SMT is a cheap way to access foreign material
Summary

SMT works well
- between similar languages (e.g., Spanish-English)
- between large resource languages (e.g., French-English)
- in-domain (training and test from the same domain)
 → access to foreign language

SMT could be better
- into morphologically rich / free word order languages (e.g., German)
- handling noisy inputs (e.g., chats, Twitter feeds)
- dealing with documents (instead of sentences)
 → precision / translation accuracy

Conclusion

SMT is a cheap way to access foreign material
Summary

SMT works well

- between similar languages (e.g., Spanish-English)
- between large resource languages (e.g., French-English)
- in-domain (training and test from the same domain)

→ access to foreign language

SMT could be better

- into morphologically rich / free word order languages (e.g., German)
- handling noisy inputs (e.g., chats, Twitter feeds)
- dealing with documents (instead of sentences)

→ precision / translation accuracy

Conclusion

SMT is a cheap way to access foreign material