Applications of Tree Automata Theory
Lecture II: Parsing — Basics and Evaluation

Andreas Maletti

Institute of Computer Science
Universität Leipzig, Germany

on leave from: Institute for Natural Language Processing
Universität Stuttgart, Germany

maletti@ims.uni-stuttgart.de

Yekaterinburg — August 23, 2014
Roadmap

1. Theory of Tree Automata
2. Parsing — Basics and Evaluation
3. Parsing — Advanced Topics
5. Theory of Tree Transducers
6. Machine Translation — Advanced Topics

Always ask questions right away!
Problem [intuitive]

Parsing is the process of analyzing the syntactic structure of a sentence yielding the **parse tree**

- syntactic structure of a language linguistically motivated
- ideally expressed by a grammar
We must bear in mind the Community as a whole
И вы действительно сможете изменить свою жизнь, воспользовавшись принципом 80 к 20
Linguistic Background

Constituency Parsing

- each word is a **lexical item**
- each lexical item has a grammatical function
 → **part-of-speech** (POS) (noun, verb, etc.)
- they combine to phrases that form syntactic categories
 → **constituents** (noun phrase, verb phrase, etc.)
Constituency Parsing

- each word is a **lexical item**
- each lexical item has a grammatical function → **part-of-speech (POS)** (noun, verb, etc.)
- they combine to phrases that form syntactic categories → **constituents** (noun phrase, verb phrase, etc.)

Other linguistic theories

- dependency grammars
- combinatory categorial grammars
- ...
We must bear in mind the Community as a whole.
Problem [realistic]

- Assume a hidden function $g : Q^* \rightarrow T_\Sigma(Q)$
- Given a finite set $T \subseteq T_\Sigma(Q)$ generated by g
- Develop a system representing $f : Q^* \rightarrow T_\Sigma(Q)$ approximating g
Problem [realistic]

- assume a hidden \(g : Q^* \rightarrow T_\Sigma(Q) \) reference parser
- given a finite set \(T \subseteq T_\Sigma(Q) \) example parse trees
 generated by \(g \)
- develop a system representing \(f : Q^* \rightarrow T_\Sigma(Q) \) parser
 approximating \(g \)
Problem [realistic]

- assume a hidden \(g : Q^* \rightarrow T_\Sigma(Q) \) reference parser
- given a finite set \(T \subseteq T_\Sigma(Q) \) example parse trees
generated by \(g \)
- develop a system representing \(f : Q^* \rightarrow T_\Sigma(Q) \) parser
 approximating \(g \)

Clarification

- \(T \) generated by \(g \) \iff \(T = g(L) \) for some finite \(L \subseteq Q^* \)
- for approximation we could use \(|\{ w \in Q^* \mid f(w) = g(w) \}| \)
Training
Observations

- Linguistic knowledge encoded in training set \(T \subseteq T_\Sigma(Q) \)
- We want to build grammars that can generate \(T' \supseteq T \)
- We follow the historical development
 1. Local tree grammars (LTG)
 2. Tree substitution grammars (TSG)
 3. Regular tree grammars (RTG)
LTG Production Extraction
simply read of CFG productions:

\[
\begin{align*}
S & \rightarrow NP \ VP \ NP \\
NP & \rightarrow PRP$ \ NN \\
PRP$ & \rightarrow My \\
NN & \rightarrow dog \\
VP & \rightarrow VBZ \\
VBZ & \rightarrow sleeps \\
NP & \rightarrow PRP \ PRP \\
PRP & \rightarrow I \\
VP & \rightarrow VBD \ ADVP \\
VBD & \rightarrow scored \\
ADVP & \rightarrow RB \\
RB & \rightarrow well
\end{align*}
\]
Statistical Parser Training

LTG Production Extraction
simply read of CFG productions:

S → NP VP
PRP$ → My
VP → VBZ
NP → PRP
VP → VBD ADVP
ADVP → RB

NP → PRP$ NN
NN → dog
VBZ → sleeps
PRP → I
VBD → scored
RB → well
Observations

- LTG offer unique explanation on tree level
- but ambiguity on the string level
- → weighted productions
Observations

- LTG offer unique explanation on tree level
- but ambiguity on the string level
 → weighted productions

Illustration

The diagrams show the syntactic structures for the sentences:

1. We saw her duck
2. S-BAR structure
Definition

A **weighted** local tree grammar (wLTG) is a weighted CFG $G = (N, Q, S, P, \text{wt})$

- finite set N
- finite set Q
- $S \subseteq N$
- finite set $P \subseteq N \times T_N(Q)$
- mapping $\text{wt}: P \to [0, 1]$

It will compute the weighted derivation trees of the wCFG.
LTG Production Extraction

simply read of CFG productions and keep counts:

- **S → NP VP** (2)
- **PRP$ → My** (1)
- **VP → VBZ** (1)
- **NP → PRP** (1)
- **VP → VBD ADVP** (1)
- **ADVP → RB** (1)
- **NP → PRP$ NN** (1)
- **NN → dog** (1)
- **VBZ → sleeps** (1)
- **PRP → I** (1)
- **VBD → scored** (1)
- **RB → well** (1)
LTG Production Extraction

normalize counts: (here by left-hand side)

\[
\begin{align*}
S & \rightarrow \text{NP VP } (2) \\
\text{NP} & \rightarrow \text{PRP$ NN } (1) \\
\text{PRP$} & \rightarrow \text{My } (1) \\
\text{NN} & \rightarrow \text{dog } (1) \\
\text{VP} & \rightarrow \text{VBZ } (1) \\
\text{VBZ} & \rightarrow \text{sleeps } (1) \\
\text{PRP} & \rightarrow \text{I } (1) \\
\text{VBD} & \rightarrow \text{scored } (1) \\
\text{ADVP} & \rightarrow \text{RB } (1) \\
\text{RB} & \rightarrow \text{well } (1) \\
\text{NP} & \rightarrow \text{PRP } (1)
\end{align*}
\]
LTG Production Extraction

normalize counts: (here by left-hand side)

\[
\begin{align*}
S & \xrightarrow{1} \text{NP VP} \\
\text{NP} & \xrightarrow{0.5} \text{PRP$ NN} \quad \text{NP} \xrightarrow{0.5} \text{PRP} \\
\text{PRP$} & \xrightarrow{1} \text{My} \\
\text{NN} & \xrightarrow{1} \text{dog} \\
\text{VP} & \xrightarrow{0.5} \text{VBZ} \quad \text{VP} \xrightarrow{0.5} \text{VBD ADVP} \\
\text{VBZ} & \xrightarrow{1} \text{sleeps} \\
\text{PRP} & \xrightarrow{1} \text{I} \\
\text{VBD} & \xrightarrow{1} \text{scored} \\
\text{ADVP} & \xrightarrow{1} \text{RB} \\
\text{RB} & \xrightarrow{1} \text{well}
\end{align*}
\]
Weighted parses

```
S
  NP
    PRP$ My
    NN dog
  VP
    VBZ sleeps

S
  NP
    PRP I
    VBD scored
  VP
    ADVP RB
       well
```

weight: 0.25 weight: 0.25

Weighted LTG productions

(only productions with weight \(\neq 1\))

- \(NP \xrightarrow{0.5} \text{PRP$ NN}\)
- \(VP \xrightarrow{0.5} \text{VBZ}\)
- \(NP \xrightarrow{0.5} \text{PRP}\)
- \(VP \xrightarrow{0.5} \text{VBD ADVP}\)
Statistical Parsing Approach

given sentence w, return highest-scoring parse for w
Statistical Parsing Approach

given sentence \(w \), return highest-scoring parse for \(w \)

Consequence

The first parse should be preferred

("duck" more frequently a noun, etc.)
Observations

- works similarly for TSG
- needs additional cutting strategy to select fragments
Observations

- works similarly for TSG
- needs additional cutting strategy to select fragments

Illustration

```
We saw her duck
```

```
We saw PRP$ duck
```
BERKELEY parser [Reference]:

CHARNIAK-JOHNSON parser:
Definition (ParseEval measures)

- **precision** = number of correct constituents (heading the same phrase as in reference) divided by number of all constituents in parse
Definition (ParseEval measures)

- **precision** = number of correct constituents (heading the same phrase as in reference) divided by number of all constituents in parse

- **recall** = number of correct constituents divided by number of all constituents in reference
Definition (ParseEval measures)

- **precision** = number of correct constituents (heading the same phrase as in reference) divided by number of all constituents in parse
- **recall** = number of correct constituents divided by number of all constituents in reference
- **combined measure**

\[F_{\alpha} = (1 + \alpha^2) \cdot \frac{\text{precision} \cdot \text{recall}}{\alpha^2 \cdot \text{precision} + \text{recall}} \]
We must bear in mind the Community as a whole.

- **precision** = \(\frac{9}{9} \) = 100%
Parser output

- precision $= \frac{9}{9} = 100\%$
- recall $= \frac{9}{10} = 90\%$
Reference

Parser output

- precision = \(\frac{9}{9} = 100\% \)
- recall = \(\frac{9}{10} = 90\% \)
- \(F_1 = 2 \cdot \frac{1 \cdot 0.9}{1 + 0.9} = 95\% \)
Standardized Setup

- **training data**: PENN treebank Sections 2–21
 (articles from the WALL STREET JOURNAL)
- **development test data**: PENN treebank Section 22
- **evaluation data**: PENN treebank Section 23
Experiment [POST, GILDEA, 2009]

<table>
<thead>
<tr>
<th>type</th>
<th>size</th>
<th>precision</th>
<th>recall</th>
<th>F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFG</td>
<td>46k</td>
<td>75.37</td>
<td>70.05</td>
<td>72.61</td>
</tr>
<tr>
<td>“spinal” TSG</td>
<td>190k</td>
<td>80.30</td>
<td>78.10</td>
<td>79.18</td>
</tr>
<tr>
<td>“minimal subset” TSG</td>
<td>2,560k</td>
<td>76.40</td>
<td>78.29</td>
<td>77.33</td>
</tr>
</tbody>
</table>

These are bad compared to the state-of-the-art!
Experiment [POST, GILDEA, 2009]

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>Precision</th>
<th>Recall</th>
<th>F_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFG</td>
<td>46k</td>
<td>75.37</td>
<td>70.05</td>
<td>72.61</td>
</tr>
<tr>
<td>“spinal” TSG</td>
<td>190k</td>
<td>80.30</td>
<td>78.10</td>
<td>79.18</td>
</tr>
<tr>
<td>“minimal subset” TSG</td>
<td>2,560k</td>
<td>76.40</td>
<td>78.29</td>
<td>77.33</td>
</tr>
</tbody>
</table>

These are bad compared to the state-of-the-art!
State-of-the-Art Models
State-of-the-art models

- context-free grammars with latent variables (CFG_{lv})
 - [Collins, 1999](#)
 - [Klein, Manning, 2003](#)
 - [Petrov, Klein, 2007](#)

- tree substitution grammars with latent variables (TSG_{lv})
 - [Shindo et al., 2012](#)

- other models
Grammars with Latent Variables

Definition

A grammar with latent variables is (grammar with relabeling)

- a grammar G generating $L(G) \subseteq T^\Sigma(Q)$
- a (total) mapping $\rho : \Sigma \rightarrow \Delta$ functional relabeling

Remark

We use $X-n$ for symbols that are relabeled to X $\rho(X-n) = X$
Grammars with Latent Variables

Definition (Semantics)

\[L(G, \rho) = \rho(L(G)) = \{ \rho(t) \mid t \in L(G) \} \]

Language class: \(\text{REL}(\mathcal{L}) \) for language class \(\mathcal{L} \)
Grammars with Latent Variables

Definition (Semantics)

\[L(G, \rho) = \rho(L(G)) = \{ \rho(t) \mid t \in L(G) \} \]

Language class: \(REL(\mathcal{L}) \) for language class \(\mathcal{L} \)

Example (Typical fragments)

![Diagram of grammatical structures]
Grammars with Latent Variables

Definition (Semantics)

\[L(G, \rho) = \rho(L(G)) = \{ \rho(t) \mid t \in L(G) \} \]

Language class: \(\text{REL}(\mathcal{L}) \) for language class \(\mathcal{L} \)

Example (Typical fragments)

\[
\begin{align*}
S & \quad \text{NP} \quad \text{VP} \\
\text{NP} & \quad \text{PRP} \\
S & \quad \text{NP} \quad \text{VP} \\
\text{VBP} & \quad \text{love} \\
S & \quad \text{NP} \quad \text{VP} \\
\text{TO} & \quad \text{VP}
\end{align*}
\]
Theorem

$$\text{REL}(\text{LTL}) = \text{REL}(\text{TSL}) = \text{REL}(\text{RTL}) = \text{RTL}$$
Grammars with Latent Variables

Theorem

\[\text{REL}(\text{LTL}) = \text{REL}(\text{TSL}) = \text{REL}(\text{RTL}) = \text{RTL} \]
Grammars with Latent Variables

Experiment [SHINDO et al., 2012]

| Grammar model | F_1 | \(|w| \leq 40\) | full |
|-----------------------------------|-------|-----------------|------|
| TSG [Post, Gildea, 2009] | 82.6 | | |
| TSG [COHN et al., 2010] | 85.4 | 84.7 | |
| CFG$_{lv}$ [Collins, 1999] | 88.6 | 88.2 | |
| CFG$_{lv}$ [Petrov, Klein, 2007] | 90.6 | 90.1 | |
| CFG$_{lv}$ [Petrov, 2010] | | | 91.8 |
| TSG$_{lv}$ (single) [SHINDO et al., 2012] | 91.6 | 91.1 | |
| TSG$_{lv}$ (multiple) [SHINDO et al., 2012] | 92.9 | 92.4 | |

Discriminative Parsers

CARRERAS et al., 2008		91.1	
CHARNIAK, JOHNSON, 2005	92.0	91.4	
HUANG, 2008	92.3	91.7	
Training of TA
Example (English grammar)

\[
\begin{align*}
S-1 & \rightarrow \text{ADJP-2 } S-1 & 0.0035453455987323125 \cdot 10^0 \\
S-1 & \rightarrow \text{ADJP-1 } S-1 & 2.108608433271444 \cdot 10^{-6} \\
S-1 & \rightarrow \text{VP-5 } \text{VP-3} & 1.6367163259885093 \cdot 10^{-4} \\
S-2 & \rightarrow \text{VP-5 } \text{VP-3} & 9.724998692152419 \cdot 10^{-8} \\
S-1 & \rightarrow \text{PP-7 } \text{VP-0} & 1.0686659961009547 \cdot 10^{-5} \\
S-9 & \rightarrow \text{" } \text{NP-3} & 0.012551243773149695 \cdot 10^0
\end{align*}
\]
Example (English grammar)

<table>
<thead>
<tr>
<th>Rule</th>
<th>0.0035453455987323125 · 10^0</th>
<th>2.108608433271444 · 10^{-6}</th>
<th>1.6367163259885093 · 10^{-4}</th>
<th>9.724998692152419 · 10^{-8}</th>
<th>1.0686659961009547 · 10^{-5}</th>
<th>0.012551243773149695 · 10^0</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1 → ADJP-2 S-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-1 → ADJP-1 S-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-1 → VP-5 VP-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-2 → VP-5 VP-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-1 → PP-7 VP-0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S-9 → “ NP-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

~~weighted tree automaton~~
Illustration

BERKELEY parser production:

\[S-1 \rightarrow \text{ADJP-2} \ S-1 \quad 0.0035453455987323125 \cdot 10^0 \]

This corresponds to tree automata production:

\[S-1 \rightarrow S(\text{ADJP-2}, \ S-1) \quad 0.0035453455987323125 \cdot 10^0 \]
Training Approach

1. extract wCFG productions
 \[S \xrightarrow{c} \text{NP VP} \text{ corresponds to } S-1 \xrightarrow{c} S(\text{NP-1, VP-1}) \]

2. split all states and retrain
Training Approach

1. extract wCFG productions
 \[S \xrightarrow{c} NP \text{ VP corresponds to } S^{-1} \xrightarrow{c} S(NP^{-1}, VP^{-1}) \]

2. split all states and retrain

3. check utility of splits
Excursion: Berkeley Parser

Training Approach

1. Extract wCFG productions

 $S \xrightarrow{c} \text{NP VP}$ corresponds to $S-1 \xrightarrow{c} S(\text{NP-1, VP-1})$

2. Split all states and retrain

3. Check utility of splits

4. Remerge if split not beneficial

Lecture II: Parsing
Excursion: Berkeley Parser

Training Approach

1. extract wCFG productions
 \[S \xrightarrow{c} NP \ VP \] corresponds to \[S-1 \xrightarrow{c} S(NP-1, VP-1) \]

2. split all states and retrain

3. check utility of splits

4. remerge if split not beneficial

5. back to 2 unless converged
Training Approach

1. extract wCFG productions
 \[S \xrightarrow{c} NP \text{ VP corresponds to } S-1 \xrightarrow{c} S(NP-1, \text{ VP-1}) \]
2. split all states and retrain
3. check utility of splits
4. remerge if split not beneficial
5. back to 2 unless converged
Excursion: Berkeley Parser

State splitting

assume n states

- replace each production $X-i \xrightarrow{c} \sigma(Y-j, Z-\ell)$ by

1. $X-i \xrightarrow{c_1} \sigma(Y-j, Z-\ell)$
2. $X-i \xrightarrow{c_2} \sigma(Y-j, Z-(n + \ell))$
3. $X-i \xrightarrow{c_3} \sigma(Y-(n + j), Z-\ell)$
4. $X-i \xrightarrow{c_4} \sigma(Y-(n + j), Z-(n + \ell))$
5. $X-(n+i) \xrightarrow{c_5} \sigma(Y-j, Z-\ell)$
6. $X-(n+i) \xrightarrow{c_6} \sigma(Y-j, Z-(n + \ell))$
7. $X-(n+i) \xrightarrow{c_7} \sigma(Y-(n + j), Z-\ell)$
8. $X-(n+i) \xrightarrow{c_8} \sigma(Y-(n + j), Z-(n + \ell))$
Excursion: Berkeley Parser

Training the weights

- EM algorithm [Dempster, Laird, Rubin, 1977] (Expectation-Maximization)
- we present an inefficient version
 efficient version builds on inside & outside weights
Excursion: Berkeley Parser

Expectation Step

- derivation tree = element of $L(G)$ for the LTG G (trees before relabeling)
- for each tree $t \in T$ of the training set T
 build and score all derivation trees d such that $\rho(d) = t$

Given the current model, predict the latent variables
Expectation Step

<table>
<thead>
<tr>
<th></th>
<th>S $\overset{0.25}{\rightarrow}$ NP-1 VP</th>
<th>S $\overset{0.75}{\rightarrow}$ NP-2 VP</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP</td>
<td>$\overset{1}{\rightarrow}$ sleeps</td>
<td>$\overset{1}{\rightarrow}$ dragon</td>
</tr>
<tr>
<td>NP-1</td>
<td>$\overset{1}{\rightarrow}$ DT-1 NN</td>
<td>$\overset{1}{\rightarrow}$ DT-2 NN</td>
</tr>
<tr>
<td>DT-1</td>
<td>$\overset{0.9}{\rightarrow}$ the</td>
<td>$\overset{0.2}{\rightarrow}$ the</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DT-2 $\overset{0.8}{\rightarrow}$ a</td>
</tr>
</tbody>
</table>
Excursion: Berkeley Parser

Expectation Step

<table>
<thead>
<tr>
<th>Rule</th>
<th>Probability</th>
<th>Parse Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>S (\rightarrow) NP-1 VP</td>
<td>0.25</td>
<td>S (\rightarrow) NP-2 VP</td>
</tr>
<tr>
<td>VP (\rightarrow) sleeps</td>
<td>1</td>
<td>NN (\rightarrow) dragon</td>
</tr>
<tr>
<td>NP-1 (\rightarrow) DT-1 NN</td>
<td>1</td>
<td>NP-2 (\rightarrow) DT-2 NN</td>
</tr>
<tr>
<td>DT-1 (\rightarrow) the</td>
<td>0.9</td>
<td>DT-2 (\rightarrow) the</td>
</tr>
<tr>
<td>DT-2 (\rightarrow) a</td>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

Training set

- S \(\rightarrow \) NP VP \(\rightarrow \) DT NN \(\rightarrow \) dragon \(\rightarrow \) sleeps
- S \(\rightarrow \) NP VP \(\rightarrow \) DT a \(\rightarrow \) dragon \(\rightarrow \) sleeps
Excursion: Berkeley Parser

Expectation Step

<table>
<thead>
<tr>
<th>Rule</th>
<th>Weight</th>
<th>Derivation</th>
</tr>
</thead>
<tbody>
<tr>
<td>S $\xrightarrow{0.25}$ NP-1 VP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VP $\xrightarrow{1}$ sleeps</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP-1 $\xrightarrow{1}$ DT-1 NN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT-1 $\xrightarrow{0.9}$ the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S $\xrightarrow{0.75}$ NP-2 VP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NN $\xrightarrow{1}$ dragon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NP-2 $\xrightarrow{1}$ DT-2 NN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT-2 $\xrightarrow{0.2}$ the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DT-2 $\xrightarrow{0.8}$ a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Derivation trees

- Weight: $0.25 \cdot 0.9$
 - $S \rightarrow NP-1 VP \rightarrow VP \rightarrow sleeps \rightarrow NP-1 \rightarrow DT-1 NN \rightarrow DT-1 \rightarrow the$
 - $S \rightarrow NP-1 VN \rightarrow NP-2 \rightarrow NN \rightarrow dragon \rightarrow VP \rightarrow sleeps \rightarrow DT-2 \rightarrow the \rightarrow DT-2 \rightarrow a$

- Weight: $0.75 \cdot 0.2$
 - $S \rightarrow NP-2 VP \rightarrow VP \rightarrow sleeps \rightarrow DT-2 \rightarrow NN \rightarrow dragon \rightarrow VP \rightarrow sleeps \rightarrow DT-2 \rightarrow the \rightarrow DT-2 \rightarrow a$

- Weight: $0.75 \cdot 0.8$
 - $S \rightarrow NP-2 VN \rightarrow NP-2 \rightarrow NN \rightarrow dragon \rightarrow VP \rightarrow sleeps \rightarrow DT-2 \rightarrow a \rightarrow DT-2 \rightarrow dragon$
Maximization Step

- weighted count $c(\rho)$ of occurrences of each production ρ (each occurrence weighted by derivation weight)
- reset production weights

$$
wt'(X-i \rightarrow Y-j \ Z-\ell) = \frac{c(X-i \rightarrow Y-j \ Z-\ell)}{\sum_{j',\ell'} c(X-i \rightarrow Y-j' \ Z-\ell')}
$$

Re-estimate the model parameter given the predictions
Excursion: Berkeley Parser

Derivation trees

Maximization Step

- \(c(S \rightarrow \text{NP-1 VP}) = 0.25 \cdot 0.9 = 0.225 \)
- \(c(S \rightarrow \text{NP-2 VP}) = 0.75 \cdot 0.2 + 0.75 \cdot 0.8 = 0.75 \)
Excursion: Berkeley Parser

Derivation trees

weight: 0.25 \cdot 0.9

S
 NP-1 VP
 DT-1 NN sleeps
 the dragon

weight: 0.75 \cdot 0.2

S
 NP-2 VP
 DT-2 NN sleeps
 the dragon

weight: 0.75 \cdot 0.8

S
 NP-2 VP
 DT-2 NN sleeps
 a dragon

Maximization Step

- \(c(S \rightarrow NP-1 \ VP) = 0.25 \cdot 0.9 = 0.225 \)
- \(c(S \rightarrow NP-2 \ VP) = 0.75 \cdot 0.2 + 0.75 \cdot 0.8 = 0.75 \)
- \(wt'(S \rightarrow NP-1 \ VP) = \frac{0.225}{0.225+0.75} = 0.23 \)
- \(wt'(S \rightarrow NP-2 \ VP) = \frac{0.75}{0.225+0.75} = 0.77 \)
Training Approach

1. **extract wCFG productions**

 \[S \xrightarrow{c} \text{NP VP} \text{ corresponds to } S-1 \xrightarrow{c} S(\text{NP-1}, \text{VP-1}) \]

2. **split all states and retrain**

3. **check utility of splits**

 (evaluate on development test)

4. **remerge if split not beneficial**

5. **back to 2**

 (unless converged)
Training Approach

1. Extract wCFG productions

 \[S \stackrel{c}{\rightarrow} \text{NP VP} \] corresponds to \[S \stackrel{c}{\rightarrow} S(\text{NP-1, VP-1}) \]

2. Split all states and retrain

3. Check utility of splits

 (evaluate on development test)

4. Remerge if split not beneficial

5. Back to 2 (unless converged)
Determiner splits:

Figure taken from [PETROV et al, 2006]
Excursion: Berkeley Parser

Figure taken from [PETROV et al, 2006]

<table>
<thead>
<tr>
<th>VBZ</th>
<th>DT</th>
<th>IN</th>
</tr>
</thead>
<tbody>
<tr>
<td>gives</td>
<td>the</td>
<td>In</td>
</tr>
<tr>
<td>sells</td>
<td>The</td>
<td>With</td>
</tr>
<tr>
<td>takes</td>
<td>a</td>
<td>After</td>
</tr>
<tr>
<td>comess</td>
<td>A</td>
<td>For</td>
</tr>
<tr>
<td>goes</td>
<td>An</td>
<td>At</td>
</tr>
<tr>
<td>works</td>
<td>Another</td>
<td></td>
</tr>
<tr>
<td>includes</td>
<td>The</td>
<td>in</td>
</tr>
<tr>
<td>owns</td>
<td>No</td>
<td>for</td>
</tr>
<tr>
<td>is</td>
<td>This</td>
<td>on</td>
</tr>
<tr>
<td>puts</td>
<td>Some</td>
<td>of</td>
</tr>
<tr>
<td>provides</td>
<td>These</td>
<td>for</td>
</tr>
<tr>
<td>takes</td>
<td>all</td>
<td>on</td>
</tr>
<tr>
<td>says</td>
<td>those</td>
<td>with</td>
</tr>
<tr>
<td>adds</td>
<td>some</td>
<td></td>
</tr>
<tr>
<td>Says</td>
<td>these</td>
<td></td>
</tr>
<tr>
<td>believes</td>
<td>some</td>
<td>both</td>
</tr>
<tr>
<td>means</td>
<td>these</td>
<td></td>
</tr>
<tr>
<td>thinks</td>
<td>that</td>
<td></td>
</tr>
<tr>
<td>expects</td>
<td>That</td>
<td>this</td>
</tr>
<tr>
<td>makes</td>
<td>This</td>
<td>each</td>
</tr>
<tr>
<td>calls</td>
<td>each</td>
<td></td>
</tr>
<tr>
<td>plans</td>
<td>The</td>
<td>a</td>
</tr>
<tr>
<td>expects</td>
<td>these</td>
<td></td>
</tr>
<tr>
<td>wants</td>
<td>that</td>
<td></td>
</tr>
<tr>
<td>is</td>
<td>the</td>
<td></td>
</tr>
<tr>
<td>‘s</td>
<td>no</td>
<td></td>
</tr>
<tr>
<td>is</td>
<td>any</td>
<td></td>
</tr>
<tr>
<td>remains</td>
<td>some</td>
<td></td>
</tr>
<tr>
<td>has</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>‘s</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>is</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>does</td>
<td>Is</td>
<td>this</td>
</tr>
<tr>
<td>Does</td>
<td></td>
<td>the</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NNP</th>
<th>CD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jr. Goldman INC.</td>
<td>1 100</td>
</tr>
<tr>
<td>Bush Noriega Peters</td>
<td>8,50 15 1.2</td>
</tr>
<tr>
<td>J. E. L.</td>
<td>8 10 20</td>
</tr>
<tr>
<td>York Francisco Street</td>
<td>1 30 31</td>
</tr>
<tr>
<td>Stock Exchange York</td>
<td>two three five</td>
</tr>
<tr>
<td>Corp. Inc. Group</td>
<td>one One Three</td>
</tr>
<tr>
<td>Congress Japan IBM</td>
<td>12 34 14</td>
</tr>
<tr>
<td>Friday September August</td>
<td>78 58 34</td>
</tr>
<tr>
<td>Shearon D. Ford</td>
<td>one two three</td>
</tr>
<tr>
<td>U.S. Treasury Senate</td>
<td>million billion trillion</td>
</tr>
<tr>
<td>John Robert James</td>
<td>PRP</td>
</tr>
<tr>
<td>Mr. Ms. President</td>
<td>PRP-0 It He I</td>
</tr>
<tr>
<td>Oct. Nov. Sept.</td>
<td>PRP-1 it he they</td>
</tr>
<tr>
<td>New San Wall</td>
<td>PRP-2 it them him</td>
</tr>
<tr>
<td>JJS</td>
<td>RBR</td>
</tr>
<tr>
<td>largest</td>
<td>further</td>
</tr>
<tr>
<td>latest</td>
<td>lower</td>
</tr>
<tr>
<td>biggest</td>
<td>higher</td>
</tr>
<tr>
<td>least</td>
<td>most</td>
</tr>
<tr>
<td>best</td>
<td>Most</td>
</tr>
<tr>
<td>worst</td>
<td>least</td>
</tr>
<tr>
<td>PRP</td>
<td>RBR-0</td>
</tr>
<tr>
<td>RBR-1</td>
<td>It</td>
</tr>
<tr>
<td>RBR-2</td>
<td>he</td>
</tr>
<tr>
<td>RBR-0</td>
<td>them</td>
</tr>
<tr>
<td>RBR-1</td>
<td>them</td>
</tr>
<tr>
<td>RBR-2</td>
<td>him</td>
</tr>
<tr>
<td>RBR-0</td>
<td>earlier</td>
</tr>
<tr>
<td>RBR-1</td>
<td>Earlier</td>
</tr>
<tr>
<td>RBR-2</td>
<td>later</td>
</tr>
<tr>
<td>RBR-0</td>
<td>n’t</td>
</tr>
<tr>
<td>RBR-1</td>
<td>not</td>
</tr>
</tbody>
</table>
Summary

- good source of (relevant) weighted tree automata
- large automata
 - **English**: 153 MB (1,133 states and 4,267,277 productions)
 - **Chinese**: 98 MB
- many operations still to be investigated
 (determinization, minimization, products, etc.)
Summary

- good source of (relevant) weighted tree automata
- large automata
 - English: 153 MB (1,133 states and 4,267,277 productions)
 - Chinese: 98 MB
- many operations still to be investigated
 (determinization, minimization, products, etc.)

(Nondeterministic) Minimization

- unweighted: PSpace (NFA) and ExpTime (TA)
- weighted over field:
 PTime (wNFA) and randomized PTime (wTA)
Articles

Klein, Manning
Accurate Unlexicalized Parsing
Proc. 41st ACL, 2003

Petrov, Barrett, Thibaux and Klein
Learning Accurate, Compact, and Interpretable Tree Annotation
Proc. 44th ACL, 2006

Shindo, Miyao, Fujino and Nagata
Bayesian Symbol-Refined Tree Substitution Grammars for Syntactic Parsing
Proc. 50th ACL, 2012