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Automatic Term Recognition Approach

terms: linguistic units which characterize a 
specific topic domain
 e.g. term candidates in computational 
linguistics domain: parsing, machine 
translation and natural language generation

- goal: improve automatic term recognition
- common approach: use a statistical 

measure to find terms
- this work: take several statistical 

measures as features to a classifier (
Random Forest and Decision Tree)

Evaluating the Reliability and Interaction of Recursively 
Used Feature Classes for Terminology Extraction

Automatic Term Recognition Pipeline

10-fold cross
validation

decision tree
classifier

feature
reduction

random forest
classifer

compute
features

extract uni-, bi- and
trigrams from text

Data

- ACL RD-TEC 1.0
- benchmark dataset for term extraction
- corpus of 10,922 ACL publications
- manual annotation of 22,044 valid terms 

and 61,758 non-terms

• variants of tf-idf

• term variance …

Term-Document Measures

• weirdness ratio

• TFITF…

Domain-Specificity Measures

• local mutual information

• chi square

Association Measures

• frequency

• word length

Count-based Measures

• POS-tag pattern

Linguistic Feature

• features above are
applied to substrings:

• 0-uni-CSmw

• 1-bi-CSmw, …

Features of Components

Features
Unigrams

Bigrams

Trigrams

term variance
quality <= 341

word length
<= 11.5

word length
<= 11.5

termtermnon-termnon-term

term variance
<= 7273

word length
<= 6.5

word length
<= 6.5

termtermNon-termNon-term

termterm

0-uni-CSmw <= 
1.5

0-uni-CSmw <= 
1.5

0-uni-corp 
ComLL <= 198

0-uni-corp 
ComLL <= 198

non-termnon-term corpComLL <= 
41

corpComLL <= 
41

termtermnon-termnon-term

LocalMI <= 38LocalMI <= 38

1-uni-POS != 
NN

1-uni-POS != 
NN

termtermnon-termnon-term

tf-idf <= 12880tf-idf <= 12880

termtermnon-termnon-term

X²<= 2.13e+15X²<= 2.13e+15

non-termnon-term 0-uni-weirdness 
ratio <= 3.78

0-uni-weirdness 
ratio <= 3.78

non-termnon-term 1-bi-POS != NN 
NN

1-bi-POS != NN 
NN

term variance
<= 53

term variance
<= 53

1-uni-CSmw <= 
1.57

1-uni-CSmw <= 
1.57

termtermnon-termnon-term

termterm

termterm

Component Class

- only “valid” and “non-valid” term candidates
- only candidates where both classes have same 

components
-  bayes algorithm (valid) vs.  basic algorithm

(non-valid)
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Results

Method F1

best single feature
(0-uni-CSmw)

0.72

best feature class
(component features)

0.80 

all features 0.81

Method F1

best single feature
(Chi²)

0.90

best feature class
(component features)

0.92

all features 0.93

Unigrams Bigrams Trigrams

combination of 
term-doc and 
count-based 
measures

special cases: 
czech, newspaper, 
chain, …

combination of various classes

why component feature as head node?
 this drop, general scheme, particular cluster, …

dominance of χ² 
association 
measure
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Conclusion

- a combination of measures improves the system
- single-word terms are harder to recognize than 

multiword terms
- for terms of different length, different measure 

combinations should be used
- for determining termhood, modifiers are better 

indicators than heads

Method F1

best single feature
(term variance qual.)

0.70

best feature class
(term-doc metrics)

0.72

all features 0.77


