Introduction

- our aim:
 - **overall**: build a computational model detecting semantic change
 - **in this paper**: distinguish metaphoric change from semantic stability
- how we do it:
 - exploit the idea of **semantic generality** from hypernym detection
 - apply **entropy** to **distributional semantic model** (Santus, Lenci, Lu, & Schulte im Walde, 2014)
 - sample language German
 - introduce the first resource for evaluation of models of metaphoric change

Related Work

- previous work includes mainly:
 i) spatial displacement models
 ii) word sense induction models
- quantifies the degree of **overall change** rather than being able to qualify different types
- does not examine metaphoric change

Conclusions

- you can annotate semantic change in a corpus (so do it)
- entropy correlates strongly and significantly with degree of metaphoric change
- frequency correlates moderately, but non-significantly on small data set
- annotation and model are **generalizable** to different types of semantic change

Acknowledgements

We thank Prof. Dr. Sebastian Padó for pointing out his idea to normalize word entropy via OLS. We are very grateful to Prof. Dr. Olav Hackstein and his research colloquium for valuable discussions and comments and to Saasha Schlechtweg for statistical advice. We would like to thank Andrew Wigman for careful proof-reading as well as Jörg Frießner, Michael Frotscher, Altina Mujkic, Edona Neziri, Cornelia van Scherpenberg, Christian Soetebier and Veronika Vasileva for help related to the annotation process. Last but not least, we thank the reviewers for constructive criticism helping us to improve the paper substantially.

Metaphoric Change

- frequent and important type of semantic change
- source and target concept are related by similarity or a reduced comparison (cf. Koch, 2016, p. 47)

source: ... muß ich mich umweltzen / und kann keinen schlaff in meine augen bringen

... I have to turn around and cannot bring sleep into my eyes.'

target: Kinadon wollte den Staat umweltzen

‘Kinadon wanted to revolutionize the state ...

(i) creates polysemy
(ii) often results in more abstract or general meanings
→ assumption: (i) and (ii) imply extension and dispersion in the range of linguistic contexts

Word Entropy

- derived from information-theoretic concept of entropy (Shannon, 1948)
- corresponds to **entropy of word vector**
- is assumed to reflect **semantic generality** in hypernym detection
- is given by

\[
H(C) = - \sum_{i=1}^{n} P(c_i | w) \log_2 P(c_i | w)
\]

where \(P(c_i | w)\) is the occurrence probability of context word \(c_i\) given target word \(w\)
- measures the **unpredictability** of \(w\)’s co-occurrences

Evaluation

- no standard test set of semantic or metaphoric change
- we create a small but first test set via annotation (28 items)
- annotators judged 560 context pairs for a metaphorical relation

Workflow:
- i) preselect 14 changing words
- ii) add 14 stable distractors
- iii) identify a date of change
- iv) extract 20 contexts for each target from before and after date of change
- v) for each word combine contexts between time periods randomly
- vi) annotation of context pairs

Results

<table>
<thead>
<tr>
<th></th>
<th>1700–1800</th>
<th>1800–1900</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td>entropy</td>
<td>.64***</td>
<td>.10</td>
<td>.39*</td>
</tr>
<tr>
<td>frequency</td>
<td>.29</td>
<td>-.07</td>
<td>.26</td>
</tr>
</tbody>
</table>

Table 1: Correlation (\(\rho\)) between predicted and gold ranks. Significance is determined with a t-test.

- analyzing the predicted ranks reveals interesting insights
- e.g., entropy ranks ausstechen (see below) much better than frequency
- however, entropy ranks Donnerwetter (at the top of the gold rank) at the very bottom
- we suppose the reason is that in its later metaphoric sense ‘blowup’ Donnerwetter can be used as an interjection in very short sentences
- this narrows down Donnerwetter’s contextual distribution due to our model only considering words within a sentence as context

ausstechen

1665: Von einem Bawren / welcher einem Kalbskopff die Augen außtach.

‘About a Farmer / who cut out the eyes of a calf’s head.’

1869: Sie wollen ihre Aufgabe nicht nur lösen, sondern auch elegant, d. h. rasch lösen, um Nebenhäuber auszustechen.

‘They not only wanted to solve their task, but also elegantly, i.e., solve it fast, in order to excel rivals.’
- gold rank: 12/28, entropy: 13, frequency: 17
- Donnerwetter

1631: Die Luft ist heiß / und gibt viel Blitzen und Donnerwetter ...

‘The air is hot / and there are many lightnings and thunderstorms …’

1893: Potz Donnerwetter!

‘Man alive!’
- gold rank: 1/28, entropy: 27, frequency: 15
- shows that:
 i) different factors play a role in determining the contextual distribution of a word (i.e., a model of semantic change should incorporate different types of information) and
 ii) frequency may still be helpful in detecting metaphoric change in certain settings

References

