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Selectional Restrictions

• Predicates impose selectional restrictions on their complements

• Famous example: Chomsky (1957)

Colorless green ideas sleep furiously

• Syntactically well-formed but not semantically meaningful

• Further example:

Elsa baked a chocolate cake.
?Elsa baked a stone.

• Realisation of complement with reference to thematic role
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Selectional Restrictions vs. Selectional Preferences

• Restriction: a predicate cannot be combined with arbitrary
complements → restriction to semantic categories

• Preference:
• degree of acceptability
• probabilistic models
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Motivation

• Generalisation over specific complement heads helps with data
sparseness, e.g.,

drink {coffee, tea, beer, wine}
→ drink 〈beverage〉
→ drink regina

• Requires knowledge of semantic categories:
• clusters
• WordNet
• distributional information
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Overview

• Cluster-based selectional preferences:

EM-based clusters generalise over seen and unseen data

• Pereira et al. (1993)
• Rooth et al. (1999)
• Schulte im Walde et al. (2008)

• WordNet-based selectional preferences:

WordNet classes generalise over subordinate instances

• Resnik (1997): association strength
• Li & Abe (1998): MDL cut
• Abney & Light (1999): HMM
• Ciaramita & Johnson (2000): Bayesian belief network
• Clark & Weir (2002): MDL cut

• Light & Greiff (2002): summary of approaches

• Brockmann & Lapata (2003): comparison of approaches

• Distributional selectional preferences:

distributional descriptions as abstractions over specific complements

• Erk (2007)
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Cluster: Example
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WordNet: Example
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Comparison (of WordNet Approaches)

• Data: German verb-argument pairs with 30 subjects, 30 direct
objects, 30 prepositional objects (10 verbs each)

• Models: Resnik (1997), Li & Abe (1998), Clark & Weir (2002),
co-occurrence frequency, conditional probability

• Comparison of models against human judgements on acceptability

• All five models are significantly correlated with human judgements

• Inter-subject agreement is higher than correlations

• No model performs best; different methods are suited for different
argument functions

• Combination of models by multiple linear regression outperforms
individual models
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Distributional Approach

• Contexts of a linguistic unit tell us something about the meaning of
the linguistic unit

• Example: corpus can tell us that one can buy, peal, and eat an apple

• Distributional hypothesis:

You shall know a word by the company it keeps. (Firth, 1957)

Each language can be described in terms of a distributional structure, i.e., in

terms of the occurrence of parts relative to other parts. (Harris, 1968)

• Basis for selectional preference model:
co-occurrence of triples 〈predicate, relation, complement〉

Sabine Schulte im Walde SelPrefs: 2nd-order Co-Occurrence



Selectional Preferences
Experiments

Motivation
Computational Approaches
2nd-Order Co-Occurrence

2nd-Order Co-Occurrence: Idea

• Selectional preferences with respect to a predicate’s complement are
defined by the properties of the complement realisations

• Example question: what characterises the direct objects of drink?

• Example: typical direct object of drink is fluid, might be hot or cold,
can be bought, might be bottled, etc.

• Second-order co-occurrence: a predicate’s restrictions to the
semantic realisation of its complements are expressed through the
properties of the complements
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Idea: Example

Example: backen ’bake’ 〈NPnom,NPacc〉

Verb Properties: Adj Realisations
backen frisch ’fresh’ Keks ’cookie’

lecker ’delicious’ Brötchen ’roll’
klein ’small’ Torte ’tart’
trocken ’dry’ Kuchen ’cake’
süß ’sweet’ Brot ’bread’
warm ’warm’ Pizza ’pizza’
fett ’fat’ Waffel ’waffle’
eingeweicht ’soaked’ Pfannkuchen ’pancake’
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Idea: Example

Example: anbraten ’fry’ 〈NPnom,NPacc〉

Verb Properties: VerbNPacc Realisations
anbraten schälen ’peel’ Champignon ’mushroom’

schneiden ’cut’ Zwiebel ’onion’
essen ’eat’ Kartoffel ’potatoe’
zugeben ’add’ Gemüse ’vegetable’
anschwitzen ’sweat’ Knoblauch ’garlic’
pellen ’peel’ Hackfleisch ’minced meat’
riechen ’smell’ Roulade ’roulade’
waschen ’clean’ Keule ’haunch’
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Data

• Corpus-based joint frequencies freq(p, r1, n) of predicates p and
nouns n with respect to some functional relationship r1;
r1: subjects, direct object, pp objects

• Corpus-based joint frequencies freq(n, r2, prop) of nouns n and noun
properties prop with respect to some functional relationship r2;
r2: modifying adjectives, subcategorising verbs (for direct object),
subcategorising prepositions

• Corpus source: approx. 560 million words from the German web
corpus deWaC (Baroni & Kilgarriff, 2006)

• Preprocessing: Tree Tagger (Schmid, 1994), and dependency parser
(Schiehlen, 2003)
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Scoring

1 Selectional preference description:

score1(p, r1, prop) =
P

n∈(p,r1) freq(p, r1, n) ∗ freq(n, r2, prop)

score2(p, r1, prop) =
P

n∈(p,r1) log(freq(p, r1, n)) ∗ log(freq(n, r2, prop))

score3(p, r1, prop) =
P

n∈(p,r1) prob(p, r1, n) ∗ prob(n, r2, prop)
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Scoring: Example

freq(drink, dir obj , coffee) = 50
freq(drink, dir obj , tea) = 5

freq(coffee, n mod , hot) = 100
freq(coffee, n mod , fluid) = 30

freq(tea, n mod , hot) = 60
freq(tea, n mod , fluid) = 15

score1(drink, dir obj , hot) = 50 ∗ 100 + 5 ∗ 60 = 5, 300
score1(drink, dir obj , fluid) = 50 ∗ 30 + 5 ∗ 15 = 1, 575

score2(drink, dir obj , hot) = log(50)∗log(100) + log(5)∗log(60) = 24.61
score2(drink, dir obj , fluid) = log(50)∗log(30) + log(5)∗log(15) = 17.66

score3(drink, dir obj , hot) = 0.91 ∗ 0.77 + 0.09 ∗ 0.80 = 0.77
score3(drink, dir obj , fluid) = 0.91 ∗ 0.23 + 0.09 ∗ 0.20 = 0.23
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Scoring

2 Selectional preference fit of a specific noun by standard distributional
measures: compares noun’s contribution to overall preference

• cosine, standard measure in linear algebra

cos(x , y) =
Pn

i=1 xi∗yi√Pn
i=1 x2

i ∗
√Pn

i=1 y2
i

• skew divergence, information-theoretic measure and variant of the
Kullback-Leibler divergence, cf. Lee (2001)

KL(x ||y) =
Pn

i=1 xi ∗ log xi
yi

skew(x , y) = KL(x ||w ∗ y + (1− w) ∗ x), w = 0.9
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• Kendall’s τ , a measure for rank correlation, cf. Hatzivassiloglou &
McKeown (1993), Lapata (2006)

τ(x , y) =
fagree

fagree + fdisagree
− fdisagree

fagree + fdisagree

• jaccard index , a binary distance measure, cf. Manning & Schütze
(1999)

jaccard(x , y) = |X∩Y |
|X∪Y |
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Data

• Human judgements on German subjects, direct objects and pp
objects, cf. Brockmann & Lapata (2003)

• Correlation of system scores with human judgements, by linear
regression

• Brockmann & Lapata normalised system scores and human
judgements by log10
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Baselines and Upper Bound

• Baseline: correlation of joint corpus-based predicate-noun
frequencies of subjects, direct objects and pp objects with human
judgements, also by linear regression

• Two baselines: raw frequencies and frequencies transformed by log10

• Upper bound: inter-subject agreement on selectional preference
judgements
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Results

SUBJ DIR-OBJ PP-OBJ all
log(f) prob log(f) prob log(f) prob log(f) prob

adj (a) .447 .430 .200 .399 .185 .266 .173 .327
verb (v) .461 .438 .142 .221 .226 .171 .171 .234
prep (p) .344 .433 .220 .657 .403 .505 .265 .492
v+vp .472 .433 .202 .318 .310 .373 .218 .310
v+vp+a .468 .428 .205 .414 .288 .297 .214 .335
v+vp+a+p .504 .452 .242 .695 .445 .541 .337 .512
BL comparison .408 (Resnik) .611 (comb) .597 (comb) .374 (Resnik)

baseline: f .298 .315 .319 .289
baseline: log10(f) .652 .559 .565 .574
baseline: BL .386 .360 .168 .301

isa .790 .810 .820 .810
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Results

• Best scoring: probabilities

• Best measure: cosine;
skew and τ are similar; jaccard is lowest

• Normalising system scores by log10 decreases results

• Most successful features: v+a+prep, or prep only

• Direct objects are modelled better than subjects or pp objects

• Large difference in baseline results (BL vs. ours);
probably due to corpus size
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Summary

• 2nd-order co-occurrence provides insights into properties of
selectional preferences

• Simple and intuitive distributional model beats WordNet-based
preferences in most cases

• Best performing properties are prepositions and general
distributional descriptions → compare with larger features sets
(e.g., window-based co-occurrence)

• Difficult to outperform frequency baselines

• Evaluation suboptimal → compare with ranking evaluation

• Effect of corpus size
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Related Work: Erk (2007)

• Primary corpus: extract tuples 〈p, r ,w〉 of a predicate p, an
argument position r , and a seen headword w

• Generalisation corpus: compute a corpus-based semantic similarity
metric

• Selectional preference S of a functional relation r for a possible
headword w0 is modelled as a weighted sum (weight: α) of the
similarities between w0 and the seen headwords w :

Srp (w0) =
∑

w∈Seen(rp)
sim(w0,w) ∗ αrp (w)
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Idea: Example

Example: abflauen ’calm down’ 〈NPnom,. . . 〉

Verb Properties: Adj Realisations
abflauen frisch ’cool’ Interesse ’interest’

stark ’strong’ Sturm ’storm’
heftig ’strong’ Begeisterung ’enthusiasm’
kalt ’cold’ Wind ’wind’
öffentlich ’public’ Protest ’protest’
wirtschaftlich ’economic’ Wachstum ’increase’
national ’national’ Kampf ’fight’
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Idea: Example

Example: bebauen ’build’ 〈. . . , PPmit , . . . 〉

Verb Properties: VerbNPacc/PP Realisations
bebauen errichten ’build’ Familienhaus ’family home’
mit wohnen in ’live in’ Gebäude ’building’

handeln um ’concern’ Geschäftshaus ’business house’
zerstören ’destroy’ Mietshaus ’apartment building’
erwerben ’acquire’ Villa ’villa’
verlassen ’leave’ Wohngebäude ’residential building’
einbrechen in ’break in’ Wohnung ’apartment’
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