First Step Towards Enhancing Word Embeddings with Pitch Accents for DNN-based Slot Filling on Recognized Text

Sabrina Stehwien, Ngoc Thang Vu

IMS, University of Stuttgart

March 16, 2017
Slot Filling

- sequential labelling task to assign semantic labels to each word in an input sequence
- key query terms “fill” a semantic frame or *slot* e.g. locations, time periods
- benchmark corpus: Airline Travel Information Systems (ATIS)
- state-of-the-art DNN models yield around 95% F1-Score
- typical features: word embeddings (lexico-semantic representations)
- example:

 SHOW 0 FLIGHTS 0 FROM 0 BURBANK B-fromloc.city_name TO 0 MILWAUKEE B-toloc.city_name FOR 0 TODAY B-depart_date.today_relative
Motivation

- slot filling is a text-based task, however:
- spoken language understanding (SLU) involves automatic speech recognition (ASR) as first step
- realistic setting: apply and optimize on ASR output, taking recognition error into account
- related work shows that slot filling performance drops on recognized text
- additional information that is extracted from the speech signal and not present in text may help
- prosodic information, e.g. pitch accents
Pitch Accents in Slot Filling

- certain words are marked as salient to highlight important information (focus, contrast, information status)
- pitch accents are useful for various NLP and SLU tasks: named entity recognition, coreference resolution, dialog act segmentation, etc.
- human listeners may recover recognition errors using context information and prosodic cues
- content words with new information status are typically pitch accented
- e.g. *List FLIGHTS from DALLAS to HOUSTON*
- a previous study has shown that words with automatically predicted pitch accents account for 90% of the slots in a subset of ATIS (Stehwien & Vu, 2016)
Bidirectional Recurrent Neural Network with Ranking Loss (Vu et al. 2015)

- **bi-directionality:** combination of forward and backward hidden layer models past and future context
- **ranking loss function** maximizes distance between true label and best target
- **100-dimensional word embeddings**
- **95.56% F1-score on ATIS**
Bidirectional Sequential Convolutional Neural Network (Vu, 2016)

- combination of two CNNs that model past and future contexts respectively
- additional surrounding context gives current word more weight
- 50-dimensional word embeddings
- 95.61% F1-score
Word Embeddings with Pitch Accent Extensions

• word embeddings are vector representations of words based on their lexical and semantic context

• word embedding of w concatenated with a binary flag indicating the absence or presence of a pitch accent on w:

$$embs(w) = [lexical_embs(w), pitch_accent_flag(w)]$$ \hspace{1cm} (1)

• combines acoustic-prosodic information and lexico-semantic word embeddings
Method

- recognize ATIS corpus from audio signal with ASR (7% WER)
- obtain the word, syllable, and phone alignments
- pitch accent detector determines the binary label for each word
- the word embeddings are trained and concatenated with the binary pitch accent flag
- compare slot filling performance on original transcriptions and recognized version
Pitch Accents in ATIS

- analyze co-occurrence of (predicted) pitch accents and slots in ATIS
- compare on manual transcriptions and recognized test set
- almost 93% of slots are pitch accented in both versions

<table>
<thead>
<tr>
<th></th>
<th>manual</th>
<th>recognized</th>
</tr>
</thead>
<tbody>
<tr>
<td># words</td>
<td>9551</td>
<td>9629</td>
</tr>
<tr>
<td># slots</td>
<td>3663</td>
<td>3560</td>
</tr>
<tr>
<td>pred. accents on slots</td>
<td>64.1%</td>
<td>64.0%</td>
</tr>
<tr>
<td>slots with pred. accent</td>
<td>92.7%</td>
<td>92.9%</td>
</tr>
</tbody>
</table>
Pitch Accents in Neural Models: Results

- results on ASR output are much worse than on manual transcriptions
- pitch accent extensions do not help on original text → context information suffices
- pitch accent extensions slightly improve F1-score on ASR output

<table>
<thead>
<tr>
<th></th>
<th>RNN</th>
<th>CNN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transcriptions (lexical word embeddings)</td>
<td>94.97</td>
<td>95.25</td>
</tr>
<tr>
<td>+ pitch accent extensions</td>
<td>94.98</td>
<td>95.25</td>
</tr>
<tr>
<td>ASR output (lexical word embeddings)</td>
<td>89.55</td>
<td>89.13</td>
</tr>
<tr>
<td>+ pitch accent extensions</td>
<td>90.04</td>
<td>89.57</td>
</tr>
</tbody>
</table>
Analysis

- *unknown* tokens replace words in the benchmark dataset that occur only once
- the ASR system also produces more unknown tokens due to recognition errors
- analysis of RNN results on unknown tokens, independent of slot type:
 - baseline: 43% correct
 - with pitch accent extensions: 51% correct
 - indicates that pitch accent information helped to localize a slot, even though the actual label may be incorrect
 - unknown tokens may still carry helpful information that is captured by this method
Examples

reference	I NEED THE FLIGHTS FROM **WASHINGTON** TO MONTREAL ON A SATURDAY
recognized	I NEED THE FLIGHTS FROM `<UNK>` TO MONTREAL ON SATURDAY
ref. slots	0 0 0 0 0 B-fromloc.city_name O B-toloc.city_name O B-depart_date.day_name
with accents	0 0 0 0 0 B-fromloc.city_name O B-toloc.city_name O B-depart_date.day_name
baseline	0 0 0 0 0 O O B-toloc.city_name O B-depart_date.day_name

→ unknown token is labelled correctly

reference	WHICH AIRLINES FLY BETWEEN **TORONTO** AND SAN DIEGO
recognized	WHICH AIRLINES FLY BETWEEN **TO ROUND `<UNK>`** AND SAN DIEGO
ref. slots	0 0 0 0 0 O O O O B-toloc.city_name I-toloc.city_name
with accents	0 0 0 0 0 O O O O B-toloc.city_name I-toloc.city_name
baseline	0 0 0 0 B-fromloc.city_name B-round_trip I-round_trip O B-toloc.city_name ...

→ misrecognized words are labelled more appropriately
Conclusion

- we addressed the notion of overcoming the performance drop of state-of-the-art slot filling methods on speech recognition output
- extended word embedding vectors with pitch accent features
- small but positive effects were obtained on two models (RNN and CNN)
- limited and closed-domain nature of ATIS may be accountable for small differences
- evidence that pitch accent features may help in the case of misrecognized or unknown words
References

N.T. Vu et al. (2015)
Bi-directional Recurrent Neural Network with Ranking Loss for Spoken Language Understanding
IEEE Transactions on Audio, Speech and Language Processing

N. T. Vu (2016)
Sequential Convolutional Neural Networks for Slot Filling in Spoken Language Understanding
Proceedings of Interspeech

G. Mesnil et al. (2015)
Using Recurrent Neural Networks for Slot Filling in Spoken Language Understanding
IEEE Transactions on Audio, Speech and Language Processing

S. Stehwien and N. T. Vu (2016)
Exploring the Correlation of Pitch Accents and Semantic Slots for Spoken Language Understanding
Proceedings of Interspeech

A. Schweitzer (2010)
Production and Perception of Prosodic Events - Evidence from Corpus-based Experiments
Ph.D. thesis, Universität Stuttgart