			Discussion	Conclusion
	One Tree	is not Enou	gh	
	Cross-lingual Accur	nulative Structur	e Transfer	
	for Seman	tic Indeterminac	V	
	Patrick Ziering	Lonneke van d	er Plas [◊]	
Institute for Natural Language Processing, University of Stuttgart, Germany				
	♦Institute of Linguist	ics, University of Mal	ta, Malta	

7th September 2015 RANLP 2015

Ziering and Van der Plas

Introduction		Discussion	Conclusion

Introduction

Ziering and Van der Plas

- Revealing the internal structure of noun compounds
- Important for natural language understanding

Ziering and Van der Plas

Sometimes: virtually no difference in meaning between structures

- PP-attachment [Hindle and Rooth, 1993]
 - \Rightarrow They mined the roads along the coast

Sometimes: virtually no difference in meaning between structures

- PP-attachment [Hindle and Rooth, 1993]
 - ⇒ They mined the roads along the coast
- Parsing of 4NCs (e.g., oil price increase strategy):

Sometimes: virtually no difference in meaning between structures

- PP-attachment [Hindle and Rooth, 1993]
 - ⇒ They mined the roads along the coast
- Parsing of 4NCs (e.g., oil price increase strategy):

Ziering and Van der Plas

- Established phenomenon in previous work
- Semantic indeterminacy is most often discarded in syntactic analysis
 - Vadas [2009]
 - Lauer [1995]

Ziering and Van der Plas

- Established phenomenon in previous work
- Semantic indeterminacy is most often discarded in syntactic analysis
 - Vadas [2009]
 - Lauer [1995]
- Incorporating semantic indeterminacy is important for NLP
- → All possible antecedents in anaphora resolution: oil price, price increase, oil price increase, price increase strategy, ...

Ziering and Van der Plas

Cross-lingual Structure Transfer (CST)

- Behaghel's [1909] First Law: Elements which belong close together intellectually will also be placed close together
- Spelling variations for noun compound translations
- human rights violations
 - ⇒ **—** Verletzungen *der* Menschenrechte

Ziering and Van der Plas

Cross-lingual Structure Transfer (CST)

- Behaghel's [1909] First Law: Elements which belong close together intellectually will also be placed close together
- Spelling variations for noun compound translations
- human rights violations

⇒ ■ Verletzungen der Menschenrechte

 \Rightarrow human and rights belong closer together:

Ziering and Van der Plas

Evidence for Semantic Indeterminacy in Parallel Corpora

Noun compound translations lead to structure variations

• tobacco advertising ban

- Werbeverbot für Tabakerzeugnisse \Rightarrow RIGHT
- *forbuddet mod tobaksreklamer* ⇒ LEFT

These variations are visible in particular across languages

A monolingual perspective suffers from coventional language use

Language	Bigram	freq
	tobacco advertising	205
	advertising ban	84
	Tabakwerbung	31
	Werbeverbot	96

Ziering and Van der Plas

[Ziering and Van der Plas, 2015]

Ziering and Van der Plas

[Ziering and Van der Plas, 2015]

Ziering and Van der Plas

[Ziering and Van der Plas, 2015]

Ziering and Van der Plas

[Ziering and Van der Plas, 2015]

Ziering and Van der Plas

[Ziering and Van der Plas, 2015]

Ziering and Van der Plas

[Ziering and Van der Plas, 2015]

Ziering and Van der Plas

[Ziering and Van der Plas, 2015]

Ziering and Van der Plas

Limitations of LIDST:

(A) Deterministic output for each individual language \rightarrow No output, if overlapping constituents have the same AWD

- (B) Deterministic output for language ensemble using majority vote
 - \rightarrow Cannot handle semantic indeterminacy

Ziering and Van der Plas

Tree Accumulative Methods	Discussion	Conclusion

Tree Accumulative Methods

Ziering and Van der Plas

Tree Accumulative Methods

Motivation:

 (A) Translations with which overlapping constituents have the same AWD can still provide partial results
 ⇒ Non-deterministic classification criterion

- (B) Semantic indeterminacy can only be captured non-deterministically
 → Cross lingual tree accumulation
 - \Rightarrow Cross-lingual tree accumulation

Ziering and Van der Plas

Full Tree Accumulative Structure Transfer (FAST)

For a given language I and k-partite noun compound kNC:

We create all binary trees.

Ziering and Van der Plas

- $\textbf{We annotate all tree nodes } N_i \text{ with the AWD of their children} \\ N_i.AWD = \begin{cases} \text{leaf}(N_i) & \mapsto 0 \\ \text{else} & \mapsto AWD(N_i.\text{L}, N_i.\text{R}) \end{cases}$
- air traffic control centres
 → ■ centres de contrôle du trafic aérien

Ziering and Van der Plas

Full Tree Accumulative Structure Transfer (FAST)

Tree validation:

A tree is valid, if the AWD annotation is monotonically decreasing top down.

 \Rightarrow Only valid trees are returned

Ziering and Van der Plas

Full Tree Accumulative Structure Transfer (FAST)

- Tree accumulation of all valid trees from all languages
- Sanking of all trees by frequency

Rank	Structure	Frequency
1	[air traffic] [control centres]	13
1	[[air traffic] control] centres	13
2	[air [traffic control]] centres	10

Ziering and Van der Plas

Subtree Accumulative Structure Transfer (SAST)

Sometimes an invalid full tree still contains a valid subtree

• church development aid projects \rightarrow **progetti ecclesiastici** *di* aiuti allo sviluppo church development aid projects X_{ft} AWD = 1church development aid projects \checkmark_{st} AWD = 0AWD = 3development aid projects AWD = 2AWD = 0development aid AWD = 0AWD = 0

Ziering and Van der Plas

Subtree Accumulative Structure Transfer (SAST)

- For all languages $l \in L$:
 - Creation of all binary trees
 - Iree annotation with AWD
 - Subtree validation and accumulation
- Subtrees are assigned a subtree score (*sts*):

$$sts(st) = \frac{freq(st.valid)}{|L| \cdot C_{\Delta}}$$

• All full trees are assigned a full tree score (*fts*):

$$fts(ft) = \prod_{st \in ft} sts(st)$$

• Full tree ranking according to fts

Ziering and Van der Plas

- Given the language ensemble $\{--$, -, -, -, -;
 - SAST ranks the left tree higher by exploiting the valid subtree derived from the Italian translation

Ziering and Van der Plas

	Experiments	Discussion	Conclusion

Experiments

Ziering and Van der Plas

Dataset		Tree Accumulative Methods	Experiments	Discussion	Conclusion
Dataset					
	Dataset				

- Noun Compound Database [Ziering and Van der Plas, 2014]
 - OPUS Europarl corpus [Tiedemann, 2012]
 - 10 languages out of 3 families:

• Extraction of 3NCs and 4NCs by PoS patterns

24,848 3NC tokens (16,565 types) 1468 4NC tokens (1257 types)

Ziering and Van der Plas

Gold Standard

[Ziering and Van der Plas, 2015]

- 278 LEFT- or RIGHT-branched 3NC tokens
- 120 cases of semantic indeterminacy

4NC test set

3NC test set

- 50 4NC tokens
- Annotation guidelines of Vadas and Curran [2007]
- Two trained annotators
 - Single tree (1, ..., 5)
 - Semantic Indeterminacy [i; ...; j]
- Single trees \cup Semantic Indeterminacy \rightarrow 33 4NC tokens

Ziering and Van der Plas

- How well does the system ranking fit to the set of gold trees?
- R-Precision [Buckley and Voorhees, 2000] $\mathsf{R}\operatorname{-Prec}(k\mathsf{NC}) = \frac{|\operatorname{top-R}(sys \ trees) \cap gold \ trees|}{|\operatorname{top-R}(sys \ trees)|}$

 \rightarrow Mean R-Precision (MRP) as macro average

Ziering and Van der Plas

- LINDST Language-Isolated Non-Deterministic Structure Transfer
 - Expansion of LIDST
 - Frequency ranking instead of majority vote

CHANCE Creates a random tree ranking

FREQ Creates a tree ranking according to structure pattern frequencies

Ziering and Van der Plas

	Experiments	Discussion	Conclusion
Results			

• MRP on test set of 3NCs and 4NCs

System	MRP
FAST	93.7%
SAST	94.0%
LIDST	92.6%
LINDST	92.0%
FREQ	84.6%
CHANCE	62.5%

Ziering and Van de<u>r Plas</u>

	Experiments	Discussion	Conclusion
Results			

• MRP on test set of 3NCs and 4NCs

System	MRP
FAST	93.7%
SAST	94.0%
LIDST	92.6%
LINDST	92.0%
FREQ	84.6%
CHANCE	62.5%

• All CST systems outperform the baselines

Ziering and Van der Plas

	Experiments	Discussion	Conclusion
Results			

• MRP on test set of 3NCs and 4NCs

System	MRP
FAST	93.7%
SAST	94.0%
LIDST	92.6%
LINDST	92.0%
FREQ	84.6%
CHANCE	62.5%

- All CST systems outperform the baselines
- FAST and SAST outperform LIDST and LINDST, but differences are small

Ziering and Van der Plas

	Experiments	Discussion	Conclusion
Results			

• Evaluation on test set of 4NCs

System	MRP
FAST	70.0%
SAST	69.5%
LIDST	54.5%‡
LINDST	62.9%‡
FREQ	60.1%
CHANCE	32.0%

Ziering and Van der Plas

	Experiments	Discussion	Conclusion
Results			

• Evaluation on test set of 4NCs

System	MRP
FAST	70.0%
SAST	69.5%
LIDST	54.5% <mark>‡</mark>
LINDST	62.9% <mark>‡</mark>
FREQ	60.1%
CHANCE	32.0%

• FAST and SAST significantly outperform LI(N)DST in MRP

Ziering and Van der Plas

	Discussion	Conclusion

Discussion

Ziering and Van der Plas

		Discussion	Conclusion
Discussion			

- Accumulative CST also means a benefit in a deterministic take \rightarrow partial evidence from several languages can be combined
- energy efficiency action plan \rightarrow **E** plan *de* acción *de* eficiencia energética energy efficiency action plan √ # energy efficiency action plan √ ff AWD = 2AWD = 2energy efficiency action plan energy efficiency action plan AWD = 2AWD = 0AWD = 2AWD = 1efficiency action plan energy energy efficiency action AWD = 0AWD = 0AWD = 0AWD = 0AWD = 1AWD = 0efficiency energy AWD = 0AWD = 0

Ziering and Van der Plas

		Discussion	Conclusion
Discussion			

Accumulative CST also means a benefit in a deterministic take
 → partial evidence from several languages can be combined

Ziering and Van der Plas

		Discussion	Conclusion
Discussion			

- Accumulative CST also means a benefit in a deterministic take
 → partial evidence from several languages can be combined
- Both languages fail to provide a single deterministic output
- In contrast:

the cross-lingual tree accumulation provides the correct tree: energy efficiency action plan

Ziering and Van der Plas

				Conclusion
Conclu	ision			
٩	Two models of accumulativ	e cross-lingual	structure transfe	er je
	 SAST Outporterm providers CST 		ficently on ANCo	
	\rightarrow Outperform previous CS	approach signi	ficantly on 4NCs	
٩	Non-determin <mark>istic CST is su</mark>	uitable for sema	antic indetermina	асу

Conclusion

• Cross-lingual tree accumulation combines partial results in a deterministic take

Ziering and Van der Plas

Ziering and Van der Plas

Full Results Table on 4NC Test Set

						一九
System	MRP	MP@1	MR@1	MP@2	MR@2	25
FAST	70.0%	72.7%	47.5%	60.6%	74.2%	
SAST	69.5%	69.7%	44.4%	63.6%	78.8%	
LIDST	54.5% <mark>‡</mark>	69.7%	44.4%	47.0%‡	59 .1%‡	
LINDST	62.9%‡	69.7%	44.4%	54.5%†	66.7% †	
FREQ	60.1%	63.6%	38.4%	56.1%	65.2%	
CHANCE	32.0%	39.4%	23.7%	33.3 %	42.4 %	

• FAST and SAST significantly outperform LI(N)DST in MRP

MP/R@k: Macro average of Precision/Recall at k

Ziering and Van der Plas

Experiment

Conclusion

Full Results Table on 4NC Test Set

MRP	MP@1	MR@1	MP@2	MR@2	5
70.0%	72.7%	47.5%	60.6%	74.2%	
69.5%	69.7%	44.4%	63.6%	78.8%	
54.5%‡	69.7%	44.4%	47.0%‡	59.1%‡	
62.9%‡	69.7%	44.4%	54.5%†	66.7% †	
60. <mark>1%</mark>	<mark>63</mark> .6%	38.4%	56.1%	65.2%	
32.0%	39.4%	23.7%	33.3 %	42.4 %	
	MRP 69.5% 54.5%‡ 62.9%‡ 60.1% 32.0%	MRPMP@170.0%72.7%69.5%69.7%54.5%‡69.7%62.9%‡69.7%60.1%63.6%32.0%39.4%	MRPMP@1MR@170.0%72.7%47.5%69.5%69.7%44.4%54.5%‡69.7%44.4%62.9%‡69.7%44.4%60.1%63.6%38.4%32.0%39.4%23.7%	MRPMP@1MR@1MP@2 70.0%72.7%47.5% 60.6%69.5%69.7% 44.4%63.6% 54.5%‡69.7%44.4%47.0%‡62.9%‡69.7%44.4%54.5%†60.1%63.6%38.4%56.1%32.0%39.4%23.7%33.3 %	MRPMP@1MR@1MP@2MR@270.0%72.7%47.5%60.6%74.2%69.5%69.7%44.4%63.6%78.8%54.5%‡69.7%44.4%47.0%‡59.1%‡62.9%‡69.7%44.4%54.5%†66.7%†60.1%63.6%38.4%56.1%65.2%32.0%39.4%23.7%33.3 %42.4 %

FAST and SAST significantly outperform LI(N)DST in MRP
No difference between the CST systems in MP/R@1

MP/R@k: Macro average of Precision/Recall at k

Ziering and Van der Plas

Experiment

Conclusion

Full Results Table on 4NC Test Set

						1 2
System	MRP	MP@1	MR@1	MP@2	MR@2	40
FAST	70.0%	72.7%	47.5%	60.6%	74.2%	
SAST	69.5%	69.7%	44.4%	63.6%	78.8%	
LIDST	54.5%‡	69.7%	44.4%	47.0%‡	59.1% <mark>‡</mark>	
LINDST	62.9%‡	69.7%	44.4%	54.5%†	66.7% †	
FREQ	60. <mark>1%</mark>	63.6%	38.4%	56.1%	65.2%	
CHANCE	32.0%	39.4%	23.7%	33.3 %	42.4 %	

FAST and SAST significantly outperform LI(N)DST in MRP
No difference between the CST systems in MP/R@1
FAST and SAST significantly outperform LIDST in MP/R@2
MP/R@k: Macro average of Precision/Recall at k

Ziering and Van der Plas