
December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

The Power of Weighted Regularity-Preserving
Multi Bottom-up Tree Transducers∗

ANDREAS MALETTI†

Universität Leipzig, Institute of Computer Science
Augustusplatz 10–11, 04109 Leipzig, Germany

maletti@informatik.uni-leipzig.de

Received (20 December 2014)
Communicated by (xxxxxxxxxx)

The expressive power of regularity-preserving ε-free weighted linear multi bottom-up tree
transducers is investigated. These models have very attractive theoretical and algorithmic
properties, but their expressive power is not well understood especially in the weighted
setting. It is proved that despite the restriction to preserve regularity their power still
exceeds that of composition chains of ε-free weighted linear extended top-down tree trans-
ducers with regular look-ahead, which are a natural super-class of weighted synchronous
tree substitution grammars that are commonly used in statistical machine translation.
In particular, the linguistically motivated discontinuous transformation of topicalization
can be modeled by such multi bottom-up tree transducers, whereas composition chains
of such extended top-down tree transducers cannot implement it. On the negative side,
the inverse of topicalization cannot even be implemented by any such multi bottom-up
tree transducers, which confirms their bottom-up nature. An interesting, promising, and
widely applicable proof technique is used to prove those statements.

1. Introduction

The area of statistical machine translation [24] deals with the automatic translation
of natural language texts from one language into another. The central component of
each such system is the translation model, which determines which transformations
are possible in the system. The translation model is supported by additional models
(such as language models), which we will not discuss here. Currently, several trans-
lation models are popular: (i) phrase-based systems [33], which use a finite-state
transducer [10], (ii) hierarchical phrase-based systems [7], which use a synchronous
context-free grammar, and (iii) syntax-based systems, which use a form of syn-
chronous tree grammar such as synchronous tree substitution grammars [11], syn-

∗This article is an extended and revised version of [Maletti: The power of regularity-preserving
multi bottom-up tree transducers. In Proc. Conference on Implementation and Application of
Automata, LNCS 8587, pages 278–289, 2014].
†The author was financially supported of the German Research Foundation (DFG)
grant MA/ 4959 / 1-1.

1

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

2 A. Maletti

chronous tree-adjoining grammars [34], or synchronous tree-sequence substitution
grammars [35]. All these models are weighted (typically over the field of rational
numbers) in order to help resolve the ambiguity that is inherent in translation.
Since those systems are trained on huge data sets, the used translation model must
meet two contradictory goals. On the one hand, it should have nice algorithmic
properties and its key operations should have (very) low computational complexity.
On the other hand, its expressive power should be high in order to be able to model
all typical phenomena (complex reorderings, etc.) that occur in translation. The
mentioned models cover a wide spectrum along these axes. Thus an essential part
of model evaluation for machine translation is the accurate determination of the
expressive power and the complexity of the key operations [23].

A relatively recent proposal for another translation model suggests the linear
multi bottom-up tree transducer (mbot) [27, 29], which can be understood as an ex-
tension of stsg that allows discontinuity on the output side. It was already demon-
strated [27, 29] that mbots have very good theoretical and algorithmic properties
in comparison to stsg, so they were implemented [5] in the machine translation
framework Moses [25]. In experiments the new model significantly outperforms a
stsg baseline when evaluated in a standard English-to-German translation task. In
general, mbots have the power of finite copying [13], which yields that their output
tree languages are not necessarily regular [18, 19, 17] (or: the output string lan-
guages are not necessarily context-free), which was proved in [12, 20]. As expected,
this increase in power comes at the price of worse algorithmic properties. However,
it is currently unclear whether this added complexity is necessary to model common
discontinuities like topicalization [8].

Consequently, we restrict our mbots such that they only produce regular
(weighted) output tree languages and demonstrate that this model retains the power
to compute common discontinuities. In addition, these models remain more power-
ful than arbitrary composition chains [32] of stsg, which is demonstrated on the
example of topicalization. Whereas stsg can trivially be inverted, neither mbots
nor regularity-preserving mbots can be inverted in general. In fact, we show that
the inverse of topicalization cannot be implemented by any mbot. Overall, these
results help us to relate the expressive power of regularity-preserving mbot to the
other classes (see Figure 7). In the unweighted setting, the relation is quite clear,
but in the weighted setting the relation remains unclear, although we manage to
prove the mentioned separation. Additionally, we want to promote the use of ex-
plicit links [30, 16], which naturally record which parts of the input and output tree
developped synchronously in a derivation step [3]. We investigate the properties of
these links and then use those properties to prove our main results. In fact, the
proofs of our main statements split into a standard technical part that establishes
certain mandatory links with the help of the linking theorems of [16] and a rather
straightforward high-level argumentation that refutes that the obtained link ensem-
ble is well-formed. We believe that this proof method holds much potential and can

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

The Power of Weighted Regularity-Preserving Multi Bottom-up Tree Transducers 3

successfully be applied to many similar scenarios.

2. Preliminaries

We use N for the set of all nonnegative integers. Let S and T be two sets and
ρ ⊆ S×T be a relation. For every S′ ⊆ S we let ρ(S′) = {t ∈ T | ∃s ∈ S′ : (s, t) ∈ ρ}
be the set of those elements of T that are related to an element of S′. Moreover,
the inverse of ρ is the relation ρ−1 ⊆ T × S given by ρ−1 = {(t, s) | (s, t) ∈ ρ}. For
every s ∈ S we write ρ(s) instead of ρ({s}). Given another relation τ ⊆ T ×U , the
composition of ρ followed by τ is the relation ρ ; τ ⊆ S × U defined by

ρ ; τ = {(s, u) | ρ(s) ∩ τ−1(u) 6= ∅} .

We continue to use the set S. The k-fold Cartesian product of S with itself is
denoted by Sk. Note that S0 = {ε}. We let S∗ =

⋃
k∈N S

k, which is the set of all
(finite) words with letters from S. Thus, for every w ∈ S∗ there exists (a unique)
k ∈ N such that w ∈ Sk; this integer k is called the length of w and denoted
by |w|. Let v = (v1, . . . , vk) ∈ S∗ and w = (w1, . . . , wn) ∈ S∗ be two words of length
k and n, respectively. The concatenation of v with w is (v1, . . . , vk, w1, . . . , wn) ∈ S∗.
Whenever confusion is impossible, we simply write w1 · · ·wn instead of (w1, . . . , wn)

and thus concatenation is simply vw or v.w, when we want to stress the separation
into letters. Given two languages L,L′ ⊆ S∗, we let LL′ = {vw | v ∈ L, w ∈ L′}
be the set of all concatenations of words from L by words from L′. An alphabet Σ

is a nonempty and finite set of symbols. Given an alphabet Σ, the set TΣ(S) of
Σ-trees indexed by S is the smallest set T such that the following two conditions
hold: (i) S ⊆ T and (ii) σ(t1, . . . , tk) ∈ T for all k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ T .
For simplicity, we commonly write TΣ instead of TΣ(∅).

Next we recall some common notions for trees. In the following, let Σ be an
alphabet and S be a set. To avoid confusion, we assume that Σ∩S = ∅, which allows
us to write just σ instead of the tree σ() for every σ ∈ Σ. Let t ∈ TΣ(S) be a tree.
The set pos(t) ⊆ N∗ of all positions in t is recursively defined by (i) pos(s) = {ε}
for every s ∈ S and (ii) pos(σ(t1, . . . , tk)) = {ε} ∪ {i.w | 1 ≤ i ≤ k, w ∈ pos(ti)}
for every k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ(S). The size |t| of t is the number of
its positions [i.e., |t| = |pos(t)|], and the height ht(t) of t is the length of a maximal
(in terms of length) position in pos(t) [i.e., ht(t) = max {|w| | w ∈ pos(t)}]. We
assume the standard ordering on N, which extends to the lexicographic order v
on N∗, which is a linear order. This linear order v allows us to turn every finite
setW ⊆ N∗ into a (unique) word ~W ∈ (N∗)∗, which is given by ~W = (w1, . . . , wn) if
W = {w1, . . . , wn} with w1 < · · · < wn, where < is the strict version of v as usual.
In addition, we use the prefix order ≤ on N∗, which for all v, w ∈ N∗ is defined by
v ≤ w if and only if there exists u ∈ N∗ such that vu = w.

Now let us recall some essential operations on trees. As before, let Σ be an
alphabet and S be a set. In addition, let t, u ∈ TΣ(S) be trees and w ∈ pos(t) be a
position in t. The label of t at w is denoted by t(w), the subtree of t rooted in w

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

4 A. Maletti

is denoted by t|w, and the tree obtained from t by replacing the subtree at w by u
is denoted by t[u]w. Formally, these are defined recursively for every s ∈ S, k ∈ N,
σ ∈ Σ, and t1, . . . , tk ∈ TΣ(S) as follows:

s(ε) = s
(
σ(t1, . . . , tk)

)
(w) =

{
σ if w = ε

ti(w
′) if w = i.w′

s|ε = s
(
σ(t1, . . . , tk)

)
|w =

{
σ(t1, . . . , tk) if w = ε

ti|w′ if w = i.w′

s[u]ε = u
(
σ(t1, . . . , tk)

)
[u]w =

{
u if w = ε

σ(t1, . . . , ti−1, ti[u]w′ , ti+1, . . . , tk) if w = i.w′

where i ∈ N in those definitions. For every s ∈ S, the set poss(t) of s-labeled
positions in t is given by poss(t) = {w ∈ pos(t) | t(w) = s}. The tree t is linear if
|poss(t)| ≤ 1 for every s ∈ S, and idx(t) = {s ∈ S | poss(t) 6= ∅} is the set of indexes
that occur in t. Next, we extend the substitution operation t[u]w to words of trees
and positions. Let ~u = (u1, . . . , un) be a word of length n such that ui ∈ TΣ(S) is a
tree for all 1 ≤ i ≤ n. Correspondingly, let ~w = (w1, . . . , wn) be a word of length n
such that wi ∈ pos(t) is a position in t for all 1 ≤ i ≤ n. Additionally, we demand
that the elements of {w1, . . . , wn} are pairwise incomparable with respect to the
prefix order ≤. Then t[~u]~w denotes the tree obtained from t by replacing the subtree
at wi by ui for all 1 ≤ i ≤ n. Formally, we have t[~u]~w = (· · · (t[u1]w1

) · · ·)[un]wn
. A

solid introduction into trees, their main notions, and their operations can be found
in [18, 19, 9].

Finally, we recall the algebraic structures, from which we draw our weights,
and weighted tree automata, which recognize the regular weighted tree languages.
A commutative semiring (A,+, ·, 0, 1) is an algebraic structure consisting of two
commutative monoids (A,+, 0) and (A, ·, 1) such that (i) 0 · a = 0 for all a ∈ A,
and (ii) a · (a1 + a2) = (a · a1) + (a · a2) for all a, a1, a2 ∈ A. Typical commutative
semirings include that natural numbers (N,+, ·, 0, 1) and ([0, 1],max, ·, 0, 1), where
[0, 1] = {x ∈ R | 0 ≤ x ≤ 1}. A detailed introduction into semirings is provided
by [22, 21]. A weighted tree automaton is a tuple A = (Q,Σ, q0, R,wt), where Q is
a finite set of states, Σ an alphabet, q0 ∈ Q is an initial state, R is a finite set of
rules of the form q → σ(q1, . . . , qk) for some k ∈ N, q, q1, . . . , qk ∈ Q, and σ ∈ Σ,
and wt: R → A is a weight function. For such a weighted tree automaton A, we
define a function hA : TΣ ×Q→ A recursively as follows:

hA
(
σ(t1, . . . , tk), q

)
=

∑
q1,...,qk∈Q

wt
(
q → σ(q1, . . . , qk)

)
·
k∏
i=1

hA(ti, qi)

for all k ∈ N, σ ∈ Σ, and t1, . . . , tk ∈ TΣ. A weighted tree language is simply
a mapping ϕ : T∆ → A for some alphabet ∆. The weighted tree automaton A
recognizes the weighted tree language ϕA : TΣ → A such that ϕA(t) = hA(t, q0) for
all t ∈ TΣ. The weighted tree language ϕ : TΣ → A is regular [2] if there exists a

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

The Power of Weighted Regularity-Preserving Multi Bottom-up Tree Transducers 5

weighted tree automaton A such that ϕ = ϕA. A detailed introduction into regular
weighted tree languages can be found in [17].

3. Multi bottom-up tree transducers

Our main model is the weighted linear multi bottom-up tree transducer (mbot),
whose unweighted variant was introduced in [26, 1]. An English presentation of
the unweighted model and some recent results for it can be found in [12]. The
weighted model is discussed in [28]. Contrary to [12, 28] we present mbots as syn-
chronous grammars [6], which was elaborated for a stateless variant already in [29].
The distinguishing feature of mbots compared to traditional linear bottom-up tree
transducers [17] is the potential to have several output tree fragments per rule.
Consequently, each mbot rule specifies an input tree fragment together with po-
tentially several output tree fragments. We essentially follow the definition of [30],
but add a weight function. In order to avoid repetition, we henceforth assume that
(A,+, ·, 0, 1) is a commutative semiring. In illustrations we will commonly use the
semiring (R,+, ·, 0, 1) of real numbers.

Definition 1. A weighted linear multi bottom-up tree transducer (for short: mbot)
is a tuple M = (Q,Σ, q0, R,wt), where

• Q is the finite set of states,
• Σ is the alphabet of input and output symbols,
• q0 ∈ Q is the initial state,
• R ⊆ TΣ(Q)×Q× TΣ(Q)∗ is the finite set of rules such that for every rule
〈`, q, (r1, . . . , rn)〉 ∈ R we have that

– ` is linear and
– idx(r1) ∪ · · · ∪ idx(rn) ⊆ idx(`)

• wt: R→ A is the weight function.

Such an mbot M is ε-free if ` /∈ Q for all rules 〈`, q, v〉 ∈ R. Moreover, if n ≤ 1

(respectively, n = 1) for all rules 〈`, q, (r1, . . . , rn)〉 ∈ R, then M is a linear extended
top-down tree transducer with regular look-ahead (l-xtopR) [31] (respectively, a
linear nondeleting extended top-down tree transducer [ln-xtop]). �

Let M = (Q,Σ, q0, R,wt) be an arbitrary mbot. Each rule 〈`, q, v〉 ∈ R such
that ` ∈ Q is called ε-rule. Clearly, an ε-free mbot has no ε-rules. Since ε-rules
can be used to create arbitrarily long derivations, which are problematic in the
weighted setting (since this would require infinite summation), we exclude them
and only consider ε-free mbots. Henceforth, let M = (Q,Σ, q0, R,wt) be an ε-free
mbot.

To allow a simpler discussion, we call ` and v of a rule 〈`, q, v〉 ∈ R the left-
and right-hand side, respectively, and correspondingly write the rule as `

q
— v. The

state q is called the governing state of the rule. The rules of our running example

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

6 A. Maletti

S

qw qVP

q0
—

S

qw qVP qVP

VP

qkAnA qVP

qVP
— qkAnA .

VP

qkAnA qVP

NP

q$kl qmDHk

qNP
—

NP

q$kl qmDHk q$kl

PP-MNR

qb qNP

qPP-MNR
—

PP

qb qNP

NP

h

qNP
— him b

qb
— in $kl

q$kl
— a . way mDHk

qmDHk
— funny

w
qw
— And kAnA

qkAnA
— they . were ynZrAn

qynZrAn

— looking Aly
qAly

— at

VP

qynZrAn NP-SBJ

?

qPP-CLR qPP-MNR
qVP
—

VP

qynZrAn qPP-CLR qPP-MNR

PP-CLR

qAly qNP

qPP-CLR
—

PP-CLR

qAly qNP

Figure 1. Example rules.

mbot are displayed in Figure 1 (where we ignore the splines connecting the states
for the moment).

Example 2. Our running example mbot Mex = (Q,Σ, q0, R,wt) is given by

• Q = {q0} ∪ {qσ | σ ∈ Σ},
• Σ = {S,VP, . . . , funny, . . . ,PP-CLR, . . . ,mDHk, kAnA, . . . },
• R contains exactly the rules displayed in Figure 1, and
• wt(ρ) = 0.5 for all ρ ∈ R.

The first (top, left) rule in Figure 1 is textually represented by〈
S(qw , qVP), q0,

(
S(qw , qVP, qVP)

)〉
. �

Next, we present a top-down semantics for our mbot in the style of [30]. The
splines, representing links, connecting the state occurrences in Figure 1 already in-
dicate that certain states are supposed to develop synchronously. In the rules these
links exist implicitly (in the sense that they are not syntactically represented; see
the rule in Example 2), but all occurrences of a single state should develop syn-
chronously. For this reason, we connect all occurrences of a state in the output tree
fragments with the unique occurrence of the same state in the input tree fragment.
However, in our sentential forms we need to make these links explicit. Formally,
such links are simply pairs of positions consisting of a position of the current input
tree fragment and a position of the current output tree fragment. Our link structure
is simply a set of such links. Although the link structure is an overhead (since it is
not required for other equivalent semantics [12, 29]), all our later formal arguments
are based on this link structure. In fact, we believe that its presence simplifies many
traditional arguments, and thus want to promote a detailed investigation into its
properties. Next, we define the link structure induced by a given rule.

Definition 3. For all rules `
p
— (r1, . . . , rn) ∈ R and w,w1, . . . , wn ∈ N∗, we define

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

The Power of Weighted Regularity-Preserving Multi Bottom-up Tree Transducers 7

the link structure linksw,(w1,...,wn)(`
p
— (r1, . . . , rn)) ⊆ N∗ × N∗ by

linksw,(w1,...,wn)(`
p
— (r1, . . . , rn)) =

⋃
q∈Q

1≤i≤n

(
{w} posq(`)

)
×
(
{wi} posq(ri)

)
. �

Roughly speaking, the set linksw,(w1,...,wn)(`
p
— (r1, . . . , rn)) relates an occur-

rence (i.e., position) of a state q with each occurrence of it in the output tree
fragments. However, it additionally prefixes w to each position in the input tree
fragment ` and wi to each position from the output tree fragment ri. In our deriva-
tion semantics, these arguments w,w1, . . . , wn hold the positions at which the rule
fragments are applied.

Another peculiarity of our approach is the distinction of two types of links.
Namely, we consider both active and inactive links. Active links are links that have
not been used in a derivation step and thus record state occurrences that should
develop synchronously in the following derivation steps. On the other hand, inactive
links are those links that have already been used in a derivation step. We record
those for reference, since we want to reason about them later on. Consequently, our
sentential forms consist of four components: (i) an input tree fragment, (ii) active
links, (iii) inactive links, and (iv) an output tree fragment. Formally, a sentential
form is a tuple 〈t, L, I, u〉 with t, u ∈ TΣ(Q) and L, I ⊆ pos(t)×pos(u). The elements
of L are called active links and those of I are called inactive links.

Now we can explain a derivation step. Let ξ = 〈t, L, I, u〉 and ζ = 〈t′, L′, I ′, u′〉
be sentential forms. Roughly speaking, to derive ζ from ξ (in a single step) we
select the lexicographically smallest position w in t that is labeled by a state to-
gether with the positions L(w) [i.e., the output tree positions that are actively
linked to w]. Finally, we select a rule `

q
— (r1, . . . , rn) ∈ R that (i) has the right

governing state q = t(w) and (ii) has the right number n = |L(w)| of output tree
fragments. We obtain t′ = t[`]w by substituting the input tree fragment of the rule
into the selected position, and similarly we obtain u′ = u[(r1, . . . , rn)] ~L(w)

by sub-
stituting the (potentially several) output tree fragments into the linked positions
in u. The used links U = {(w,w′) | w′ ∈ L(w)} are added to the set I of inac-
tive links (i.e., I ′ = I ∪ U) and removed from the set L of active links. However,
the links derived from the applied rule still need to be made new active links [i.e.,
L′ = (L \ U) ∪ links

w, ~L(w)
(`

p
— (r1, . . . , rn))].

Definition 4. Let SF(M) be the set of all sentential forms. Given two sentential
forms 〈t, L, I, u〉, 〈t′, L′, I ′, u′〉 ∈ SF(M) we write 〈t, L, I, u〉 ⇒M 〈t′, L′, I ′, u′〉, if

• ρ = t′|w
t(w)
— (u′|w1

, . . . , u′|wn
) ∈ R

• L′ = (L\U)∪links
w, ~L(w)

(ρ) and I ′ = I∪U with U = {(w,w′) | w′ ∈ L(w)},

where w = minv
(⋃

p∈Q posp(t)
)
is the (lexicographically) smallest state-labeled

position in t and ~L(w) = (w1, . . . , wn). Whenever we want to stress the used rule ρ,

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

8 A. Maletti

S — S ⇒M

S

Nw NVP

—
S

Nw NVP NVP

⇒M

S

w NVP

—
S

And NVP NVP

⇒M

S

w VP

NkAnA NVP

—

S

And NkAnA VP

NkAnA NVP

⇒M

S

w VP

kAnA NVP

—

S

And they VP

were NVP

Figure 2. A few derivation steps using the rules of Figure 1. The weight of this derivation is 0.54.
The active links are clearly marked, whereas inactive links are light.

then we write 〈t, L, I, u〉 ⇒ρ
M 〈t′, L′, I ′, u′〉. �

Note that the rule used to derive one sentential form from another is unique.
In graphical representations we only present the input and output tree fragments
and illustrate the active and inactive links as clear and light splines, respectively.
A few derivation steps using the rules of Figure 1 are presented in Figure 2.
Each mbot computes a weighted tree transformation, which is simply a mapping
τ : T∆ × T∆ → A for some alphabet ∆.

Definition 5. A derivation is a word (ξ0, . . . , ξk) ∈ SF(M)∗ such that
ξ0 ⇒M ξ1 ⇒M · · · ⇒M ξk. For each derivation (ξ0, . . . , ξk) the unique rule word
(ρ1, . . . , ρk) ∈ R∗ such that ξi−1 ⇒ρi

M ξi for all 1 ≤ i ≤ k is called its rule word. The
weight wt(d) ∈ A of the derivation d is wt(d) =

∏k
i=1 wt(ρi), where (ρ1, . . . , ρk)

is the rule word of d. For every t, u ∈ TΣ, let DM (t, u) be the set of all deriva-
tions (ξ0, . . . , ξk) such that

• ξ0 = 〈q0, {(ε, ε)}, ∅, q0〉, which is the initial sentential form, and
• ξk = 〈t, ∅, I, u〉 for some I ⊆ pos(t)× pos(u).

The mbot M computes the weighted tree transformation τM : TΣ × TΣ → A such
that τM (t, u) =

∑
d∈DM (t,u) wt(d) for every t, u ∈ TΣ. �

Note that due to the ε-freeness, the set DM (t, u) is finite for all t, u ∈ TΣ

(because each applied rule replaces a state in the input tree fragment by the input
tree fragment of the rule, which contains at least one non-state symbol, and the
overall size of the input tree fragment is bound by |t|). In fact, for every t ∈ TΣ

there exist only finitely many u ∈ TΣ such that τM (t, u) 6= 0. Correspondingly, a
weighted tree transformation τ : TΣ × TΣ → A is finitary if for every t ∈ TΣ there
exist finitely many u ∈ TΣ such that τ(t, u) 6= 0. Clearly, τM is finitary. Note that
there is an asymmetry here; for a given u ∈ TΣ there may be infinitely many t ∈ TΣ

such that τM (t, u) 6= 0.
We close this section by recalling some properties for the sentential forms oc-

curring in a derivation [30, 16]. We only define those properties for the input side,

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

The Power of Weighted Regularity-Preserving Multi Bottom-up Tree Transducers 9

Table 1. Summary of the known properties of M .

hierarchical link-distance bounded
Model \ Property input output input output

ε-free xtop strictly strictly strictly strictly
ε-free xtopR strictly strictly 3 strictly
ε-free mbot 3 strictly 3 strictly

reg.-pres. ε-free mbot 3 strictly 3 strictly

but assume that they are also defined (in the same manner) for the output side.

Definition 6. A sentential form 〈t, L, I, u〉 ∈ SF(M) is

• input hierarchical if z′ 6< w′ and there exists (y, y′) ∈ L∪ I with y′ ≤ z′ for
all (w,w′), (z, z′) ∈ L ∪ I with w < z,
• strictly input hierarchical if (i) w < z implies w′ ≤ z′ and (ii) w = z implies
w′ ≤ z′ or z′ ≤ w′ for all (w,w′), (z, z′) ∈ L ∪ I,
• input link-distance bounded by b ∈ N if for all links (w,w′), (wz, z′) ∈ L∪ I

with |z| > b there exists a link (wy, y′) ∈ L ∪ I such that y < z and
1 ≤ |y| ≤ b,
• strict input link-distance bounded by b if for all positions w,wz ∈ pos(t)

with |z| > b there exists (wy, y′) ∈ L ∪ I such that y < z and 1 ≤ |y| ≤ b.

The mbotM has those properties if, for all t, u ∈ TΣ, each sentential form occurring
in a derivation of DM (t, u) has them. �

We also say that the mbot M is input link-distance bounded if there exists an
integer b ∈ N such that it is input link-distance bounded by b. We summarize the
known properties [30, 16] in Table 1.

4. Expressive power

A weighted tree transformation τ : TΣ × TΣ → A preserves regularity if for ev-
ery regular weighted tree language ϕ : TΣ → A and u ∈ TΣ we have that(
τ(ϕ)

)
(u) =

∑
t∈TΣ

ϕ(t) · τ(t, u) is (i) well-defined in the sense that only finitely
many summands are different from 0 and (ii) the weighted tree language τ(ϕ)

defined in this manner is regular. Note that this property is stricter than in the un-
weighted setting [18, 19] because we additionally require (i). The mbotM is regular-
ity preserving if its computed weighted tree transformation τM preserves regularity.
A chain of mbots is simply a word C = (M1, . . . ,Mk) for mbot M1, . . . ,Mk over
the alphabet Σ. It computes the weighted tree transformation τC = τM1

; · · · ; τMk
,

where for any two finitary weighted tree transformations τ, τ ′ : TΣ × TΣ → A and
s, u ∈ TΣ we have

(τ ; τ ′)(s, u) =
∑
t∈TΣ

τ(s, t) · τ ′(t, u) ,

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

10 A. Maletti

σ

q1 p
q0
—

σ

p σ

q1 p

σ

q1 σ

q2 q3

p
— q3

σ

q1 q2

σ

q1 p
p

— p
σ

q1 p

δ

q1 q2

q
—

δ

q1 q2

γ

q1

q
—

γ

q1

α q
— α

σ

t1 σ

t2 σ

tm−1 σ

tm u

—

σ

u σ

t1 σ

t2 σ

tm−1 tm

Figure 3. Rules of the mbot Tpc with q ∈ {q1, q2, q3} and illustration of the weighted tree trans-
formation (topicalization) computed by it for all m ≥ 3 and arbitrary trees u, t1, . . . , tm, which
can contain binary δ-symbols, unary γ-symbols, and nullary α-symbols.

which is well-defined because τ is finitary. The weighted tree transformation com-
puted by a chain of ε-free mbots is well-defined because all weighted tree transfor-
mations computed by ε-free mbots are finitary. Here we want to answer whether
regularity preserving ε-free mbots can compute weighted tree transformations that
cannot be computed by any chain of ε-free xtopR. In the unweighted setting, this
is easily confirmed by observing that all linear ε-free extended top-down tree trans-
ducers with regular look-ahead are regularity preserving [31], whereas some linear
ε-free multi bottom-up tree transducers are not [12].

However, it remained open already in the unweighted case whether regularity
preserving ε-free mbots are still more powerful than chains of ε-free xtopR. More-
over, in the weighted setting discussed here, the simple unweighted approach does
not work at all because already some ε-free xtopRs are not regularity preserving
(due to our stricter definition of regularity preservation). We will show that our
approach based on the linking structures can successfully be applied to answer such
questions. It thus provides are very powerful proof method, which works in any
commutative semiring. This contrast another common lifting technique, which is
also used to import unweighted results into the weighted setting. However, for the
lifting technique the commutative semiring often has to fulfill additional properties
(like zero-sum freeness, which effectively excludes all rings [22, 21]).

Example 7. Let Tpc = (Q,Σ, q0, R,wt) be the ε-free mbot with the states
Q = {q0, q1, q2, q3, p}, the symbols Σ = {σ, δ, γ, α}, the rules R illustrated in Fig-
ure 3, and the weight function wt such that wt(ρ) = 1 for all ρ ∈ R. The computed
weighted tree transformation τM assigns weight 1 to pairs of trees of the shape
depicted in Figure 3 and 0 otherwise. �

The mbot Tpc even implements a linguistically relevant transformation called
topicalization [8]. We illustrate topicalization on two English examples in Figure 4.
Topicalization is known as a discontiguous (and thus difficult) transformation on

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

The Power of Weighted Regularity-Preserving Multi Bottom-up Tree Transducers 11

phrase-structure parse trees. First we show that it preserves regularity to establish
that Tpc is regularity preserving.

Lemma 8. The mbot Tpc is regularity preserving. �

Proof. For illustration we again refer to Figure 3. It is straightforward to confirm
that for each input tree t ∈ TΣ there exists at most one output tree u ∈ TΣ such that
τTpc(t, u) 6= 0. Moreover, given t1, t2, u1, u2 ∈ TΣ with τTpc(t1, u1) 6= 0 6= τTpc(t2, u2)

and t1 6= t2, we can easily observe that u1 6= u2. Consequently, for every output tree
u ∈ TΣ there exists at most one input tree t ∈ TΣ such that τTpc(t, u) 6= 0. In the
following, let ϕ : TΣ → A be a regular weighted tree language. For every u ∈ TΣ we
have that

∑
t∈TΣ

ϕ(t) · τTpc(t, u) is well-defined because the summand is different
from 0 for at most one t ∈ TΣ.

It remains to show that τM (ϕ) is regular. Let A′ = (Q′,Σ, q′0, R
′,wt′) be a

weighted tree automaton such that ϕA′ = ϕ. Since τTpc is finitary, the weighted tree
language dom(τTpc) : TΣ → A given by

(
dom(τTpc)

)
(t) =

∑
u∈TΣ

τTpc(t, u) for every
t ∈ TΣ is well-defined and thus regular by [28]. Moreover, dom(τTpc) : TΣ → {0, 1}.
Regular weighted tree languages are closed under Hadamard product [4] using
a standard product construction. The obtained weighted tree automaton now rec-
ognizes trees in the domain of the weighted tree transformation with the weight
assigned to them by ϕ. In the final step we need to modify this weighted tree automa-
ton. Let us discuss this change shortly. Let t, u ∈ TΣ be such that τTpc(t, u) 6= 0. The
modified weighted tree automaton should recognize u, but assign the weight ϕ(t)

to it. This can be achieved using a guess-and-check strategy, which processes the
σ-spine of u as if it were that of t. To this end, we need to remember one guess
(that for u) for a long time, whereas all other guesses can be checked and cancelled
already in the next step. We leave the details of the construction as an exercise.

Thus we have identified a weighted tree transformation that preserves regularity
and can be computed by an ε-free mbot. To distinguish the expressive power of
regularity preserving ε-free mbot from that of chains of ε-free xtopR, it remains
to demonstrate that this weighted tree transformation cannot be computed by any
chain of ε-free xtopR. Note that we strongly suspect that this result is also true
without the restriction to ε-free xtopR since ε-rules would not essentially help in
the computation of the weighted tree transformation τTpc, but our proof method
using the links relies on ε-free xtopR.

Theorem 9. The weighted tree transformation τTpc cannot be computed by any
chain of ε-free xtopR. �

Proof. First we need to reduce the problem from the weighted setting to the un-
weighted setting. By way of a contradiction, suppose that the transformation can be
computed by a chain C = (M1, . . . ,Mk) of ε-free xtopR. Next, for each 1 ≤ i ≤ k

we replace each Mi = (Qi,Σ, qi, Ri,wti) by the corresponding unweighted ε-free

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

12 A. Maletti

S

NP

PRP

it

VP

VBD

rained

ADVP

NP

NN

yesterday

RB

night

S

NP

NN

yesterday

NN

night

, S

NP

PRP

it

VP

VBD

rained

S

NP

PRP

we

VP

VBD

toiled

NP

DT

all

NN

day

NP

NN

yesterday

PP

IN

at

NP

NP

DT

the

NN

restaurant

SBAR

WHNP

WDT

that

S

VP

VBZ

charges

NP

JJ

extra

PP

IN

for

NP

JJ

clean

NNS

plates

S

PP

IN

at

NP

NP

DT

the

NN

restaurant

SBAR

WHNP

WDT

that

S

VP

VBZ

charges

NP

JJ

extra

PP

IN

for

NP

JJ

clean

NNS

plates

, S

NP

PRP

we

VP

VBD

toiled

NP

DT

all

NN

day

NP

NN

yesterday

Figure 4. Topicalization on two English examples.

xtopR N ′i = (Qi,Σ, qi, Ri). Moreover, τC(t, u) = 0 for all t, u ∈ TΣ such that
(t, u) /∈ T (N ′1) ; · · · ; T (N ′k), where

T (N ′i) = {(t, u) ∈ TΣ × TΣ | DN ′i (t, u) 6= ∅}

for all 1 ≤ i ≤ k and DN ′i (t, u) is defined for unweighted linear multi bottom-up
tree transducers in the same manner as for mbot (note that it does not depend on
the weight function wt). Thus, the composition chain C ′ = (N ′1, . . . , N

′
k) computes

at least all pairs of trees like those demonstrated in Figure 3, but potentially more.
Recent progress [15] showed that a chain of 3 ε-free xtopR can simulate

any chain of ε-free xtopR. Consequently, there exist 3 unweighted ε-free xtopR

N1, N2, N3 such that T (N1) ; T (N2) ; T (N3) = T (N ′1) ; · · · ; T (N ′k). By the men-
tioned property, the (unweighted) tree transformation T = T (N1) ; T (N2) ; T (N3)

contains all pairs indicated in Figure 3 (but potentially many more pairs). Ad-
ditionally, we know that N1, N2, N3 are input and output link-distance bounded
(see Table 1), so let b ∈ N be such that all link-distances (for all 3 xtopR) are
bounded by b. Using the link theorem of [16] for chains of unweighted ε-free xtopR,
we can deduce the existence of an input tree t (leftmost in Figure 5), an output
tree t′′′ (rightmost), two intermediate trees t′ and t′′ such that for all derivations
D ∈ DN1(t, t′), D′ ∈ DN2(t′, t′′), and D′′ ∈ DN3(t′′, t′′′) terminating in the senten-

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

The Power of Weighted Regularity-Preserving Multi Bottom-up Tree Transducers 13

σ

t1 σ

t2 σ

tm−1 σ

tm u

—

wu

wtm−1 wtm

—

w′tm w′tm−1

w′u

—

σ

u σ

t1 σ

t2 σ

tm−1 tm

...

(1)
...

(2)

?

(3)

Figure 5. Illustration of the links discussed in the proof of Theorem 9. Inverted arrow heads indicate
that the link points to a position below the one indicated by the spline. The links relating the
roots of the trees are omitted.

tial forms 〈t, ∅, I, t′〉, 〈t′, ∅, I ′, t′′〉, and 〈t′′, ∅, I ′′, t′′′〉, respectively, we have that the
light links depicted in Figure 5 (for the input and output tree and two intermediate
trees without the clearly marked links) belong to I, I ′, or I ′′, in which m� b3.

Now we will reason with those links and demonstrate that we can derive a contra-
diction. The ellipsis (clearly marked dots) in the output tree (rightmost in Figure 5)
hides at least b2 links that point to this part of the output because there must be a
link every b positions by the link-distance bound. Let (v′′1 , w

′′
1), . . . , (v′′m′′ , w

′′
m′′) ∈ I ′′

with m′′ � b2 be those links such that w′′1 < · · · < w′′m′′ . These links are marked
with (1) in Figure 5. Clearly, w′′m′′ dominates (via ≤) the root positions of the
subtrees tm−1 and tm, but it does not dominate that of the subtree u. The in-
put positions of those links, which point to positions inside the third tree in Fig-
ure 5, automatically fulfill v′′1 ≤ · · · ≤ v′′m′′ since N3 is strictly output hierarchi-
cal. A straightforward induction can be used to show that (for any ε-free xtopR)
all links sharing the same input positions must be incomparable with respect to
the prefix order ≤ (also proved in [16]), which uses the ε-freeness of N3. Conse-
quently, v′′1 < · · · < v′′m′′ . Similarly, we can conclude v′′m′′ < w′tm−1

, v′′m′′ < w′tm ,
and v′′1 6≤ w′u, where the last statement uses that N3 is strictly input hierarchical.
Thus we have identified a chain of m′′ � b2 positions v′′1 , . . . , v′′m′′ in t

′′, which all
dominate w′tm and w′tm−1

but are incomparable to w′u. Repeating essentially the
same arguments for N2, we obtain links (v′1, w

′
1), . . . , (v′m′ , w

′
m′) ∈ I ′ with m′ � b

such that v′′1 ≤ w′1 < · · · < w′m′ ≤ v′′m′′ and v
′
1 < · · · < v′m′ . These links are labeled

by (2) in Figure 5. Moreover, v′m′ < wtm−1
, v′m′ < wtm , and v′1 6≤ wu. Thus we have

a chain of m′ � b positions v′1, . . . , v′m′ in t′, which all dominate wtm−1
and wtm ,

but are incomparable to wu. Using the same arguments once more for N1, we obtain
a single link (v, w) ∈ I such that v′1 ≤ w ≤ v′m′ . This final link is marked (3) in
Figure 5. Moreover, we have v < vtm−1 and v < vtm , but v 6≤ vu, where vtm−1 , vtm ,
and vu are the root positions of the subtrees tm−1, tm, and u, respectively. In other
words, v must be a position in the σ-spine of t (since it dominates both the root

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

14 A. Maletti

position of tm−1 and that of tm), but all positions along the σ-spine also dominate
the root position of u. Consequently, such a position does not exist in the input
tree t, which completes the desired contradiction. Consequently, such unweighted
ε-free xtopR cannot exist, which yields that no chain of unweighted ε-free xtopR

can compute an (unweighted) overapproximation of τTpc. However, this contradicts
the known statement that such an overapproximation must exist if τTpc is computed
by a chain of ε-free xtopR. Consequently, such a chain cannot exist, which proves
the statement.

It is noteworthy that the proof can be achieved using high-level arguments based
on the links and their properties. In fact, the whole proof is rather straightforward
once the elementary links (light in Figure 5) are established using the linking the-
orem of [16]. Arguably, the proof of that linking theorem is quite technical and in-
volved (using size arguments and thus the particular shape of the trees u, t1, . . . , tm),
but it can be checked once and reused in similar setups as it generally establishes
links in the presented way between identical subtrees (for which infinitely many
trees are possible). The proof nicely demonstrates that the difficult argumentation
via two unknown intermediate trees t′ and t′′ and an unweighted tree transforma-
tion that overapproximates the support of τTpc, where the support contains those
pairs mapped to a weight different from 0 by τTpc, reduces to (relatively) simple
arguments with the help of the links. The author believes that the links will provide
a powerful and versatile tool in the future and have been neglected for too long.
This is especially true in the weighted setting since the absence of negative infor-
mation from the linking theorems of [16] easily permits such overapproximations,
which allows us to perform the reduction from the weighted to the unweighted case
without additional restrictions.

From Theorem 9 it follows that (some) topicalizations cannot be computed by
any chain of ε-free xtopR (or any chain of ε-free xtop), and since τTpc is computed
by the regularity-preserving ε-free mbot Tpc, we can conclude that regularity-
preserving ε-free mbot are strictly more powerful than chains of ε-free xtopR.

Corollary 10. Regularity-preserving ε-free mbot are strictly more powerful than
composition chains of ε-free xtopR (and composition chains of ε-free xtop). �

Our next result will limit the expressive power of ε-free mbot. Using the cor-
responding linking theorem for unweighted mbot [16] and our approach based
on links once more, we will prove that the inverse weighted tree transforma-
tion τ−1

Tpc : TΣ × TΣ → A, which is given by τ−1
Tpc(u, t) = τTpc(t, u) for all t, u ∈ TΣ,

cannot be computed by any ε-free mbot. This confirms the bottom-up nature of
mbot as a bottom-up device. It can “grab” deeply nested subtrees and transport
them towards the root, but it cannot achieve the converse.

Theorem 11. The relation τ−1
Tpc cannot be computed by any (composition chain

of) ε-free mbot. �

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

The Power of Weighted Regularity-Preserving Multi Bottom-up Tree Transducers 15

σ

u σ

t1 σ

t2 σ

tm−1 tm

—

σ

t1 σ

t2 σ

tm−1 σ

tm u

Figure 6. Illustration of the links discussed in the proof of Theorem 11. Inverted arrow heads
indicate that the link points to a position below the one indicated by the spline. The links relating
the roots of the trees are omitted.

Proof. Since ε-free mbot are closed under composition [12], which extends to
the weighted setting [27], we need to consider only a single ε-free mbot. In or-
der to derive a contradiction, let M = (Q,Σ, q0, R,wt) be an ε-free mbot such that
τM = τ−1

Tpc. As in the proof of Theorem 9 we first move from the weighted to the
unweighted setting by considering the unweighted ε-free mbot N = (Q,Σ, q0, R).
Clearly, it computes a tree transformation T (N) = {(t, u) ∈ TΣ×TΣ | DN (t, u) 6= ∅}
such that supp(τM) ⊆ T (N), where supp(τN) = {(t, u) ∈ TΣ × TΣ | τM (t, u) 6= 0}.

We know that N is input and output link-distance bounded (see Table 1), so let
b ∈ N be a suitable bound. Moreover, let a > |v| for all rules 〈`, q, v〉 ∈ R. Hence a is
an upper bound for the length of the right-hand sides. Finally, let k > max(a, b) be
our main constant. Applying the linking theorem for ε-free mbot [16] there exist
an input tree t (leftmost in Figure 6 and an output tree t′ (rightmost) such that
for all derivations D ∈ DN (t, t′) terminating in the sentential form 〈t, ∅, I, t′〉 we
have the links lightly shown in Figure 6 in I, in which m� 2k. Consequently, the
ellipsis (clearly marked dots) in the output tree t′ hides at least 2 links that point
to this part of the output tree t′ because there must be a link every b positions by
the link-distance bound. Let (v, w), (v′, w′) ∈ I be those links such that w < w′.
These links are clearly indicated in Figure 6.

Clearly, w′ dominates the root positions of the subtrees tm and u, and thus
the output positions of the links pointing into tm and u in t′. Since N is strictly
output hierarchical (see Table 1), we obtain that (i) v ≤ v′ and (ii) v′ dominates the
input positions of the (light) links pointing into the subtrees tm and u. However,
there is only one position in t that dominates the input position of the link into tm
and the input position of the link into u, which is the root of t. Consequently,
v = v′ = ε as already indicated in Figure 6. Another straightforward induction
can be used to show that (for any ε-free mbot) all links sharing the same input
positions must be incomparable with respect to the prefix order ≤, which is also
proved [16]. This part again uses the ε-freeness of N . However, (ε, w) and (ε, w′) are
two links with the same source and comparable target positions because w < w′, so
we derived the desired contradiction. Hence no unweighted ε-free mbot can compute
an overapproximation of supp(τ−1

Tpc). However, since this is always possible provided

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

16 A. Maletti

that τ−1
Tpc can be computed by some ε-free mbot, the latter provision must be false,

which proves the statement.

Again we note that the proof could be straightforwardly achieved using high-
level arguments on the links and their interrelation after establishing the elementary
links (light in Figure 6) relating equal subtrees in the input and output tree. Then
the link-distance can be used to conclude the existence of links and their input and
output target can be related to existing links using the hierarchical properties. In
this way, we could in both cases derive a contradiction in rather straightforward
ways, which would not have been possible without the links. Typically, such (nega-
tive) statements are proved using the fooling technique (see [1] or [31] for examples),
which requires a rather detailed case analysis of all possible intermediate trees and
applied rules, which then individually have to be contradicted. In a scenario with
2 unknown intermediate trees such an approach becomes (nearly) impossible to
handle. In addition, the fooling technique relies on the knowledge that certain pairs
are not in the unweighted tree transformation. Since we only have an overapprox-
imation (due to the reduction from the weighted to the unweighted setting), we
typically cannot exclude pairs from the tree transformation computed by the over-
approximation. Thus, the fooling technique fails completely in the weighted setting
[unless additional restrictions are placed on the commutative semiring, which yield
that for each mbot M the corresponding unweighted mbot computes exactly the
set supp(τM)]. This latter approach is, for example, discussed in [14]. Thus, we
strongly want to promote the use of links and their interrelations in the analysis of
tree transducers.

Theorem 11 yields that regularity-preserving ε-free mbot are not closed un-
der inversion. In other words, there are regularity-preserving ε-free mbot M (such
as Tpc), whose inverted computed weighted tree transformation τ−1

M cannot be com-
puted by any ε-free mbot. This is not very surprising since ε-freeness is already an
asymmetric restriction.

Corollary 12. Regularity-preserving ε-free mbot (and general ε-free mbot) are
not closed under inversion. �

We collect the obtained results together with some minor consequences in a
Hasse diagram in Figure 7). Note that all weighted versions of the classes mentioned
in it refer to the regularity preserving and ε-free variants. Additionally, note that
very little in known in general (i.e., for all commutative semirings) in the weighted
setting.

Bibliography

[1] A. Arnold and M. Dauchet, Morphismes et bimorphismes d’arbres, Theoret. Comput.
Sci. 20(1) (1982) 33–93.

[2] J. Berstel and C. Reutenauer, Recognizable formal power series on trees, Theoret.
Comput. Sci. 18(2) (1982) 115–148.

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

The Power of Weighted Regularity-Preserving Multi Bottom-up Tree Transducers 17

unweighted setting weighted setting

mbot

reg.-pres. mbot

(xtopR)3 = (xtopR)∗

n-xtop∗ (xtopR)2

n-xtop2 xtopR

n-xtop

mbot

(xtopR)∗

n-xtop∗ (xtopR)2

n-xtop2 xtopR

n-xtop

Figure 7. Hasse diagram for the classes of (weighted) tree transformations computed by various
classes of mbots, where C∗ is the composition closure of class C and dashed lines indicates the
inclusion might not be strict. Note that in order not to clutter the diagram all classes in the
weighted setting are restricted to be the ε-free and regularity preserving variants of the displayed
models.

[3] M. Bojanczyk, Transducers with origin information, Proc. 41st ICALP , LNCS 8573,
(Springer, 2014), pp. 26–37.

[4] B. Borchardt, A pumping lemma and decidability problems for recognizable tree
series, Acta Cybernet. 16(4) (2004) 509–544.

[5] F. Braune, N. Seemann, D. Quernheim and A. Maletti, Shallow local multi bottom-
up tree transducers in statistical machine translation, Proc. 51st ACL, (Association
for Computational Linguistics, 2013), pp. 811–821.

[6] D. Chiang, An introduction to synchronous grammars, Proc. 44th ACL, (Association
for Computational Linguistics, 2006). Part of a tutorial given with Kevin Knight.

[7] D. Chiang, Hierarchical phrase-based translation, Comput. Linguist. 33(2) (2007)
201–228.

[8] N. Chomsky, The Minimalist Program (MIT Press, 1995).
[9] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding, S. Tison

and M. Tommasi, Tree automata — techniques and applications available online at
http://tata.gforge.inria.fr/, (2007).

[10] A. de Gispert, G. Iglesias, G. W. Blackwood, E. R. Banga and W. Byrne, Hierar-
chical phrase-based translation with weighted finite-state transducers and shallow-n
grammars, Comput. Linguist. 36(3) (2010) 505–533.

[11] J. Eisner, Learning non-isomorphic tree mappings for machine translation, Proc. 41st
ACL, (Association for Computational Linguistics, 2003), pp. 205–208.

[12] J. Engelfriet, E. Lilin and A. Maletti, Composition and decomposition of extended
multi bottom-up tree transducers, Acta Inform. 46(8) (2009) 561–590.

[13] J. Engelfriet, G. Rozenberg and G. Slutzki, Tree transducers, L systems, and two-way
machines, J. Comput. System Sci. 20(2) (1980) 150–202.

[14] Z. Fülöp, Z. Gazdag and H. Vogler, Hierarchies of tree series transformations, Theoret.
Comput. Sci. 314(3) (2004) 387–429.

December 20, 2014 17:48 WSPC/INSTRUCTION FILE ijfcs

18 A. Maletti

[15] Z. Fülöp and A. Maletti, Composition closure of ε-free linear extended top-down tree
transducers, Proc. 17th DLT , LNCS 7907, (Springer, 2013), pp. 239–251.

[16] Z. Fülöp and A. Maletti, Linking theorems for tree transducers, Manuscript (2014).
[17] Z. Fülöp and H. Vogler, Weighted tree automata and tree transducers, Handbook of

Weighted Automata, eds. M. Droste, W. Kuich and H. Vogler, EATCS Monographs
on Theoret. Comput. Sci. (Springer, 2009), pp. 313–403.

[18] F. Gécseg and M. Steinby, Tree Automata (Akadémiai Kiadó, Budapest, 1984).
[19] F. Gécseg and M. Steinby, Tree languages, Handbook of Formal Languages, eds.

G. Rozenberg and A. Salomaa, 3 (Springer, 1997), pp. 1–68.
[20] D. Gildea, On the string translations produced by multi bottom-up tree transducers,

Comput. Linguist. 38(3) (2012) 673–693.
[21] J. S. Golan, Semirings and their Applications (Kluwer Academic, Dordrecht, 1999).
[22] U. Hebisch and H. J. Weinert, Semirings—Algebraic Theory and Applications in Com-

puter Science (World Scientific, 1998).
[23] K. Knight and J. Graehl, An overview of probabilistic tree transducers for natural

language processing, Proc. 6th CICLing , LNCS 3406, (Springer, 2005), pp. 1–24.
[24] P. Koehn, Statistical Machine Translation (Cambridge University Press, 2010).
[25] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan,

W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin and E. Herbst, Moses:
Open source toolkit for statistical machine translation, Proc. 45th ACL, (Association
for Computational Linguistics, 2007), pp. 177–180.

[26] E. Lilin, Propriétés de clôture d’une extension de transducteurs d’arbres déter-
ministes, Proc. 6th CAAP , LNCS 112, (Springer, 1981), pp. 280–289.

[27] A. Maletti, Why synchronous tree substitution grammars?, Proc. HLT-NAACL 2010 ,
(Association for Computational Linguistics, 2010), pp. 876–884.

[28] A. Maletti, An alternative to synchronous tree substitution grammars, J. Natur.
Lang. Engrg. 17(2) (2011) 221–242.

[29] A. Maletti, How to train your multi bottom-up tree transducer, Proc. 49th ACL,
(Association for Computational Linguistics, 2011), pp. 825–834.

[30] A. Maletti, Tree transformations and dependencies, Proc. 12th MOL, LNAI 6878,
(Springer, 2011), pp. 1–20.

[31] A. Maletti, J. Graehl, M. Hopkins and K. Knight, The power of extended top-down
tree transducers, SIAM J. Comput. 39(2) (2009) 410–430.

[32] J. May, K. Knight and H. Vogler, Efficient inference through cascades of weighted
tree transducers, Proc. 48th ACL, (Association for Computational Linguistics, 2010),
pp. 1058–1066.

[33] F. J. Och and H. Ney, The alignment template approach to statistical machine trans-
lation, Comput. Linguist. 30(4) (2004) 417–449.

[34] S. M. Shieber and Y. Schabes, Synchronous tree-adjoining grammars, Proc. 13th
CoLing , 3 (1990), pp. 253–258.

[35] M. Zhang, H. Jiang, A. Aw, H. Li, C. L. Tan and S. Li, A tree sequence alignment-
based tree-to-tree translation model, Proc. 46th ACL, (Association for Computational
Linguistics, 2008), pp. 559–567.

