Cognitively Salient Relations for Multilingual Lexicography

Gerhard Kremer▲ Andrea Abel☆ Marco Baroni▲

▲CIMeC, University of Trento
☆EURAC, Bolzano

August 24, 2008
Background

- Lexicography:
 words related to each other

- Computer use:
 electronic dictionaries

- Psychology:
 salient relations
 in semantic norms collection
Background

- Lexicography:
 words related to each other

- Computer use:
 electronic dictionaries

- Psychology:
 salient relations
 in semantic norms collection
Background

- Lexicography:
 words related to each other

- Computer use:
 electronic dictionaries

- Psychology:
 salient relations
 in semantic norms collection
Project Aims

Systematically extract

... cognitively most salient relations

... for concept classes (nouns, preliminary)

... based on the languages German and Italian

First step:

concept description elicitation experiment
Project Aims

Systematically extract
 ... cognitively most salient relations
 ... for concept classes (nouns, preliminary)
 ... based on the languages German and Italian

First step:
concept description elicitation experiment
Experiment Purpose

- Relation type distributions: stable across languages?
- Different relations for different concept classes?
 - Which relation types are most salient?
 - At which level of class granularity?

⇒ Basis for corpus-based extraction of concept-class-specific relation instances
Experiment Outline

Subjects: High school students from South Tyrol

Stimuli: 50 concepts (from 10 hierarchically organised classes)

Task: Describe concept to alien in short phrases, in 1 minute
Data Preparation

- Splitting of phrases
- Normalisation
- Transcription into English
- Mapping to relation types

Data Snippet

<table>
<thead>
<tr>
<th>German</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birne pear fruit eine Frucht</td>
<td>a_fruit</td>
</tr>
<tr>
<td>Birne pear fruit gelbgrün</td>
<td>is_yellow-green</td>
</tr>
<tr>
<td>Birne pear fruit ist weich</td>
<td>is_soft</td>
</tr>
<tr>
<td>Birne pear fruit hat Kerne im Inneren</td>
<td>has_seeds</td>
</tr>
</tbody>
</table>
Property Type Distributions

... Across Languages

G. Kremer, A. Abel, M. Baroni
Cognitively Salient Relations

7 / 13
Property Type Distributions

... Across Classes

German

Italian

G. Kremer, A. Abel, M. Baroni Cognitively Salient Relations
Clustering

Unsupervised clustering (cluto tool):

- Best solution with 3-way clustering
- 3 super-classes:
 - mammals & birds,
 - fruit & vegetable,
 - all other man-made objects & body parts
- Exception: horse (misclustered in Italian)
Summary

- Similar type distributions between German and Italian
- Distinct patterns among concept classes
- Robust clustering into 3 super-classes
Conclusion

- Next: perception experiment
- Relation extraction from corpora
- Application: electronic dictionary ELDIT

Classes and Concepts Used

<table>
<thead>
<tr>
<th>Class</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>mammal:</td>
<td>dog, horse, rabbit, bear, monkey</td>
</tr>
<tr>
<td>bird:</td>
<td>seagull, sparrow, woodpecker, owl, goose</td>
</tr>
<tr>
<td>fruit:</td>
<td>apple, orange, pear, pineapple, cherry</td>
</tr>
<tr>
<td>vegetable:</td>
<td>corn, onion, spinach, peas, potato</td>
</tr>
<tr>
<td>body part:</td>
<td>eye, finger, head, leg, hand</td>
</tr>
<tr>
<td>clothing:</td>
<td>chemise, jacket, sweater, shoes, socks</td>
</tr>
<tr>
<td>tool:</td>
<td>comb, broom, sword, paintbrush, tongs</td>
</tr>
<tr>
<td>vehicle:</td>
<td>bus, ship, airplane, train, truck</td>
</tr>
<tr>
<td>furniture:</td>
<td>table, bed, chair, closet, armchair</td>
</tr>
<tr>
<td>building:</td>
<td>garage, bridge, skyscraper, church, tower</td>
</tr>
</tbody>
</table>