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What is a good model ?

Heliocentric Geocentric

O

Image taken
from Gfycat

Accuracy! All models are wrong
Facilitate hypotheses and theories!

All models are wrong, but some are useful.
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Model validation

Word meaning representation

The distributional hypothesis

You shall know a word by the company it
keeps (Firth, J. R. 1957:11)




Model validation

Word meaning representation

Machine
translation

Sentiment
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Model validation

Model validation (embedding)

Word 1
horse
book
computer
train
television
drug
bread
cucumber
doctor
smart
stock

r=.72
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7.46

keyboard 7.62

car
radio
abuse
butter
potato
nurse
stupid
market

6.31
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7
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Embeddin
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Model validation

Model validation (embedding)

Word 1 Word 2 Human Embeddin -

horse car 5.9 0.79 aUtomOb”e car

book paper 7.46 0.85

computer keyboard 7.62 0.79 _
train car 6.31 0.5 Semantic Hoiss
television radio 6.77 0.73 similarity

drug abuse 6.85 0.45

bread butter 6.19 0.65

cucumber potato 5.92 0.75

doctor nurse 7 0.84 horse

smart stupid 5.81 0.6

stock market 8.08 0.97

r=.72

v Vectors capture semantic meaning g

# Vectors capture only semantic meaning




Model validation

Model validation (embedding)

What is noise?

An artifact. . Noise
Semantic
similarity
Any unwanted

variable that
influence our
measurment.

v Vectors capture semantic meaning

# Vectors capture only semantic meaning



Model validation

All models are wrong

Aspects of wrongness

|. How wrong are they?

2. Are they importantly wrong?

J
5
@ ?< {} >6 Hypotheses
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Part |
Problems in semantic change

models
Based on Dubossarsky et al. 2017




Part I: Problems in semantic change models

Measuring semantic change

Change to a word’s representation™ between two
time points [word relative to itself]

wto - it

Awt =t = cosDist(who,wt) =1 — — —
' lwto]| - [[wt]]

SRR

o




Part I: Problems in semantic change models

Measuring semantic change

Change to a word’s representation™ between two
time points [word relative to itself]

who -

L
"W 1
Awt =t = cosDist(wto,wt) =1 — = == A
lwto]| - |[wta]|

wt'

w; = broadcast!

w; = broadcastt




Part I: Problems in semantic change models

Semantic change validated?
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Semantic change validated?
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Part I: Problems in semantic change models

Semantic change validated?
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Part I: Problems in semantic change models

Semantic change validated?

Word 2 Human
car 5.9

book 7.46
computer 7.62
train car 6.31
television radio 6.77

drug abuse

bread butter

cucumber potato

doctor nurse 7
smart stupid 5.81
stock market 8.08

Embeddin
0.79
0.85
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0.5
0.73
0.45
0.65
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cosine similarity(wtl,w
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computer
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Human
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Part I: Problems in semantic change models

Semantic change validated!?

o
£
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Luckily we have SemEval-2020 (SemEval 2020)




Part I: Problems in semantic change models

How wrong models are?

All models are wrong

@ Noise

old

Aspects of wrongness

|. How wrong are they!?

2. Are they importantly wrong!?

J




Part I: Problems in semantic change models

Are they importantly wrong?
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Part I: Problems in semantic change models

The artefact is a confound

Genume h|st0r|ca| corpus i Shuffled historical corpus
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Part I: Problems in semantic change models

“Laws” of semantic change

e Law of Prototypicality (Dubossarsky et.al. 2015).

—0.6 —0.4 -0.2 0.0 0.2 0.4

0.6



Part I: Problems in semantic change models

“Laws” of semantic change

e Law of Prototypicality (Dubossarsky et.al. 2015).

* Law of Innovation (Polysemy, Hamilton et. al. 2016).

bottle




Part I: Problems in semantic change models

“Laws” of semantic change

e Law of Prototypicality (Dubossarsky et.al. 2015).
* Law of Innovation (Polysemy, Hamilton et. al. 2016).

* Law of Conformity (Frequency, Hamilton et. al. 2016).

..Im

Rate of semantic change

-14 -13 -12 -11 -10 -9 -8
Log(frequency)



Part I: Problems in semantic change models

“Laws’’ of semantic chan

Hamilton et al. (2016)

Rate of semantic change
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Part I: Problems in semantic change models

“Laws” of semantic char)gg\
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All models are wrong, but some are useful.
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Part ||
Improving

Working with and
faulty models
based on Dubossarsky el al. (2019)




Part Il - Working with and improving faulty models

Temporal Referencing

broadcast1880
broadcast1920

880+Y1960

—

broadzst
@ broadcast1960

nenga.per

o © B ® 0

Silken cauliflowers sown broadcast!®’?® over the land.
The dramatic broadcast!?’® stunned the nation.

\_‘& Example
|




Part Il: Working around faulty models

Evaluate noise levels

True effect size

Average change

0.25

0.20

o
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1940
Decade

1960

1980




Part Il: Working around faulty models

Evaluate noise levels

True semantic change
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Part Il: Working around faulty models

Evaluate noise levels

True semantic change
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Part Il: Working around faulty models

Synthetic semantic change

ring Sense 1
oz O O QO

1. A wedding ring = A wedding ring [100%]

time

2. A wedding ring =2 A wedding ring [100%]

3. A wedding ring =2 A wedding ring [100%]

4. A wedding ring =2 A wedding ring [100%]



Part Il: Working around faulty models

Evaluate model sensitivity

Are they
importantly
wrong?




Part Il: Working around faulty models

Evaluate model sensitivity

True labels
200 A _ B Change
175 4 [ stable
150 4
2125 A
5
S 100 -
75 A
50
- l J]_lj_m
0 _.
1 \ 2 3 4 5
Y
Synthetic change

Model A Model B Model C TR

accuracy 0.65 0.66 0.59 0.70
Fl-score 0.69 0.69 0.67 0.74




Part Il: Working around faulty models

Evaluate model sensitivity

True semantic change

0.07
[ ModelA EE pmodel €
[ |

0.06 - Model B TR
0.05 1
0.04 1
0.03 1
0.02

1920- 1930- 1940- 1950- 1960-

1930 1940 1950 1960 1970

Compared decades
Model A’ Model B Model C TR
accuracy 0.65 0.66 0.59 0.70

Fl-score 0.69 0.69 0.67 0.74




Part Il: Working around faulty models

Evaluate model sensitivity

True semantic change

[ ModelA EE pModel €
Model B HEE TR

0.07

All models are wrong, but some are useful.
And some are more useful than other!

Model A Model B Model C TR

accuracy 0.65 0.66 0.59 0.70
Fl-score 0.69 0.69 0.67 0.74
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Conclusions

* All models are wrong!



Conclusions

* But are they importantly wrong?

* Be AWARE of the underlying assumptions of
the models and test them.

— We may get to wrong conclusions.

— It may guide us in developing better models!
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