

Doubt thy models: rethinking hypothesis testing in NLP

Haim Dubossarsky University of Stuttgart, IMS October 2020

hd423@cam.ac.uk

What is a good model ?

Image taken from Gfycat

Accuracy? All models are wrong Facilitate hypotheses and theories!

All models are wrong, but some are useful.

A different view of models

Outline

- ✓ Agenda
- Model validation
- Part I Problems in semantic change models
- Part II Working with and improving faulty models
- Conclusions

Word meaning representation

The distributional hypothesis

You shall know a word by the company it keeps (Firth, J. R. 1957:11)

Model validation (embedding)

r=.72

cosine similarity(
$$w^1, w^2$$
) = $\frac{\vec{w}^1 \cdot \vec{w}^2}{\|\vec{w}^1\| \cdot \|\vec{w}^2\|}$

Model validation (embedding)

r=.72

Vectors capture semantic meaning

≠ Vectors capture <u>only</u> semantic meaning

Model validation (embedding)

Model validation

All models are wrong

Aspects of wrongness

- I. <u>How wrong</u> are they?
- 2. Are they importantly wrong?

Part I Problems in semantic change models

Based on Dubossarsky et al. 2017

Measuring semantic change

Change to a word's representation^{*} between two time points [word relative to itself]

$$\Delta w^{t^0 \to t^1} = cosDist(w^{t_0}, w^{t_1}) = 1 - \frac{\overrightarrow{w}^{t_0} \cdot \overrightarrow{w}^{t_1}}{\|\overrightarrow{w}^{t_0}\| \cdot \|\overrightarrow{w}^{t_1}\|}$$

Measuring semantic change

Change to a word's representation* between two time points [word relative to itself]

$$\Delta w^{t^0 \to t^1} = cosDist(w^{t_0}, w^{t_1}) = 1 - \frac{\overrightarrow{w}^{t_0} \cdot \overrightarrow{w}^{t_1}}{\|\overrightarrow{w}^{t_0}\| \cdot \|\overrightarrow{w}^{t_1}\|} \quad \checkmark$$

Word 1	Word 2	Human	Embeddin
horse	car	5.9	0.79
book	paper	7.46	0.85
computer	keyboard	7.62	0.79
train	car	6.31	0.5
television	radio	6.77	0.73
drug	abuse	6.85	0.45
bread	butter	6.19	0.65
cucumber	potato	5.92	0.75
doctor	nurse	7	0.84
smart	stupid	5.81	0.6
stock	market	8.08	0.97

 $cosine \ similarity(w^1, w^2) = \frac{\vec{w}^1 \cdot \vec{w}^2}{\|\vec{w}^1\| \cdot \|\vec{w}^2\|}$

Word 1	Word 2	Human	Embeddin
horse	car	5.9	0.79
book	paper	7.46	0.85
computer	keyboard	7.62	0.79
train	car	6.31	0.5
television	radio	6.77	0.73
drug	abuse	6.85	0.45
bread	butter	6.19	0.65
cucumber	potato	5.92	0.75
doctor	nurse	7	0.84
smart	stupid	5.81	0.6
stock	market	8.08	0.97

Nina Tahmasebi, On Lexical Semantic Change and Evaluation, London, November 2019

$$cosine \ similarity(w^1, w^2) = \frac{\vec{w}^1 \cdot \vec{w}^2}{\|\vec{w}^1\| \cdot \|\vec{w}^2\|}$$

Word 1	Word 2	Human	Embeddin
horse	car	5.9	0.79
book	paper	7.46	0.85
computer	keyboard	7.62	0.79
train	car	6.31	0.5
television	radio	6.77	0.73
drug	abuse	6.85	0.45
bread	butter	6.19	0.65
cucumber	potato	5.92	0.75
doctor	nurse	7	0.84
smart	stupid	5.81	0.6
stock	market	8.08	0.97

 $cosine \ similarity(w^1, w^2) = \frac{\vec{w}^1 \cdot \vec{w}^2}{\|\vec{w}^1\| \cdot \|\vec{w}^2\|}$

Word 1	Word 2	Human	Embeddin
horse	car	5.9	0.79
book	paper	7.46	0.85
computer	keyboard	7.62	0.79
train	car	6.31	0.5
television	radio	6.77	0.73
drug	abuse	6.85	0.45
bread	butter	6.19	0.65
cucumber	potato	5.92	0.75
doctor	nurse	7	0.84
smart	stupid	5.81	0.6
stock	market	8.08	0.97

 $cosine \ similarity(w^{t1}, w^{t2}) = \frac{\overrightarrow{w}^{t1} \cdot \overrightarrow{w}^{t2}}{\|\overrightarrow{w}^{t1}\| \cdot \|\overrightarrow{w}^{t2}\|}$

Luckily we have SemEval-2020 (SemEval 2020)

How wrong models are?

All models are wrong

Aspects of wrongness

- I. How wrong are they?
- 2. Are they importantly wrong?

old

Are they importantly wrong?

The artefact is a confound

• Law of Prototypicality (Dubossarsky et. al. 2015).

- Law of Prototypicality (Dubossarsky et. al. 2015).
- Law of Innovation (Polysemy, Hamilton et. al. 2016).

- Law of Prototypicality (Dubossarsky et. al. 2015).
- Law of Innovation (Polysemy, Hamilton et. al. 2016).
- Law of Conformity (Frequency, Hamilton et. al. 2016).

Part I: Problems in semantic change models

Part I: Problems in semantic change models

Part II Working with and improving faulty models

based on Dubossarsky el al. (2019)

Temporal Referencing

Evaluate noise levels

Evaluate noise levels

Synthetic semantic change

Final notes

A different view of models

Conclusions

• All models are wrong!

Conclusions

• All models are wrong!

• But are they importantly wrong?

- Be AWARE of the underlying assumptions of the models and test them.
 - We may get to wrong conclusions.
 - It may guide us in developing better models!

Credits

Part I - my PhD supervisors:
Daphna Weinshall and Eitan Grossman

Part II – my collaborators:
Simon Hengchen - University of Gothenburg
Nina Tahmasebi - University of Gothenburg
Dominik Schlechtweg - University of Stuttgart

Thank you!

hd423@cam.ac.uk