Corpus Encoding Tutorial:
First Steps
[Draft]

Stefan Evert

30 Jun 2002

The CWB input format is one-word-per-line (more precisely, one token per line), with annotations given
as additional TAB-separated columns. XML tags must appear on separate lines.

<s>

It PP it

was VBD be

an DT an
elephant NN elephant
. SENT

</s>

Figure 1: file example.vrt

e create separate data directory for binary corpus data
e encode, i.e. convert to CWB binary format with

cwb-encode -d /path/to/data -f example.vrt -R /path/to/registry/example
-P pos -P lemma -S s

The first column is automatically encoded as the default positional attribute (p-attribute) word. -P
flags are used to declare additional p-attributes. -S flags declare structural attributes (s-attributes),
which encode non-recursive XML tags and whose names must correspond to the XML element names. -R
automatically creates a registry file, whose filename must be in lowercase. The CWB name of the corpus
is identical to the name of the registry file, but is written in uppercase (here it will be EXAMPLE).

Input files with the extension .gz are assumed to be in gzip format and are automatically uncompressed.
Multiple input files can be specified by using the -f switch, and will be read in the order in which they
appear on the command line. Note that shell wildcards (e.g. -=f *.txt) won’t work. Switches and options
must precede the flags used to declare attributes in the command line.

e create lexicon and index for p-attributes
cwb-makeall -V EXAMPLE

The -V switch enables an additional validation pass when the index has been created. It should be omitted
when encoding very large corpora (= 100M tokens). In this case, it is also advisable to limit memory usage
with the -M option. The amount specified should be somewhat less than the amount of physical RAM
available (depending on the number of users etc.; too little is better than too much). For instance, on a
Linux machine with 128 MB of RAM, -M 64 is a safe choice.

e always erase all files in data directory before re-encoding corpus!

e get some information about the corpus (add -s option for details)

cwb-describe-corpus EXAMPLE

Text will often be available in XML format. CWB v3.0 offers improved XML support. Useful flags for
encode are -x for XML compatibility mode (recognises default entities and comments), -s to skip empty
lines in the input, and -B to strip whitespace from tokens. Typical XML input might look like this:

<!-- A Thrilling Experience -—>

<story num="4" title="A Thrilling Experience">

<p>
<s>
Tick

</s>
<s>

A
clock

</s>
<s>
Tick
s

tick

</s>
</p>

</story>

NN

SENT

DT

SENT

VB

VB
SENT

tick

clock

tick

tick

Figure 2: file vss.vrt

If XML regions of the same type are nested, encoding will only work correctly if you add :0 to the
s-attribute declaration, which enables XML parsing. The attributes of XML tags such as

<story num="4" title="A Thrilling Experience">

can be stored as a plain text string by using -V instead of -8, but are not easily accessible from CQP. It
is more desirable to declare XML attributes explicitly and split them into multiple s-attributes. Note that
the flags -xsB should (almost) always be used and will automatically ignore the XML comment line.

cwb—encode

-d /path/to/data -f vss.vrt -R /path/to/registry/vss
-xsB -P pos -P lemma

-S s:0 -S p:0 -S story:O+num+title

This will create a registry file for the corpus VSS, including the s-attributes s, p, story, storynum, and

story_title. Don

cwb-makeall -V VSS

't forget to build indices for the p-attributes as above:

If registry files are not written to the default registry directory /corpora/cl/registry, all CWB tools
accept the -r flag to specify a different registry directory, e.g.

cwb-makeall -r /path/to/registry -V VSS

Data compression for p-attributes is accomplished with two separate tools: cwb-huffcode for the token
stream data, and cwb-compress-rdx for the index. Use the -P flag to specify a single p-attribute, or
compress all p-attributes with -A.

cwb-huffcode -A VSS
cwb-compress-rdx -A VSS

When compression was successful, the tools will list the data files which are now redundant and can be
deleted (namely, attrib.corpus after running cwb-huffcode, and attrib.corpus.rev and attrib.corpus.rdx
after running cwb-compress-rdx).

Running cwb-makeall now will show that the p-attributes are already compressed. Note that by default,
the compressed data files are validated, so it is safe to remove the redundant files. Validation can be turned
off with the -T option, but is less performance-critical than with cwb-makeall.

In order to add p-attributes after encoding, create input data in the standard one-word-per-line format,
containing the new attributes only. Here is an example with WordNet synonyms encoded as feature sets.

|belbe identical tol|characterizel|constitutel...|

|
|elephant |
|

Figure 3: file syns.vrt

Encode as usual, but suppress the default word attribute with -p -. It is highly recommended to check
first that the number of tokens in the new file (wc -1 syns.vrt) is identical to the corpus size (as reported
by cwb-lexdecode -S VSS).

cwb-encode -d /path/to/data -f syns.vrt -p - -P syn
The registry file must be edited manually, adding the line
ATTRIBUTE syn
Don’t forget to create a lexicon and index for the new attribute
cwb-makeall -V VSS

and compress the p-attribute if this is desired. Before re-encoding the syn attribute, the corresponding
data files (matching the shell pattern syn.*) must be deleted!

In order to add s-attributes with computed start and end points after encoding, use the cwb-s-encode
tool. The start and end positions of existing s-attributes can be obtained with cwb-s-decode. The following
example shows how sentence length annotations can be added to the VSS corpus. The existing s attribute
is decoded into a temporary file, gawk is used to compute sentence lengths, and the resulting annotated
regions are encoded with cwb-s-encode.

cwb-s-decode VSS -S s > s.list
gawk ’BEGIN { FS=0FS="\t" } { print $1, $2, $2-$1+1 }’ s.list > s_len.list
cwb-s-encode -d /path/to/data -f s_len.list -V s_len

Note that it is currently not necessary to run cwb-makeall after adding an s-attribute to an existing corpus.
However, the new attribute must be declared in the registry file by manually adding the line

STRUCTURE s_len

In order to add XML annotations (e.g. <np> and <pp> tags obtained from a chunk parser) to an existing
corpus, the usual strategy is to decode the token stream (and other attributes, if required) to a temporary
file. A chunk parser may expect <s> and </s> tags marking sentence boundaries.

cwb-decode -C VSS -P word -S s > word_s.vrt

We then run the chunk parser on the temporary file, which adds its <np> and <pp> tags to the token stream,
creating the file shown below.

<s>

<np head="experience>
My

experience

<pp head="of">
of

<np head="life">
life

</np>

</pp>

</np>

did

not

</s>
Figure 4: file chunks.vrt

It is important that the token stream is left intact when adding the XML annotation. In particular tokens
(as well as XML tags) must remain on separate lines and may not be split or combined. As a preliminary
check, make sure that the number of tokens is identical to the corpus size.

grep -v ’°<’ chunks.vrt | wc -1

Now we can use cwb-encode to encode the XML annotations as structural attributes. The start and end
points of regions are automatically computed from the token stream. Since we do not want to overwrite
the word attribute, we specify -p - (with no p-attributes declared, the non-XML lines in the input file will
simply be ignored). The flag -0 s (digit zero) instructs cwb-encode to ignore <s> and </s> tags (without
-S s they would otherwise be interpreted as literal tokens and mess up the token stream).

cwb-encode -d /path/to/data -f chunks.vrt
-p - -0 s -S np:0+head -S pp:0+head

cwb-encode will issue warnings about nested regions being dropped. As can be seen from Figure 4, <np>
(as well as <pp>) regions may be embedded recursively. We can now change the :0 modifier to :2, allowing
up to two levels of embedding (for each element type, i.e. <np>s embedded in larger <np>s etc.). In general,
:n allows up to n levels of embedding. Embedded regions will automatically be renamed to np1, np2, ppl,
and pp2, respectively.

cwb-encode -d /path/to/data -f chunks.vrt
-p - -0 s -S np:2+head -S pp:2+head

The full list of s-attributes created by this command is np, npl, np2, np-head, np_headl, np.-head?2, pp,
pprl, pp2, pp-head, pp-headl, and pp_head2. Again, the corresponding STRUCTURE lines in the registry file
have to be added manually, but it is not necessary to run cwb-makeall.

The cwb-lexdecode tool gives access to the lexicon of positional attributes, listing word forms / anno-
tation strings with their corpus frequencies. The -S option prints the size of corpus (tokens) and lexicon
(types) only, -P selects the desired p-attribute, -f shows corpus frequencies, and -s lists the lexicon entries
alphabetically (according to the internal sort order). In order to sort the lexicon by frequency, an external
program (e.g. sort) has to be used.

cwb-lexdecode -8 -P lemma VSS
cwb-lexdecode -f -s -P lemma VSS | tail -20
cwb-lexdecode -f -P lemma VSS | sort -nr -k 1 | head -20

It is also possible to annotate strings from a file (called tags.tat here) with corpus frequencies. The file
must be in one-word-per-line format. -0 (digit zero) prints a frequency of 0 for unknown strings rather
than issuing a warning message.

cwb-lexdecode -f0 -P pos -f tags.txt VSS
With the -p option, tokens / annotations matching a regular expression can be extracted. Case- and
diacritics-insensitive matching is selected with -c and -d, respectively. The example below is similar to the
CQP query [lemma = "over.+" %cl; but may be considerably faster on a large corpus.

cwb-lexdecode -f -P lemma -p ’over.+’ -c VSS
An entire corpus or selected attributes from a corpus can be printed in various formats with the
cwb-decode tool. Note that options and switches must appear before the corpus name, and the flags
used to select attributes after the corpus name. Use -P to select p-attributes and -S for s-attributes. With
the -s and -e options, a part of the corpus (identified by start and end corpus position) can be printed.

cwb-decode -C -s 7299 -e 7303 VSS -P word -P pos -S s

-C refers to the compact one-word-per-line format expected by cwb-encode. For a full textual copy of a
CWB corpus, use -ALL to select all positional and structural attributes.

cwb-decode -C VSS -ALL > vss-corpus.vrt

The resulting file vss-corpus.vrt can be re-encoded with cwb-encode (using appropriate flags) to give an
exact copy of the VSS corpus. -Cx is almost identical to the compact format, but changes some details in
order to generate a well-formed XML document (unless there are overlapping regions in the corpus).

cwb-decode -Cx VS8S -ALL > vss-corpus.xml
xmllint vss-corpus.xml

This output format can reliably be re-encoded when the -xsB options are used. Finally, -X produces
a native XML output format (following a fixed DTD), which can be post-processed and formatted with
XSLT stylesheets.

cwb-decode -X -s 7299 -e 7303 VSS -P word -P pos -S s -S np_head

Note that the regions of s-attributes are not translated into XML regions. Instead, the start and end tags
are represented by special empty <tag> elements.

The cwb-scan-corpus command extracts combinatorial information from an encoded corpus. Similar to
the group command in CQP, it is a faster and more memory-efficient alternative for the extraction of simple
structures from large corpora, and isn’t restricted to singletons and pairs. The output of cwb-scan-corpus
is an unordered list of n-tuples and their frequencies, which have to be post-processed and sorted with
external tools. The simple example below prints the twenty most frequent (lemma, pos) pairs in the VSS
corpus, using the -C option to filter punctuation and noise from the list of lemmata (note that -C applies
to all selected attributes).

cwb-scan-corpus -C VSS lemma pos | sort -nr -k 1 | head -20
A non-negative offset can be added to each field key in order to collect bigrams, trigrams, etc. The
following example derives a simple language model in the form of all sequences of three consecutive part-of-
speech tags together with their occurrence counts. Only the twenty most frequent sequences are displayed.

cwb-scan-corpus VSS pos+0 pos+l pos+2 | sort -nr -k 1 | head -20
For a large corpus such as the BNC, the scan results can directly be written to a file with the -o switch.
If the filename ends in .gz (such as the file language-model.gz in the example below), the output file is
automatically gzipped.

cwb-scan-corpus -o language-model.gz BNC pos+0 pos+l pos+2
The values of the selected p-attributes can also be filtered with regular expressions. The following command
identifies part-of-speech sequences at the end of sentences (indicated by the tag SENT = sentence-ending
punctuation).

cwb-scan-corpus VSS pos+0 pos+1 pos+2=/SENT/ | sort -nr -k 1 | head -20

Since the third key is used only for filtering, we can suppress it in the output by marking it as a constraint
key with the ? character. Note that it may be necessary to enclose more complex keys (containing shell
metacharacters) in single quotes.

cwb-scan-corpus VSS pos+0 pos+l 7pos+2=/SENT/ | sort -nr -k 1 | head -20
The final example extracts pairs of adjacent adjectives and nouns from the VSS corpus, e.g. as candidate
data for Adj+N collocations. Constraint keys are used to identify adjectives and nouns, and only nouns
starting with a vowel are accepted. Note the ¢ and d modifiers (case- and diacritics-insensitive matching)
on this regular expression.

cwb-scan-corpus -C VSS lemma+0 7pos+0=/JJ.*/ lemma+1=/[aeiou].+/cd 7pos+1=/NN.*/

Except for the -C option, this command line is equivalent to the following CQP commands, but it will
execute much faster on a large corpus.

A = [pos = "JJ.x"] [pos = "NN.x" & lemma = "[aeiou].+" %cd];
group A matchend lemma by match lemma;

