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1 Introduction

There is an increasing number of linguists in-
terested in large syntactically annotated cor-
pora (treebanks).1 Such corpora can serve as
a base for statistical applications and, at the
same time, may be used in theoretical lin-
guistics as a source for investigations about
language use.
The most important treebank nowadays

is the Penn Treebank (Marcus et al., 1993;
Marcus et al., 1994). Many statistical tag-
gers and parsers have been trained on this
treebank, e.g. (Ramshaw and Marcus, 1995;
Srinivas, 1997; Alshawi and Carter, 1994).
Furthermore, context-free and uni�cation-
based grammars have been derived from the
Penn Treebank (Charniak, 1996; van Gen-
abith et al., 1999a; van Genabith et al.,
1999c; van Genabith et al., 1999b). These
parsers, trained or created by means of the
treebank, very successfully parse unseen text
with respect to correct POS tagging and
chunking, and hence can be applied for en-
larging the treebank.
However, the situation is di�erent for lan-

guages other than English. Ongoing projects
are still in the process of building treebanks,
e.g. for German (NEGRA corpus (Skut et
al., 1997), now continued in the TIGER
project; the German treebank in Verbmo-
bil (Stegmann et al., 1998)), for Czech
(The Prague Dependency Treebank (Haji£,

1I would like to thank an anonymous referee for
helpful comments on an earlier version of this pa-
per.
The work reported here has been partially funded
by the Deutsche Forschungsgemeinschaft, project
TIGER.

1998)); for French (Abeillé et al., 2000). In
consequence, the base that parsers could be
trained on is still more or less missing. Hence
alternative ways of corpus annotation that
are not based on statistical parsers may be
investigated.
The NEGRA/TIGER corpus consists of

German newspaper texts. Currently about
30.000 sentences are annotated with depen-
dency structures. Large parts of the anno-
tation are performed by human annotators
supported by the tool annotate that inte-
grates a partial parser and a part-of-speech
tagger (Brants, 2000b).
As one part of the TIGER project, it is in-

vestigated to what extent a symbolic gram-
mar can be applied in annotation. In this ap-
proach an existing symbolic LFG grammar is
used to parse the corpus. After parsing, dis-
ambiguation has to be supported manually.
First results of this approach are the topic of
this paper.

2 Annotation by Grammar

2.1 Scenario

In the approach presented in this paper,
a broad coverage symbolic LFG grammar
(Lexical Functional Grammar, (Bresnan,
1982)) is used to parse the corpus. Usually,
the grammar output is ambiguous. Disam-
biguation is done partly manually, partly by
a grammar internal ranking mechanism. Fi-
nally, the correct reading is saved in PRO-
LOG format.
In our application, a transfer component

will convert the PROLOG output into the
NEGRA export format (Brants, 1997; Kuhn
et al., 2000), or into other representation for-



mats such as an XML-based encoding format
(Mengel and Lezius, 2000).
In the following sections, LFG parsing

and disambiguation is presented, followed by
some remarks on grammar coverage and ro-
bustness, and annotation accuracy. To illus-
trate these remarks, parsing results are pre-
sented in the �nal section.

2.2 Representations in LFG

The LFG grammar applied in parsing has
been developed using the Xerox Linguis-
tic Environment (XLE). The output of an
LFG grammar basically consists of two rep-
resentations, the constituent structure (c-
structure) of the sentence being parsed,
and its functional structure (f-structure),
containing information about predicate-
argument-structure, about attachment sites
of adjuncts, and about tense, mood etc. In
�gure 1, c- and f-structure for Maria sieht
Hans (`Maria sees Hans') are displayed.
In case of an ambiguous sentence, XLE al-

lows for �packing� the di�erent readings into
one complex f-structure representation. All
features are represented only once; feature
constraints that only hold in one of the read-
ings are marked by variables. The result is
an f-structure that is annotated with vari-
ables to show where alternatives are possi-
ble.
In �gure 2, the alternative c-structures for

Maria sieht Hans mit dem Fernglas (`Maria
sees Hans with the telescope') are displayed.
The readings di�er with respect to the at-
tachment site of the PP mit dem Fernglas,
either dominated by VP or by NP.
Figure 3 shows the corresponding f-

structures, combined in a single f-structure.
The PP's f-structure, embedded under the
feature ADJUNCT, is displayed only once.
In the example, variables a:1 and a:2 indi-
cate the alternative attachments.
The correct reading is selected by a human

annotator after parsing. Selection is done
either by picking the correct c-structure tree
or by clicking on the respective variables in
the f-structure.2

2XLE provides various browsing tools applying

2.3 Semi-automatic Disambiguation

In the scenario sketched above, disambigua-
tion is exclusively done by a human annota-
tor. In fact, however, XLE provides a (non-
statistical) mechanism for suppressing cer-
tain ambiguities automatically. The mecha-
nism consists of a constraint ranking scheme
inspired by Optimality Theory (OT) (Frank
et al., 1998). Each rule and each lexicon en-
try can be marked by so-called OT marks.
When a sentence is parsed, each analysis is
annotated by a multi-set of OT marks. The
OT marks keep a record of all rules and lex-
icon entries being used during the parse to
arrive at the analysis in question. The gram-
mar contains a ranked list of all OT marks.
When an ambiguous sentence is parsed, the
OT mark multi-sets of all readings compete
with each other. A multi-set containing a
higher ranked OT mark than another multi-
set is �ltered out.
An example is given in (1). In German,

the subject as well as the object can occupy
the �rst position (1a,b). If neither the sub-
ject nor the object is overtly case marked,
both readings are possible in principle (1c).
But in fact, the order subject � object is
far more frequent. Hence the second read-
ing can be suppressed by an OT mark. Note
that this does not generally exclude objects
in �rst position � as soon as objects are case-
marked in an unambiguous way, they are not
suppressed any more.

(1) a. der Hans sieht Maria.
the(nom.) H. sees M.
`Hans sees Mary.'

b. den Hans sieht Maria.
the(acc.) H. sees M.
`It is Hans that Mary sees.'

c. Hans sieht Maria.
H. sees M.
`Hans sees Mary.' (preferred)
`It is Hans that Mary sees.'

to c-structure as well as to f-structure which can be
used for manual disambiguation (cf. (King et al.,
2000) where these tools are described extensively).
This is similar to the syntactic and semantic sen-
tence properties that are displayed by the disam-
biguation tool �TreeBanker� (Carter, 1997).
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Figure 1: c- and f-structure for Maria sieht Hans
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Figure 2: c-structures for Maria sieht Hans mit dem Fernglas

In those cases where the correct reading is
erroneously suppressed (if, for example, the
correct reading does have an object without
case-marking in �rst position), the relevant

OT mark can easily be deactivated by the
human annotator.

In the ambiguous example presented in
2.2, two readings in fact have been sup-
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Figure 3: Packed f-structure for Maria sieht Hans mit dem Fernglas

pressed by this mechanism. Without OT
marks, the f-structure for Maria sieht Hans
mit dem Fernglas contains two additional
analyses with Hans as subject, cf. �gure 4.
Very often, however, the OT mechanism

does not help to determine the correct read-
ing, e.g., when adverb attachment is in-
volved. In these cases, the parser outputs
all remaining readings, and disambiguation
has to be done manually.3

2.4 Coverage and Robustness

For building large annotated corpora, con-
secutive sentences have to be parsed. Thus,
coverage and robustness of the grammar
used for annotation is important.
Statistical approaches clearly cope better

with free, random text than symbolic ap-
proaches. On the one hand, statistical tag-
gers and parsers are able to analyze defective
input such as sentences containing typing er-
rors or even ungrammatical sentences. On
the other hand, they can provide analyses
for rare constructions without getting into

3In (Riezler et al., 2000), a statistical model ap-
plied to an LFG grammar for German is presented
that may be used to support manual disambigua-
tion.

ambiguity problems when parsing ordinary
sentences � in these cases, rare construction
rules are suppressed automatically.
In contrast, parsing by a pure (i.e. non-

statistical) LFG grammar yields deep and
detailed analyses but at the cost of lower
coverage and robustness. Purely symbolic
parsing therefore requires text preprocess-
ing.4 Typing errors and other shortcom-
ings must be corrected, special constructions
like newspaper headers have to be marked.
For an optimal result, proper nouns such as
names of people, organizations, etc. should
be listed in a lexicon.
However, even after the best possible text

preprocessing and lexicon completion, there
will certainly still be constructions that are
not parsed by the grammar, e.g., construc-
tions like ellipses and non-constituent coor-

4Especially in the domain of speech data pro-
cessing, much research has been devoted to robust
parsers. (Rosé and Lavie, To appear) show that even
with a symbolic LFG-style grammar, the parser's
�exibility can be increased to cope with word skip-
ping, insertions, etc. However, since this increases
the amount of ambiguity, a statistical disambigua-
tion is a prerequisite � which we do not have cur-
rently.
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Figure 4: f-structure for Maria sieht Hans mit dem Fernglas, no OT �ltering

dination. These constructions are problem-
atic since adding the respective rules raises
the number of (unwanted) ambiguities for
nearly all sentences, and, in addition, it has
a negative impact on parsing e�ciency.5

Clearly, bad coverage and robustness is a
problem for grammar-based corpora annota-
tion. XLE provides a special mechanism to
improve coverage and robustness. Certain
rules or restrictions can be marked by spe-
cial �STOPPOINT� OT marks. If a sentence
is now parsed, these rules or restrictions are
ignored. Only if the �rst parse fails are these
rules or restrictions activated and a second
parse is started. In this way, rules for rare
constructions can be added and restrictions
(for instance, on agreement) can be relaxed,
without causing serious ambiguity problems
for ordinary sentences. Currently we use
STOPPOINT OT marks for verb participles

5Note that non-constituent coordination can be
handled in LFG in an elegant way (Maxwell and
Manning, 1996). So again, the problem is one of
ambiguity management.

used adverbially or in copula constructions.
Many of them actually are lexicalized (like
dringend `urgent', verrückt `crazy') but nev-
ertheless may be missing from our lexicon.
Hence we allow for these participles in gen-
eral in a second parse, without getting ad-
ditional readings for each sentence in ana-
lytic past tense, i.e. containing an auxiliary
plus participle. Further research has to show
how to apply this mechanism in an optimized
way.

2.5 Accuracy

With respect to accuracy, a grammar-based
annotation performs well. We mention three
aspects of the approach presented here that
support accuracy of annotation.
First, an analysis by an LFG grammar is

syntactically consistent, otherwise the parse
would have failed. For example, LFG analy-
ses never contain inconsistencies such as the
following: missing subject-verb agreement;
words tagged as in�nitive but functioning as
the head of a �nite clause; the head of a NP
tagged as nominative but the NP function-



ing as an accusative object; etc.
Second, the grammar certainly is not

error-free and grammar internal errors may
carry over to the analyses but these errors
are systematic. If, for example, a proper
noun like Kohl is not listed as a name in the
grammar's lexicon, all analyses of sentences
about the person Helmut Kohl falsely con-
tain the reading of Kohl as a common noun
(`cabbage'). But once the error is detected in
one analysis or in the grammar itself, it is of-
ten possible to automatically track down all
other instances of the same error occurring
previously in the annotation. Note, however,
that such errors may be di�cult to detect.
Third, manual disambiguation of LFG

analyses usually does not impair accuracy of
the annotated corpus, since in many cases,
disambiguation is guided by prominent prop-
erties. When picking the correct read-
ing, the human annotator can make use of
clear, prominent properties of the analyses,
namely constituent structure and predicate-
argument-structure.

2.6 Some Performance Data

To illustrate the �ndings of the preceding
sections, we present some �gures indicating
the grammar's performance. Note, however,
that the grammar has not been tuned or
trained with respect to the corpus.
In a �rst experiment, 2000 sentences

from the TIGER corpus (German newspa-
per texts) were parsed. In a �rst pass, the
text was parsed without any preprocessing
(except for splitting the text into sentences).
In a second pass, header markers were added
and quotes were removed (since the gram-
mar currently does not accept quoted text;
the quotes can be easily recovered after pars-
ing).6 These text modi�cations were done
automatically. The grammar performance
improved considerably, cf. rows 1 and 2 in
�gure 5.

6Quotes are problematic for several reasons:
They are ambiguous and either mark direct speech
or quote material in the running text. Quotes do not
always correspond to constituents boundaries and
matching pairs of quotes may be distributed over
distinct sentences.

Then the grammar was partly rewritten
with two major modi�cations: �rst, the
grammar was tuned for e�ciency (without
a�ecting coverage); second, PP and adverb
attachment were allowed in a more general
way than in the previous grammar version.
This increased coverage as well as ambiguity,
as can be seen in the third row, reporting
about 6000 sentences (preprocessed in the
same way as in the second pass).
The �rst column shows the number of sen-

tences in the test corpus, the second column
shows the number of sentences that got a
parse (without checking for correctness). As
can be seen, in the �rst pass only 28% of
the sentences were parsed as opposed to 40%
after some text preprocessing. After some
general grammar modi�cations, 47% were
parsed.7

The third column contains the number
of analyses or readings per parsed sentence.
Only readings that were not �ltered out by
the XLE internal disambiguation mechanism
are taken into account (hence �optimals�).
Both average as well as median are given. As
can be seen from �gure 5, in the third pass
the average number of readings increased
massively. But nevertheless the median is
2, so most of the sentences are still easy to
disambiguate manually. Note that in this
experiment, it was not checked whether the
correct reading was among the analyses.
The forth column reports about the num-

ber of analyses that were suppressed by XLE
disambiguation (hence �suboptimals�).
Finally, average parsing time and number

of tokens per sentence are given.
In a second experiment, 300 sentences

were parsed and the analyses were evaluated.

7We are only aware of one sentence-based evalu-
ation involving a grammar with comparably deep
analyses: without tuning, the XTAG grammar
parsed 39.09% of 6364 sentences (� 15 words long)
from the Wall Street Journal with an average of
7.53 analyses per sentence (Doran et al., 1994).
Other evaluations usually measure performance be-
low sentence level, such as chunking or (super)-
tagging (Srinivas, 1997; Ramshaw andMarcus, 1995;
Brants, 1999), and hence are not comparable with
our grammar that does not yield partial analyses
(yet).



#sentences parsed optimals suboptimals time(sec) #tokens

Ø Med Ø Med Ø Med Ø

1. 2000 553 (= 28%) 7 2 1689 7 17 1.8 15.5

2. 2000 809 (= 40%) 6 2 3480 10 17 1.8 15.3

3. 6000 2833 (= 47%) 28 2 34331 18 14 1.9 16.0

Figure 5: LFG parsing results for German newspaper sentences

160 sentences were parsed by the grammar;
among these, 120 parses contained the cor-
rect reading (the correct reading had to be
part of the �optimal� analyses), cf. �gure 6.
We also did some preliminary evaluation

of the errors.

� 10% of the sentences were not parsed
because of gaps in the morphological an-
alyzer.8

� 4% of the sentences failed because of
storage over�ow or timeouts (with lim-
its set to 100 MB storage and 100 sec-
onds parsing time).

� More than 30% of the sentences failed
because gaps in the lexicon, which are
mostly due to missing subcategorization
frames.9

We decided not to manually disambiguate
sentences that get more than 20 analyses.
This is the case for 5.8% of the sentences.

8We use a guesser mechanism for capitalized
words that also handles genitive and plural in�ec-
tion. All morphological failures are due to non-
capitalized unknown words or else capitalized words
containing strings other than characters or numbers.

9The base lexicon is mainly extracted automati-
cally from corpora (Eckle-Kohler, 1999) and mostly
consists of subcategorization frames (in the TSNLP
format). There are 14.000 verb lemmata with 28.500
frames (115 di�erent frames); 1100 adjective lem-
mata with 1650 frames (17 di�erent); 780 noun lem-
mata with 970 frames (3 di�erent). The TSNLP
frames are converted automatically into an LFG for-
mat (Bröker and Dipper, 1999).

With this restriction, a trained human anno-
tator disambiguates about one sentence per
minute on average.10

To sum up the �ndings of this section: in
the short-term, these data suggest the ne-
cessity of the following: further text prepro-
cessing such as correction of typing errors;
completion of the grammar's lexicon by ex-
tracting unknown words from the corpus.
However, in the long-term, we will have to

apply statistical disambiguation. This will
allow us to include robustness mechanisms.
In the meantime, the remainder of the sen-

tences that have not been correctly parsed by
our grammar are annotated by means of the
tool annotate.

3 Conclusion and Outlook

We have presented �rst results in syntac-
tic annotation of a large German corpus
by a symbolic LFG grammar. On average,
the grammar parses 47% of the sentences.
Among these, 75% contain the correct read-
ing. Disambiguation is done partly by the
XLE internal ranking mechanism. Remain-
ing ambiguities (median: 2) are solved by
a human annotator. This takes about one
minute per sentence with an average length
of 16.0 tokens.
By means of a transfer component, LFG

representations can be converted into canon-

10This result is very similar to that reported in
(Brants, 2000a), where a trained annotator needs
on average 50 seconds to annotate a sentence with
an average length of 17.5 tokens.



#sentences parsed correct reading
among optimals

300 160 (= 53%) 120 (= 40%)

Figure 6: Evaluation of 300 sentences

ical treebank formats.
Coverage and robustness are weak points

in grammar-based annotation. The perfor-
mance data presented in 2.6 point to a need
to further exploit text preprocessing and to
complete the grammar's lexicon. In the
longer term, however, statistical disambigua-
tion and robustness mechanisms such as re-
laxation of certain restrictions have to be in-
vestigated.
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