

University of Stuttgart

Motivation

Gooner @GoonerZichrist

Yes. They don't want to use it on their own people. AstraZeneca has proven to be ineffective and cause blood clots.

https://twitter.com/GoonerZichrist/status/1386929619773837312

- Twitter contains unique biomedical information & claims
- Such claims can be **unreliable**
- Claim detection is vital (e.g., for fact-checking)

Dataset

- **BioClaim: 1200 tweets** annotated for **implicit &** explicit biomedical claims which relate to COVID-19, measles, depression & cystic fibrosis
- Claims are the **central**, **conclusive statements** of arguments (Daxenberger et al., 2017)

Example claim tweets - explicit:

[...] idk where he pulled this information out of. Acid literally cured my depression/anxiety I had for 5 years in just 5 months [...] - implicit:

[...] Someone tell people with Cystic fibrosis and Huntington's that they can cure their genetics through Mormonism!

Explore the **BioClaim** corpus: www.ims.uni-stuttgart.de/data/bioclaim

Claim Detection in Biomedical Twitter Posts as a

Institute for Natural Language Processing

Methods • 3 different claim detection settings

implicit 167

Class distribution in BioClaim.

Results

Binary & multi-class claim detection

Eval

binary

multiclass

Take-away

- First resource for claim detection in biomedical tweets, enabling argument mining or fact-checking
- Claims can be detected with 70 % F₁.
- Compared to essays, biomedical tweets pose a more challenging claim detection environment
- Read the paper:

- Binary: n-claim vs. claim
- Multi-class: n-claim vs. expl. vs. impl.

• Pipeline: 1. claim vs. n-claim, 2. expl. vs. impl. Cross-domain experiment on our dataset & persuasive essays (Stab and Gurevych, 2017)

• Embedding-based classifiers (Naïve Bayes, Logistic Regression, BiLSTM) & BERT-based transfer-learning

		F ₁ -Score				claim detection on ou		
Task	Class	NB	LG	LSTM	BERT	corpus (B) & essays (I		
binary	claim	.66	.70	.57	.69	Test F ₁		
multi-class	claim	.66	.61	.48	.61	train	B	Ε
multi-class	expl	.50	.48	.37	.52	B	.70	.83
	impl	.36	.34	.12	.13	Е	.59	.98
pipeline	expl	.50	.53	.43	.59	B · E	66	07
	impl	.36	.31	.05	.24	DTL	.00	.37

• Impl. claims are more difficult to detect than expl. claims.

https://aclanthology.org/2021.bionlp-1.15/

Cross-domain

BioCreative VII, 2021

Prerequisite for Fact-Checking Amelie Wührl & Roman Klinger