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Abstract
Over the course of the COVID-19 pandemic, large volumes of biomedical information concerning this new disease have
been published on social media. Some of this information can pose a real danger to people’s health, particularly when false
information is shared, for instance recommendations on how to treat diseases without professional medical advice. Therefore,
automatic fact-checking resources and systems developed specifically for the medical domain are crucial. While existing
fact-checking resources cover COVID-19-related information in news or quantify the amount of misinformation in tweets,
there is no dataset providing fact-checked COVID-19-related Twitter posts with detailed annotations for biomedical entities,
relations and relevant evidence. We contribute CoVERT, a fact-checked corpus of tweets with a focus on the domain of
biomedicine and COVID-19-related (mis)information. The corpus consists of 300 tweets, each annotated with medical named
entities and relations. We employ a novel crowdsourcing methodology to annotate all tweets with fact-checking labels and
supporting evidence, which crowdworkers search for online. This methodology results in moderate inter-annotator agreement.
Furthermore, we use the retrieved evidence extracts as part of a fact-checking pipeline, finding that the real-world evidence is
more useful than the knowledge indirectly available in pretrained language models.
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1. Introduction
The COVID-19 pandemic has elicited a global
response in the scientific community, leading to a burst
of new information regarding the pathophysiology of
the virus, new treatments for infected patients as well
as vaccines in production (Chahrour et al., 2020). At
the same time, large volumes of information about
COVID-19 have also been published on social media
platforms (Yang et al., 2020; Kouzy et al., 2020;
Singh et al., 2020; Shahi et al., 2021), which are
known to reach large networks of individuals in short
amounts of time (Kouzy et al., 2020). This reach is
paramount to curbing the spread of a virus like SARS-
CoV-2. Although much of the information circulating
online is potentially useful, some of it, in particular
misinformation and disinformation, can also pose a
great danger (Soltaninejad, 2020). Incorrect health
advice can not only put individuals at risk, false and
misleading information may also be detrimental to
efforts in controlling the pandemic. Therefore, the
stream of information on social media sites requires
critical thought and fact-checking.
Manual fact-checking, however, is time-consuming
and expensive. One way to perform the task
automatically is to use machine learning to classify
a claim to be true or false. An intermediate step to
exploit potential evidence is to automatically decide
for claim-evidence pairs if the evidence supports or
refutes the claim (or whether that information is
insufficient to rule a verdict) (Vlachos and Riedel,
2014). The growing need for fact-checking of COVID-
19-related information has been met with releases of
corpora of fact-checked COVID-19 claims (Shahi and
Nandini, 2020; Shahi et al., 2021), and databases
containing known facts concerning COVID-19 and

Variable Values

NER Tweet
[
5G networks

OTHER

]
caused

[
covid

MEDCOND

]
.

cause of

Verdict REFUTES

URL https://www.muhealth.org/ . . .

Evidence There are two types of conspiracy associated
with 5G-COVID-19. One version suggests
that radiation from 5G lowers your immune
system, which makes you more susceptible
to the virus (Shultz, 2020). The idea that . . .

Table 1: Example instance from the CoVERT
corpus, with NER and crowdsourced fact-checking
annotations, including textual evidence and the source
URL.

related information (Reese et al., 2021; Domingo-
Fernández et al., 2020). However, to the best of
our knowledge, there is no resource that specifically
addresses the truthfulness of biomedical information
relating to COVID-19 circulating on Twitter.
We fill this gap by creating a corpus of fact-
checked biomedical tweets, the Covid VERified Tweet
(CoVERT) corpus1, to facilitate the fact-checking
task in this domain. The dataset consists of 300
tweets containing real-world claims about COVID-
19. We annotate the tweets with two types of
information: First, we annotate each tweet with
the medical entities Medical condition, Treatment,
Symptom/Side-effect, Other and annotate how they

1The CoVERT corpus and supplementary material
is available at https://www.ims.uni-stuttgart.
de/data/bioclaim.

https://www.muhealth.org/
https://www.ims.uni-stuttgart.de/data/bioclaim
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relate to each other (cause of, causative agent of,
not cause of ). Secondly, crowdworkers verify the
medical claim within the tweet. To the best of
our knowledge, employing crowdworkers to perform
biomedical fact-checking on Twitter posts has not been
done before, though crowdworkers have completed
subtasks for veryfing COVID-19-related Reddit posts.
Three annotators research a given claim and provide
substantiating evidence from the web along with
their verdict (SUPPORTS, REFUTES and NOT ENOUGH
INFORMATION (NEI)). Table 1 shows an example
instance from our dataset.
In an exploratory analysis of this dataset we find our
novel methodology of crowdsourced fact-checking to
be effective for this task, with moderate agreement
between annotators on their verdicts. Finally, we
explore to which extent textual evidence extracts
provided by the annotators help inform fact-checking
systems when making a prediction. We find that
real evidence provides our pipeline with more useful
information than what is available implicitly in the
pretrained language model BERT (Devlin et al., 2019).
However, the NOT ENOUGH INFORMATION class
inherently has no substantiating evidence, making this
class a challenge for this approach.

2. Related Work
In recent years, automated fact-checking has
increasingly come into focus (Thorne and Vlachos,
2018). Systems can be grouped into approaches with
and without access to external evidence. The former
need to combine information from other texts or
structured resources with the claim, while the latter
rely on linguistic patterns that signal false information.

2.1. Fact-Checking without External
Evidence

Previous research that automatically check claims
without evidence make use of, i.a. emotion patterns
(Giahanou et al., 2019) or surface-level linguistic
properties (Rashkin et al., 2017). These can be
categorized as stylometric approaches (Schuster et al.,
2020). Based on the finding that language models
capture relational information contained within the
data they are trained on, Lee et al. (2020) include
language models in the fact-checking pipeline itself.
Tapping into the implicit knowledge aggregated over
very large pretraining datasets, they use BERT (Devlin
et al., 2019) to create an evidence text by unmasking
an entity in the original claim. This is passed to an
entailment model that predicts whether the language
model’s evidence supports or refutes the claim.
Both the stylometric and the language model-based
approaches are limiting. The first group fails to
recognize well-presented false information that do not
share the surface level characteristics of false news.
When using a language model to extract evidence, the
models also likely propagate biases learned from the

training data (Guo et al., 2022). Additionally, such
models are biased towards particular prompts which are
used to query and extract the implicit knowledge from
the model (Sung et al., 2021).

2.2. Evidence-based Approaches
Both lines of research described in Section 2.1 are
in contrast with the way journalists approach fact-
checking, who rather seek substantiating external
evidence. To go beyond the claim itself when making
a verdict prediction, Vlachos and Riedel (2015) and
Ciampaglia et al. (2015) use the structured nature
of information available in knowledge bases, while
others retrieve evidence extracts from resources like
news articles and websites online (Popat et al., 2018;
Hanselowski et al., 2019). This allows to fact-
check claims with probabilistic estimates (Vlachos
and Riedel, 2015) or to use a knowledge graph as a
topology to predict how likely a claim is to be true
(Ciampaglia et al., 2015).
In an effort to mirror the traditional process of
journalistic fact-checking, Popat et al. (2018) retrieve
substantiating articles that provide evidence for or
against a claim. Further, they incorporate a credibility
assessment of the claim’s source in their model.
In the related task of stance detection, Ferreira and
Vlachos (2016) use news headlines as evidence for
claims. Other approaches extract the summaries of
articles rather than their headlines as evidence for
claims (Hanselowski et al., 2019; Alhindi et al., 2018),
filtering out sentences that are irrelevant in order
to create more fine-grained substantiating evidence.
Similarly, Wadden et al. (2021) make use of the
evidence contained within the abstracts of research
papers in order to fact-check scientific claims.
Retrieving evidence allows systems to make informed
decisions based on external sources which helps
overcome the limitations claim-focused models face.
In addition, evidence can also provide the end-user with
an explanation for the fact-checking verdict (Kotonya
and Toni, 2020).

2.3. Fact-Checking Corpora
Recently, the task of fact-checking has received much
attention (Thorne and Vlachos, 2018), resulting in an
influx of published datasets. The Fact Extraction and
VERification (FEVER) (Thorne et al., 2018) dataset
is one of the largest available corpora, consisting of
185,445 claims generated from Wikipedia. Claims are
manually annotated (labels: SUPPORTED, REFUTED,
NOT ENOUGH INFO) and accompanied by an evidence
sentence from the same original Wikipedia article. In
the political domain, previously fact-checked claims
from PolitiFact and Channel4 have been collected
(Vlachos and Riedel, 2014; Wang, 2017).
The COVID-19 pandemic has demonstrated the
increasing need for fact-checking in the medical
domain. The FakeCovid dataset (Shahi and Nandini,
2020) consists of 5,182 fact-checked news articles



mentioning COVID-19, collected from various fact-
checking websites. This dataset however lacks
substantiating evidence for claims. Kouzy et al.
(2020) collect 673 COVID-19 related tweets of which
24.8 % contained misinformation. COVID-Fact
(Saakyan et al., 2021) and HealthVer (Sarrouti et al.,
2021) both address the limitation of existing corpora
consisting of synthetic or manually summarized
claims. Both datasets provide user-generated Covid-19
related claims. COVID-Fact focuses on Reddit while
HealthVer claims stem from excerpts that a search
engine produces when queried with questions about
Covid-19.
While most resources rely on existing fact-checks or
expert annotators to label claims, few have explored
crowdsourcing to alleviate the data bottleneck.
Saakyan et al. (2021) present crowdworkers with
a claim and 5 automatically collected sentences,
from which supporting evidence should be selected,
thereby adjudicating a fact-checking verdict. Further
reducing the work of a crowdworker, Hanselowski et
al. (2019) task crowdworkers with refining previously
fact-checked claims from Snopes by marking a
specific snippet as evidence within a given source
text. Recently, Allen et al. (2021) successfully
employed crowds in providing truthfulness ratings
for headline and lede sentence pairs from suspicious
articles on Facebook. They find that aggregated crowd
judgments strongly correlate with judgments made by
professional fact-checkers (Allen et al., 2021).
To the best of our knowledge there is no existing
resource that facilitates fact-checking user-generated
biomedical claims related to COVID-19 on Twitter.
To explore this task, we focus specifically on creating
a corpus and leverage the crowd in making veracity
assessments and retrieving substantiating evidence to
support their verdict.

3. Corpus Creation and Annotation
3.1. Data Collection and Preprocessing
We sample tweets from an in-house tweet repository
based on medical terms from MeSH2 and frequently
occurring terms. We select data posted between
January 2020 and June 2021 containing a mention
of COVID-19 and one of the terms ‘effect’, ‘side-
effect’, ‘vaccine’, ‘symptom’ or ‘treatment’. Further,
we select only tweets that also contain the lexeme
‘caus’ (matching ‘causes’, ‘caused’, etc.) to narrow the
search space to ‘causal’ relations.3 This results in a
total sample of 38,251 COVID-19-related tweets.
As this set still contains many non-biomedical tweets
(e.g. tweets discussing politics around COVID-19),
we select a random starting set of 1118 tweets

2https://www.nlm.nih.gov/mesh/
meshhome.html

3We use a boolean expression with inexact matching:
(COVID OR corona) AND (effect OR side-effect OR vaccine
OR symptom OR treatment) AND (caus*)

[
5G networks

OTHER

]
caused

[
covid

MEDCOND

]
.

cause of

[
Vaccines

TREATMENT

]
do not cause

[
long-term health complications

SYMPT/SIDE-EFFECT

]
.

not cause of

[
Hypercapnia

MEDCOND

]
can be caused by

[
COVID-19

MEDCOND

]
.

causative agent of

Figure 1: Excerpts of tweets that contain named entity
and relation annotations.

and manually label them as either ‘biomedical’ or
‘non-biomedical’, resulting in 408 and 710 per class
respectively. We train a bag-of-words-based feed-
forward neural network4 to predict this binary class
for the remaining tweets. We further filter tweets
unlikely to contain a claim using the claim detection
model for tweets from Wührl and Klinger (2021). After
removing duplicates and retweets, we are left with a
set of 3,785 biomedical tweets containing claims with
causal relations, from which we randomly sample 300
tweets for our annotation tasks.

3.2. Annotation
3.2.1. Entity and Relation Annotation
We annotate entities and relations in the biomedical
claim tweets for the downstream verification task. We
perform manual annotations supported by the scispaCy
model for biomedical NER5 (Neumann et al., 2019).
This model assigns a generic ‘Entity’ label which we
manually categorize as one of the following types:
Medical Condition: Mentions of diseases, illnesses,

ailments or disorders.
Treatment: Medical care given to patients for a disease or

illness.
Symptom/Side-effect: Secondary physical effects of a

medical treatment or condition.
Other: Relevant entities that do not fall into the above

mentioned categories.
We discard non-biomedical entities that the model
incorrectly identified and only keep entities that are
directly relevant to the causal phrase in the tweet
claim. Figure 1 shows examples of annotated tweet
claims. To test the quality of this manual revision,
a second annotator labels a random subset of 100
tweets. Both annotators are female, with a background
in (computational) linguistics, aged 27 and 28 years
old, respectively.6

The same annotator who assigned the entity labels
further annotates each instance with relations. We use
the relations cause of (UR214) and causative agent of
(UR173) from UMLS, a medical terminology,

4Implementation details can be found in the Appendix,
Table 8.

5See en core sci lg from https://github.com/
allenai/scispacy.

6We provide the annotation guidelines and example fact-
checking annotation environment together with the corpus.

https://www.nlm.nih.gov/mesh/meshhome.html
https://www.nlm.nih.gov/mesh/meshhome.html
https://github.com/allenai/scispacy
https://github.com/allenai/scispacy


classification and coding system (Bodenreider, 2004),
as well as the relation not cause of (UR214!). The
entity and relation annotations are relevant for creating
prompts for language models.

3.2.2. Fact-checking Annotation
Annotation Environment. We use Google Forms7

to collect fact-checking verdicts and substantiating
evidence for the tweet claims and recruit annotators via
Prolific8. We present 10 tweets with instructions as one
annotation task (An example annotation environment
for one tweet can be found in the Appendix). For
each tweet, we ask annotators to search for the claim’s
key terms using Google Search to find supporting
or refuting sources. Sources should be credible and
reputable (extensions ‘.gov’ and ‘.mil’ and general
news, medical and scientific articles), and avoid
resources that are known to be satirical/comedic like
The Onion9. If no resource could be found after
searching for two minutes, annotators labeled the claim
as non-verifiable.
If relevant evidence is found, annotators state whether
this evidence supports or refutes the claim. This leads
to three labels for claim-evidence pairs, answering the
question “Could you find a resource that confirms of
refutes the claim?”:
SUPPORTS. Yes, the resource CONFIRMS this claim.
REFUTES. Yes, the resource REFUTES this claim.
NEI. No, I could not find any resource that confirms or

refutes this claim.
Annotators are tasked to provide the URL together with
the relevant evidence text snippet.
To ensure that participants follow instructions
carefully, each annotation task consisting of 10 tweets
includes an attention check and reject submissions that
fail this check.

Crowdsourcing Platform and Payment. We use
Prolific to recruit annotators. We filter them to meet
the following criteria: currently living in either the
UK, US, Ireland or Germany, between 18 and 45
years old, English first language speaker, have achieved
at least an undergraduate degree (BA/BSc/other) in a
subject related to Biomedicine, Biochemistry, Biology
or Medicine, and do not have any literacy difficulties.
Each tweet is annotated by three annotators. The
recommended time of completion is 20 minutes.
Each annotator is paid £7.50 per hour, which
corresponds to £0.25 for each tweet. To increase
awareness of our task, we implement a bonus
system. We manually assess all submission and award
annotators with a bonus of £0.50 if the annotations are
of good quality, i.e., at least 8 out of 10 annotations are
coherent and the given evidence substantiates the fact-
checking label. The expenses of this study amount to
£314.52.

7https://www.google.com/forms/about/
8https://prolific.co/
9https://www.theonion.com/

Entity Category IA F1 Score

Treatment 0.95
Symptom/Side-effect 0.68
Medical Condition 0.94
Other 0.93

Weighted Macro Average 0.88

Table 2: Inter-annotator (IA) agreement F1 scores on
the named entities of 100 tweets.

4. Corpus Analysis
4.1. Annotator Statistics
78 annotators participated in the fact-checking
annotation. All of the crowdsourced annotators were
students at the time of participation. Even though this
was not a strict requirement, 78.2% have completed
an undergraduate and 19.2% a graduate degree. Most
annotators (96.1%) are between the age of 19 and
30, and 87.2% of annotators identified as female,
12.8% as male. The average time taken to complete
the annotation task (a set of 10 tweets) was 25:38
minutes, which is slightly longer than was intended by
the instructions. We presume that participants actually
spent 2 minutes verifying each tweet, and needed
additional time to read and understand instructions.

4.2. Annotator Agreement and Adjudication
4.2.1. Entity and Relation Annotation
Table 2 presents the inter-annotator (IA) F1 scores
achieved between the two annotators manually revising
the automatic named entity annotations. We consider
one annotation as gold annotations and treat the
other annotator’s labels as predictions (Hripcsak and
Rothschild, 2005). The agreement between the two
annotators is high, with inter-annotator F1 scores above
0.9 in all but one category (Symptom/Side-effect). The
macro-average (weighting by number of samples per
category) is 0.88 F1. Note that the annotation task did
not include segmentation.

4.2.2. Crowdsourced Fact-checking
Verification Task. We calculate Cohen’s κ per
annotation task (set of 10 tweets), where each task has
three annotators (thus, three pair-wise comparisons)
and take the average of all pairs over all tasks (a total
of 30) as a final agreement score. The average Cohen’s
κ on the verification labels is 0.44 indicating moderate
agreement. However, to adjudicate the final label for
each tweet, we select the majority decision (where at
least 2 annotators agree) as the gold label. Out of all
tweets, only in two cases did annotators not agree at
all on the verification labels. Here, we assign the label
NOT ENOUGH INFO. For the remaining tweets, at least
two annotators agree on the verification label.
Most disagreements (55) are between the pair of labels
SUPPORTS and NOT ENOUGH INFO. There are only
42 disagreements between the pair SUPPORTS and

https://www.google.com/forms/about/
https://prolific.co/
https://www.theonion.com/


Entity / Relation Class # Instances

Medical Condition 424
Treatment 102
Other 102
Symptom/Side-effect 94

cause of 253
not cause of 30
causative agent of 17

Table 3: Instances per entity and relation class in the
CoVERT dataset.

REFUTES. The pair of labels with fewest disagreements
are REFUTES and NEI (29). This means two annotators
are most likely to disagree on an instance where one
annotator labels the tweet as SUPPORTS while another
annotates it as NEI, while disagreements on REFUTES
and NEI are not as common.

Evidence Retrieval. To gauge how well the
crowdworkers agreed on the evidence they used to
substantiate their verdicts, we compare the URLs they
provided during the annotation process. Out of all
300 tweets, for 78 tweets (26% of total) two or more
annotators responded with a link to the same resource.
Notably, even when a link to the same resource
was provided by two different annotators, we
observe 5 cases where annotators disagree on the
interpretation of the resource in supporting or refuting
the claim. For instance, the claim “Covid-19 can
cause hearing impairment, tinnitus and dizziness”
for which annotators provided the same evidence
URL (from https://www.healthyhearing.
com/) leads to disagreement regarding SUPPORTS vs.
REFUTES verdicts.

4.3. Corpus Statistics
4.3.1. Entities and Relations
The resulting CoVERT corpus has a total of 722 entity
annotations, with the number of instances per entity
and relation class enumerated in Table 3. The largest
observed entity class is ‘Medical Condition’, while the
smallest is ‘Symptom/Side-effect’. As for the relations,
we most frequently observe the cause of relation.

4.3.2. Crowdsourced Fact-checking
Verification Task. The distribution of labels in the
corpus after adjudication is as follows: 198 instances of
SUPPORTS, 66 instances of REFUTES and 36 instances
of NEI. The SUPPORTS class has the largest number of
examples, while the NEI class has the least.

Evidence Retrieval. We collect a total of 659 URLs
from the annotation task. Figure 2 displays the 20 most
frequently referenced domain names and their counts,
which make up 66% of all mentioned URLs. 188
domain names are unique, but 150 of these domains
occur less than 5 times in the collected data.
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Figure 2: Top 20 most frequent domain names
occurring in URL links to evidence resources.

The most frequently mentioned domain names are
medical and health science related domains. Most of
these are also generally deemed reputable and credible
sources of information such as the CDC (Center for
Disease Control and Prevention) and NIH (National
Institutes of Health). This assures the annotators were
following the annotation instructions carefully, leading
to a good quality of annotations.

5. Experiments
We want to investigate the extent to which access
to external evidence impacts the prediction of fact-
checking verdicts for COVID-19-related claims from
Twitter. To explore this, we employ a fact-checking
pipeline proposed by Lee et al. (2020). Their approach
does not access external evidence. Instead it extracts
evidence from the implicit knowledge contained in
the language model BERT (Devlin et al., 2019). We
adapt this system such that it can access external fact-
checking evidence (i.e., evidence annotators extracted
for CoVERT) and compare the verdict prediction
performance.
Before investigating this as our primary research
objective, we perform two preliminary experiments. As
the claims within the CoVERT data are Twitter-based
instead of Wikipedia-based (FEVER dataset (Thorne et
al., 2018)), we first explore to which extend BERT and
BioBERT (Lee et al., 2019) contain domain-specific
knowledge discussed in the CoVERT dataset. For
this, we probe each model with the BioLAMA probe
(Sung et al., 2021). In addition, we want to understand
how capable BERT is to “generate” evidence sentences
as suggested by Lee et al. (2020) in our setting to
be used in the fact-checking pipeline. We therefore
analyze the predictions BERT makes when unmasking
entities in the tweets from our dataset. We outline
the methodology and results for both preliminary
experiments and the fact-checking pipeline in the
following section.

https://www.healthyhearing.com/
https://www.healthyhearing.com/


5.1. Methods
5.1.1. Probing Language Models for

Domain-specific Knowledge
To gauge how well implicit knowledge is stored in
BERT and BioBERT, and how well these language
models lend themselves as a source of evidence
like Lee et al. (2020) suggest, we investigate to
which extent information from the CoVERT dataset
is contained within these two language models. We
employ the BioLAMA probe suggested by Sung et
al. (2021) which allows us to see whether a language
model is able to correctly predict masked object entities
in a constrained setting. BioLAMA originally probes
BERT and BioBERT for their inherent relational
knowledge using factual triples sourced from CTD,
UMLS and Wikidata. Comparing probing results for
CoVERT data to those attained using the original
dataset of biomedical factual triples in Sung et al.
(2021) gives insights into the domain of biomedical
tweets and allows us to conclude which language
model best captures the domain-specific knowledge
within CoVERT.
BioLAMA generates fill-in-the-blank cloze statements
or ‘prompts’ like “Hepatitis has symptoms such as
[Y].”, where [Y] is the masked object, unmasked as
‘abdominal pain’ by BioBERT. In our experiment, we
use the manual approach for generating prompts as
described in Sung et al. (2021). We follow their
evaluation methodology and use top-k accuracy as the
evaluation metric. This is equal to 1 for an instance if
any of the top-k object entities match an object in the
gold annotated object list. If there are no matches, the
score for this instance is 0. This binary setting allows to
calculate accuracy as the number of correct predictions
devided by all predictions.

5.1.2. Language Model Capacity for Unmasking
Claim Entities

In addition to probing the knowledge within the
language model, we further want to understand its
capacity to create ‘evidence texts’ for modelling the
fact-checking task without access to external evidence.
Therefore, we conduct an analysis of the predictions
BERT makes when masking object entities in the
biomedical claim tweets. For each of the three
fact-checking categories, we extract and analyze the
probabilities with which the object entity is predicted.
We report the probability as 0 if the correct entity does
not appear in the top 1000 predictions.

5.1.3. Verdict Prediction With and Without
External Evidence

We investigate whether verdict prediction benefits from
access to external evidence, or whether this evidence
can be replaced with unmasked claims from a language
model and still achieve similar results. To do this, we
re-implement the fact-checking pipeline by Lee et al.
(2020). Figure 3 shows a diagram of the pipeline. The
input to the pipeline consists of a ⟨text, hypothesis⟩ pair,

Text “Covid causes heart inflammation in like
70% of people (including asymptomatic).
That seems like a high rate of heart
inflammation.”

H
yp

ot
he

se
s

LM “Covid causes inflammation in like 70%
of people ( including asymptomatic ).
That seems like a high rate of heart
inflammation.”

Web “The SARS-CoV-2 virus can damage the
heart in several ways. For example, the virus
may directly invade or inflame the heart
muscle, and it may indirectly harm the heart
by disrupting the balance between oxygen
supply and demand.”

Table 4: Example instance for verdict prediction. The
text is the original tweet, while the hypothesis is either
the tweet unmasked by the language model (LM) or
the evidence extract retrieved from the web. The
underlined entity is unmasked by the language model.

which is passed to the textual entailment (TE) model
from AllenNLP (Gardner et al., 2018). We take the
last layer of the pretrained entailment model (before
the softmax) to obtain “entailment features”, which
are passed on to a multi-layer perceptron (MLP) for
the final verification prediction. The MLP component
is originally trained on the FEVER 2018 training set
(Thorne et al., 2018), and is referred to as MLP-
FEVER in our experiments.
For the hypothesis component of the input pair, we
experiment with two types of inputs. First, we use
the approach by Lee et al. (2020) and generate the
hypothesis using the language model BERT (Devlin
et al., 2019), which unmasks an entity in the original
text. Alternatively, we input the respective evidence
snippet from the CoVERT dataset, effectively giving
the pipeline access to external, real-world evidence.
Refer to Table 4 for an example of such a ⟨text,
hypothesis⟩ pair.
To further test the effect of evidence extracts on the
pipeline, we additionally fine-tune the MLP component
with text and evidence pairs, which we call MLP-
Evidence in our experiments, using a 80/10/10 train–
develop–test split of the CoVERT data.10

5.2. Results
5.2.1. BioLAMA Probing
We employ the BioLAMA probe to investigate whether
BERT and BioBERT contain suitable domain-specific
knowledge to serve as an evidence source during fact-
checking. Table 5 reports results for the probe within
the CoVERT dataset as well as the scores for the
original BioLAMA probe (Sung et al., 2021). The

10Implementation details and hyperparameters of MLP-
FEVER and MLP-Evidence can be found in the Appendix,
Table 9.
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Figure 3: Full depiction of the fact-checking pipeline. ‘Hypothesis’ is either generated by the language model
(green) or taken from crowdsourced annotations (red).

BERT BioBERT

Dataset Acc@1 Acc@5 Acc@1 Acc@5

SUPPORTS 4.6 10.79 1.59 5.56
REFUTES 3.62 6.57 2.17 5.0
NEI 0.0 7.07 0.0 25.18

CTD+UMLS

+Wiki 0.86 3.08 1.75 6.09

Table 5: Accuracy scores (%) for BERT probed with
BioLAMA using CoVERT (SUPPORTS, REFUTES and
NEI) and the original BioLAMA probing collection
(CTD, UMLS and Wikidata).

SUPPORTS class is most accurately modeled out of the
three verdict classes (4.6 Acc@1), while the lowest
score (0.0 Acc@1) is achieved for NEI.
Generally, BERT achieves higher scores on the
CoVERT data than the original corpus of triples.
The original BioLAMA probe using BioBERT on
the CTD, UMLS and Wikidata collection achieved
a score of 1.75 Acc@1 and 6.09 Acc@5. On
the CoVERT corpus, BERT achieves higher scores
than BioBERT, even though the corpus consists of
biomedical information. We hypothesize that this is
because the specialized biomedical language used in
the BioBERT training data might not be a good match
for the non-expert language commonly used in tweets.
Since BERT appears better suited for our dataset, we
use this language model in subsequent experiments.

5.2.2. Language Model Capacity for Unmasking
Claim Entities

We further explore how capable the BERT language
model is to unmask entities in biomedical claims.
Table 6 reports the probabilities with which masked
object entities are predicted by BERT. We report the
results grouped by the fact-checking class (SUPPORTS,
REFUTES and NEI) that each instance belongs to.
Most entities are predicted with very low probability
by BERT. There are differences between the three

Class Min Q1 Q2 Q3 Max

SUP. 0 0 0.00057 0.03258 0.98289
REF. 0 0 0 0.00210 0.98672
NEI 0 0 0.00003 0.00995 0.7943

Table 6: Five-number summary of probabilities with
which masked object entities are predicted by BERT.

fact-checking categories, where SUPPORTS has a
third quartile that is higher than that of REFUTES.
Additionally, the NEI category has a maximum lower
than that of SUPPORTS and REFUTES. However, the
mean, median and first quartile of all three categories
are all very close or equal to 0. The language model
still predicts the object entity of incorrect claims with
high probabilities. This indicates that predictions for
this class have to be considered carefully when using it
in the downstream task of evidence creation.

5.2.3. Verdict Prediction With and Without
External Evidence

Our main research question is to investigate the
impact of external evidence when predicting fact-
checking verdicts for COVID-19-related claims in
tweets. Table 7 presents the results from the verdict
prediction experiment. We report the results for two
prediction pipelines, namely MLP-FEVER (following
Lee et al. (2020)) and our adaptation of this pipeline
(MLP-Evidence) in which the MLP component is fine-
tuned with evidence and text pairs from CoVERT,
giving it access to external evidence. Each pipeline is
evaluated on the FEVER 2018 test dataset (Thorne et
al., 2018) consisting of 9999 instances, and on pairs of
tweets and language model generated evidence (Tweet
+ LM) and tweets and CoVERT evidence (Tweet +
Evidence).
Provided with hypotheses generated using BERT,
MLP-FEVER achieves the highest F1 score of 0.60.
The same pipeline achieves an 0.49 F1 on the
FEVER dataset. When using the evidence extracts as



FEVER Tweet + LM Tweet + Ev.

P R F1 P R F1 P R F1

MLP-FEVER .52 .47 .49 .60 .61 .60 .61 .38 .46
MLP-Evidence .64 .36 .46 .66 .68 .57 .68 .74 .69

Table 7: Results for the two fact-checking pipelines,
MLP-FEVER and MLP-Evidence, evaluated on the
FEVER 2018 dataset, Tweet + LM Pairs and Tweet +
Evidence Pairs. The highest F1 score is highlighted for
each input set.

hypotheses, the performance drops to 0.46 F1. Fine-
tuning the MLP component with evidence extracts
(MLP-Evidence) the performance is slightly lower on
FEVER data and the Tweet + LM pairs (difference of
.03 F1, respectively), however, achieves substantially
higher F1 score of 0.69 on the CoVERT corpus.
The results show that fine-tuning the MLP component
with evidence extracts, the pipeline achieves higher
scores than with access to ‘evidence’ generated by
BERT only, showing that the retrieved evidence
extracts contribute to the performance of this pipeline.

5.3. Error Analysis and Discussion
To see how predictions change when the pipeline
has access to language model generated evidence or
CoVERT evidence extracts, we conduct a qualitative
error analysis into predictions made by the fact-
checking pipeline before and after fine-tuning.
We observe that MLP-FEVER with BERT-generated
evidence mistakenly labels 4 out of 6 instances
as REFUTES that are actually SUPPORTS instances.
Inspecting these cases, we find that the language model
generated evidence text is likely to produce features
indicating entailment, as can be seen in Ex. b, Table 10
in the Appendix. Similarly, in 3 out of 15 SUPPORTS
instances are mistakenly labelled REFUTES by MLP-
FEVER, with example c in Table 10 showing that the
evidence created by BERT is sufficiently dissimilar
to result in contradiction entailment features in our
pipeline, finally resulting in RERFUTES predictions.
These instances show that BERT is creating evidence
texts that are likely unuseful to the pipeline.
The pipeline struggles to make use of evidence extracts
when the MLP component is only trained on the
FEVER dataset. We inspect 10 instances where MLP-
FEVER incorrectly predicts NEI instead of SUPPORTS
and find that the evidence extracts are much longer
(and sometimes a long paragraph), thus including more
information than hypotheses originally seen in FEVER.
Examples of this can be seen in Table 11, Ex. d and
f. In both instances, the MLP-Evidence pipeline (fine-
tuned with evidence from CoVERT) correctly predicts
SUPPORTS, showing that the MLP component is able
to interpret the input pairs correctly after fine-tuning.
Although the overall F1 score of the pipeline increases
when fine-tuned with evidence extracts from CoVERT,

the total number of SUPPORTS class predictions has
increased from 33 to 55, with 15 false positives, and
very seldomly predicting the NEI class. This may be an
inherent limitation of the evidence extracts, as they by
definition do not contain any evidence texts for the NEI
class, meaning this class is never modelled during fine-
tuning. Additionally, the distribution across classes in
the fine-tuning set is unbalanced (422 evidence extracts
for SUPPORTS vs. 128 for REFUTES).

6. Conclusion and Future Work
We present CoVERT, the first fact-checked biomedical
COVID-19-related tweet corpus, along with a novel
approach to using evidence extracts as part of a
verdict prediction pipeline. We outline how we
leverage a crowd for fact-checking, finding moderate
agreement among annotators and reliable annotations
when aggregating verdict labels. Our extension of
the verdict prediction pipeline (Lee et al., 2020) using
evidence extracts from CoVERT indicates that the
task can benefit from real-world evidence rather than
only using ‘evidence’ generated from the implicit
knowledge contained in language models.
Apart from facilitating evidence-based fact-checking
directly, the CoVERT corpus additionally allows
querying structured databases for evidence retrieval
and verdict prediction, as it offers annotated entities
and relations, which can be linked to ontologies.
Future work may consider if the pipeline benefits
from more fine-grained evidence extracts. Evidence
extracted at sentence level (Hanselowski et al., 2019)
may contain information directly relevant to the claim,
thereby facilitating richer entailment features.

7. Ethical Considerations
All participants in the crowdsourcing study agreed to
participate at their own volition and signed a consent
form at the outset of the study. Although we did not
consider the task to present any harm to the crowd
workers, it is possible that annotators were exposed
to false information in the tweets and during their
research.
It is important that the annotations in this dataset
are not taken out of context with regard to the time-
frame at which they were annotated. As biomedical
knowledge, particularly with regard to SARS-COV-2,
is continuously updated as new research is published,
the evidence extracts and verdicts in the CoVERT
dataset may be outdated in the future.
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Appendix
Neural Network for Biomedical Filtering

Parameter/Variable Setting

Input Size 5000 (BOW vector)
Hiden Size 100
Output Layer Size 2
Activation Function Sigmoid
Optimizer Adam
Learning Rate 0.01
Loss Function Cross Entropy
Training epochs 30
# Train/Dev/Test Data 894/111/111

Table 8: Implementation details and training parameters of the feed-forward neural network for biomedical
filtering.

MLP Component of the Verdict Prediction Pipeline

MLP-FEVER MLP-Evidence
Parameter/Variable Setting Setting

Input Size 400 400
Hiden Size 100 100
Output Layer Size 3 3
Activation Function ReLU ReLU
Optimizer Adam Adam
Learning Rate 0.001 0.01
Loss Function Cross Entropy Cross Entropy
Max training epochs 200 120
Patience 30 10
Batch size 32 32
# Train/Dev/Test Data 116 359/14 544/14 544 439/6/6

Table 9: Implementation details and training/fine-tuning parameters of the MLP component in the verdict
prediction pipeline. MLP-FEVER: training on FEVER 2018 dataset, MLP-Evidence: fine-tuning on CoVERT
evidence extracts.



Error Analysis: Predictions on Language Model ‘Evidence’

Classification

Entity Prediction

ID Tweet Masked Pred. Gold MLP-FEVER MLP-Evidence

a Stop calling it a vaccine!! Vaccines
contain the same germs that cause
disease.

disease measles R R S

b Covid-19 vaccines initiates an early and
progressive clotting of blood in the lungs
(pulmonary thrombosis) which impairs
blood supply and gas exchange at lungs,
leading to respiratory failure, which in
majority of cases cause death.

death death R S S

c If it’s unclear it can’t be reported.
The death has to be contributed from
Covid because Covid causes the
respiratory issues etc that cause the
death, Covid caused it. Like lung cancer
if death because their lung stopped
functioning because of cancer they died
from lung cancer.

respiratory issues cancer S R S

Table 10: Instances where the pipeline failed to correctly classify tweets given evidence generated by BERT. R:
REFUTES, S: SUPPORTS, N: NOT ENOUGH INFORMATION, MLP-FEVER: training on FEVER 2018 dataset, MLP-
Evidence: fine-tuning on CoVERT evidence extracts. Masked entities in the tweet are underlined.



Predictions on Evidence Extracts

Prediction

Tweet ID Evidence Gold MLP-FEVER MLP-Evidence

Stop calling it a vaccine!!
Vaccines contain the same germs
that cause disease.

a mRNA vaccines teach our cells how
to make a protein, or even just a
piece of a protein that triggers an
immune response inside our bodies.

R S S

b a preparation that is administered
(as by injection) to stimulate the
body’s immune response against a
specific infectious agent or disease:
such as a preparation of genetic
material (such as a strand of
synthesized messenger RNA) that
is used by the cells of the body
to produce an antigenic substance
(such as a fragment of virus spike
protein)

R S S

Covid causes heart inflammation
in like 70% of people (including
asymptomatic). That seems like a
high rate of heart inflammation..

c COVID has been associated
with a higher incidence of heart
inflammation in adolescents and
young adults.

S S S

d The SARS-CoV-2 virus can
damage the heart in several ways.
For example, the virus may directly
invade or inflame the heart muscle,
and it may indirectly harm the heart
by disrupting the balance between
oxygen supply and demand.

S N S

If it’s unclear it can’t be reported.
The death has to be contributed
from Covid because Covid causes
the respiratory issues etc that
cause the death, Covid caused it.
Like lung cancer if death because
their lung stopped functioning
because of cancer they died from
lung cancer.

e Most people infected with the
COVID-19 virus will experience
mild to moderate respiratory illness

S S S

f COVID-19 is a respiratory disease,
one that especially reaches into
your respiratory tract, which
includes your lungs. COVID-19
can cause a range of breathing
problems, from mild to critical.

S N S

Table 11: Instances where the pipeline failed to correctly classify Tweet/Evidence pairs. R: REFUTES, S:
SUPPORTS, N: NOT ENOUGH INFORMATION. MLP-FEVER: pipeline with MLP trained only on FEVER, MLP-
Evidence: pipeline with MLP fine-tuned on evidence extracts from CoVERT. Source of evidence can be found in
the corpus file.



Example Fact-Checking Annotation Environment

Instructions:

Fact-check the emboldened claim by

1. reading the tweet carefully

2. taking note of the claim in bold text

3. entering its key terms into Google Search

4. finding a reputable source that confirms or refutes the claim

5. mark the claim as being confirmed or refuted in the multiple choice question

6. enter the URL to the reputable source you have found into the given answer slot

7. copy and paste the segment of text from the source that explicitly confirms or refutes the claim

Each claim should take no more than 2 minutes to completely. The bonus is only awarded if a sensible URL
and supporting text are pasted into the relevant fields. If you have investigated the Google Search results and are
not able to find a confirmation/disconfirmation, please select the multiple choice option “No, I could not find any
resource that confirms or refutes this claim”.

Tweet:

Stop calling it a vaccine! Vaccines contain the same germs that cause disease. (For example, measles vaccines
contains measles virus, and Hib vaccine contains Hib bacteria.) But they have been either killed or weakened to
the point that they don’t make you sick. Covid shot doesnt

Could you find a resource that confirms or refutes the claim in bold text?

□ Yes, the resource CONFIRMS this claim

□ Yes, the resource REFUTES this claim

□ No, I could not find any resource that confirms or refutes this claim

Enter the URL to the reputable resource you have found that substantiates or refutes the claim from the question
above. If you marked “No, I could not find any resource . . . ”, you do not need to add a URL.

Enter URL here

Enter a short extract from this source that confirms or refutes the above claim.

Enter text here
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