
DAGGER: A Toolkit for Automata on Directed Acyclic Graphs

Daniel Quernheim
Institute for Natural Language Processing

Universität Stuttgart, Germany
Pfaffenwaldring 5b, 70569 Stuttgart

daniel@ims.uni-stuttgart.de

Kevin Knight
University of Southern California

Information Sciences Institute
Marina del Rey, California 90292

knight@isi.edu

Abstract

This paper presents DAGGER, a toolkit for
finite-state automata that operate on directed
acyclic graphs (dags). The work is based on a
model introduced by (Kamimura and Slutzki,
1981; Kamimura and Slutzki, 1982), with a
few changes to make the automata more ap-
plicable to natural language processing. Avail-
able algorithms include membership checking
in bottom-up dag acceptors, transduction of
dags to trees (bottom-up dag-to-tree transduc-
ers), k-best generation and basic operations
such as union and intersection.

1 Introduction

Finite string automata and finite tree automata have
proved to be useful tools in various areas of natural
language processing (Knight and May, 2009). How-
ever, some applications, especially in semantics, re-
quire graph structures, in particular directed acyclic
graphs (dags), to model reentrancies. For instance,
the dags in Fig. 1 represents the semantics of the sen-
tences “The boy wants to believe the girl” and “The
boy wants the girl to believe him.” The double role
of “the boy” is made clear by the two parent edges of
the BOY node, making this structure non-tree-like.

Powerful graph rewriting systems have been used
for NLP (Bohnet and Wanner, 2010), yet we con-
sider a rather simple model: finite dag automata that
have been introduced by (Kamimura and Slutzki,
1981; Kamimura and Slutzki, 1982) as a straight-
forward extension of tree automata. We present the
toolkit DAGGER (written in PYTHON) that can be
used to visualize dags and to build dag acceptors

(a)

WANT

BELIEVE

BOY GIRL (b)

WANT

BELIEVE

BOY GIRL

Figure 1: (a) “The boy wants to believe the girl.” and
(b) “The boy wants the girl to believe him.” First edge
represents :agent role, second edge represents :patient
role.

and dag-to-tree transducers similar to their model.
Compared to those devices, in order to use them for
actual NLP tasks, our machines differ in certain as-
pects:
• We do not require our dags to be planar, and we

do not only consider derivation dags.
• We add weights from any commutative semir-

ing, e.g. real numbers.
The toolkit is available under an open source li-
cence.1

2 Dags and dag acceptors

DAGGER comes with a variety of example dags and
automata. Let us briefly illustrate some of them. The
dag of Fig. 1(a) can be defined in a human-readable
format called PENMAN (Bateman, 1990):

(1 / WANT
:agent (2 / BOY)
:patient (3 / BELIEVE

:agent 2
:patient (4 / GIRL)))

1http://www.ims.uni-stuttgart.de/

˜daniel/dagger/



s
s -> (WANT :agent i :patient s)
s -> (BELIEVE :agent i :patient s)
i -> (0)
s -> (0)
i -> (GIRL)
i -> (BOY)
s -> (GIRL)
s -> (BOY)
i i -> (GIRL)
i i -> (BOY)
i s -> (GIRL)
i s -> (BOY)
s s -> (GIRL)
s s -> (BOY)

Figure 2: Example dag acceptor example.bda.

In this format, every node has a unique identifier,
and edge labels start with a colon. The tail node of
an edge is specified as a whole subdag, or, in the
case of a reentrancy, is referred to with its identifier.

Fig. 2 shows a dag acceptor. The first line con-
tains the final state, and the remaining lines contain
rules. Mind that the rules are written in a top-down
fashion, but are evaluated bottom-up for now. Let us
consider a single rule:

s -> (WANT :agent i :patient s)

The right-hand side is a symbol (WANT :agent

:patient) whose tail edges are labeled with states (i
and s), and after applying the rule, its head edges are
labeled with new states (s). All rules are height one,
but in the future we will allow for larger subgraphs.

In order to deal with symbols of arbitrary head
rank (i.e. symbols that can play multiple roles), we
can use rules using special symbols such as 2=1 and
3=1 that split one edge into more than one:

i s -> (2=1 :arg e)

Using these state-changing rules, the ruleset can
be simplified (see Fig. 3), however the dags look a
bit different now:

(1 / WANT
:agent (2 / 2=1

:arg (3 / BOY))
:patient (4 / BELIEVE

:agent 2
:patient (5 / GIRL)))

Note that we also added weights to the ruleset now.
Weights are separated from the rest of a rule by the @

sign. The weight semantics is the usual one, where
weights are multiplied along derivation steps, while
the weights of alternative derivations are added.

s
s -> (WANT :agent i :patient s) @ 0.6
s -> (BELIEVE :agent i :patient s) @ 0.4
i -> (0) @ 0.2
s -> (0) @ 0.4
i -> (GIRL) @ 0.3
s -> (GIRL) @ 0.3
i -> (BOY) @ 0.2
s -> (BOY) @ 0.2
i i -> (2=1 :arg e) @ 0.3
i s -> (2=1 :arg e) @ 0.3
s s -> (2=1 :arg e) @ 0.3
e -> (GIRL) @ 0.4
e -> (BOY) @ 0.6

Figure 3: Simplified dag acceptor simple.bda.

2.1 Membership checking and derivation
forests

DAGGER is able to perform various operations on
dags. The instructions can be given in a simple ex-
pression language. The general format of an expres-
sion is:

(command f1 .. fm p1 .. pn)

Every command has a number of (optional) features
fi and a fixed number of arguments pi. Most com-
mands have a short and a long name; we will use the
short names here to save space. In order to evaluate
a expression, you can either
• supply it on the command-line:

./dagger.py -e EXPRESSION

• or read from a file:
./dagger.py -f FILE

We will now show a couple of example expres-
sions that are composed of smaller expressions.
Assume that the dag acceptor of Fig. 2 is saved
in the file example.bda, and the file boywants.dag

contains the example dag in PENMAN format.
We can load the dag with the expression (g (f

boywants.dag)), and the acceptor with the expres-
sion (a w (f example.bda)) where w means that the
acceptor is weighted. We could also specify the dag
directly in PENMAN format using p instead of f. We
can use the command r:

(r (a w (f example.bda)) (g (f

boywants.dag)))

to check whether example.bda recognizes
boywants.dag. This will output one list item



q

WANT

BELIEVE

BOY GIRL

=⇒

S

qnomb wants qinfb

BELIEVE

BOY GIRL

=⇒

S

qnomb wants INF

qaccg to believe qaccb

BOY GIRL

=⇒

S

INF

NP NP NP

the boy wants the girl to believe him

Figure 4: Derivation from graph to tree “the boy wants the girl to believe him”.

q
q.S(x1 wants x2)) -> (WANT :agent nomb.x1 :patient inf.x2)
inf.INF(x1 to believe x2) -> (BELIEVE :agent accg.x1 :patient accb.x2)
accg.NP(the girl) -> (GIRL)
nomb.NP(the boy) accb.(him) -> (BOY)

Figure 5: Example dag-to-tree-transducer example.bdt.

for each successful derivation (and, if the acceptor
is weighted, their weights), in this case: (’s’,

’0.1’, 0, ’0’), which means that the acceptor can
reach state s with a derivation weighted 0.1. The
rest of the output concerns dag-to-tree transducers
and will be explained later.

Note that in general, there might be multiple
derivations due to ambiguity (non-determinism).
Fortunately, the whole set of derivations can be effi-
ciently represented as another dag acceptor with the
d command. This derivation forest acceptor has the
set of rules as its symbol and the set of configura-
tions (state-labelings of the input dag) as its state set.

(d (a w (f example.bda)) (g f

boywants.dag)))

will write the derivation forest acceptor to the stan-
dard output.

2.2 k-best generation
To obtain the highest-weighted 7 dags generated by
the example dag acceptor, run:

(k 7 (a w (f example.bda)))

(1 / BOY)
(1 / GIRL)
(1 / BELIEVE :agent (2 / GIRL) :patient 2)
(1 / WANT :agent (2 / GIRL) :patient 2)
(1 / 0)
(1 / BELIEVE :agent (2 / BOY) :patient 2)
(1 / WANT :agent (2 / BOY) :patient 2)

If the acceptor is unweighted, the smallest dags
(in terms of derivation steps) are returned.

(1 / 0)
(1 / BOY)
(1 / GIRL)
(1 / BELIEVE :agent (2 / GIRL) :patient 2)
(1 / BELIEVE :agent (2 / BOY) :patient 2)
(1 / BELIEVE :agent (2 / GIRL) :patient

(3 / 0))
(1 / BELIEVE :agent (2 / GIRL) :patient

(3 / GIRL))

2.3 Visualization of dags
Both dags and dag acceptors can be visualized using
GRAPHVIZ2. For this purpose, we use the q (query)
command and the v feature:

(v (g (f boywants.dag)) boywants.pdf)

(v (a (f example.bda)) example.pdf)

Dag acceptors are represented as hypergraphs,
where the nodes are the states and each hyperedge
represents a rule labeled with a symbol.

2.4 Union and intersection
In order to construct complex acceptors from sim-
pler building blocks, it is helpful to make use of
union (u) and intersection (i). The following code
will intersect two acceptors and return the 5 best
dags of the intersection acceptor.

(k 5 (i (a (f example.bda)) (a (f

someother.bda))))

Weighted union, as usual, corresponds to sum,
weighted intersection to product.

2available under the Eclipse Public Licence from http://
www.graphviz.org/



string automata tree automata dag automata
compute . . . strings (sentences) . . . (syntax) trees . . . semantic representations
k-best . . . paths through a WFSA (Viterbi,

1967; Eppstein, 1998)
. . . derivations in a weighted forest
(Jiménez and Marzal, 2000; Huang and
Chiang, 2005)

3

EM training Forward-backward EM (Baum et al.,
1970; Eisner, 2003)

Tree transducer EM training (Graehl et
al., 2008)

?

Determinization . . . of weighted string acceptors (Mohri,
1997)

. . . of weighted tree acceptors (Bor-
chardt and Vogler, 2003; May and
Knight, 2006a)

?

Transducer composi-
tion

WFST composition (Pereira and Riley,
1997)

Many transducers not closed under com-
position (Maletti et al., 2009)

?

General tools AT&T FSM (Mohri et al., 2000),
Carmel (Graehl, 1997), OpenFST (Riley
et al., 2009)

Tiburon (May and Knight, 2006b),
ForestFIRE (Cleophas, 2008; Strolen-
berg, 2007)

DAGGER

Table 1: General-purpose algorithms for strings, trees and feature structures.

3 Dag-to-tree transducers

Dag-to-tree transducers are dag acceptors with tree
output. In every rule, the states on the right-hand
sides have tree variables attached that are used to
build one tree for each state on the left-hand side. A
fragment of an example dag-to-tree transducer can
be seen in Fig. 5.

Let us see what happens if we apply this trans-
ducer to our example dag:

(r (a t (f example.bdt)) (g (f

boywants.dag)))

All derivations including output trees will be listed:

(’q’, ’1.0’,

S(NP(the boy) wants INF(NP(the girl)

to believe NP(him))),

’the boy wants the girl to believe

him’)

A graphical representation of this derivation (top-
down instead of bottom-up for illustrative purposes)
can be seen in Fig. 4.

3.1 Backward application and force decoding
Sometimes, we might want to see which dags map
to a certain input tree in a dag-to-tree transducer.
This is called backward application since we use the
transducer in the reverse direction: We are currently
implementing this by “generation and checking”, i.e.
a process that generates dags and trees at the same
time. Whenever a partial tree does not match the
input tree, it is discarded, until we find a derivation
and a dag for the input tree. If we also restrict the
dag part, we have force decoding.

4 Future work

This work describes the basics of a dag automata
toolkit. To the authors’ knowledge, no such im-
plementation already exists. Of course, many algo-
rithms are missing, and there is a lot of room for im-
provement, both from the theoretical and the practi-
cal viewpoint. This is a brief list of items for future
research (Quernheim and Knight, 2012):
• Complexity analysis of the algorithms.
• Closure properties of dag acceptors and dag-

to-tree transducers as well as composition with
tree transducers.
• Extended left-hand sides to condition on a

larger semantic context, just like extended top-
down tree transducers (Maletti et al., 2009).
• Handling flat, unordered, sparse sets of rela-

tions that are typical of feature structures. Cur-
rently, rules are specific to the rank of the
nodes. A first step in this direction could be
gone by getting rid of the explicit n=m symbols.
• Hand-annotated resources such as (dag, tree)

pairs, similar to treebanks for syntactic repre-
sentations as well as a reasonable probabilistic
model and training procedures.
• Useful algorithms for NLP applications that

exist for string and tree automata (cf. Ta-
ble 1). The long-term goal could be to build a
semantics-based machine translation pipeline.

Acknowledgements

This research was supported in part by ARO grant W911NF-10-

1-0533. The first author was supported by the German Research

Foundation (DFG) grant MA 4959/1–1.



References
John A. Bateman. 1990. Upper modeling: organizing

knowledge for natural language processing. In Proc.
Natural Language Generation Workshop, pages 54–
60.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss. 1970.
A maximization technique occurring in the statistical
analysis of probabilistic functions of Markov chains.
Ann. Math. Statist., 41(1):164171.

Bernd Bohnet and Leo Wanner. 2010. Open source
graph transducer interpreter and grammar develop-
ment environment. In Proc. LREC.

Björn Borchardt and Heiko Vogler. 2003. Determiniza-
tion of finite state weighted tree automata. J. Autom.
Lang. Comb., 8(3):417–463.

Loek G. W. A. Cleophas. 2008. Tree Algorithms: Two
Taxonomies and a Toolkit. Ph.D. thesis, Department of
Mathematics and Computer Science, Eindhoven Uni-
versity of Technology.

Jason Eisner. 2003. Learning non-isomorphic tree map-
pings for machine translation. In Proc. ACL, pages
205–208.

David Eppstein. 1998. Finding the k shortest paths.
SIAM J. Comput., 28(2):652–673.

Jonathan Graehl, Kevin Knight, and Jonathan May.
2008. Training tree transducers. Comput. Linguist.,
34(3):391–427.

Jonathan Graehl. 1997. Carmel finite-state toolkit.
http://www.isi.edu/licensed-sw/
carmel.

Liang Huang and David Chiang. 2005. Better k-best
parsing. In Proc. IWPT.

Vı́ctor M. Jiménez and Andrés Marzal. 2000. Computa-
tion of the n best parse trees for weighted and stochas-
tic context-free grammars. In Proc. SSPR/SPR, pages
183–192.

Tsutomu Kamimura and Giora Slutzki. 1981. Paral-
lel and two-way automata on directed ordered acyclic
graphs. Inf. Control, 49(1):10–51.

Tsutomu Kamimura and Giora Slutzki. 1982. Transduc-
tions of dags and trees. Math. Syst. Theory, 15(3):225–
249.

Kevin Knight and Jonathan May. 2009. Applications
of weighted automata in natural language processing.
In Manfred Droste, Werner Kuich, and Heiko Vogler,
editors, Handbook of Weighted Automata. Springer.

Andreas Maletti, Jonathan Graehl, Mark Hopkins, and
Kevin Knight. 2009. The power of extended top-down
tree transducers. SIAM J. Comput., 39(2):410–430.

Jonathan May and Kevin Knight. 2006a. A better n-best
list: Practical determinization of weighted finite tree
automata. In Proc. HLT-NAACL.

Jonathan May and Kevin Knight. 2006b. Tiburon: A
weighted tree automata toolkit. In Oscar H. Ibarra and
Hsu-Chun Yen, editors, Proc. CIAA, volume 4094 of
LNCS, pages 102–113. Springer.

Mehryar Mohri, Fernando C. N. Pereira, and Michael
Riley. 2000. The design principles of a weighted
finite-state transducer library. Theor. Comput. Sci.,
231(1):17–32.

Mehryar Mohri. 1997. Finite-state transducers in lan-
guage and speech processing. Computational Linguis-
tics, 23(2):269–311.

Fernando Pereira and Michael Riley. 1997. Speech
recognition by composition of weighted finite au-
tomata. In Finite-State Language Processing, pages
431–453. MIT Press.

Daniel Quernheim and Kevin Knight. 2012. To-
wards probabilistic acceptors and transducers for fea-
ture structures. In Proc. SSST. (to appear).

Michael Riley, Cyril Allauzen, and Martin Jansche.
2009. OpenFST: An open-source, weighted finite-
state transducer library and its applications to speech
and language. In Proc. HLT-NAACL (Tutorial Ab-
stracts), pages 9–10.

Roger Strolenberg. 2007. ForestFIRE and FIREWood.
a toolkit & GUI for tree algorithms. Master’s thesis,
Department of Mathematics and Computer Science,
Eindhoven University of Technology.

Andrew Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimum decoding al-
gorithm. IEEE Transactions on Information Theory,
13(2):260–269.


