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Title Breakdown

Learning Structured Perceptrons for Coreference Resolution with
Latent Antecedents and Non-local Features

[Drug Emporium Inc.] said [Gary Wilber] was named CEO of [this drugstore chain].

[He] succeeds his father, Philip T. Wilber, who founded [the company] and remains

chairman. Robert E. Lyons III, who headed the [company]’s Philadelphia region, was

appointed president and chief operating officer, succeeding [Gary Wilber].
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Title Breakdown
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Why latent antecedents?

I Popular approach to learn pairwise models use the following
heuristic to create training instances (Soon et al., 2001):

For every non-discourse-first coreferent mention, create

I a positive instance pairing this mention with its closest
preceding coreferent mention

I negative instances for all pairs with intervening mentions

I Bad choice for positive example

I No treatment of discourse-first
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Coreference Model Paradigms

I Mention-pair models recast the problem as a binary
classification problem where two mentions are classified as
coreferent or disreferent

+ Rich features (anything from either mention, or the relation
between them)

− Little context (only two mentions)

I Entity-mention models decide whether to merge a single
mention into a (partially built) cluster

− Poor features (has no explicit pivot to compare the mention to)
+ Rich context (can see all mentions of the partially built cluster)

I Our work combines the two approaches, keeping the
strengths of both
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Notation

I M = {m0,m1, ...,mn} – set of mentions
I m0 – special dummy mention (root)

I Mention-pair
〈ai ,mi 〉, ai < mi

I Coreference assignment

y = {〈a1,m1〉,〈a2,m2〉, ...,〈an,mn〉}

I Set of mention-pairs, every mi occurs exactly once as the
second mention of a pair

I Every mention has exactly one antecedent – can be thought of
as a tree
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Example

Assignment

y = {〈m0,Drug Emporium Inc.〉
〈Drug Emporium Inc.,this drugstore chain〉
〈Drug Emporium Inc.,the company〉
〈the company,company〉
〈m0,Gary Wilber〉
〈Gary Wilber,He〉
〈Gary Wilber,Gary Wilber〉}

[Drug Emporium Inc.] said [Gary Wilber] was named CEO of [this drugstore chain].

[He] succeeds his father, Philip T. Wilber, who founded [the company] and remains

chairman. Robert E. Lyons III, who headed the [company]’s Philadelphia region, was

appointed president and chief operating officer, succeeding [Gary Wilber].
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Viewing this as a tree

Drug Emporium Inc.

the companythis drugstore chain

Gary Wilber

He Gary Wilber

root

company

9



Old way for training

Drug Emporium Inc.

the company

this drugstore chain

Gary Wilber

He

Gary Wilber

company

I Unintuitive antecedents

I No root node
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Note that there might be multiple trees

Correct

Drug Emporium Inc.

the companythis drugstore chain

Gary Wilber
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Gary Wilber
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company
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Note that there might be multiple trees
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Scoring

I Feature mapping function

φ : M×M → Rn

maps pairs of mentions to high-dimensional feature vector

I Weight vector w and feature vector gives score of mention
pair:

score(〈ai ,mi 〉) = w ·φ(〈ai ,mi 〉)

I Score of a tree y

score(y) = ∑
〈ai ,mi 〉∈y

score(〈ai ,mi 〉)
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Features

Various feature templates

I Distance, StringMatch, Nestedness

I Lexicalized – First, last, previous, following, head word

I Syntactic information from the mentions

I ...

All local – looks at one mention, or one particular pair
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Some more notation

I Let
Y(M)

denote the set of possible trees over M

I Let
Ỹ(M)

denote the set of all correct trees over M

I Note that
Ỹ(M)⊆ Y(M)
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Search problem(s)

I The search problem becomes

I Prediction
ŷ = arg max

y∈Y(M)
score(y)

I Latent tree
ỹ = arg max

y∈Ỹ(M)

score(y)
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Solving the search problem

I Can’t afford to enumerate and score all possible trees

I However, with only local features, the search problem can be
solved exactly using greedy search:

y = {}
for i ∈ 1..n do . For every mention

y = y ∪ arg max
mq∈M,q<i

score(〈mq,mi 〉) . Find best antecedent

return y
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Finding the weight vector

I Structured perceptron training

1: w =
−→
0

. Initialize

2: for t ∈ 1..T do

. For some iterations

3: for Mi ∈ D do

. For every document

4: ŷi = arg max
y∈Y(M)

score(y)

. Predict

5: if ¬Correct(ŷi ) then

. Correct?

6:

ỹi = arg max
y∈Ỹ(M)

score(y) . Latent tree

7: ∆ = Φ(ŷi )−Φ(ỹi )

. Distance vector

8: w = w + ∆

. Perceptron update

9: return w

. Return
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ỹi = arg max
y∈Ỹ(M)

score(y) . Latent tree
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Non-local features in the tree

Drug Emporium Inc.

the companythis drugstore chain

Gary Wilber

He Gary Wilber

root

company

I Local features are features over the two mentions that an arc
connects

I Non-local features can make use of partially predicted
(output) structure

I Head word of grandparent/sibling/etc
I Current size of cluster
I How many new clusters begin between head and dependent?

I (Needs extension of φ – see paper)
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Training with non-local features

I The greedy decoder can accommodate non-local features on
the partial structure to the left...

I ...at the cost of exact search becoming intractable

I Dangerous since we can get incorrect output
I not because the weight vector was wrong, but
I because the correct item was discarded (Huang et al., 2012)

I Standard approach: use beam search and early update
(Collins and Roark, 2004)
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Beam search

State (0)

Beam search with k = 5

I Start state

I Expand

I Expand

I Prune

I Expand

I Prune

I ...
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Early updates (Collins and Roark, 2004)

I Consider one beam item

Prediction

m0 m1 m2 m3 m4 m5 m6 ...

Gold

I Stop and update weights (on partial structures)

I Move on to next document

I Ignores large amounts of training data
I Two ways of dealing with this

I More iterations
I Larger beam size (k)
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Early updates vs baseline
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LaSO updates (Daumé III and Marcu, 2005)

I Consider one beam item

Prediction

m0 m1 m2 m3 m4 m5 m6 ...

Gold

I Pause and update weights (on partial structures)

I Revert to correct and continue

I Always reaches the end of the document, but...

I ...skews the shape of the latent tree
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LaSO updates (Daumé III and Marcu, 2005)

I Consider one beam item

Prediction

m0 m1 m2 m3 m4 m5 m6 ...

Gold

I Pause and update weights (on partial structures)

I Revert to correct and continue

I Always reaches the end of the document, but...

I ...skews the shape of the latent tree

24
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Baseline vs Early Updates vs LaSO
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Delayed LaSO updates

I Consider one beam item

Prediction

m0 m1 m2 m3 m4 m5 m6 ...

Gold

I Pause, save the ∆ vector that should be used for updates

I Revert to correct and continue

I At the end of the document, update with respect to all ∆’s
collected

I Doesn’t give the learner feedback within instances

I Without non-local features equivalent to baseline algorithm
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Results on benchmark data

MUC B3 CEAFm CEAFe CoNLL
Rec Prec F1 Rec Prec F1 Rec Prec F1 Rec Prec F1 avg.

Arabic

B&F 43.9 52.51 47.82 35.7 49.77 41.58 43.80 50.03 46.71 40.45 41.86 41.15 43.51
Fernandes 43.63 49.69 46.46 38.39 47.70 42.54 47.60 50.85 49.17 48.16 45.03 46.54 45.18
Our work 47.53 53.3 50.25 44.14 49.34 46.60 50.94 55.19 52.98 49.20 49.45 49.33 48.72

Chinese

B&F 58.72 58.49 58.61 49.17 53.20 51.11 56.68 51.86 54.14 55.36 41.80 47.63 52.45
C&N 59.92 64.69 62.21 51.76 60.26 55.69 59.58 60.45 60.02 58.84 51.61 54.99 57.63
Our work 62.57 69.39 65.80 53.87 61.64 57.49 58.75 64.76 61.61 54.65 59.33 56.89 60.06

English

B&F 65.23 70.10 67.58 49.51 60.69 54.47 56.93 59.51 58.19 51.34 49.14 59.21 57.42
D&K 66.58 74.94 70.51 53.20 64.56 58.33 59.19 66.23 62.51 52.90 58.06 55.36 61.40
Our work 67.46 74.30 70.72 54.96 62.71 58.58 60.33 66.92 63.45 52.27 59.40 55.61 61.63

I Evaluation on CoNLL 2012 test
sets

I Comparison with best published
previous results

I Bold numbers denote significant
differences between two best

I B&F – (Björkelund and Farkas, 2012)

I Fernandes – (Fernandes et al., 2012)

I C&N – (Chen and Ng, 2012)

I D&K – (Durrett and Klein, 2013)
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Conclusion

I Experiments on how to train structured perceptrons with
latent antecedents and non-local features

I Beam Search and

− Early updates
− LaSO
+ Delayed LaSO

I Significant improvements over baseline

I Significant improvements over current state of the art

I Sources available online1

I Delayed LaSO is a general technique applicable to other
similar problems

1http://www.ims.uni-stuttgart.de/~anders/coref.html
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Teaser

I Want to look at some of the trees?

⇒ Come see our demo tonight! (Ballroom, starts at 18.50)
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Questions

Thank you.
Questions?
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