
Non-Deterministic Oracles for Unrestricted
Non-Projective Transition-Based Dependency

Parsing

Anders Björkelund and Joakim Nivre

anders@ims.uni-stuttgart.de

July 27, 2015



Table of Contents

Introduction

Oracles

Experiments

Conclusion

2



Motivation

I Recent progress in greedy transition-based dependency
parsing using dynamic oracles

I Statistical model trained to select the next best transition,
after making a local mistake

I Search-based transition-based parsers (beam search/DP) –
trained to find optimal sequence of transitions

? Globally trained model, dynamic oracles not entirely applicable

I Can spurious ambiguity be exploited to
increase accuracy of search-based parsers?

3



Motivation

I Recent progress in greedy transition-based dependency
parsing using dynamic oracles

I Statistical model trained to select the next best transition,
after making a local mistake

I Search-based transition-based parsers (beam search/DP) –
trained to find optimal sequence of transitions

? Globally trained model, dynamic oracles not entirely applicable

I Can spurious ambiguity be exploited to
increase accuracy of search-based parsers?

3



Motivation

I Recent progress in greedy transition-based dependency
parsing using dynamic oracles

I Statistical model trained to select the next best transition,
after making a local mistake

I Search-based transition-based parsers (beam search/DP) –
trained to find optimal sequence of transitions

? Globally trained model, dynamic oracles not entirely applicable

I Can spurious ambiguity be exploited to
increase accuracy of search-based parsers?

3



Motivation

I Recent progress in greedy transition-based dependency
parsing using dynamic oracles

I Statistical model trained to select the next best transition,
after making a local mistake

I Search-based transition-based parsers (beam search/DP) –
trained to find optimal sequence of transitions

? Globally trained model, dynamic oracles not entirely applicable

I Can spurious ambiguity be exploited to
increase accuracy of search-based parsers?

3



Arc Standard system

I Stack of partially processed tokens

I Buffer of remaining input tokens
I Transitions:

I Shift (SH)
I LeftArc (LA)
I RightArc (RA)

Stack

s0

s1

s2

...

b0 b1 b2 ...

Buffer

4



Arc Standard system

I Stack of partially processed tokens

I Buffer of remaining input tokens

I Transitions:

I Shift (SH)
I LeftArc (LA)
I RightArc (RA)

Stack

s0

s1

s2

...

b0 b1 b2 ...

Buffer

4



Arc Standard system

I Stack of partially processed tokens

I Buffer of remaining input tokens
I Transitions:

I Shift (SH)

I LeftArc (LA)
I RightArc (RA)

Stack

s0

s1

s2

...

b0 b1 b2 ...

Buffer

4



Arc Standard system

I Stack of partially processed tokens

I Buffer of remaining input tokens
I Transitions:

I Shift (SH)
I LeftArc (LA)

I RightArc (RA)

Stack

s0

s1

s2

...

b0 b1 b2 ...

Buffer

4



Arc Standard system

I Stack of partially processed tokens

I Buffer of remaining input tokens
I Transitions:

I Shift (SH)
I LeftArc (LA)
I RightArc (RA)

Stack

s0

s1

s2

...

b0 b1 b2 ...

Buffer

4



Initial and Terminal states

I Initial state – root on stack, input on buffer

I Terminal state - only root on stack, empty buffer

Stack

root

w0 w1 w2 ...

Buffer

5



Initial and Terminal states

I Initial state – root on stack, input on buffer

I Terminal state - only root on stack, empty buffer

Stack

root

Buffer

5



Example

root John likes Mary

subj

root

obj

6



Example parse

root John likes Mary

subj

root

obj

root

Stack

John likes Mary

Buffer

History:

7



Example parse

root John likes Mary

subj

root

obj

John
root

Stack

likes Mary

Buffer

History: SH

7



Example parse

root John likes Mary

subj

root

obj

likes

John
rootStack

Mary

Buffer

History: SH SH

7



Example parse

root John likes Mary

subj

root

obj

likes
root

Stack

Mary

Buffer

History: SH SH LA

7



Example parse

root John likes Mary

subj

root

obj

Mary

likes
rootStack

Buffer

History: SH SH LA SH

7



Example parse

root John likes Mary

subj

root

obj

likes
root

Stack

Buffer

History: SH SH LA SH RA

7



Example parse

root John likes Mary

subj

root

obj

root

Stack

Buffer

History: SH SH LA SH RA RA

7



Example parse

root John likes Mary

subj

root

obj

root

Stack

John likes Mary

Buffer

History: SH SH LA SH RA RA

History:

7



Example parse

root John likes Mary

subj

root

obj

John
root

Stack

likes Mary

Buffer

History: SH SH LA SH RA RA

History: SH

7



Example parse

root John likes Mary

subj

root

obj

likes

John
rootStack

Mary

Buffer

History: SH SH LA SH RA RA

History: SH SH

7



Example parse

root John likes Mary

subj

root

obj

Mary

likes

John
root

Stack

Buffer

History: SH SH LA SH RA RA

History: SH SH SH

7



Example parse

root John likes Mary

subj

root

obj

likes

John
rootStack

Buffer

History: SH SH LA SH RA RA

History: SH SH SH RA

7



Example parse

root John likes Mary

subj

root

obj

likes
root

Stack

Buffer

History: SH SH LA SH RA RA

History: SH SH SH RA LA

7



Example parse

root John likes Mary

subj

root

obj

root

Stack

Buffer

History: SH SH LA SH RA RA

History: SH SH SH RA LA RA

7



Ambiguity as a lattice

root John likes Mary
0 1 2 3

subj

root

obj

The possible transition sequences can be illustrated as a lattice

2 → 1

2 → 3

2 → 1
2 → 1
2 → 3

2 → 1
2 → 3
0 → 2

SH
SH

RASH
LA

SH

RA

RA

LA

The SH-LA ambiguity a spurious ambiguity

8



Dealing with non-projectivity

root Ausgelöst wurde sie durch Intel

OC
–

SB

MO

NK

I Non-projective trees cannot be drawn without crossing edges

I Treatment: introduce new transition swap (SW) that moves
the second stack item back onto the buffer (Nivre, 2009)

I Increases the amount of spurious ambiguity considerably

9



Lattice for non-projective sentence

root Ausgelöst wurde sie durch Intel

OC
–

SB

MO

NK

Corresponding lattice

SH

SW

RA

SW

SH

SW
SW

SH

RA

SW
SH

SH RA

SH SW

SH

SW

SH

SH

SH

SH

RA

RA

SH
SH

RA

SH

SH

RA

SW

RA

SH

SWSW

SH

RA

RA

RA

LA

SH

LA

RA

10



Table of Contents

Introduction

Oracles

Experiments

Conclusion

11



Static oracle

1: if CanLA(c ,x) then
2: return LA

3: else if CanRA(c ,x) then
4: return RA

5: else
6: return SH

I Spurious ambiguity resolved by
order of if-clauses

12



Static oracle

1: if CanLA(c ,x) then
2: return LA

3: else if CanRA(c ,x) then
4: return RA

5: else
6: return SH

2 → 1

2 → 3

2 → 1
2 → 1
2 → 3

2 → 1
2 → 3
0 → 2

SH
SH

RASH
LA

SH

RA

RA

LA

I Spurious ambiguity resolved by
order of if-clauses

12



Static oracle

1: if CanLA(c ,x) then
2: return LA

3: else if CanRA(c ,x) then
4: return RA

5: else
6: return SH

2 → 1

2 → 3

2 → 1
2 → 1
2 → 3

2 → 1
2 → 3
0 → 2

SH
SH

RASH
LA

SH

RA

RA

LA

I Spurious ambiguity resolved by
order of if-clauses

12



Static oracle (with Swap)

1: if CanLA(c ,x) then
2: return LA

3: else if CanRA(c ,x) then
4: return RA

5: else if CanSW(c ,x) then
6: return SW

7: else
8: return SH

13



CanSwap

I Relies on the notion of projective order,
obtained by in-order traversal

root0 Ausgelöst1 wurde2 sie3 durch4 Intel5

OC
–

SB

MO

NK

root0 Ausgelöst1 durch4 Intel5 wurde2 sie3

OC
–

SBMO NK

14



CanSwap

I Relies on the notion of projective order,
obtained by in-order traversal

root0 Ausgelöst1 wurde2 sie3 durch4 Intel5

OC
–

SB

MO

NK

root0 Ausgelöst1 durch4 Intel5 wurde2 sie3

OC
–

SBMO NK

14



CanSwap

I Relies on the notion of projective order,
obtained by in-order traversal

root0 Ausgelöst1 wurde2 sie3 durch4 Intel5

OC
–

SB

MO

NK

root0 Ausgelöst1 durch4 Intel5 wurde2 sie3

OC
–

SBMO NK

14



CanSwap

I Nivre (2009) swap as soon as possible (Eager)

⇒ leads to many unneccessary swaps

I Nivre et al. (2009) block some swaps when more
substructure can be built (Lazy)

⇒ still not always minimal

15



Potential spurious ambiguities

I Possible
I SH-LA
I SH-RA
I SH-SW

I Impossible
I LA-RA – (implies cycle)
I SW-RA – (violates projective order)
I SW-LA – (violates projective order)
I And any superset of these

16



CanShift ?

I Static oracles define when LA, RA, SW are permissble

I SH treated as fallback

I Simple solution:
try and see if the correct parse can be recovered
using Eager

17



Can now build complete lattices

I With tests for all transitions we can construct lattices

I Cover all possible spurious ambiguities

I Searching the lattice for the shortest path
yields minimally swapping oracle (Minimal)

18



Non-deterministic oracles

I Allow all possible spurious ambiguities (Nd-All)

I Allow only SH-SW ambiguity (Nd-Sw)

19



Table of Contents

Introduction

Oracles

Experiments

Conclusion

20



Oracles

I Static
I Eager – (Nivre, 2009)
I Lazy – (Nivre et al., 2009)
I Minimal – new

I Non-deterministic
I Nd-All – new
I Nd-Sw – new

21



Data and Evaluation

Data

I SPRML Shared Task: Arabic, Basque, French, German, Hebrew,

Hungarian, Korean, Polish, Swedish

I English: Penn Treebank converted to Stanford dependencies

I Standard splits train/dev/test

Evaluation

I Labeled Attachment Score (LAS)

I Significance Testing: Wilcoxon signed rank test

† < 0.05, ‡ < 0.01

22



Data and Evaluation

Data

I SPRML Shared Task: Arabic, Basque, French, German, Hebrew,

Hungarian, Korean, Polish, Swedish

I English: Penn Treebank converted to Stanford dependencies

I Standard splits train/dev/test

Evaluation

I Labeled Attachment Score (LAS)

I Significance Testing: Wilcoxon signed rank test

† < 0.05, ‡ < 0.01

22



Data set stats (training data)
% proj.

Lazy red. Minimal red. unique

ar 97.32

80.59 80.79 9.94

de 67.23

75.09 83.88 7.81

en 99.90

71.92 - 1.31

eu 94.71

53.46 - 1.06

fr 99.97

16.67 - 2.66

he 99.82

8.33 - 2.82

hu 87.75

51.07 54.24 10.25

ko 100.00

- - 0.27

pl 99.54

59.34 - 10.57

sv 93.62

75.90 77.79 7.28

23



Data set stats (training data)
% proj.

Lazy red. Minimal red. unique

ar 97.32

80.59 80.79 9.94

de 67.23

75.09 83.88 7.81

en 99.90

71.92 - 1.31

eu 94.71

53.46 - 1.06

fr 99.97

16.67 - 2.66

he 99.82

8.33 - 2.82

hu 87.75

51.07 54.24 10.25

ko 100.00

- - 0.27

pl 99.54

59.34 - 10.57

sv 93.62

75.90 77.79 7.28

Wide range of projectivity: German (alot) to Korean (none)

Most non-proj

Fully proj.

23



Data set stats (training data)
% proj. Lazy red.

Minimal red. unique

ar 97.32 80.59

80.79 9.94

de 67.23 75.09

83.88 7.81

en 99.90 71.92

- 1.31

eu 94.71 53.46

- 1.06

fr 99.97 16.67

- 2.66

he 99.82 8.33

- 2.82

hu 87.75 51.07

54.24 10.25

ko 100.00 -

- 0.27

pl 99.54 59.34

- 10.57

sv 93.62 75.90

77.79 7.28

Reduction of swaps from Eager to Lazy

I Reduces swaps by up to 80% (Arabic), 75% for German

I Corroborates results by Nivre et al. (2009)

I Extremely few non-proj arcs in French and Hebrew
since they are basically projective

23



Data set stats (training data)
% proj. Lazy red.

Minimal red. unique

ar 97.32 80.59

80.79 9.94

de 67.23 75.09

83.88 7.81

en 99.90 71.92

- 1.31

eu 94.71 53.46

- 1.06

fr 99.97 16.67

- 2.66

he 99.82 8.33

- 2.82

hu 87.75 51.07

54.24 10.25

ko 100.00 -

- 0.27

pl 99.54 59.34

- 10.57

sv 93.62 75.90

77.79 7.28

Reduction of swaps from Eager to Lazy

I Reduces swaps by up to 80% (Arabic), 75% for German

I Corroborates results by Nivre et al. (2009)

I Extremely few non-proj arcs in French and Hebrew
since they are basically projective

Biggest reduction

Heavily non-proj.

23



Data set stats (training data)
% proj. Lazy red.

Minimal red. unique

ar 97.32 80.59

80.79 9.94

de 67.23 75.09

83.88 7.81

en 99.90 71.92

- 1.31

eu 94.71 53.46

- 1.06

fr 99.97 16.67

- 2.66

he 99.82 8.33

- 2.82

hu 87.75 51.07

54.24 10.25

ko 100.00 -

- 0.27

pl 99.54 59.34

- 10.57

sv 93.62 75.90

77.79 7.28

Reduction of swaps from Eager to Lazy

I Reduces swaps by up to 80% (Arabic), 75% for German

I Corroborates results by Nivre et al. (2009)

I Extremely few non-proj arcs in French and Hebrew
since they are basically projective

23



Data set stats (training data)
% proj. Lazy red. Minimal red.

unique

ar 97.32 80.59 80.79

9.94

de 67.23 75.09 83.88

7.81

en 99.90 71.92 -

1.31

eu 94.71 53.46 -

1.06

fr 99.97 16.67 -

2.66

he 99.82 8.33 -

2.82

hu 87.75 51.07 54.24

10.25

ko 100.00 - -

0.27

pl 99.54 59.34 -

10.57

sv 93.62 75.90 77.79

7.28

Reduction of swaps from Eager to Minimal

I Lazy already minimal in several cases

I Reduction relative to Lazy very small

23



Data set stats (training data)
% proj. Lazy red. Minimal red.

unique

ar 97.32 80.59 80.79

9.94

de 67.23 75.09 83.88

7.81

en 99.90 71.92 -

1.31

eu 94.71 53.46 -

1.06

fr 99.97 16.67 -

2.66

he 99.82 8.33 -

2.82

hu 87.75 51.07 54.24

10.25

ko 100.00 - -

0.27

pl 99.54 59.34 -

10.57

sv 93.62 75.90 77.79

7.28

Reduction of swaps from Eager to Minimal

I Lazy already minimal in several cases

I Reduction relative to Lazy very small

23



Data set stats (training data)
% proj. Lazy red. Minimal red.

unique

ar 97.32 80.59 80.79

9.94

de 67.23 75.09 83.88

7.81

en 99.90 71.92 -

1.31

eu 94.71 53.46 -

1.06

fr 99.97 16.67 -

2.66

he 99.82 8.33 -

2.82

hu 87.75 51.07 54.24

10.25

ko 100.00 - -

0.27

pl 99.54 59.34 -

10.57

sv 93.62 75.90 77.79

7.28

Reduction of swaps from Eager to Minimal

I Lazy already minimal in several cases

I Reduction relative to Lazy very small

23



Data set stats (training data)
% proj. Lazy red. Minimal red. unique

ar 97.32 80.59 80.79 9.94
de 67.23 75.09 83.88 7.81
en 99.90 71.92 - 1.31
eu 94.71 53.46 - 1.06
fr 99.97 16.67 - 2.66
he 99.82 8.33 - 2.82
hu 87.75 51.07 54.24 10.25
ko 100.00 - - 0.27
pl 99.54 59.34 - 10.57
sv 93.62 75.90 77.79 7.28

Amount of sentences without spurious ambiguity

I Only 10% without spurious ambiguity

I Despite being projective, Korean still lots of ambiguity

23



Data set stats (training data)
% proj. Lazy red. Minimal red. unique

ar 97.32 80.59 80.79 9.94
de 67.23 75.09 83.88 7.81
en 99.90 71.92 - 1.31
eu 94.71 53.46 - 1.06
fr 99.97 16.67 - 2.66
he 99.82 8.33 - 2.82
hu 87.75 51.07 54.24 10.25
ko 100.00 - - 0.27
pl 99.54 59.34 - 10.57
sv 93.62 75.90 77.79 7.28

Amount of sentences without spurious ambiguity

I Only 10% without spurious ambiguity

I Despite being projective, Korean still lots of ambiguity

23



Data set stats (training data)
% proj. Lazy red. Minimal red. unique

ar 97.32 80.59 80.79 9.94
de 67.23 75.09 83.88 7.81
en 99.90 71.92 - 1.31
eu 94.71 53.46 - 1.06
fr 99.97 16.67 - 2.66
he 99.82 8.33 - 2.82
hu 87.75 51.07 54.24 10.25
ko 100.00 - - 0.27
pl 99.54 59.34 - 10.57
sv 93.62 75.90 77.79 7.28

Amount of sentences without spurious ambiguity

I Only 10% without spurious ambiguity

I Despite being projective, Korean still lots of ambiguity

23



Training (static)

I Greedy parser
I Averaged perceptron (Collins, 2002)

I Beam search parser
I Passive-aggressive algorithm (Crammer et al., 2006)
I Using max-violation updates (Huang et al., 2012)
I Averaging (Collins, 2002)

24



Training (non-deterministic)

I What is the “correct” solution to update against?

I Leave it latent – let the current parameters decide

25



Training (non-deterministic)

I What is the “correct” solution to update against?

I Leave it latent – let the current parameters decide

I Greedy –

25



Training (non-deterministic)

I What is the “correct” solution to update against?

I Leave it latent – let the current parameters decide

I Greedy – next transition t latent

25



Training (non-deterministic)

I What is the “correct” solution to update against?

I Leave it latent – let the current parameters decide

I Greedy – next transition t latent

Given current weights w ,
and state c

Latent gold
t̃ = arg max

t∈Nd-Oracle(c)

score(t,w)

25



Training (non-deterministic)

I What is the “correct” solution to update against?

I Leave it latent – let the current parameters decide

I Greedy – next transition t latent

Given current weights w ,
and state c

Latent gold
t̃ = arg max

t∈Nd-Oracle(c)

score(t,w)

Prediction
t̂ = arg max

t∈Permissible(c)
score(t,w)

25



Training (non-deterministic)

I What is the “correct” solution to update against?

I Leave it latent – let the current parameters decide

I Beam search

25



Training (non-deterministic)

I What is the “correct” solution to update against?

I Leave it latent – let the current parameters decide

I Beam search – transition sequence z latent

25



Training (non-deterministic)

I What is the “correct” solution to update against?

I Leave it latent – let the current parameters decide

I Beam search – transition sequence z latent

Given current weights w ,
and sentence x

Latent Gold
z̃ = arg max

z∈Nd-Oracle(x)

score(z ,w)

25



Training (non-deterministic)

I What is the “correct” solution to update against?

I Leave it latent – let the current parameters decide

I Beam search – transition sequence z latent

Given current weights w ,
and sentence x

Latent Gold
z̃ = arg max

z∈Nd-Oracle(x)

score(z ,w)

Prediction
ẑ = arg max

z∈Possible(x)

score(z ,w)

25



Training (non-deterministic)

I What is the “correct” solution to update against?

I Leave it latent – let the current parameters decide

I Beam search – transition sequence z latent

Given current weights w ,
and sentence x

Latent Gold
z̃ = arg max

z∈Nd-Oracle(x)

score(z ,w)

Prediction
ẑ = arg max

z∈Possible(x)

score(z ,w)

Approximate search with beam search (beam size 20)

25



Tuning

87

88

89

90

91

92

0 5 10 15 20

L
A
S

Iterations

Eager
Lazy

Minimal
Nd-Sw
Nd-All

I Problem 1: Most oracles generally extremely close
I Problem 2: Performance on dev set not monotonically

increasing as a function of training iterations

I Solution: Tune number of iterations on dev data for each
oracle

I Final evaluation (test set): best static oracle vs best
non-deterministic oracle

26



Tuning

87

88

89

90

91

92

0 5 10 15 20

L
A
S

Iterations

Eager
Lazy

Minimal
Nd-Sw
Nd-All

I Problem 1: Most oracles generally extremely close
I Problem 2: Performance on dev set not monotonically

increasing as a function of training iterations

I Solution: Tune number of iterations on dev data for each
oracle

I Final evaluation (test set): best static oracle vs best
non-deterministic oracle

26



Tuning

87

88

89

90

91

92

0 5 10 15 20

L
A
S

Iterations

Eager
Lazy

Minimal
Nd-Sw
Nd-All

I Problem 1: Most oracles generally extremely close
I Problem 2: Performance on dev set not monotonically

increasing as a function of training iterations

I Solution: Tune number of iterations on dev data for each
oracle

I Final evaluation (test set): best static oracle vs best
non-deterministic oracle

26



Tuning

87

88

89

90

91

92

0 5 10 15 20

L
A
S

Iterations

Eager
Lazy

Minimal
Nd-Sw
Nd-All

I Problem 1: Most oracles generally extremely close
I Problem 2: Performance on dev set not monotonically

increasing as a function of training iterations

I Solution: Tune number of iterations on dev data for each
oracle

I Final evaluation (test set): best static oracle vs best
non-deterministic oracle 26



Results – beam
Static ∆ non-det.

ar 85.05 +0.06
de 87.53 -0.23
en 90.35 +0.13
eu 79.97 +0.55
fr 83.10 -0.11
he 78.65 -0.39
hu 83.60 +0.08
ko 85.03 +0.09
pl 82.08 +1.26‡

sv 79.05 -0.07
Macro Avg. 83.59 0.14

Macro Avg. (w/o pl) 83.44 0.01

I Basically no difference, except Polish

27



Results – beam
Static ∆ non-det.

ar 85.05 +0.06
de 87.53 -0.23
en 90.35 +0.13
eu 79.97 +0.55
fr 83.10 -0.11
he 78.65 -0.39
hu 83.60 +0.08
ko 85.03 +0.09
pl 82.08 +1.26‡

sv 79.05 -0.07
Macro Avg. 83.59 0.14
Macro Avg. (w/o pl) 83.44 0.01

I Basically no difference, except Polish

27



Results – greedy
Static ∆ non-det.

ar 82.99 +0.04
de 84.22 +0.03
en 87.85 +0.60‡

eu 78.58 +0.24
fr 81.12 +0.40‡

he 75.27 +0.70†

hu 81.45 +0.22
ko 84.52 +0.30
pl 79.10 +1.33‡

sv 75.89 +0.39
Macro Avg. (w/o pl) 82.39 +0.32

Macro Avg. 81.10 +0.43

I Without pl. not just zero

I Increases for all treebanks

28



Results – greedy
Static ∆ non-det.

ar 82.99 +0.04
de 84.22 +0.03
en 87.85 +0.60‡

eu 78.58 +0.24
fr 81.12 +0.40‡

he 75.27 +0.70†

hu 81.45 +0.22
ko 84.52 +0.30
pl 79.10 +1.33‡

sv 75.89 +0.39
Macro Avg. (w/o pl) 82.39 +0.32
Macro Avg. 81.10 +0.43

I Without pl. not just zero

I Increases for all treebanks

28



Why does it only work with greedy? (speculative)

I Beam (search)
I Search-based parsers are good at managing suboptimal local

decisions (i.e., little error progapation)
I No need to introduce additional ambiguity, search does the

trick

I Greedy
I Exposed to (some) more states during training,

⇒ generalizes better

I Never harmful

29



Why does it only work with greedy? (speculative)

I Beam (search)
I Search-based parsers are good at managing suboptimal local

decisions (i.e., little error progapation)
I No need to introduce additional ambiguity, search does the

trick

I Greedy
I Exposed to (some) more states during training,

⇒ generalizes better

I Never harmful

29



Table of Contents

Introduction

Oracles

Experiments

Conclusion

30



Summary1

I Spurious ambiguity in ArcStandard+Swap

I Non-deterministic oracles
I Parser accuracy

I Beam: No improvement
I Greedy: Sometimes

1Parser implementation available on my website
http://www.ims.uni-stuttgart.de/~anders/

31

http://www.ims.uni-stuttgart.de/~anders/


Summary1

I Spurious ambiguity in ArcStandard+Swap

I Non-deterministic oracles

I Parser accuracy

I Beam: No improvement
I Greedy: Sometimes

1Parser implementation available on my website
http://www.ims.uni-stuttgart.de/~anders/

31

http://www.ims.uni-stuttgart.de/~anders/


Summary1

I Spurious ambiguity in ArcStandard+Swap

I Non-deterministic oracles
I Parser accuracy

I Beam: No improvement

I Greedy: Sometimes

1Parser implementation available on my website
http://www.ims.uni-stuttgart.de/~anders/

31

http://www.ims.uni-stuttgart.de/~anders/


Summary1

I Spurious ambiguity in ArcStandard+Swap

I Non-deterministic oracles
I Parser accuracy

I Beam: No improvement
I Greedy: Sometimes

1Parser implementation available on my website
http://www.ims.uni-stuttgart.de/~anders/

31

http://www.ims.uni-stuttgart.de/~anders/


Questions

Thank you.

Questions?

32



References I

Bohnet, B., Nivre, J., Boguslavsky, I., Farkas, R., Ginter, F., and Hajič, J. (2013).
Joint morphological and syntactic analysis for richly inflected languages.
Transactions of the Association for Computational Linguistics, 1:415–428.

Collins, M. (2002). Discriminative training methods for hidden markov models:
Theory and experiments with perceptron algorithms. In Proceedings of the 2002
Conference on Empirical Methods in Natural Language Processing, pages 1–8.
Association for Computational Linguistics.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer, Y. (2006). Online
passive–aggressive algorithms. Journal of Machine Learning Reseach, 7:551–585.

Huang, L., Fayong, S., and Guo, Y. (2012). Structured perceptron with inexact
search. In Proceedings of the 2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
pages 142–151, Montréal, Canada. Association for Computational Linguistics.

Nivre, J. (2009). Non-projective dependency parsing in expected linear time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the
AFNLP, pages 351–359, Suntec, Singapore. Association for Computational
Linguistics.

Nivre, J., Kuhlmann, M., and Hall, J. (2009). An improved oracle for dependency
parsing with online reordering. In Proceedings of the 11th International Conference
on Parsing Technologies (IWPT’09), pages 73–76, Paris, France. Association for
Computational Linguistics.

33



Backup slide – Other ways of training (beam)

I Use early update, and update against the last correct item
that fell off the beam

I Update against any gold sequence, pick the highest scoring
(partial) one (may not coincide with best scoring complete
sequence

I Moving target problem: across training iterations, correct
sequence may change – more difficult to learn?

I Train a model (with some oracle), apply it to the training data
over the lattices and pick a single unique sequence for each
sentence

I Same as above, but do it with cross-validation (jack-knifing)

I All of these did worse than static oracle

34



Backup slide – Complexity of CanShift

I Theoretically O(n2)

I However, can stop if stakc gets reduced to two tokens

I In practice, marginal difference on overall training time

35



Backup slide – Complexity of CanShift

I Theoretically O(n2)

I However, can stop if stakc gets reduced to two tokens

I In practice, marginal difference on overall training time

35



Backup slide – Complexity of CanShift

I Theoretically O(n2)

I However, can stop if stakc gets reduced to two tokens

I In practice, marginal difference on overall training time

35


	Introduction
	Oracles
	Experiments
	Conclusion

