
Proceedings of Meetings on Acoustics

  Volume 19, 2013 http://acousticalsociety.org/ 

 

 
ICA 2013 Montreal 

Montreal, Canada 

2 - 7 June 2013 

Speech Communication
Session 2aSC: Linking Perception and Production (Poster Session)

2aSC47.   Acoustic and articulatory information as joint factors coexisting in the
context sequence model of speech production
Daniel Duran*, Jagoda Bruni and Grzegorz Dogil​

​ *Corresponding author's address: Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart, Pfaffenwaldring 5b,
Stuttgart, 70569, BW, Germany, Daniel.Duran@ims.uni-stuttgart.de
  This simulation study presents the integration of an articulatory factor into the Context Sequence Model (CSM) (Wade et al., 2010) of speech
production using Polish sonorant data measured with the Electromagnetic Articulograph technology (EMA) (Mücke et al., 2010). Based on
exemplar-theoretic assumptions (Pierrehumbert 2001), the CSM models the speech production-perception loop operating on a sequential, detail-
rich memory of previously processed speech utterance exemplars. Selection of an item for production is based on context matching, comparing
the context of the currently produced utterance with the contexts of stored candidate items in memory. As demonstrated by Wade et al. (2010),
the underlying exemplar weighing for speech production is based on about 0.5s of preceding acoustic context and following linguistic match of
the exemplars. We extended the CSM by incorporating articulatory information in parallel to the acoustic representation of the speech
exemplars. Our study demonstrates that memorized raw articulatory information--movement habits of the speaker--can also be utilized during
speech production. Successful incorporation of this factor shows that not only acoustic but also articulatory information can be made directly
available in a speech production model.
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INTRODUCTION 

We present results from a computer simulation study on the integration of an articulatory factor into the Context 
Sequence Model (CSM) of speech production (Wade et al., 2010) using Polish speech data. We enrich the model’s 
original auditory memory with articulatory information, using continuous EMA signals directly in a speech 
production model.  
In the view of articulatory phonology (Browman & Goldstein, 1989) gestures, i.e. dynamic actions containing 
specified parameters correlating with the vocal tract settings (including lips, tongue, glottis, velum etc.), occur 
sequentially or undergo overlapping during the course of speech production and perception. In the current 
simulation, articulatory gestures are investigated on exemplar-theoretic grounds (Pierrehumbert, 2001), and are 
depicted with the help of EMA recordings as articulatory habits of speakers. 

Temporal organization of gestural movements has received broad attention in recent articulatory studies 
(Browman & Goldstein, 2000; Hermes et al., 2008). For example Nam et al. (2009) describe intrinsic model of 
syllable coordination based on ‘coupled oscillators’. In this model CV structures (where C is a syllable onset) are 
described to exhibit the in-phase type of coordination, whereas VC structures are said to be organized by the anti-
phase mode (where C is a syllable coda). Additionally, the authors (Nam et al., 2009) demonstrated a phenomenon 
described as C-Center Effect, which illustrates the stability of an articulatory distance maintained between the 
consonant and the vowel target in the onset CCV constructions for English. On the other hand, it has been shown 
that VCC constructions exhibit local organization of coordination, in which the first consonant gesture is related to 
the gesture of a vowel target. Moreover, analogous studies conducted on Italian (Hermes et al., 2008) and Polish 
(Mücke et al., 2010) seem to strengthen the observations on the C-Center Effect, showing presence of this type of 
coordination in the CV and CCV clusters, with no such bounding in the Polish coda VCC sequences. 

Wade and Möbius (2007) proposed a model of speech perception which operates on a set of acoustic cues 
extracted from a rich memory representation at landmark positions. These landmarks are said to contain parameter 
values (like amplitude, speech rate and other information) extorted from the speech signal. Newly perceived sounds 
are identified by a comparison between stored speech items in context, and immediately encountered auditory 
instances. Thus, speech perception relies on activation of the perceived landmarks and robustness of the context 
undergoing the matching process. One of the central assumptions of this exemplar model is that the representations 
of speech, that are to be stored, have to be immediately available to the auditory cortex. The less abstraction that 
takes place at the front-end, the higher the plausibility granted to the speech representation. 

The CSM models the speech production—perception loop operating on a sequential, detail-rich memory of 
previously processed speech utterance exemplars, grounding its assumptions in Exemplar Theory (Wade et al., 
2010).  In this model, selection of an item for production is based on context matching, comparing the context of the 
currently produced utterance with the contexts of stored candidate items in memory. According to Wade et al. 
(2010), context matching involves two types of information: left acoustic context and right linguistic context. Their 
simulations on a large speech corpus involved counting context similarities between the current and previously 
produced contexts. The authors conclude that the amount of context relevant for exemplar weighting during speech 
production is around 0.5 s, preceding and following the exemplar. Moreover, it is claimed that the context-level 
speech production is highly correlated with frequency effects previously assumed to be associated only with higher 
levels of speech organization. 

Our study is an extension of the Context Sequence Model by enriching it with articulatory information in parallel 
to the acoustic representation of the speech exemplars. Successful incorporation of this factor shows that raw 
articulatory information, i.e. memorized movement habits of the speaker, can also be made directly available and 
utilized during speech production.  

SPEECH MATERIAL 

The speech material for the present simulation experiment is taken from a Polish speech data base containing 
acoustic and articulatory recordings from three native speakers. The data was collected originally for a study on 
sonorant voicing in word onset or coda position (Mücke et al., 2010; Bruni, 2011).  

The corpus contains audio recordings and time-aligned articulatory measurements obtained through 
Electromagnetic Midsagittal Articulography (EMA) using a Carstens AG100, Electromagnetic Articulograph with 
10 channels. Signals from four sensors were used for the simulation experiments: two for the tongue body 
movements (recorded traces of sensors placed 3 cm and 4 cm behind the tongue tip), one for the tongue tip and one 
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for the lip distance (from two sensors placed on the vermillion border of the upper and lower lip). Three adult, native 
speakers (one male, two female) were recorded producing a set of carrier phrases with embedded, systematically 
varied target words. The target words were produced in two different conditions: with and without emphasis. 
Utterances that could not be processed automatically (due to inconsistent labeling or some missing or incomplete 
signal files) have been omitted for this study. The resulting two splits of the corpus comprise in total 336 utterances 
in the emphasis part and 337 utterances in the non-emphasis part. These two parts of the corpus are labeled “emph” 
and “noemph” in the remainder of the text. Manual annotation at the phonetic level covers single consonants and 
consonant clusters in onset and coda positions of the target words along with the syllables’ vowel. Only these 
labeled phone segments are used in this present study, along with stretches of the signals preceding the first segment 
to provide a left context for it–see below. 

The EMA measurements are originally sampled at 250 Hz. The four EMA signals are combined such that each 
frame is represented by an eight-dimensional vector with each dimension corresponding to one EMA measurement 
in the horizontal or in the vertical planes. The acoustic data has been converted to provide a structurally similar 
representation. Amplitude envelopes with a sampling rate of 250 Hz were computed for eight logarithmically spaced 
frequency bands. This representation was chosen according to earlier work on the CSM by Wade et al. (2010). The 
choice of using such a representation is particularly motivated by the idea to reduce the amount of signal processing 
to a level which seems plausible from an auditory or cognitive point of view. In addition to the amplitude envelopes, 
we convert the audio signals to a mel-frequency cepstral coefficient (MFCC) representation. The 13-dimensional 
MFCCs were computed using the mfcc function of the Auditory Toolbox (Slaney, 1998) for Matlab. The parameter 
frameRate of the mfcc function was set to 250 (corresponding to a 2 ms window shift). All remaining parameters 
were not changed from their respective default values. The corresponding velocity and acceleration data is added for 
both acoustic and articulatory signals and was computed with Matlab’s diff function. 

METHOD 

The present simulation experiment is based primarily on exemplar-theoretic assumptions formulated in the 
Context Sequence Model. In particular, the setup is designed as an extension to the experiments presented by Wade 
et al. (2010) in order to investigate the incorporation of articulatory data in the representations of speech items. The 
simulation experiment is implemented and carried out in Matlab.  

The production targets of the CSM are defined according to the labeled phone segments from the Polish EMA 
corpus. The simulation is carried out on each speaker sub-corpus separately, not mixing data from different speakers 
in the memory. In order to avoid selection of segments from their original utterances, each utterance in the corpus is 
in turn excluded from the model’s memory and treated as a new target utterance to be produced by the model. The 
remaining corpus data is treated as the memory sequence of speech exemplars. This approach forces the model to 
select a segment from a different utterance stored in memory. Note, that this also means that there will never be a 
perfect match as there are no identical acoustic/articulatory contexts in the memory at the signal level. All segments 
from the current target utterance are produced sequentially by the model. Candidate selection from the memory 
sequence is based on context matching.  

The original proposal of the CSM is extended by incorporating articulatory data. We compare the performance of 
the model on three different data types: acoustic speech data, articulatory speech data and a combined representation 
of both acoustic and articulatory data. All data types are processed in the same way. The algorithms do not treat the 
articulatory signals different from the acoustic signals. According to Wade et al.’s (2010) study we first set the size 
of the left context to 0.5 s as our baseline. As this value is based on experiments considering an acoustic speech 
signal representation, we additionally investigate the influence of the context length. Let wa and wb denote the length 
of the context in seconds and let na and nb denote the length of the context in frames (or samples) for the articulatory 
and the acoustic domains, respectively. The context lengths are varied systematically from a maximum of wa = 1.0 s 
to a minimum length of wa = 0.004 s, which is the minimum length at a sampling rate of 250 Hz corresponding to 
one frame of the discretized signal. The parameter wb is varied accordingly between wb = 1.0 s and wb = 0.004 s for 
both the amplitude envelope representation and the MFCC representation of the acoustic signals.  

The output sequence is initialized by copying wa and/or wb seconds of the original acoustic and/or the 
articulatory signals which immediately precede the first target segment (note, that there are no utterance-initial target 
segments in this study such that there is always a non-empty left context for each segment). This copied stretch of 
speech is interpreted as the original left context of the first segment that is to be produced by the model. Then, for 
each target segment, a stretch of wa and/or wb seconds from the output sequence provides the left context for the 
current production target. We follow Wade et al. (2010) and define the left-context similarity, or the context-match, 
according to the following formula: 
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where Ad,m:n = (Ad,m, …, Ad,n)
T and Bd,m:n = (Bd,m, …, Bd,n)

T are the articulatory and acoustic sequences in dimension d 
from index m to n, respectively, D is the number of dimensions,  t0 is the start index of the current target segment, te 
is the start index of the candidate segment, and, na and nb are the lengths of the left context in the articulatory and the 
acoustic domain, respectively. 

The similarity is computed for the entire cloud of candidate segments, comparing the context of each candidate 
segment from the memory with the context of the current production target. The one exemplar with the highest 
match score wins and is selected for production. An important modification to the original CSM in this simulation is 
the exclusion of the right, i. e. the “linguistic” context from the context matching procedure. This is done due to the 
relatively small size of the corpus and its regular and, therefore, highly predictable structure. In order to avoid an 
unwanted selection bias, the right context is thus not considered. Exemplar selection in this scenario is more difficult 
as it has to rely solely on the raw acoustic and/or articulatory signal information of the left context.  

Despite the underlying exemplar-theoretic assumption that all feedback during speech production is stored in 
memory and immediately available for future productions, the produced utterances in this simulation are not added 
to the corpus. For the sake of simplicity and in order to avoid artifacts, the underlying memory representation is not 
changed. Thus, the simulation has to be interpreted as a static simulation for each produced utterance which does not 
take into account processes such as memory decay or interference effects or any other kind of individual language 
change over time.  

Evaluation Method 

The manual annotation of the corpus is taken as the reference against which the results produced by the 
simulation experiments are evaluated. A context accuracy measure is defined for the evaluation at the segment-label 
level. It is defined as the proportion of produced segments for which their original context in the memory sequence 
from which they were selected matches the production context. The context, in this sense, is defined as the labels 
preceding and following a given segment. If, for example, a [p] segment was selected from a […upr…] context in 
the memory sequence for the production of that segment in a […ɨpr…] context, its right context would be counted as 
correct, while its left context would be counted as wrong. The baseline for this measure is defined as a random 
selection of a segment from the set of available candidates for each target item. The corresponding baseline values 
are estimated for each speaker sub-corpus based on the proportion of available segments with correct contexts.  

RESULTS 

Due to space limitations, we report only the total context accuracy which considers both the left and the right 
context of each produced segment. Tables 1 and 2 show the baseline values and the context accuracy results for all 
three speakers and all data types for the “emph” and the “noemph” parts of the corpus, respectively.  The tables 
show that the context accuracy is consistently higher for articulatory data (column “EMA”) than it is for acoustic 
data alone (columns “ENV” and “MFCC”) or the combined representations (columns “ENV+EMA” and 
“MFCC+EMA”). For all data types, the performance of the production model is clearly above the baseline. 

Tables 3, 4 and 5 show the context accuracy as a function of the two experimental parameters wa and wb for the 
combined data type from the “emph” part of the corpus for speakers 1, 2 and 3, respectively. Due to space 
limitations, not all results are shown for every tested context window length combination. Table columns correspond 
to specific lengths wa of the articulatory context window and rows correspond to settings of the acoustic context 
window length wb. The corresponding context accuracy results for the “noemph” part of the corpus are shown in 
tables 6, 7 and 8 for speakers 1, 2 and 3, respectively. 

The results of the context length variations for the combined data show that performance is improved in general 
by decreasing the acoustic context size in comparison to the initially assumed optimal length of half a second. A 
comparison between tables 1 and 2 on the one hand the results shown in tables 3-8 indicate that combined data 
representations with asymmetric context sizes for articulatory and acoustic data yield the best results in terms of 
context accuracy. A direct comparison of the model’s performance on the uni-modal data shows mostly better 
results on the amplitude envelopes than on the MFCCs. However, in combination with the EMA data, MFCCs yield 
higher accuracies, especially with asymmetric context sizes, as shown in tables 3-8. 
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TABLE 1. Context accuracy on the “emph” part of the Polish corpus for both audio representations using 
amplitude envelopes (ENV) and MFCCs and the articulatory EMA data with wa = wb = 0.5 s. 

 baseline acoustic articulatory combined 
  ENV MFCC EMA ENV+EMA MFCC+EMA 

Speaker 1 0,221 0,705 0,698 0,772 0,712 0,747 
Speaker 2 0,220 0,754 0,744 0,840 0,754 0,765 
Speaker 3 0,219 0,782 0,811 0,875 0,786 0,814 

 
 

TABLE 2. Context accuracy on the “noemph” part of the Polish corpus for both audio representations using 
amplitude envelopes (ENV) and MFCCs and the articulatory EMA data with wa = wb = 0.5 s. 

 baseline acoustic articulatory combined 
  ENV MFCC EMA ENV+EMA MFCC+EMA 

Speaker 1 0,219 0,781 0,749 0,795 0,781 0,763 
Speaker 2 0,217 0,832 0,775 0,857 0,832 0,782 
Speaker 3 0,217 0,768 0,757 0,871 0,768 0,779 

 
 
 
TABLE 3. Context accuracy for speaker 1 as a function of context window length based on ENV+EMA data (left) and 
MFCC+EMA data (right) of the “emph” part of the corpus. Maxima are printed in bold face, and minima in italics. 

ENV+EMA  MFCC+EMA 
wb wa  wb wa 

 1.0 0.6 0.5 0.4 0.004   1.0 0.6 0.5 0.4 0.004 
1.0 0.566 0.569 0.569 0.569 0.569  1.0 0.573 0.587 0.591 0.591 0.584 
0.5 0.612 0.712 0.712 0.712 0.705  0.5 0.609 0.744 0.747 0.747 0.694 
0.2 0.609 0.772 0.772 0.772 0.779  0.2 0.644 0.808 0.829 0.804 0.783 
0.05 0.605 0.733 0.737 0.751 0.733  0.05 0.655 0.772 0.779 0.754 0.694 
0.01 0.612 0.794 0.786 0.783 0.676  0.01 0.580 0.740 0.783 0.790 0.641 
0.004 0.619 0.769 0.815 0.794 0.690  0.004 0.577 0.719 0.747 0.779 0.644 
 
 
TABLE 4. Context accuracy for speaker 2 as a function of context window length based on ENV+EMA data (left) and 
MFCC+EMA data (right) of the “emph” part of the corpus. Maxima are printed in bold face, and minima in italics. 

ENV+EMA  MFCC+EMA 
wb wa  wb wa 

 1.0 0.6 0.5 0.4 0.004   1.0 0.6 0.5 0.4 0.004 
1.0 0.665 0.665 0.662 0.662 0.662  1.0 0.673 0.676 0.673 0.673 0.658 
0.5 0.765 0.754 0.754 0.754 0.754  0.5 0.751 0.754 0.765 0.758 0.744 
0.2 0.811 0.815 0.815 0.815 0.811  0.2 0.815 0.833 0.815 0.819 0.797 
0.05 0.762 0.790 0.783 0.808 0.783  0.05 0.801 0.847 0.843 0.829 0.726 
0.01 0.737 0.783 0.779 0.754 0.690  0.01 0.829 0.854 0.861 0.847 0.601 
0.004 0.754 0.783 0.790 0.772 0.665  0.004 0.815 0.840 0.847 0.861 0.612 
 
 
TABLE 5. Context accuracy for speaker 3 as a function of context window length based on ENV+EMA data (left) and 
MFCC+EMA data (right) of the “emph” part of the corpus. Maxima are printed in bold face, and minima in italics 

ENV+EMA  MFCC+EMA 
wb wa  wb wa 

 1.0 0.6 0.5 0.4 0.004   1.0 0.6 0.5 0.4 0.004 
1.0 0.632 0.632 0.632 0.632 0.632  1.0 0.639 0.636 0.636 0.636 0.632 
0.5 0.654 0.782 0.786 0.786 0.782  0.5 0.675 0.814 0.814 0.814 0.811 
0.2 0.596 0.779 0.782 0.782 0.782  0.2 0.629 0.779 0.796 0.814 0.796 
0.05 0.593 0.721 0.696 0.700 0.707  0.05 0.682 0.825 0.829 0.836 0.721 
0.01 0.604 0.754 0.725 0.736 0.693  0.01 0.686 0.886 0.864 0.861 0.689 
0.004 0.646 0.796 0.764 0.754 0.643  0.004 0.664 0.882 0.889 0.879 0.604 
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TABLE 6. Context accuracy for speaker 1 as a function of context window length based on ENV+EMA data (left) and 
MFCC+EMA data (right) of the “noemph” part of the corpus. Maxima are printed in bold face, and minima in italics. 

ENV+EMA  MFCC+EMA 
wb wa  wb wa 

 1.0 0.6 0.5 0.4 0.004   1.0 0.6 0.5 0.4 0.004 
1.0 0.451 0.455 0.459 0.459 0.459  1.0 0.429 0.425 0.437 0.437 0.437 
0.5 0.485 0.760 0.781 0.781 0.781  0.5 0.470 0.763 0.763 0.760 0.753 
0.2 0.485 0.770 0.777 0.774 0.770  0.2 0.485 0.802 0.792 0.788 0.763 
0.05 0.451 0.777 0.753 0.774 0.728  0.05 0.478 0.802 0.809 0.784 0.686 
0.01 0.478 0.774 0.802 0.799 0.742  0.01 0.451 0.784 0.806 0.792 0.622 
0.004 0.470 0.802 0.809 0.784 0.763  0.004 0.448 0.756 0.799 0.763 0.625 
 
 
TABLE 7. Context accuracy for speaker 2 as a function of context window length based on ENV+EMA data (left) and 
MFCC+EMA data (right) of the “noemph” part of the corpus. Maxima are printed in bold face, and minima in italics. 

ENV+EMA  MFCC+EMA 
wb wa  wb wa 

 1.0 0.6 0.5 0.4 0.004   1.0 0.6 0.5 0.4 0.004 
1.0 0.718 0.718 0.718 0.718 0.718  1.0 0.732 0.732 0.736 0.739 0.718 
0.5 0.807 0.836 0.832 0.832 0.832  0.5 0.768 0.782 0.782 0.782 0.775 
0.2 0.818 0.829 0.825 0.825 0.825  0.2 0.764 0.832 0.843 0.836 0.807 
0.05 0.782 0.804 0.800 0.800 0.754  0.05 0.775 0.839 0.839 0.832 0.725 
0.01 0.804 0.829 0.825 0.804 0.743  0.01 0.814 0.857 0.854 0.843 0.618 
0.004 0.804 0.861 0.843 0.839 0.725  0.004 0.814 0.846 0.854 0.861 0.593 
 
 
TABLE 8. Context accuracy for speaker 3 as a function of context window length based on ENV+EMA data (left) and 
MFCC+EMA data (right) of the “noemph” part of the corpus. Maxima are printed in bold face, and minima in italics. 

ENV+EMA  MFCC+EMA 
wb wa  wb wa 

 1.0 0.6 0.5 0.4 0.004   1.0 0.6 0.5 0.4 0.004 
1.0 0.573 0.573 0.573 0.573 0.573  1.0 0.584 0.584 0.584 0.584 0.577 
0.5 0.562 0.764 0.768 0.768 0.768  0.5 0.573 0.775 0.779 0.771 0.757 
0.2 0.551 0.796 0.793 0.793 0.793  0.2 0.584 0.793 0.789 0.789 0.754 
0.05 0.507 0.739 0.743 0.743 0.743  0.05 0.540 0.829 0.829 0.821 0.768 
0.01 0.522 0.796 0.779 0.779 0.732  0.01 0.599 0.839 0.839 0.850 0.650 
0.004 0.540 0.836 0.829 0.832 0.779  0.004 0.591 0.875 0.900 0.896 0.689 
 

CONCLUSION 

We presented an extension to the Context Sequence Model which integrates articulatory information into its 
exemplar based, context-sensitive production process. Candidate exemplars are specified in context based on a 
similarity score which takes into account acoustic and articulatory information. 

It has been documented, that Polish sonorants preceded by voiceless obstruents in word-final positions are 
desyllabified, i.e. they are not licensed for [voice] (Gussmann, 1997). Moreover, articulatory investigation of Polish 
CCV and VCC clusters (Mücke et al., 2010), demonstrated no coupling relations like C-Center Effect in the coda 
positions contrary to the strong bonding in onsets. The Polish EMA corpus contains precisely such clusters. Thus, 
the fact that the model selects segments from the memory which are appropriate in the given contexts indicates the 
presence of contextual information. This observation holds for both the acoustic as well as the articulatory domains. 

This present computer simulation study demonstrates that memorized raw articulatory information—movement 
habits of the speaker—can be available during speech production. Both modalities can be represented in memory 
and processed in parallel. Successful incorporation of this factor shows that not only acoustic but also articulatory 
information can be made directly available during speech production. 

It is hypothesized that without involving any complex front-end transformations (like acoustic/articulatory 
conversion and match), the amplitude envelope representation is robust enough and immediately available to the 
auditory cortex. Such a representation appears to be ideally suited for memory representations for exemplar based 
speech perception and production. 
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