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Abstract
Some models of speech perception/production and language ac-
quisition make use of a quasi-continuous representation of the
acoustic speech signal. We investigate whether such models
could potentially profit from incorporating articulatory infor-
mation in an analogous fashion. In particular, we investigate
how articulatory information represented by EMA measure-
ments can influence unsupervised phonetic speech categoriza-
tion. By incorporation of the acoustic signal and non-synthetic,
raw articulatory data, we present first results of a clustering pro-
cedure, which is similarly applied in numerous language acqui-
sition and speech perception models. It is observed that non-
labeled articulatory data, i.e. without previously assumed land-
marks, perform fine clustering results. A more effective cluster-
ing outcome for plosives than for vowels seems to support the
motor view of speech perception.
Index Terms: Speech production/perception, modeling, clus-
tering, EMA.

1. Introduction
Speech is continuous and highly ambiguous and variable,
within and across speakers. In first language acquisition, we
face the task of recognizing patterns within the speech stream
and partitioning it into (linguistically relevant) units. One of
the first steps towards the acquisition of linguistic categories
and units is thus segmentation of the continuous speech stream
and identification of individual speech events or items. How-
ever, no two utterances are identical. Therefore, some method
is needed to group speech events according to their similar-
ity into distinct groups. Speech events, in that sense, may be
any linguistic units like phrases, words, syllables, phones etc.
While lots of computational models of language acquisition and
speech segmentation are based on a symbolic speech represen-
tation consisting of a sequence of discrete units, e.g. phonetic
or syllabic segments [1], there are some models which are based
directly on quasi-continuous representations of the acoustic sig-
nal, e.g. spectral or mel-frequency cepstral coefficient (MFCC)
vectors. These models address the question of how linguistic
categories can be acquired without using ‘top-down’ informa-
tion (like pragmatic, semantic, lexical or phonemic knowledge
generating expectations or guiding the perception on ambigu-
ous and highly variable input). Learning linguistic categories
like phonemes or syllables in an essentially unsupervised fash-
ion based exclusively on the raw speech signal is a hard, if not
impossible to solve, problem. Despite large acoustic inter- and
intra-speaker variability, more or less similar sounds have to be

identified and extracted from the continuous speech stream. As
linguistic knowledge is usually assumed to be categorical [2, 3]
a clustering technique is applied in some computational exper-
iments, to group similar acoustic samples or patterns together
[4, 5, 6]. The goal is to group percepts such that similarity
within a cluster is maximized while similarity between differ-
ent clusters is minimized. These clusters could then form a first
step towards categorization of short stretches of speech. Clus-
tering, in general, is considered a fundamental cognitive strat-
egy for speech segmentation in language acquisition [7] and is
also applied in symbolic approaches [8]. However, while there
may be no purely acoustic cues that would group a sequence
of, for example, three events like: silence, plosion, release
into one phone, the fact that all three are caused by one con-
tinuous articulatory gesture will bias any learning algorithm to
view them as a single phone. Some computational speech per-
ception/production models incorporate articulatory information
such that they use an articulatory speech synthesizer in order to
simulate somatosensory feedback information [6, 9, 10].

From the perspective of Motor Theory of Speech Percep-
tion [11], units of speech are stored as articulatory patterns and
motor commands, providing a basis for using different phonetic
categories during speech production. Thus, speech perception
is a process of conversion from acoustic signal to gestural com-
prehension. It is claimed [11] that differences between phonetic
categories during stop perception (as in [ba] and [pa]) can be
perceived without certain cues, for example voicing. Instead,
phonetic category definition comprises significance of articula-
tory gestures and is more than just acoustic encoding.

In his speech perception model, [3] introduced a notion of
landmarks, i.e. regions in a signal which contain acoustic evi-
dence for particular phonetic features. It is posited that configu-
ration of the articulatory movements exhibits categorical acous-
tic effects. The relation between the acoustic properties and
the articulatory displacement shows either minimum/maximum
values or is discontinuous. Thus, the occurrence of spectral dis-
continuity, particular frequency amplitude or measurement of
its abruptness provides a landmark for phonetic features. Sim-
ilarly, [12] proposed a model of speech perception which op-
erates on a set of acoustic cues extracted from a rich memory
representation at landmark positions. These landmarks are also
said to enclose parameter values extorted from the speech sig-
nal. Thus, according to [12], speech perception relies on the
activation of the perceived landmarks along with the successful
context-matching.

In the view of articulatory phonology [13, 14, 15] gestures
are basic units of speech production. These dynamic articula-
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tory actions contain specified parameters correlating with vocal
tract settings (including lips, tongue, glottis, velum etc.), which
occur sequentially or undergo overlapping during the course of
speech. Analysis of articulatory aspects of speech deals also
with its temporal organization within syllable structure. [16]
proposed an intrinsic model of syllable coordination, where the
‘in-phase mode’ generates the coordination of CV structures
(where C is a syllable onset), whereas VC structures are coor-
dinated by the ‘anti-phase mode’ (where C is a syllable coda).
The authors demonstrated competitive articulatory patterns of
complex CCV English onsets, the so called C-Center Effect.
This correlation is obtained by measuring the interval between
the mean value of the onset consonantal targets and the vowel,
where the consonants maintain a stable distance with regards to
the vowel target. Furthermore, it is claimed that in the VCC
syllables the first consonant gesture is related to the gesture of
a vowel target, exhibiting local organization of coordination. In
analogue studies conducted on Italian [17] and Polish [18], C-
Center like coordination has been demonstrated in CV and CCV
clusters, with no such correlation in their Polish coda counter-
parts.

Recording articulatory movements with an Electromagnetic
Midsagittal Articulograph (EMA) is a labor-intensive task and,
so far, EMA data has been used primarily to extract a discrete
set of features or cues at specific landmark positions (for exam-
ple C-Centers [19]). These features are obtained from manual
annotations of the signal, which is not only an additional very
labor-intensive task, but it is also inherently subjective and de-
pends on a more or less arbitrarily fixed annotation scheme.

In the experiments presented in this paper, we address the
question whether raw EMA signals could be used analogously
to the usage of acoustic data in computational models of speech
perception, without having to manually label articulatory ges-
tures or landmarks. We investigate whether computational mod-
els of speech perception and production which are based on au-
ditory representations could benefit from the incorporation of
real articulatory information. For this purpose, we combine the
acoustic speech signal with raw EMA signals and apply a clus-
tering procedure on the speech data.

2. Method
We use data from a corpus that was constructed to investigate
the C-Center effect in Polish [18]. The acoustic and articula-
tory signals were obtained using a 2D Electromagnetic Artic-
ulograph, Carstens AG100, 10 channels. Three Polish native
speakers (2 female, 1 male) participated in the study. Sensors
were placed on the vermillion border of the upper and lower lip
and on the tongue (3 sensors: 1cm, 3cm and 4cm behind the
tongue tip). Coronal sounds, vowel articulation and velar con-
sonants were analyzed with the sensor placed on the tongue tip
and two sensors attached to the dorsum. Two additional ref-
erence sensors were attached to the nose and the upper gums,
to correct head movements. The data was sampled at 400 Hz,
down sampled to 250 Hz, smoothed with a low-pass filter at
40 Hz. All data was stored in Simple Signal File Format (SSFF),
and manually labeled in EMU Speech Database System1. Tar-
get words with simple onsets and codas as well as onset and
coda clusters containing a voiceless stop and a sonorant were
recorded in the following carrier phrases: (1) onset position:
“Ona mówi pranie aktualnie” (She is saying laundry currently),
(2) coda position: “Ona powiedziała Cypr aktualnie” (She said

1Available online at: emu.sourceforge.net

Cyprus currently). The underlined target word was recorded
with an emphasis mode of articulation. For the list of words,
see table 1.

Table 1: Structure of target words

Onset Coda
/p/ padnij typ
/k/ kadisz tik
/l/ labrys gil
/r/ rabin tir

/p/ + /l/ plamić ZUPL
/p/ + /r/ pranie Cypr
/k/ + /l/ klawisz cykl
/k/ + /r/ krasić WIKR

The EMA signals were combined to form a sequence of
4-dimensional, length normalized vectors (3 signals from the
tongue and one for lip aperture). Following [20], the acous-
tic data in our experiments was converted to an 8-dimensional
representation with amplitude envelopes from 8 logarithmi-
cally spaced frequency bands, sampled at 250 Hz for com-
putational efficiency. This corpus allowed us to compare 3
different data types for the same speech material: (1) using
only the 4-dimensional EMA data (‘EMA’), (2) using only
the 8-dimensional envelope representation of the acoustic data
(‘ENV’) and (3) using a combined 12-dimensional representa-
tion of EMA and acoustic signal (‘EMA+ENV’).

We selected a total of 336 (3 × 112) utterances for our ex-
periment. We do not use the manually created annotation. How-
ever, since we evaluate against the given reference annotation,
we can use merely the labeled parts of the corpus. Only the con-
sonants and consonant clusters in the target words along with
their corresponding vowel were labeled at the phone level. Be-
cause of this selective annotation, the different phone classes’
proportions are very unbalanced in our speech corpus. For
speaker 1, for example, 21% of all data frames are labeled [a],
while only 2% of the data are [u] frames. In order to avoid
any negative effects caused by this unequal distribution, we
applied a random sampling procedure to create corpus sam-
ples with equally-sized phone classes per speaker. To further
account for effects caused by the random selection of frames
from the original data, we repeated this sampling procedure 10
times for every speaker and every data type (EMA, ENV and
EMA+ENV). Thus, we created a total of 90 data sets or corpus
samples (3 speakers × 3 data types × 10 random samples). We
apply a clustering procedure separately for all corpus samples
using bisecting k-means [21].

3. Evaluation and results
We use purity (P) [22] to evaluate the quality of the clusters. To
compute P, each cluster ωl is assigned to the reference phone
label class ci whose frames are most frequent in ωl, and then
the accuracy of this assignment is measured by counting the
number of correctly assigned frames and dividing by the total
number of frames N :

purity(Ω, C) =
1

N

∑
l

max
i
|ωl ∩ ci| (1)

where Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C =
{c1, c2, . . . , cJ} is the set of reference phones labels or classes.
We interpret ωk as the set of frames assigned to ωk and cj as
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Table 2: Purity of clustering per speaker

speaker ENV EMA EMA+ENV
1 0.44 0.42 0.44
2 0.49 0.54 0.48
3 0.48 0.54 0.48

Table 3: Unmatched phone classes per data type (speakers 1-3)

k p r l u y i a
EMA 3 3 0 6 0 2 3 17
ENV 3 7 6 7 10 5 0 0
EMA+ENV 4 3 8 6 11 6 0 0

the set of frames labeled with label cj in equation 1. A perfect
clustering has purity 1, while bad clusterings have purity val-
ues close to 0. Purity is an intuitive measure of cluster quality,
but high purity is easy to achieve when the number of clusters
is large – in particular, purity is 1 if each frame gets its own
cluster. The number of classes in our experiments corresponds
to the number of reference labels and depends on the decision,
which labels should be used for evaluation. Note also, that an-
notation of continuous data like a speech signal with a discrete
set of labels always contains some more or less arbitrary deci-
sions, like, for example, labeling a plosive with a single label or
labeling the silence and release parts of the phone with separate
labels etc. We evaluate P for the case where C = {p, r, a, l, k, i,
y2, u} corresponds to the set of phone labels and |Ω| = |C| = 8.
Table 2 shows P averaged over the 10-fold sampling procedure
with equally-sized phone classes per speaker.

Tables 4, 5 and 6 show confusion count matrices for ENV,
EMA and EMA+ENV data, respectively (i.e. they show how
often a particular data frame of a cluster was actually labeled
with a phone label). The results were obtained by summing the
confusion counts for all 3 speakers and all 10 repeated cluster-
ings. The table rows correspond to the clusters and the columns
to the phones. They are labeled according to the same criterion
used for the computation of P: each cluster is assigned to the
phone class which is most frequent in that cluster. We will refer
to this as a phone class being ‘matched by a cluster majority’.
An ideal clustering would assign all frames of one class to one
separate cluster resulting in a diagonal confusion matrix. Fig-
ure 1 shows a visualization of the confusion matrices of tables
4, 5 and 6. The horizontal barplots show the relative distribu-
tion of phone classes for a given cluster. The three data type
conditions are shown side-by-side, with dark grey correspond-
ing to EMA, medium grey corresponding to EMA+ENV and
light grey corresponding to ENV data. Note, that while on av-
erage all phone classes are matched by such a cluster majority
(i.e. the highest numbers per row are on the diagonal and there
are no completely empty rows in the tables), this is not always
the case for each individual run on a corpus sample. Table 3
shows a summary of how often each phone was not matched
by a cluster majority. The most often unmatched phone classes
were: [a] on EMA, [u] on ENV and EMA+ENV data.

The phones can be divided into 3 groups: (1) plosives
(phones [p] and [k]), (2) sonorants ([r] and [l]), and (3) vowels
([u], [1], [i] and [a]). A direct comparison of the different data
types in figure 1 reveals that clustering EMA data is more suc-

2The (orthographically motivated) label ‘y’ is used for the Polish
central high vowel [1].

Table 4: Cluster×phone confusions; speakers 1-3: ENV

k p r l u y i a
c:k 1153 898 489 162 165 112 171 33
c:p 781 974 365 114 84 121 118 9
c:r 492 319 1103 324 85 435 132 91
c:l 158 223 372 1269 322 240 401 77
c:u 70 145 283 581 1332 650 297 123
c:y 122 239 306 310 881 1726 34 257
c:i 490 479 311 509 431 16 2146 31
c:a 34 23 71 31 0 0 1 2679

Table 5: Cluster×phone confusions; speakers 1-3: EMA

k p r l u y i a
c:k 1750 24 47 15 0 280 469 189
c:p 4 1436 16 0 399 85 19 248
c:r 81 211 1890 1191 1 125 76 736
c:l 187 12 436 1314 0 9 96 336
c:u 48 1234 219 241 2596 591 116 363
c:y 222 196 415 423 21 1768 458 492
c:i 917 16 147 69 0 347 1952 389
c:a 91 171 130 47 283 95 114 547

cessful for plosives than for vowels (as indicated by the higher
peaks). Clustering acoustic data, on the other hand, is more suc-
cessful for vowels (with some confusion between [u] and [1]).
The flatter distributions of ENV and EMA+ENV indicate that
clustering generally performs better on EMA data than on am-
plitude envelopes (if evaluated against the phonetic segments as
reference classes). This tendency can also be seen by the rel-
atively higher peaks in the diagonal for EMA data. However,
only the extremes of the confusion matrix show very clear re-
sults: EMA does clearly provide enough information to identify
[p] and [k], while ENV provides comparably more information
to identify vowels, especially [a]. The results in table 3 show
that while [a] is frequently not matched by a cluster majority, in
total there is slightly more confusion on ENV data (as indicated
by the higher total number of unmatched phone classes).

4. Conclusions
We found indications that with respect to purity, using EMA
signals can improve the results of a clustering procedure. Clus-
tering experiments show better results for EMA data in case of
plosives rather than vowels. This might serve as evidence for
a motor speech perception/production approach [11] according

Table 6: Cluster×phone confusions; speakers 1-3: EMA+ENV

k p r l u y i a
c:k 828 629 384 130 121 115 119 29
c:p 1128 1364 547 185 173 160 153 6
c:r 462 244 993 312 48 398 112 82
c:l 148 175 351 1313 335 215 396 68
c:u 81 168 323 532 1310 725 291 134
c:y 142 241 312 297 927 1664 48 296
c:i 479 456 289 499 386 23 2180 20
c:a 32 23 101 32 0 0 1 2665
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Figure 1: Relative cluster×phone confusions. Dark grey: EMA;
medium grey: EMA+ENV; light grey: ENV.

to which plosives, involving usage of a variety of articulators,
are more distinct than vowels, which production is more grad-
ual in terms of articulatory settings. Overall, it seems possible to
model speech perception without taking all phonetically distinct
cues into account. Our study shows that acoustic landmarks em-
bedded in spectral information need not be always accounted
for in speech modeling.

Articulatory information as represented by raw EMA sig-
nals provides a useful resource for unsupervised categorization
of speech samples. Excluding discrete landmarks supports com-
putational models of speech perception using a rich memory
representation where every bit counts [20]. It also allows incor-
poration of articulatory information into an acquisition model
without having to justify the employment of a particular set of
discrete gestural features or landmarks (and, without having to
manually extract these data from EMA measurements). That
way, EMA data can be incorporated analogously to acoustic sig-
nals and processed using the same methods.

Although we implemented an unsupervised clustering of
the corpus data, our experiments depended on manually cre-
ated annotations in order to evaluate them. This reduced the
amount of available data drastically, even though the full acous-
tic and EMA signals for all utterances were available. We think
that this fact additionally supports our claim – that it might be
advantageous to use unlabeled articulatory data.
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