
June 13, 2007

Arabic Computational

Linguistics: Current

Implementations

A. Farghaly, Editor

May 23, 2006

CENTER FOR THE STUDY
OF LANGUAGE
AND INFORMATION

June 13, 2007

Contents

1 The Language Weaver Arabic to English Statistical
Machine Translation Software System 1

Alexander Fraser, William Wong

v

June 13, 2007

June 13, 2007

1

The Language Weaver Arabic to

English Statistical Machine

Translation Software System

Alexander Fraser, William Wong

1.1 Introduction

1.1.1 Motivation

In the Spring of 2003, Language Weaver Inc. began developing Arabic
to English Statistical Machine Translation Software (SMTS). There
were several strong reasons why this language pair and methodology
were chosen. The intent of developing this software was to validate
the statistical approach to Machine Translation (MT) in the form of a
commercial product, and it was judged that an Arabic to English MT
system would achieve this. Arabic to English MT was also perceived
as a good market opportunity. Available MT solutions at the time did
not produce output at a high enough quality level to be useful for
many applications. Another reason to release such a product was the
need for a translation engine which could be integrated with automatic
speech recognition and optical character recognition, both of which out-
put imperfect Arabic text which then forms the input to the machine
translation system. Statistical Machine Translation approaches appear
to be more robust to problems with the quality of the input text than
rule-based approaches, degrading smoothly as the quality of the input
text decreases. All of these factors contributed to Language Weaver’s
decision to allocate significant resources for the creation of its first flag-
ship product, Arabic to English SMTS. Language Weaver’s Arabic to

1

Arabic Computational Linguistics: Current Implementations.
A. Farghaly, Editor.
Copyright c© 2007, CSLI Publications.

June 13, 2007

2 / Alexander Fraser, William Wong

English Statistical Machine Translation Software was the first statisti-
cal MT product to reach the market.

1.1.2 Language Weaver Technology Background

Statistical Machine Translation

Machine translation research has progressed in recent years with the
development of new techniques for automatically learning rules from
large corpora of translated documents, an approach which is sometimes
referred to as data-driven Machine Translation or Example-Based Ma-
chine Translation. Statistical Machine Translation (SMT) is a group
of approaches based on probabilistic modeling which have met with
considerable success. SMT systems have had the best performance in
the NIST Machine Translation evaluations1 every year from 2001 to
the present, and were the best performers in the German Verbmobil
evaluation Wahlster (2000).

In the SMT approach, Brown et al. (1993), a large corpus of docu-
ments and their translations are automatically analyzed and a “word
alignment”, which shows translational correspondence of words, is au-
tomatically generated for every sentence and its translation. The proba-
bilities of alternative translations as observed in the word alignment are
estimated, and a “translation model” is created. A “language model”,
which is a statistical model of well-formed sentences in the target lan-
guage, is used to find grammatical output in the translations proposed
by the translation model. After these models are estimated, they are
stored on disk. When new source language text arrives for translation,
a search process is invoked to automatically determine the best hypoth-
esis according to both the translation model and the language model.
This is conceptually similar to considering a very large number of rules,
each of which covers a small piece of the input sentence, to see which
ones work well together (i.e., which of the rules, which cover the input
sentence, generate good target language sentences).

Details on statistical models and estimation of their parameters are
provided in Section 1.1.5. Example entries in the translation lexicon
are presented in Section 1.1.5.

Comparison with Rule-Based Approach

The Statistical Machine Translation approach forms a strong contrast
with traditional rule-based approaches. The rule-based approach re-
quires a large level of effort by highly trained linguists for each transla-
tion direction implemented. Linguists analyze a relatively small amount
of parallel data and write rules which reproduce it perfectly. The dif-

1http://www.nist.gov/speech/tests/mt/

The Language Weaver Arabic to English Statistical Machine Translation Software System / 3

June 13, 2007

ficulty is in creating rules which generalize well, to apply to a large
variety of inputs texts, while still producing output which is correct.
A rule-based system may sometimes depend on an automatically gen-
erated syntactic analysis in order to help with this generalization, but
automatic syntactic analysis is not perfect and sometimes makes er-
rors. One problem with this approach is that when the input does not
conform to what is expected, it can be difficult to write fall back rules
which minimize the impact of the ensuing errors.

In contrast, a purely Statistical Machine Translation approach in-
volves no rule writing, and automatically generates a very large num-
ber of rules, some of which may memorize large portions of training
sentences. Present state-of-the-art models use no syntactic analysis,
though this is likely to change in the near future. Translation opera-
tions can be performed on any substring of the input source language
string, and are not limited to syntactic constituents. In contrast with
most rule-based approaches which require clear sentence boundaries
because of syntactic analysis, phrase-based SMT does not require such
boundaries, matching any sub-string. Because of this the output of
phrase-based SMT systems degrades gracefully when the text lacks
punctuation or there are disfluencies in the text. One disadvantage of
statistical machine translation is the comparatively slow speed of the
search process which finds the maxima of the translation model and
the language model, which considers a very large number of potential
translations.

Creating New Machine Translation Systems

The Statistical Machine Translation approach can be cheaply and
quickly implemented for a new language pair if the requirements of
having parallel training data for the translation model, and monolin-
gual target language data for the language model are met. Likewise, the
customization of a system for a new domain is rapid. If there is access
to sufficient data, the system can be simply trained on the new data.
If there is limited training data available in the new domain, statis-
tics from the new domain can be traded-off against statistics from the
general domain.

1.1.3 Software Requirements

The basic software requirement was to create a program which performs
automatic translation of electronic text in Modern Standard Arabic
into electronic text in English with high translation quality and at
reasonable speed. Input text could come from a variety of sources. It
was important that the system be robust to variations in writing style,

June 13, 2007

4 / Alexander Fraser, William Wong

to shifts in the domain of the texts, and be robust with respect to the
quality of the input text.

The software needed to be delivered on CD-ROMs or DVDs, though
it could be periodically updated. It was designed to run on workstations
or a laptop under recent versions of Microsoft Windows. Two configu-
rations were envisioned, a server configuration for groups of users and a
stand-alone configuration for a single user. Because Language Weaver
is primarily concerned with the development of the translation engine,
it was decided that APIs would be made available so that resellers and
integrators could embed the Language Weaver translation engine inside
their products.

Initial market research showed that the translation speed needed
to be greater than 500 words per minute, and the models needed to
fit within 2 gigabytes of memory. A myriad of supported document
formats were envisioned. Although the initial releases supported only
text files and HTML input, subsequent releases added such formats as
Microsoft Word and Adobe PDF.

There were many challenges involved in delivering such a product.
Language Weaver worked with the University of Southern California’s
Information Sciences Institute (USC/ISI), which made available algo-
rithms and statistical MT expertise. Roughly twenty person-years of
invention and development of Drs. Kevin Knight and Daniel Marcu,
Language Weaver’s Founders, and their students were made available.
But these algorithms were implemented as scripts for performing re-
search; not robust commercial products. The statistical paradigm in-
volves searches over millions of possible translations for each input sen-
tence. For example, an experimental system might translate a single
document using 24 hours of pre-computation to begin with, then fur-
ther processing to find the best translations for each sentence in the
document. In fact, some experimental systems rely on using many com-
puters in parallel for hundreds or even thousands of hours of compu-
tation. Such research systems also use large parameter sets associated
with the statistical models which do not fit into 2 gigabytes of memory.
It was a major challenge to go from such research systems to a finished
commercial product.

1.1.4 Linguistic Framework

The Language Weaver system is implemented in a low-level transfer
framework. Consecutive words are analyzed into units (called phrases,
even in the case that the unit is a single word) and then transferred
directly to their equivalents in the target language. There is no reliance
on difficult syntactic analysis, which is error-prone and can be slow.

The Language Weaver Arabic to English Statistical Machine Translation Software System / 5

June 13, 2007

The system is able to deal with genres of text which would be difficult
to describe completely and accurately with a formal grammar. It is
able to deal with malformed input such as spelling errors, input lack-
ing punctuation and other problems. Because there is no complicated
analysis step involving a search over possible syntactic structures it is
easier to ensure that it always generates output than it is to ensure this
for rule-based systems.

By making the probabilistic assumption, a framework becomes avail-
able in which errors can be explicitly modeled in an attempt to min-
imize their impact. In rule-based systems, the highly trained linguists
who write the rules try to envision the consequences of every possible
input. However, when the rules they write turn out to be inconsistent,
due to unexpected input, it is very difficult to choose between necessary
errors because there is no underlying principle under which the impact
of such errors can be minimized.

The Language Weaver system is able to work on specialized gen-
res of language which may not be easily analyzable using syntactic
parsing designed to work with complete sentences. For instance, the
Language Weaver system is excellent at translating headlines, which
are not complete sentences, even though no additional work was put
into customizing the system for this purpose.

Although the overall framework is probabilistic, the current imple-
mentation of the Language Weaver system is a hybrid system. Most
of the difficult translation work is done with statistical models, but
in principle anything which can be described with rules can be easily
integrated into the system and such rules even interact with the prob-
abilistic translation components of the system, as will be described
below. In addition, the Language Weaver engine is available with tools
allowing users to specify their own dictionaries (see Section 1.2.1), and
with a translation memory which can be loaded with partial or full
sentences which are designated as correct translations.

1.1.5 Computational Methodology

Current state of the art SMT systems are “phrase-based”, Och and Ney
(2004), Marcu and Wong (2002), Koehn et al. (2003), meaning that they
operate by matching groups of one or more consecutive words called
“phrases” against a probabilistic translation lexicon. There is often
no analysis of inflectional morphology and the modeling of syntactic
word order is based only on small windows of neighboring words (these
models are called n-gram models).

A phrase-based SMT system uses a bitext of parallel source language
sentences and target language sentences and an alignment of that bi-

June 13, 2007

6 / Alexander Fraser, William Wong

text. The model estimated from the bitext is called the translation
model because it maps source phrases to target phrases.

The target language text of the bitext is used to build a model of
good target language sentences. Additional target language text which
is not from the bitext can be used to help build a better model of target
language sentences. This model is used for determining which phrases
fit together best, and determining the best ordering of the phrases to
form a fluent target sentence. This component of the SMT system is
called the language model.

See figure 1 for an intuitive overview of how statistical machine trans-
lation systems work. In the graphic, we imagine that the translation
model prefers using target language phrases of “he is”, “very”, and
using one of the two phrases “the happy” or “happy” (in practice,
the number of translations considered would be many orders of mag-
nitude greater even for this short sentence). All possible reorderings of
these phrases are considered, and the translation model assigns prob-
abilistic scores based on the goodness of each phrase translation and
the goodness of the reordering (based on a statistical model of how
source language phrases are reordered into target language phrases).
The language model estimates how grammatical the generated target
language would be. In the example, the language model prefers “he is
very happy” over the other variants considered, and the search discov-
ers that this variant maximizes the translation model and the language
model and therefore chooses this as the string to output. In practice,
the search process considers a very large number of possible output
strings, partially constructing many different hypotheses. The search
process is described in further detail in Section 1.1.5.

The statistical basis for SMT is found in the noisy channel model,
which was proposed for use in machine translation by a group work-
ing at IBM research laboratories in a group of publications, including
Brown et al. (1993). For ease of exposition, the source language for the
translation task is referred to as “Foreign”, and the target language is
referred to as “English”, although these can be any language pairs in
practice. The variable e represents any potential string made up of En-
glish words, while f represents any potential string made up of Foreign
words. Pr(e) represents the true distribution over English strings, while
Pr(f) represents the true distribution over Foreign strings. Pr(f |e)
represents the true distribution over Foreign strings generated from
English strings.

The translation problem is defined as follows. Given a Foreign string
f , find the English string ê according to Equation 1.1. The second step
is an application of Bayes’ Rule, while the third step is true due to

The Language Weaver Arabic to English Statistical Machine Translation Software System / 7

June 13, 2007

Arabic/English
Bilingual Text

English Text

Statistical Analysis Statistical Analysis

Arabic Text

Arabic Broken
English

English

He is the happy very
Happy he is very
He is very happy
He is happy very …

He is very happy

FIGURE 1 Statistical Machine Translation

June 13, 2007

8 / Alexander Fraser, William Wong

the properties of the argmax operator (and the fact that f is constant,
since it is the Foreign sentence we wish to translate to English).

ê = argmax
e

Pr(e|f)

= argmax
e

Pr(e) ∗ Pr(f |e)/Pr(f) (1.1)

= argmax
e

Pr(e) ∗ Pr(f |e)

Brown et al. (1993) developed five statistical models of transla-
tion (IBM Models 1 through 5) and parameter estimation techniques
for them. The models were designed to be used in a pipeline, where
each model is bootstrapped from the previous model. The models are
trained using variants of the Expectation Maximization algorithm.
Expectation-Maximization Dempster et al. (1977), or EM, is an algo-
rithm for finding parameter settings of a model which maximize the
expected likelihood of the observed and the unobserved data (this is
called the complete data likelihood; the incomplete data likelihood
is the likelihood of only the observed data). Intuitively, in statistical
word alignment, the E-step corresponds to calculating the probability
of all word alignments according to a current model estimate, while
the M-step is the creation of a new model estimate given a probability
distribution over possible word alignments (which was calculated in
the E-step).

These distributions are modeled using parameterized models. The
model of Pr(e) is referred to as the language model, while the model of
Pr(f |e) is referred to as the translation model. The interested reader
is referred to tutorials on the IBM models, Knight (1999b). Note that
in modern phrase-based Statistical Machine Translation systems there
may be several probabilistic models responsible for analyzing potential
target language output strings and several other probabilistic models
of the correspondence between source and target strings, but concep-
tually these can still be divided into a language model (responsible
for determining the goodness of target language strings) and a transla-
tion model (responsible for producing scored mappings of source strings
to target strings). The interested reader is referred to the sections of
Callison-Burch and Koehn (2005) which present phrase-based Statisti-
cal Machine translation for further details.

The Language Weaver Arabic to English Statistical Machine Translation Software System / 9

June 13, 2007

Training - Estimating the Parameters of the Statistical
Models

The process of “Training” is the process of estimating the parameters
of a statistical model. This is sometimes referred to as “learning” the
parameters of the model. This process is central to the SMT approach.
The basic idea is to perform automatic annotation of data, rather than
manually writing rules. The process of automatic annotation used is
called word alignment, and before we describe it, we discuss the prepa-
ration of the data used.

The training process begins with “parallel” training data. This con-
sists of documents and their translations. In some cases large collec-
tions of texts and their translations must be automatically “document
aligned”, meaning that the mapping of each document to the document
that is its translation must be automatically determined.

Once a collection of aligned documents which does not overlap with
the test sets is available, preprocessing is performed. In the Language
Weaver training process, preprocessing the training data consists of
first performing sentence breaking (breaking the text into sentences)
and tokenization (separation of punctuation attached to words). This
is followed by automatic sentence alignment, where the sentences which
are translations of one another are identified using statistical models.

The only data which is manually sentence aligned is data used for
test sets. Recently, the MT community has begun to use automatic
evaluation metrics which measure the overlap of output text with one
or more sets of gold standard translations. These sets of translations are
called the “references”. Multiple reference test sets are often translated
by translation companies specifically for the purpose of MT evaluation.
Sometimes single reference test sets are extracted from existing parallel
data, in which case the sentence alignment must be manually verified. It
is extremely important that the test sets not overlap with the training
data. If there is such overlap, the estimate of translation quality will
be too optimistic.

The next step is word alignment. In this step an automatic word
alignment for each pair of parallel sentences in the bitext is generated. A
word alignment indicates which words are translations of one another.
Word alignments are generated using statistical models as in Brown
et al. (1993), Marcu and Wong (2002). An example word alignment for
a parallel segment taken from the Linguistic Data Consortium’s Arabic
Treebank is shown in Figure 2.

A “phrase-to-phrase” alignment is then generated. The term “phrase”
here refers to a group consisting of one or more consecutive words. This

June 13, 2007

10 / Alexander Fraser, William Wong

FIGURE 2 Word Alignment of a Sentence from the LDC Arabic Treebank

The Language Weaver Arabic to English Statistical Machine Translation Software System / 11

June 13, 2007

FIGURE 3 Phrases Extracted From the Word Alignment in Figure 2

is done using the techniques outlined in Marcu and Wong (2002) and/or
using simple heuristics on the word-to-word alignment, Och and Ney
(2003), Koehn et al. (2003). In the latter case, possible consecutive-
word phrase pairs, as indicated by the word alignment, are extracted
using an algorithm similar to that outlined in Koehn et al. (2003).
Figure 3 shows the possible phrase translations extracted from the
word alignment shown in Figure 2. The result of the phrase-to-phrase
alignment is a “phrase lexicon”, which is a list of consecutive-word
“phrases” with their translations. Each of these is annotated with one
or more probabilistic scores. The phrase lexicon is the most important
component of the translation model and is the only component used
for mapping source language phrases to target language phrases.

There are several other important components of the translation
model. The models responsible for word movement are one such set of
components. Word movement is the problem of how to reorder phrases
as they are translated. For instance see the example in Section 1.1.5.
The goodness of the reordering is a factor of not only the location in
the target string of the translated words, but also the context (words
nearby) and the translation choices made. Additional models include

June 13, 2007

12 / Alexander Fraser, William Wong

smoothed estimates of the phrase translation probabilities using word-
level translation probabilities.

Next, the language model is constructed. This is performed using the
monolingual target language text from the parallel data and additional
target language text. Generally, there is access to a much larger amount
of target language text which matches the domain, and this will help the
estimation of the language model. The type of language model generally
used in the SMT approach is called an n-gram model. Such a model
uses the Markov assumption to limit the relative context and has been
shown to perform well for Statistical Machine Translation and other
data-driven MT variants. The formula for a trigram (3-gram) model,
where the probability of the current word depends only on the two
previous words is shown in Equation 1.2, where e1 is the first word of
the n word English string e and S is a special symbol denoting the
beginning of a string.

p(e) = p(e1|S)p(e2|S, e1)

n∏

i=3

p(ei|ei−2, ei−1) (1.2)

It is well known that direct estimation of the relevant probabili-
ties with maximum likelihood fairs poorly due to data sparsity, and in
practice this estimate must be smoothed. There are many well-studied
smoothing techniques. For example one effective technique is interpo-
lation of zerogram, unigram and bigram estimates with the trigram
estimate. In addition, machine translation has a vocabulary which can
not be completely specified in advance and steps must be taken to make
the language model robust to this (generally by replacing out of vocab-
ulary items with one or more special symbols for which parameters
are specially estimated). Syntactic language models such as Charniak
et al. (2003) can also be used in statistical machine translation sys-
tems. Language Weaver has conducted extensive experimentation on
the estimation of and smoothing of n-gram language models for ma-
chine translation.

In practice, several translation models and several language mod-
els are used and their estimates are combined in a log-linear fashion.
The weights of the log-linear model are trained using the Maximum
BLEU training algorithm defined in Och (2003). The resulting transla-
tion systems are then evaluated by translating a held out test set and
evaluated.

The Language Weaver Arabic to English Statistical Machine Translation Software System / 13

June 13, 2007

Search

The search problem is the problem of finding a hypothesized translation
which represents a maxima of both the translation model and the lan-
guage model. Search is a difficult problem since it considers hypotheses
which exist in an exponential space. Even for simple models performing
a complete search has been shown to be NP-complete, Knight (1999a),
so sophisticated approximate searches are performed instead. The algo-
rithms used only expand a polynomial number of hypotheses but still
generally find a very good candidate. Two different types of search have
been reported in the literature for phrase-based SMT. These include
hillclimbing, Marcu and Wong (2002), which is a form of local search
where a limited number of operations are applied to complete hypothe-
ses in order to find better hypotheses, and beam search with forward
cost estimates such as is described in Koehn et al. (2003).

The search process, which looks for a hypothesis which has maximal
translation model and language model scores, is essentially like looking
through a huge number of rules to see which ones fit together well.
This is a form of integrated analysis and generation, where the decision
made for the first word can have a large effect on the decision made
on the next word, or even several words away. The number of “states”
involved, i.e. ways in which a translation decision can affect a subse-
quent decision, is very large. Approaches to rule-based MT also model
the effects of initial translation decisions on subsequent ones. How-
ever, each decision places the system into a state which was explicitly
programmed by a trained linguist, so the number of such states is nec-
essarily limited. Of course, in the rule-based case, the states themselves
are far more informative and sophisticated rules can be written which
condition on the state of the system at that point in the translation
process.

Evaluation

Evaluation is a very important aspect of MT development under all
paradigms, whether data-driven (like SMT) or rule-based. It is vital
to “hold out” testing data because otherwise developers will tend to
optimistically overestimate the applicability of the new models or rules
they are developing.

Ideally, developers will never view the true test data. In general, a
hierarchy of test sets is used. One test set is used for measuring day-to-
day performance, which developers are allowed to view. This is called
the development set. There is then a test set, which is used periodically
to verify that a new feature is improving performance. Finally, the blind
test set is a set which is strictly controlled and used to verify that the

June 13, 2007

14 / Alexander Fraser, William Wong

entire system has improved since the previous blind test.

Human evaluation of accuracy is the gold standard for measuring
machine translation accuracy. Such evaluation can be based on assign-
ing absolute values of goodness to sentences in isolation, ranking pos-
sible outputs comparatively, or on post-editing. However, conducting
such evaluations is time consuming and it can be difficult to ensure
that the evaluation is sufficiently objective. In practice, human evalu-
ations are expensive, and would be impractical for measuring day to
day improvements.

Language Weaver uses automatic evaluation heavily in the develop-
ment process. Automatic evaluations are useful for automatically test-
ing MT performance without the overhead of manually judging sen-
tences. An array of automatic scores such as the BLEU score, Papineni
et al. (2001), are used for internal development. These automatic scores
have been shown to reflect translation quality judgments by human an-
notators.

In practice, careful attention is paid to comparing a baseline system
with the same system in which only one feature is changed, making it
unlikely that important errors will be made using automatic evaluation
metrics to guide decisions. Typically, when changes are made, an auto-
matic evaluation of the original system and the changed system is done
and either the score difference is adequately explained or the change is
backed out of. Incidentally, this shows that automatic evaluation can
also be useful as a form of regression test, which will be discussed in a
subsequent section. Automatic evaluation metrics can also be used to
measure the effects of changes in data processing, though care must be
taken if these changes affect the test sets (such as, for example, changes
of target language tokenization), as scores will generally not be directly
comparable.

The success of SMT systems depends on constant experimentation.
For this reason, a significant amount of attention is paid to optimizing
experiments to run quickly, and a significant amount of effort is put
into the ability to test many conditions in parallel.

Hybridization: Integration of Rule-Based Components

A strong advantage of using the statistical approach is that it easily
allows for hybridization. Since the underlying approach is statistical,
hybridization implies the integration of rule-based components. Rule-
based components can be viewed as another source of knowledge about
either the suitability of the mapping of the source string to the target
string, or the goodness of the target string. In practice we experimented
with two different ways to hybridize the translation process. The sim-

The Language Weaver Arabic to English Statistical Machine Translation Software System / 15

June 13, 2007

pler method was to view the rule-based components as a preprocessing
step which alter the input to the statistical process. A more complex
approach allowed rule-based components to replace parameters of the
statistical model on the fly as input source language text was processed.
For instance, one rule-based system specifies possible translations of
a string it has recognized as a date. It may even specify probabilis-
tic weights which should be associated with each variant. During the
search process the language model may prefer one or another of the
date variants based on decisions made for other strings (in the nearby
context) which are translated using the statistical models.

Comparison with Rule-Based Translation Process

We have conducted limited comparisons of our methods with rule-based
systems, and found that we have comparable or better translation qual-
ity in the domains which our systems are targeted for. We made several
observations about the strengths of the SMT approach. Empirically,
we found that word sense disambiguation is not as big a problem for
our systems as for rule-based systems, because our systems memorize
large amounts of context in the form of consecutive-word phrases. Us-
ing purely syntactic models of context does not seem to be sufficient
(and Koehn et al. (2003) provides some evidence to this effect), though
it would be logical to build SMT systems which were able to fall back
to this type of context in the event that other contexts were not present
in the training data. Another observation we made is that jargon and
mal-formed input frequently cause problems for rule-based translation
systems which require strong syntactic analysis, but have much less of
an impact on our system.

1.1.6 Building an MT system for a new language pair
and/or domain

Building an MT system for a new language pair and/or domain is
straight-forward. First appropriate test sets are defined. Then parallel
training data for the appropriate domain or domains is identified. Next,
monolingual training data for the language model is specified.

An initial system is built and evaluated on development data. The
system is then iteratively refined. This refinement may include both
work on new statistical components or estimation techniques, or it may
focus on increasing the coverage of the rule-based components. Some-
times, additional data may be mined from comparable corpora using
techniques similar to those outlined in Munteanu et al. (2004).

One important aspect of building a new MT system is handling the
parallel data. Language Weaver has a commercial product called the

June 13, 2007

16 / Alexander Fraser, William Wong

“TM Generator”. The TM Generator is a suite of tools, built around
a database application, for storing and reusing previously translated
text, which is used internally at Language Weaver and can also be used
by end users, with or without the SMT translation engine.

The TM Generator suite consists of three components, which are
called Build, Search and Match. The Build component extracts text
from common file formats (HTML, PDF, DOC, plaintext, XML) and
uses statistical sentence alignment algorithms to automatically align
each text segment in one language with its foreign language coun-
terpart. Users may review and adjust alignments in a graphical en-
vironment before saving the bilingual database as a TMX file (TMX
is a commonly used translation memory format). The Search compo-
nent provides a flexible search interface to allow users to browse TMX
files. The Match component utilizes previously translated material to
semi-automatically translate new text. It has a flexible database search
algorithm for translating both exact matches and for helping users
make minimal modifications to previous translations to obtain a match.
Once documents in a parallel corpora are document-aligned, Language
Weaver engineers use the Build component of the TM Generator suite
to process the parallel corpora necessary to build a system.

Training Data

The most critical component of building a new translation system is
the choice of training data for the system. The parallel data used to
build a Language Weaver translation system can be in any number of
formats including:

1. translation-memory data (often in TMX format)

2. glossaries

3. translated archives

4. data extracted from comparable corpora

Target language texts necessary to build the language model are also
very important. It is often possible to acquire monolingual training data
which is many orders of magnitude greater than the bilingual training
data, and experiments have shown that this improves translation per-
formance.

In practice, there are many possible sources of data. Customers may
have data on their intranets, hard-drives/tapes and/or websites. Lan-
guage Weaver may also have access to relevant data which was created
by Language Weaver, licensed from third parties, or in the public do-
main.

The Language Weaver Arabic to English Statistical Machine Translation Software System / 17

June 13, 2007

Language Weaver Learner

In the first step of the training process, parallel documents are iden-
tified. Once parallel documents have been identified, sentences of the
source and target language text are aligned to create a parallel corpus.
The Language Weaver Learner processes this corpus. It extracts prob-
abilistic translation dictionaries and patterns which are called transla-
tion parameters, as mentioned in section 1.1.5.

Language Weaver Decoder

The translation parameters are used by a statistical translator, called
the Decoder, to translate new texts for users. The software uses these
stored associations of source phrases to target phrases to produce trans-
lations of new documents. The language model will be used to find
grammatically correct output in the translations proposed. The search
process which, given source text, produces target text by maximizing
the translation model and the target model is what is implemented in
the Decoder. The Decoder is the component delivered to customers.

Delivery of Software to Customers

The translation software can be delivered to customers in several forms.
The most important component, which is always present, is the core
translation system, which includes the Decoder and the translation pa-
rameters which it depends on. There are several user interfaces avail-
able, which are directly useful to end users. In addition, there are a
large number of APIs available which enable the Decoder to be in-
tegrated into client products. The TM generator is also available to
allow users to take advantage of their post-editing of machine trans-
lation output. These software packages are distributed on DVDs and
fully self-contained.

Periodic updates of the translation parameters are available to cus-
tomers. Each update of the parameters is certified to work with a partic-
ular version of the software. Language Weaver also issues new versions
of the software on a schedule that is less frequent than the translation
parameter updates. Both of these kinds of updates are also distributed
on DVDs and are fully self-contained.

Overview

See figure 4 for an overview of building a new MT system.

1.1.7 The Development Plan

There were three major phases in the development plan for the Lan-
guage Weaver Arabic to English Statistical Machine Translation Sys-
tem Software, see below. The goal was to build a commercial system

June 13, 2007

18 / Alexander Fraser, William Wong

LW Pre-processing:
Format filtering
Scan+OCR
Transcription
Document alignment
Segment alignment

Human translators

Internet

Dictionaries

Translated archives

Translation
memories

Parallel Corpus LW
Learner

Translation
parameters

DecoderNew
source
language
documents

Core components of
LW deliverable
translation software

New target
language
translations

FIGURE 4 Building Statistical Machine Translation Software Systems

The Language Weaver Arabic to English Statistical Machine Translation Software System / 19

June 13, 2007

performing at quality levels consistent with the state of the art results
obtained by research systems, but also had a reasonable translation
speed and was a robust, supported product which could be installed at
a customer site by customer staff.

1.1.8 View of Final Product

We were happy with the translation quality of the final product. It is
self-contained, installing off of a DVD onto a desktop or laptop. It is
capable of robustly translating at speeds several orders of magnitude
higher than research systems, with virtually no loss in translation qual-
ity. The engine itself can translate 5,000 to 14,000 words per minute,
per CPU, which is an impressive improvement over research systems.
The engine actually scales up to 500,000 words per minute on a high
throughput network using parallel computation on multiple computers.

See figure 5 for an example screen-shot of the standalone product
translating a document.

1.2 Implementation

Planning for the Language Weaver Arabic to English statistical ma-
chine translation software system lasted 2 months and involved re-
searchers, software engineers and quality assurance personnel as well
as management and marketing.

The first step in planning was the creation of a design document.
This document specified the desired capabilities of the product with-
out specifying the technical implementation. For the first release this
was written by the researchers and management, but after this release
the marketing department presented customer feedback and this was
strongly taken into account in writing subsequent design documents.

A configuration management plan describing how modifications were
to be implemented, controlled and tracked throughout the project was
then created, which was another key component of the planning pro-
cess. There were several other important documents created during the
implementation phases. Of particular importance were an evaluation
plan, detailing the tests of accuracy which are described below, and a
quality assurance plan.

For each release, a detailed technical specification was then written
primarily by software engineers, showing exactly how each feature men-
tioned in the design document would be implemented, and also showing
how different components of the system would intercommunicate.

Finally, plans for the creation of the installation software were cre-
ated, as were plans and systems for supporting customers and tracking
customer requests for new features.

June 13, 2007

20 / Alexander Fraser, William Wong

FIGURE 5 Language Weaver Statistical Machine Translation Software

The Language Weaver Arabic to English Statistical Machine Translation Software System / 21

June 13, 2007

The full project, involving three releases, was originally specified for
18 months but it was eventually successfully delivered in just under 14
months.

1.2.1 Stages of Implementation

First Release

The priority in the first release was having good translation accuracy.
The main features were designed so as to have a fully functional prod-
uct which showed the possibilities of Statistical Machine Translation
but had only a simple user interface without many bells and whistles.
The first release supported only the UTF-8 character set. It supported
HTML filtering but only stripped the markup, rather than re-inserting
translations into the original HTML markup. Other important compo-
nents of the first release included robust sentence breaking and a robust
tokenizer. The first release was available in 1 and 2 gigabyte versions.
Both of these versions were available in a standalone version which
could browse and translate individual web pages, or in a server version
compatible with the Apache web server. Both versions translated at
500 words per minute. The API was client-server using CORBA and
APIs were made available to customers for both the C and the C++
programming languages. The engine supported settings which allowed
for both a high quality mode aimed at obtaining the highest transla-
tion accuracy possible, and a draft mode, aimed at higher speed with
a small loss in accuracy. The software was delivered for the current
versions of Microsoft Windows, and included both server and desktop
versions.

Second Release

The second release had improved translation accuracy over the first
release. It included support for the UTF-8, UCS-2 (UTF-16), CP-1256
and ISO-8859 character sets, which were all of the Arabic character sets
used in the data which we were working with. It supported “HTML re-
filtering”, which meant that translated web pages would be displayed
with the same formatting (and pictures) as the original pages. The en-
gine tracked how each word was translated and used a sophisticated
algorithm to restore markup within sentences so that the translation
of a bolded word in the source text would be shown as a bolded word
(or words) in the translated target text. An important issue handled
in this release was character normalization, which we will describe be-
low. This version added a rule-based component for transliteration of
unknown words based on a simple greedy search which matches indi-
vidual characters or groups of characters, and a rule-based component

June 13, 2007

22 / Alexander Fraser, William Wong

based on finite state approaches for translation of easily characteriz-
able phenomena such as dates and times which was fully integrated
into the statistical search process. This rule-based component allowed
the search process to pick the best way to translate these phenomena
given the context. This release also added a morphological analyzer,
also based on finite state techniques, which was intended to increase the
covered vocabulary by mapping unknown words to known words within
a phrasal context using simple transformations based on stripping or
adding common prefixes and suffixes until a match with known vocab-
ulary is achieved. Language Weaver developed a proprietary pipeline
allowing the various components to communicate with each other using
XML. On the software side, the engine was at this point fully multi-
threaded, and the APIs offered were expanded to include a simple and
powerful CGI API. Document types supported were expanded to in-
clude Microsoft Word and Adobe PDF.

Third Release

The third release obtained excellent translation accuracy, which we be-
lieve established a new level of quality in Arabic machine translation.
An important new feature was user customization of translation lex-
icons. New APIs included a Webservices API based on SOAP and a
Java API. It featured a simple server interface which was similar in
appearance to a printer queue and allowed different users to queue up
large numbers of translation jobs to be serviced. It also provided seam-
less click-through so that users could browse a translated version of the
web with formatting intact. Finally, for large customers, it supported
load balancing across multiple CPUs.

Another important part of the third release was the adding of user
defined lexicons. The Language Weaver dictionary tool was developed,
which allows users to enter phrase translations (one or more consecutive
words). Figure 6 shows phrase entries which were added by a translator
translating a news article. An associated API was also made available,
allowing third parties to write code which performs operations on user
dictionaries such as creating new dictionaries, translating documents
with a particular dictionary, and managing individual entries in a par-
ticular dictionary, as well as importing and exporting dictionaries in
various translation memory formats.

1.2.2 Difficulties in Implementation

There were several difficulties in implementation to which it was nec-
essary to react. Each of these occasioned changes in the technical spec-
ification, and some of them required changes to the design document

The Language Weaver Arabic to English Statistical Machine Translation Software System / 23

June 13, 2007

FIGURE 6 Language Weaver Dictionary Tool

June 13, 2007

24 / Alexander Fraser, William Wong

which were negotiated with management.
The first difficulty we encountered was in dealing with Arabic char-

acter encodings. There are three main encodings used, UTF-8, CP-1256
and ISO-8859. At first we had planned to allow the user to specify an
encoding if the input were a document, while if the input were from
the World Wide Web (WWW), we expected information on the encod-
ing would be present in the header returned from the WWW server.
However we found, much to our surprise, that in the data we were work-
ing with two or more of the encodings were sometimes mixed in ways
which were surprising and there were also frequently LATIN-1 charac-
ters interspersed. Sometimes this even occurred within the context of
a single word, number or acronym. An example of this is that occa-
sionally we found that the Arabic letter Reh was misused as a comma
inside of numbers. Another problem was that WWW servers frequently
returned headers indicating the incorrect encoding for a web page.

The second set of problems was character normalization issues. The
first author had been previously involved in experimentation in the
area of Information Retrieval for Arabic. This is documented in Xu
et al. (2002), Fraser et al. (2002), and this research shows how many
of these issues can be dealt with in an Information Retrieval context.
Some specific problems encountered were that Kashida, short vowels
and Shadda were irregularly present in much of the data we were work-
ing on. One large issue was handling the different Arabic writing styles.
This involved handling the different Alef variants, i.e. those Alef vari-
ants with and without Hamza and/or Madda. The Alef Maqsura/Yeh
alternation and the Heh/Teh Marbuta alternations which seem to oc-
cur most frequently in Egyptian text were also sometimes present in
the data. The other Hamza variants (not involving Alef) did not seem
to be as large a problem, as they were usually consistently present. See
Section 1.2.3 for details of our solution to this problem. Another issue
we encountered frequently was the use of Persian/Farsi characters in
transliterated names2).

Another set of issues revolved around speed. As we have previously
mentioned, the search for a maxima of the statistical models is expen-
sive. The first Language Weaver reimplementations of research systems
were unacceptably slow, and it turned into a major challenge to produce
a system with acceptable speed and translation quality.

Memory issues revolved around the need for statistical models to
be held in memory. The probabilistic lexicons are very large as they

2For instance, the Arabic transliteration of Paris would sound like “Baris”, but

there is a Farsi letter pronounced in a similar way to the English letter “p” which

is used by some writers of Arabic.

The Language Weaver Arabic to English Statistical Machine Translation Software System / 25

June 13, 2007

contain all possible translations within the training data, see Figure 3
for an example of the types of translations stored. The primary con-
cern here was how to prune the statistical models so that they would
fit in the desired memory footprints of 1 and 2 GB. Again, extensive
experimentation was performed to determine the best trade-offs such
that translation accuracy was very close to research system levels while
the parameters were able to fit into the designated memory space.

There were also issues involving vocabulary coverage. These prob-
lems could be broken down into two different types. The first type
was the infinite variation of more easily describable phenomena such
as dates and numbers. However, we also had problems with morpho-
logical variants. Sometimes, even though we had observed several mor-
phological variants of a word, we would encounter a different variant
in material we were translating, indicating that handling morpholog-
ical variants was important for extending the coverage of the parallel
training data.

Finally, we needed to deal with mixing of Arabic and Hindi num-
bers and a surprisingly large number of different comma characters in
numbers (including, most surprisingly, the Arabic character Reh, which
appeared on some web pages).

1.2.3 Changes made

In response to these problems, we made a number of changes. For char-
acter encodings, we developed a statistical encoding detector, and we
strengthened our tokenizers’ capabilities to make them better able to
deal with tokens which contained more than one encoding.

We then implemented character normalization. There is some cost in
ambiguity, but we empirically verified that this is not a large problem
in practice. This does not degrade the translation results except in very
isolated cases which practically never occur.

For the translation system, in early implementations of the system
we found that it was important to strip Kashida, short vowels and
Shadda, since these were generally not present in much of the data
we were working with3. We found that when vowels or Shadda were
present the additional information added tended to be minimal. For
instance in our evaluation the system did not have abnormal difficulty
with the passive/active verbal distinction which is sometimes marked

3For the reader unfamiliar with Arabic writing, Kashida is a calligraphic exten-

sion character which does not carry any semantic information, Shadda is a conso-

nant doubling marker which is often not written, and the short vowels in Arabic

are rarely written except in some cases where they serve to disambiguate otherwise

confusable words.

June 13, 2007

26 / Alexander Fraser, William Wong

in text by placing a short vowel which would not otherwise be writ-
ten. So we adopted the consistent approach of simply stripping these
markers. There are plans to revisit this decision in future versions of the
product; it is possible that a more sophisticated morphological analyzer
will be included and in this case a probabilistic model could be envi-
sioned which would be able to make a better estimate of the translation
probabilities in the event that vowels or Shadda were present.

It was particularly important to handle the different Alef variants
(with and without Hamza). The same word appearing with a simple
Alef or with an Alef and a Hamza marker frequently occurred. We
adopted a fall back normalization approach where different normaliza-
tions are applied until a match with known vocabulary occurs. The
Alef Maqsura/Yeh alternation and the Heh/Teh Marbuta alternation
which occurred frequently in Egyptian text were also handled in a sim-
ilar fashion. The other Hamza variants (not involving Alef) were more
generally consistent and did not seem to be as large a problem for the
translation system though some engineering effort was put into han-
dling these as well. Alef with Wasla was also occasionally present, and
appropriate steps were taken to ensure that it was correctly handled.
Finally, Persian/Farsi character variants were handled using the same
fall back methodology.

A significant amount of effort went into improving the speed of the
product. This was done both by programming code optimization and
by working on the statistical modeling. Programming code was exten-
sively monitored and examined for speed ups, with the engineering
team reviewing one another’s code to offer suggestions for optimizing
algorithms. With respect to statistical modeling extensive effort was
placed into trading off speed versus accuracy where the primary goal
is to minimize loss of accuracy due to higher speed. This was primarily
accomplished through extensive experimentation in using pruning on
both the parameter files and within the search. In addition, the search
algorithm was extensively engineered at a cost of many man months.
The resulting proprietary algorithms are very fast with virtually no loss
in accuracy.

The vocabulary issues we were able to easily solve were problems
with coverage of date/time/number expressions, in particular the two
date systems used in the Arab world and complex date/time expres-
sions. This was relatively straight-forward to solve, by mining the web
for relevant expressions and then expressing them as grammars so that
they could be processed using finite state techniques. We developed
components for translation of regular phenomena like dates, times and
numbers. One example of this type of component was a rule-based

The Language Weaver Arabic to English Statistical Machine Translation Software System / 27

June 13, 2007

component for translating dates, including the frequent mentioning of
months by two alternative words which occurs in many new articles,
and handling of Hijri dates. Alternative translations are passed along
with probabilistic weights to the translation engine, which then chooses
the best alternative given the context during the search process. This is
implemented in a transfer framework which uses regular expressions for
analysis and communicates possible outputs to the Language Weaver
Decoder to be further processed during the search.

A rule-based component for morphology was implemented, primar-
ily aimed at extending vocabulary coverage. This was implemented as
a rule-based approach, which converts unknown vocabulary into known
vocabulary by using an extensive set of rules written by Language
Weaver specialists. The analyzer communicates many possible variants
to the Language Weaver Decoder and attaches both probabilities and
constraints on the context in which each variant should occur. If the
constraints are not satisfied then the word is output in a transliteration
which is calculated using a statistical model. In future revisions of the
product Language Weaver plans to add more powerful morphological
processing of Arabic.

1.2.4 Roles of personnel

We had three main roles of personnel in the development process. The
first role was research. Researchers were responsible for translation ac-
curacy, including vocabulary coverage. Researchers made algorithmic
decisions about the statistical modeling. Research was also jointly re-
sponsible with Engineering for finding the best trade-off between speed
and translation accuracy, and carried out the experiments necessary for
this.

Engineering and Development was the second role. Data processing
was a vital part of this. Correctness and speed of the implementations
of the research algorithms was a primary consideration. Much attention
was also paid to optimizing memory usage. Engineering interacted with
Quality Assurance personnel with respect to software robustness, and
in particular ensured that sufficient regression tests were implemented
to ensure that bugs were found before software was shipped. The en-
gineering team implemented the APIs and the stand-alone interfaces,
and was ultimately responsible for the software.

Quality Assurance (QA) was the third role. QA was very important
for this product, since the experimental algorithms had never before
been implemented in a robust fashion with consistent memory man-
agement, and good software engineering practices. Quality Assurance
helped ensure that adequate testing of the product was performed, and

June 13, 2007

28 / Alexander Fraser, William Wong

played a role in ensuring that speed and memory targets were met. In-
stallation procedures and license control was another area which proved
to be important and this was handled in conjunction with Engineering.

Naturally Management and Marketing also carried out their cus-
tomary roles. QA and Marketing both dealt with customers in their
different capacities, and after the first release this became very impor-
tant in the development process as they reported customer feedback to
the research and engineering groups.

1.2.5 Lessons learned

The strongest lesson learned was that the SMT approach is effective
for comparatively high accuracy translation.

Closed class phenomena, such as dates and times, can be handled
well with rules and possible variants proposed using these rules can be
chosen within the statistical framework conditioned on context.

Morphological processing was useful. Here it was limited primarily
to the role of extending vocabulary coverage. We anticipate morphology
will have a bigger future role. Work on extending the strength of the
lexicon is already underway.

It is important to emphasize that the Language Weaver system is
now a hybrid system. The main component is a phrase-based SMT
engine. However, it has additional rule-based components. Character
normalization, morphology and date/time/number translation are all
handled using rules, and it is anticipated that additional rule-based
power will be added to the system. We believe that hybridization is the
best way forward for all MT developers to achieve maximum perfor-
mance regardless of the initial approach they chose.

1.3 Results and Evaluation

1.3.1 Evaluation criteria

The most important evaluation criterion at Language Weaver is trans-
lation accuracy. This is evaluated using both automatic metrics and
human evaluation. However, speed and memory are also important
considerations because the product is sold as a self-contained piece of
software. In addition, there are constant regression tests for robustness
and stability of the software.

Rule-based components can be tested both for their impact on ac-
curacy and using regression tests (for rules where the output is deter-
ministic and will not be further processed by the Decoder). There are
also tests for vocabulary coverage which enable the easy identification
of where the system needs to be strengthened.

Customer feedback is critically important to Language Weaver. In

The Language Weaver Arabic to English Statistical Machine Translation Software System / 29

June 13, 2007

particular, additional features are strongly determined by customer re-
quests.

1.3.2 Tests implemented

As we indicated previously, the most important tests implemented are
those which involve translation accuracy. The human evaluation is con-
ducted using proprietary post-editing techniques which we hope to re-
port on at a future time. For automatic metrics, automatic metrics such
as the IBM BLEU metric, Papineni et al. (2001), are used. Automatic
metrics of this kind are a fast and objective end-to-end evaluation. They
are used in-house extensively, and are also used as part of regression
tests for some components. Automatic metrics are critical for speeding
incremental development. They can also be useful for quick compar-
isons with other MT systems but it is important to control for effects
of the domain of the test if there is not reason to believe that both
systems were developed for that domain.

Unfortunately the BLEU metric is not useful for showing absolute
translation quality. BLEU scores are not comparable across test cor-
pora. A BLEU score of 0.30 on one test corpus from one system and
a BLEU score of 0.40 on another test corpus by a different system are
not comparable. An automatic metric (and associated test sets) for
showing absolute translation quality is an unsolved problem which is
of interest to all MT developers. Even manual evaluation of absolute
quality is difficult to do in a systematic fashion.

Speed, memory usage and robustness are tested automatically. These
tests involve both standardized benchmark sets for measuring speed
and memory, and simulations of user activity over long periods of time
which are aimed at detecting problems like memory leaks and software
instability.

Regression tests are implemented to test the robustness of each com-
ponent of the software. The Quality Assurance team reports to each
developer what percentage of her/his code is covered by these tests, and
developers were strongly encouraged to provide more code coverage by
writing more tests.

Rule-based components are evaluated using a combination of au-
tomatic metrics and regression tests. Special test sets for rule-based
components were developed which consisted of developer-visible devel-
opment data and held out data specifically aimed at measuring the
effectiveness of a particular rule-based component. These were mined
from the web and from training data. In addition, standard accuracy
tests are used to see the overall impact on translation quality. Regres-
sion tests are used to ensure that rule-based components are stable and

June 13, 2007

30 / Alexander Fraser, William Wong

sufficiently fast, and are also used to test the software in cases where
there is no interaction with the underlying machine translation engine
(such as is the case for translation memory, or for those rules which
only provide a single translation alternative to the translation engine).

Vocabulary coverage can also be easily automatically tested. When
out of vocabulary terms appear efforts are made to mine relevant par-
allel data containing that term, or if this is not possible the term can
be added directly to the translation lexicon. In either case the language
model is updated with relevant target language text.

1.3.3 Results

The results of the testing regimen implemented have been entirely satis-
factory. Language Weaver will continue to improve translation accuracy
as quickly as possible. Speed, memory usage and robustness of compo-
nents are all tested in a special QA cycle after the code and translation
parameters are frozen prior to each release. Customer comments and
any possible problems are carefully tracked and reported to the relevant
team.

1.3.4 General Lessons

The general lessons learned are that there is a need to constantly mea-
sure the things we are working on. Accuracy is particularly important,
but it is also very important to automate tests of speed, memory, and
robustness. For accuracy, it is important to ensure that data is properly
“held out”, meaning that developers do not inadvertently have access
to test sets and that there is no accidental contamination of training
data. Both programming code and translation parameters are carefully
tracked to ensure that experimental conditions are repeatable and the
changed condition is carefully documented. Language Weaver has also
developed an in-house data handling system which carefully tracks the
statistics of all data collected. This has been an important factor in
managing the large quantities of data Language Weaver engineers work
with. Finally, the other lesson learned was with respect to prioritiza-
tion of modeling efforts. It is important to carefully evaluate what can
be easily covered with rules without worrying about very difficult to
describe phenomena which will be covered by either better statistical
models or new rules in future versions of the product.

1.4 Modifications and Implementation of Changes

1.4.1 Modified plan

The largest modification of the original plan was that we decided to
integrate the new more powerful rule-based systems. This required ex-

The Language Weaver Arabic to English Statistical Machine Translation Software System / 31

June 13, 2007

tensive design work, which was primarily the role of the research group,
but also heavily involved the engineering group in the implementation
stage. Morphological analysis was also implemented. Finally a substan-
tial effort was put into figuring out how to ensure the quality of these
new components, both with respect to translation accuracy and with
respect to software considerations such as speed, memory and robust-
ness.

1.4.2 Modification of the specifications

The specifications were changed to reflect the added rule-based and sta-
tistical models. One important area of modification involved statistical
models for encoding detection and the new tokenization capabilities for
dealing with multiple character encodings. The rules for normalization
to match known vocabulary were also extensively researched, resulting
in further changes to the specification. Rule-based components for date,
time and number translation were added and the rule-based component
for morphology was also implemented.

1.4.3 Implementation of Modifications

The modifications were implemented within the original time frame,
and in the end the project was still delivered early. All in all, the en-
gineering group only required two months to implement the changes
beyond the time already allocated, which was a very fast turn-around.
One reason that it was possible to do this was that we were enhancing
the system by adding the sub-components rather than creating a new
pipeline from scratch. In particular, we were extending the statistical
framework with rules to make a hybrid system. We had designed the
component inter-communication protocol and the necessary commu-
nication “hooks” from the beginning, and it was easy to ensure that
the rule-based systems had the desired impact on the final transla-
tion within the probabilistic framework. In light of our experience im-
plementing these changes, we believe adopting a statistical paradigm
from the beginning and enhancing it with rule-based components is an
excellent commercial approach.

1.4.4 Cycles of Development

The cycles of development at Language Weaver are:

1. set overall goals

2. design and research

3. implementation

4. testing

5. modification

June 13, 2007

32 / Alexander Fraser, William Wong

TABLE 1 Software Speed in Words Per Minute (Quality Level versus
Memory Size)

Quality 512 MB 1 GB 2 GB

High 6,000 4,500 2,000
Medium 9,000 7,000 5,000
Low 12,500 9,000 7,000

6. testing (of modifications)

7. code freeze

8. quality assurance

9. delivery

We found it vital to have a clearly separated research cycles, devel-
opment cycles and QA cycles. We followed each of these stages for each
release of the product. The deadlines were carefully planned, with de-
pendencies explicitly specified. We found in practice that many of the
subcomponents can be developed in parallel because of the proprietary
XML intercommunication interface. All APIs and interfaces, whether
they are made available to customers or not, are carefully documented
and signed off for.

1.5 Final Results

1.5.1 Final testing of each model/sub-component

The final testing went well. Each model and sub-component passed
the previously mentioned tests. The final product was then released.
Because of the stringent quality assurance, the number of customer
issues with the software was fairly small.

Table 1 shows the speed of the different configurations. Note that
products which use a larger memory size are slower. This is because
more alternative translations can be considered.

1.5.2 Error analysis / Acceptance study

Language Weaver decided to conduct an error analysis and acceptance
study after the third release of the software. Using its proprietary post-
editing evaluation techniques in conjunction with extensive customer
interviews, it was determined that the translation accuracy is adequate
for many purposes, some of which are listed below. This study also
pointed the way forward towards even better translation quality and
allowed for the determination of the priority of new statistical modeling
approaches and features.

The Language Weaver Arabic to English Statistical Machine Translation Software System / 33

June 13, 2007

1.5.3 Results

The final release has been received highly positively by the users of the
Language Weaver Arabic to English Statistical Machine Translation
System. Sample outputs are in Figure 7.

However, Language Weaver output is not perfect. In some instances,
the local syntax of noun phrases is mangled. In other instances, the
verbs appear in sentence initial position (as in the original Arabic),
rather than after the subject. In other instances, prepositions or content
words are mistranslated. Efforts at Language Weaver to improve the
translation quality are constantly ongoing. Based on the trends we have
been observing in terms of significantly improved quality with each
release of the software, we have high hopes we will continue to improve
quality for the Arabic/English language pair.

1.5.4 Conclusion

Future Plans For Improving the System

There are several areas for which there are future plans. One plan in-
volves integrating the existing Statistical Machine Translation method-
ology with statistically based syntactic analysis. This integration will
make syntactic analysis robust to noisy inputs, which is a persistent
problem in traditional approaches to MT based around syntactic trans-
fer. It will also dramatically increase the coverage of syntactic analysis
to less likely phenomena which human linguists would not have time to
account for. Syntactic SMT has been an area in which USC/ISI has al-
ready conducted a large amount of research, Yamada and Knight (2001,
2002), Koehn and Knight (2003), Galley et al. (2004), and there is a gen-
eral agreement in the SMT research community that this is an impor-
tant direction to investigate, Wu (1996), Alshawi et al. (2000), Cherry
and Lin (2003), Och et al. (2004), Niessen and Ney (2004), Drabek and
Yarowsky (2004), Melamed (2004), Zhang and Gildea (2004), Chiang
(2005), Collins et al. (2005), Quirk et al. (2005), Burbank et al. (2005).

Another plan involves using more sophisticated morphology, partic-
ularly for the Arabic to English system. There are several approaches
being considered for anaphora resolution (recognition and correct trans-
lation of pronouns and other referential expressions) which is particu-
larly problematic in Arabic as pronouns are often specified only by
ambiguous verb morphology.

Other areas of research under consideration for integration into the
product include name translation and improved analysis of parallel cor-
pora. One idea for name translation would be to add a specialized
translation component for dealing with words which are transliterated

June 13, 2007

34 / Alexander Fraser, William Wong

v.2.0 – October 2003

v.2.4 – October 2004

v.3.0 - February 2005

FIGURE 7 Sample Outputs

The Language Weaver Arabic to English Statistical Machine Translation Software System / 35

June 13, 2007

(or back-transliterated) such as names of people and organizations. Re-
search on this for Arabic has been conducted at USC/ISI, Al-Onaizan
and Knight (2002). Approaches to improving the analysis of the paral-
lel text would follow research into combining morphological processing
and discriminative training for word alignment, such as in Fraser and
Marcu (2005), Ittcheriah and Roukos (2005), Moore (2005), Taskar
et al. (2005).

One exciting possibility which is new to the statistical approach
to machine translation is adaptation of the statistical models to the
customer’s corpora. Traditional MT systems allow customers limited
access to customize their systems, generally by allowing customers to
define new entries in the translation lexicon without giving them the
ability to write new rules. Translation memory has similar capabilities
to this in that it allows customers to reuse translations which they
select. It is not generally possible for the customer to craft her/his
own rules because this requires specialized training. The unique op-
portunity available with statistical systems is to deliver a “learning”
component to the customer. This will allow the customer to update
the full translation engine after post-editing each translation, thus cre-
ating a possibility for improving with each post-edited translation with
virtually no effort by the customer. This is possible because the statis-
tics are estimated automatically. This system will be able to learn from
documents prepared using the TM Builder tool described previously
and data exported from the customers’ translation memory tools. This
will allow users to customize systems much more quickly and in a more
powerful way than the custom editing of lexicon entries available with
traditional systems, and will put more of the power of the systems’
developers into the hands of users than has been previously possible.

General Conclusions

Language Weaver’s Arabic MT system is a state of the art MT system
which is self-contained and can be used for a myriad of tasks. In the
meanwhile, it has become the system of choice for many customers
interested in Arabic to English MT. Without the need for a large team
of trained linguists, our system is able to learn a good statistical model
of translation which captures many aspects of discourse (such as style).

Arabic to English machine translation is a difficult task and will
be an interesting research topic for many years to come. For Arabic,
we have worked on a surprisingly high number of low-level issues, and
Language Weaver is now moving on to work on higher level modeling
issues which will capture some of the finer nuances of Arabic to English
translation.

June 13, 2007

36 / Alexander Fraser, William Wong

We learned several important lessons. First, we learned that we can
use the statistical framework in a reasonable way to arbitrate between
different components of the system, some of which are not statistical.
We have found that constant error analysis and evaluation methodol-
ogy are two critical components of all MT efforts. We learned many
lessons about the process of technological transfer from academia to
industry, something which Language Weaver expects to use frequently
in its partnership with USC/ISI.

Finally, the translation results validate the computational and lin-
guistic approaches chosen, and have trail-blazed the path for new
statistically-based Natural Language Processing products to be re-
leased in the future. We also hope that Language Weaver’s Arabic to
English Statistical Machine Translation Software system plays a role
in increasing the profile of the MT industry as a whole.

The authors would like to thank the entire team at Language
Weaver, all of whom played a critical role in producing the machine
translation system whose development is described here.

References

Al-Onaizan, Yaser and Kevin Knight. 2002. Translating named entities using
monolingual and bilingual resources. In Proc. of the 40th Annual Meeting
of the Association for Computational Linguistics (ACL), pages 400–408.

Alshawi, Hiyan, Srinivas Bangalore, and Shona Douglas. 2000. Learning de-
pendency translation models as collections of finite state head transducers.
Computational Linguistics 26(1):45–60.

Brown, Peter F., Stephen A. Della Pietra, Vincent J. Della Pietra, and R. L.
Mercer. 1993. The mathematics of statistical machine translation: Param-
eter estimation. Computational Linguistics 19(2):263–311.

Burbank, A., M. Carpuat, S. Clark, M. Dreyer, P. Fox, D. Groves, K. Hall,
M. Hearne, D. Melamed, Y. Shen, A. Way, B. Wellington, and D. Wu.
2005. Statistical machine translation by parsing: Final report, JHU/CLSP
workshop. http://www.clsp.jhu.edu/ws2005/groups/statistical.

Callison-Burch, Chris and Philipp Koehn. 2005. Introduction to statistical
machine translation. Available from http://www.statmt.org.

Charniak, Eugene, Kevin Knight, and Kenji Yamada. 2003. Syntax-based
language models for machine translation. In MT Summit IX , pages 40–
46. New Orleans, LO.

Cherry, Colin and Dekang Lin. 2003. A probability model to improve word
alignment. In Proc. of the 41st Annual Meeting of the Association for
Computational Linguistics (ACL). Sapporo, Japan.

Chiang, David. 2005. A hierarchical phrase-based model for statistical ma-
chine translation. In Proc. of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL), pages 263–270. Ann Arbor, MI.

References / 37

June 13, 2007

Collins, Michael, Philipp Koehn, and Ivona Kucerova. 2005. Clause restruc-
turing for statistical machine translation. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational Linguistics (ACL’05),
pages 531–540. Ann Arbor, Michigan.

Dempster, A. P., N. M. Laird, and D. B. Rubin. 1977. Maximum likelihood
from incomplete data via the EM algorithm. J. Royal Statist. Soc. Ser. B
39(1):1–22.

Drabek, Elliott Franco and David Yarowsky. 2004. Improving bitext word
alignments via syntax-based reordering of english. In The Companion
Volume to the Proceedings of 42st Annual Meeting of the Association for
Computational Linguistics, pages 146–149. Barcelona, Spain.

Fraser, Alexander and Daniel Marcu. 2005. Isi’s participation in the
romanian-english alignment task. In ACL 2005 Workshop on Building
and Using Parallel Texts: Data-Driven Machine Translation and Beyond .
Ann Arbor, Michigan.

Fraser, Alexander, Jinxi Xu, and Ralph Weischedel. 2002. Trec 2002 cross-
lingual retrieval at bbn. In E.M. Voorhees and D.K. Harman (Eds) The
Eleventh Text Retrieval Conference, TREC 2002. NIST Special Publication
500-251..

Galley, Michel, Mark Hopkins, Kevin Knight, and Daniel Marcu. 2004.
What’s in a translation rule? In Proceedings of the Human Language
Technology and North American Association for Computational Linguis-
tics Conference (HLT/NAACL), pages 273–280.

Ittcheriah, Abraham and Salim Roukos. 2005. A maximum entropy word
aligner for arabic-english machine translation. In Proceedings of Human
Language Technology Conference and Conference on Empirical Methods in
Natural Language Processing . Vancouver, British Columbia.

Knight, Kevin. 1999a. Decoding complexity in word-replacement translation
models. Computational Linguistics 25(4):607–615.

Knight, Kevin. 1999b. A statistical machine translation tutorial workbook.
http://www.isi.edu/natural-language/mt/wkbk.rtf.

Koehn, Philipp and Kevin Knight. 2003. Feature-rich statistical translation
of noun phrases. In Proc. of the 41st Annual Meeting of the Association
for Computational Linguistics (ACL). Sapporo, Japan.

Koehn, Philipp, Franz Josef Och, and Daniel Marcu. 2003. Statistical phrase-
based translation. In Proceedings of the Human Language Technology
and North American Association for Computational Linguistics Confer-
ence (HLT/NAACL), pages 127–133. Edmonton, Canada.

Marcu, Daniel and William Wong. 2002. A phrase-based, joint probability
model for statistical machine translation. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing (EMNLP-2002),
pages 133–139. Philadelphia, PA.

Melamed, I. Dan. 2004. Statistical machine translation by parsing. In Proc. of
the 42nd Annual Meeting of the Association for Computational Linguistics
(ACL). Barcelona, Spain.

June 13, 2007

38 / Alexander Fraser, William Wong

Moore, Robert C. 2005. A discriminative framework for bilingual word align-
ment. In Proceedings of Human Language Technology Conference and Con-
ference on Empirical Methods in Natural Language Processing . Vancouver,
British Columbia.

Munteanu, Dragos Stefan, Alexander Fraser, and Daniel Marcu. 2004. Im-
proved machine translation performance via parallel sentence extraction
from comparable corpora. In Proceedings of the Human Language Technol-
ogy and North American Association for Computational Linguistics Con-
ference (HLT/NAACL). Boston, Massachusetts.

Niessen, Sonja and Hermann Ney. 2004. Statistical machine translation with
scarce resources using morpho-syntactic information. Computational Lin-
guistics 30(2):181–204.

Och, Franz Josef. 2003. Minimum error rate training in statistical machine
translation. In Proc. of the 41st Annual Meeting of the Association for
Computational Linguistics (ACL), pages 160–167. Sapporo, Japan.

Och, Franz Josef, Daniel Gildea, Sanjeev Khudanpur, Anoop Sarkar, Kenji
Yamada, Alex Fraser, Shankar Kumar, Libin Shen, David Smith, Kather-
ine Eng, Viren Jain, Zhen Jin, and Dragomir Radev. 2004. A smorgasbord
of features for statistical machine translation. In Proceedings of the 2004
Meeting of the North American chapter of the Association for Computa-
tional Linguistics (NAACL-04). Boston.

Och, Franz Josef and Hermann Ney. 2003. A systematic comparison of various
statistical alignment models. Computational Linguistics 29(1):19–51.

Och, Franz Josef and Hermann Ney. 2004. The alignment template approach
to statistical machine translation. Computational Linguistics 30(1):417–
449.

Papineni, Kishore A., Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2001.
Bleu: a method for automatic evaluation of machine translation. Tech.
Rep. RC22176 (W0109-022), IBM Research Division, Thomas J. Watson
Research Center, Yorktown Heights, NY.

Quirk, Chris, Arul Menezes, and Colin Cherry. 2005. Dependency treelet
translation: Syntactically informed phrasal smt. In Proc. of the 43rd An-
nual Meeting of the Association for Computational Linguistics (ACL). Ann
Arbor, MI.

Taskar, Ben, Simon Lacoste-Julien, and Dan Klein. 2005. A discriminative
matching approach to word alignment. In Proceedings of Human Language
Technology Conference and Conference on Empirical Methods in Natural
Language Processing . Vancouver, British Columbia.

Wahlster, Wolfgang, ed. 2000. Verbmobil: Foundations of speech-to-speech
translations. Berlin, Germany: Springer Verlag.

Wu, Dekai. 1996. A polynomial-time algorithm for statistical machine trans-
lation. In Proc. of the 34th Annual Conf. of the Association for Compu-
tational Linguistics (ACL ’96), pages 152–158. Santa Cruz, CA.

References / 39

June 13, 2007

Xu, Jinxi, Alexander Fraser, and Ralph Weischedel. 2002. Empirical studies
in strategies for arabic retrieval. In Proceedings of the 25th Annual Interna-
tional Conference on Research and Development in Information Retrieval
(SIGIR 2002), pages 269–274. Tampere, Finland.

Yamada, Kenji and Kevin Knight. 2001. A syntax-based statistical transla-
tion model. In Proc. of the 39th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 523–530. Toulouse, France.

Yamada, K. and K. Knight. 2002. A decoder for syntax-based MT. In Pro-
ceedings of the 40th Annual Meeting of the Association for Computational
Linguistics (ACL).

Zhang, Hao and Daniel Gildea. 2004. Syntax-based alignment: Supervised
or unsupervised? In COLING ’04: The 20th Int. Conf. on Computational
Linguistics. Geneva, Switzerland.

June 13, 2007

