Scalable Inference and Training of Context-Rich Syntactic Translation Models

Michel Galley, Jonathan Graehl, Keven Knight, Daniel Marcu, Steve DeNeefe Wei Wang and Ignacio Thayar

Presentation by: Nadir Durrani

GHKM : What's in a Translation Rule? (Recap)

- Given a triple (f, π ,a)
 - A source side sentence \rightarrow f
 - A target-side parsed tree $\rightarrow \pi$
 - An alignment between f and leaves of $\pi \rightarrow a$
- A process of transforming π into f
- A minimal set of syntactically motivated transformation rules that explain human translation

Contributions of this paper

- Obtain multi-level rules
 - Acquire rules of arbitrary size that condition on more syntactic context
 - Multiple interpretation how unaligned words are accounted in a derivation
- Probability models for multi-level transfer rules
 - Assigning probabilities to very large rule sets

- Compute a set of frontier nodes F of the alignment graph
- For each n∈F, compute the minimal frontier graph rooted at n

- Compute a set of frontier nodes F of the alignment graph
- A 3 step process for each node \in G (direct Graph):
 - Label with its span
 - Label with its compliment span
 - Decide whether $n \in F$

Step-I : Label with Span

Step-II : Label with Compliment Span

Step-II : Label with Compliment Span

Step-II : Label with Compliment Span

- A node n is in frontier set iff compliment_span (n) ∩ closure (span (n)) = ∅
- Closure (span (n)) = Shortest contiguous span which is superset of span(n)

- Example closure $\{2,3,5,7\} = \{2,3,4,5,6,7\}$

- Compute a set of frontier nodes F of the alignment graph
- Compute the minimal frontier graph for all nodes in frontier set

- Compute a set of frontier nodes F of the alignment graph
- Compute the minimal frontier graph for all nodes in frontier set

Algorithm:

For each node $n \in F$ Expand n then as long as n' \notin F expand n' if n' \in F Replace n' by a variable x_i

Tree to String Transducers

Minimal Derivation Corresponding to Example

Acquiring Multi-level Rules

- GHKM : Extract minimal rules
 - Unique derivation for G
 - Rules defined over G cannot be decomposed further induced by the same graph
- This work: Extract multi-level rules
 - Multiple derivations per triple
 - Composition of 2 or more minimal rules to form larger rules

NP(DT(*these*), CD(7), NNS(*people*)) → idotic idots, 7人

NP(DT(*these*), CD(7), NNS(*people*)) → $\dot{\boxtimes}$, 7人

Multiple Interpretations of Unaligned Words

- Highly frequent phenomenon in Chinese-English
 - 24.1% of Chinese words in 179 million word are unaligned
 - 84.8% of Chinese sentences contain at least 1 unaligned word
- GHKM : Extract minimal rules
 - Attach unaligned words with certain constituent of $\boldsymbol{\pi}$

Heuristic: Attach unaligned words with highest attachment

Multiple Interpretations of Unaligned Words

- This Work
 - No prior assumption about "correct" way of assigning unaligned words to a constituent
 - Consider all possible derivations that are consistent with G
 - Use corpus evidence find more probable unaligned word attachments

6 Minimal Derivations for the Working Example

Representing Derivations as Forest

- Rather than enumerating all possible derivation represent as derivation forest
 - Time and space efficient
- For each derivation each unaligned item appears only once in the rules of that derivation
 - To avoid biased estimates by disproportional representation

Representing Derivations as Forest

Derivation Building and Rule Extraction Algo

- Preprocessing Step
 - Assign spans
 - Assign complement spans
 - Compute frontier set F
 - Extract minimal rules
- Each n∈F has q_o (open queue) and q_c (closed queue) of rules
 q_o is initialized with minimal rules for each node n∈F
- For each node $n \in F$
 - Pick the smallest rule 'r' from q_o
 - For each variable of 'r' discover new rules by composition
 - If $q_{\rm o}$ becomes empty or threshold on rule size or number of rules in $q_{\rm c}$ is reached
 - Connect new OR-node to all rules extracted for n
 - Add to or-dforest table to store OR-nodes with format [x , y , c]

Contributions of this paper

- Obtain multi-level rules
 - Acquire rules of arbitrary size that condition on more syntactic context
 - Multiple interpretation how unaligned words are accounted in a derivation
- Probability models for multi-level transfer rules
 - Assigning probabilities to very large rule sets

Probability Models

Using noisy-channel approach •

T(e) is set of all target-trees that yield e

Syntax Based Translation Model

$$Pr(\mathbf{f}|\pi) = \frac{1}{|\Lambda|} \sum_{\theta_i \in \Theta} \prod_{r_j \in \theta_i} p(rhs(r_j)|hs(r_j))$$

- Θ is set of all derivations constructible from $G = (\pi, f, a)$
- A derivation $\theta_i = r_1 \circ \dots \circ r_n$
 - Independence assumption
- Λ is set of all sub-tree decompositions of corresponding to derivations in Θ
 - Normalization factor to keep the distribution tight i.e. sum to 1 over all strings f_i ∈ F derivable from π

$$\begin{array}{ll} r_1: & X(a, Y(b, c)) \to a', b', c' \\ r_2: & X(a, Y(b, c)) \to b', a', c' \\ r_3: & X(a, x_0; Y) \to a', x_0 \\ r_4: & Y(b, c) \to b', c' \end{array} \begin{array}{ll} p1 = \frac{1}{2} = 0.5 \\ p2 = \frac{1}{2} = 0.5 \\ p3 = 1 \\ p4 = 1 \end{array}$$

 $\begin{array}{ll} r_1: & X(a, Y(b, c)) \to a', b', c' & p1 = \frac{1}{2} = 0.5 \\ r_2: & X(a, Y(b, c)) \to b', a', c' & p2 = \frac{1}{2} = 0.5 \\ r_3: & X(a, x_0; Y) \to a', x_0 & p3 = 1 \\ r_4: & Y(b, c) \to b', c' & p4 = 1 \end{array}$

Total probability mass distributed across two source strings a,b,c and a',b',c' = $p(a',b',c' \mid \pi) + p(b',a',c') = [p1 + (p3 \cdot p4)] + [p2] = 2$

Problems with Relative Frequency Estimator

$$p(rhs(r)|lhs(r)) = \frac{f(r)}{\sum_{r':lhs(r')=lhs(r)} f(r')}$$

Biased estimates when extracting only minimal rules

Problems with Relative Frequency Estimator

Joint Model Conditioned on Root

$$p(r|root(r)) = \frac{f(r)}{\sum_{r':root(r')=root(r)} f(r')}$$

$$r_3$$
: X(a, x_0 :Y) \rightarrow a', x_0

 r_4 : Y(b, c) \rightarrow b', c'

p (b'a'c' | π) = 1/2 [p2] = 0.005 p2 = 1/100

Correct Estimate p (a'b'c') = 0.99

p (b'a'c') = 0.1

Joint Model Conditioned on Root

$$p(r|root(r)) = \frac{f(r)}{\sum_{r':root(r')=root(r)} f(r')}$$

$$\begin{array}{ll} r_1: & X(a, Y(b, c)) \to a', b', c' \\ r_2: & X(a, Y(b, c)) \to b', a', c' \\ r_3: & X(a, x_0; Y) \to a', x_0 \\ r_4: & Y(b, c) \to b', c' \\ \end{array} \begin{array}{ll} p(a'b'c' \mid \pi) = 1/2 \ [p1 + p3.p4] = 0.99 \\ p1 = 99/100 \\ p3 = 99/100 \ p4 = 99/99 \\ p \ (b'a'c' \mid \pi) = 1/2 \ [p2] = 0.05 \\ p2 = 1/100 \end{array}$$

Correct Estimate p (a'b'c') = 0.99

p (b'a'c') = 0.1

EM Training

- Which derivation in the derivation forest is true?
 - Score each derivation with it rule probabilities and find the most likely derivation
- How do we get good rules?
 - Collect the rule counts from the most likely derivation
- Chicken or the Egg problem Calls for EM training

EM Training

Algorithm

- 1. Initialize each derivation with uniform rule probabilities
- 2. Score each derivation $\theta_i \in \Theta$ with rule probabilities
- 3. Normalize to find probability p_i of each derivation
- 4. Collect the weighted rule counts from each derivation θ_i with weight p_i
- 5. Normalize the rule counts to obtain new rule probabilities
- 6. Repeat 2–5 until converge

Evaluation

- Three models C_m, C₃ and C₄ (minimal derivation, composed rules with 3 and 4 internal nodes in lhs respectively)
- NIST 2002 54 million word English-Chinese corpus
- 1 best derivation per sentence pair based on GIZA alignments (Figure 4)

Evaluation

	Syntactic	AlTemp
Arabic-to-English	40.2	46.6
Chinese-to-English	24.3	30.7

Table 5: BLEU-4 scores for the 2005 NIST test set.

	C_m	C_3	C_4
Chinese-to-English	24.47	27.42	28.1

Table 6: BLEU-4 scores for the 2002 NIST test set, with rules of increasing sizes.

Conclusion

- Acquire larger rules condition on more syntactic context
 - 3.63 BLEU point gain over baseline minimal rules system
- Using multiple derivations including multiple interpretations of unaligned words in derivation forest
- Probability models to score multi-level transfer rules