
Galley, Hopkins, Knight, Marcu:

What’s in a translation rule?

Daniel Quernheim
Daniel.Quernheim@ims.uni-stuttgart.de

Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart
Statistical Machine Translation Reading Group

May 5, 2011

Daniel Quernheim What’s in a translation rule? 05.05.2011 1 / 12

Alignment

analysis. The search for these rules is driven exactly by
the problems raised by Fox (2002) – cases of crossing
and divergence motivate the algorithms to come up with
better explanations of the data and better rules. Section
2 of this paper describes algorithms for the acquisition
of complex rules for a transformation model. Section 3
gives empirical results on the explanatory power of the
acquired rules versus previous models. Section 4 presents
examples of learned rules and shows the various types of
transformations (lexical and nonlexical, contiguous and
noncontiguous, simple and complex) that the algorithms
are forced (by the data) to invent. Section 5 concludes.
Due to space constraints, all proofs are omitted.

2 Rule Acquisition

Suppose that we have a French sentence, its translation
into English, and a parse tree over the English translation,
as shown in Figure 1. Generally one defines an alignment
as a relation between the words in the French sentence
and the words in the English sentence. Given such an
alignment however, what kinds of rules are we entitled
to learn from this instance? How do we know when it is
valid to extract a particular rule, especially in the pres-
ence of numerous crossings in the alignment? In this sec-
tion, we give principled answers to these questions, by
constructing a theory that gives formal semantics to word
alignments.

2.1 A Theory of Word Alignments

We are going to define a generative process through
which a string from a source alphabet is mapped to a
rooted tree whose nodes are labeled from a target alpha-
bet. Henceforth we will refer to symbols from our source
alphabet as source symbols and symbols from our target
alphabet as target symbols. We define a symbol tree over
an alphabet ∆ as a rooted, directed tree, the nodes of
which are each labeled with a symbol of ∆.

We want to capture the process by which a symbol tree
over the target language is derived from a string of source
symbols. Let us refer to the symbol tree that we want to
derive as the target tree. Any subtree of this tree will be
called a target subtree. Furthermore, we define a deriva-
tion string as an ordered sequence of elements, each of
which is either a source symbol or a target subtree.

Now we are ready to define the derivation process.
Given a derivation string S, a derivation step replaces
a substring S′ of S with a target subtree T that has the
following properties:

1. Any target subtree in S ′ is a subtree of T .

2. Any target subtree in S but not in S ′ does not share
nodes with T .

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

Figure 1: A French sentence aligned with an English
parse tree.

il ne va pas

ne va pas

he

PRP

NP

ne pas

he

PRP

NP

S

NP VP

PRP RBAUX VB

he notdoes go

VB

go

il ne va pas

ne va pas
RB

not

ne he
RB

not

S

NP VP

PRP RBAUX VB

he notdoes go

il ne va pas

S

NP VP

PRP RBAUX VB

he notdoes go

NP VP

PRP RBAUX VB

he notdoes go

Figure 2: Three alternative derivations from a source sen-
tence to a target tree.

Moreover, a derivation from a string S of source sym-
bols to the target tree T is a sequence of derivation steps
that produces T from S.

Moving away from the abstract for a moment, let us
revisit the example from Figure 1. Figure 2 shows three
derivations of the target tree from the source string “il
ne va pas”, which are all consistent with our defini-
tions. However, it is apparent that one of these deriva-
tions seems much more “wrong” than the other. Specif-
ically, in the second derivation, “pas” is replaced by the
English word “he,” which makes no sense. Given the vast
space of possible derivations (according to the definition
above), how do we distinguish between good ones and
bad ones? Here is where the notion of an alignment be-
comes useful.

Let S be a string of source symbols and let T be a target
tree. First observe the following facts about derivations
from S to T (these follow directly from the definitions):

1. Each element of S is replaced at exactly one step of
the derivation.

Daniel Quernheim What’s in a translation rule? 05.05.2011 2 / 12

Derivations

analysis. The search for these rules is driven exactly by
the problems raised by Fox (2002) – cases of crossing
and divergence motivate the algorithms to come up with
better explanations of the data and better rules. Section
2 of this paper describes algorithms for the acquisition
of complex rules for a transformation model. Section 3
gives empirical results on the explanatory power of the
acquired rules versus previous models. Section 4 presents
examples of learned rules and shows the various types of
transformations (lexical and nonlexical, contiguous and
noncontiguous, simple and complex) that the algorithms
are forced (by the data) to invent. Section 5 concludes.
Due to space constraints, all proofs are omitted.

2 Rule Acquisition

Suppose that we have a French sentence, its translation
into English, and a parse tree over the English translation,
as shown in Figure 1. Generally one defines an alignment
as a relation between the words in the French sentence
and the words in the English sentence. Given such an
alignment however, what kinds of rules are we entitled
to learn from this instance? How do we know when it is
valid to extract a particular rule, especially in the pres-
ence of numerous crossings in the alignment? In this sec-
tion, we give principled answers to these questions, by
constructing a theory that gives formal semantics to word
alignments.

2.1 A Theory of Word Alignments

We are going to define a generative process through
which a string from a source alphabet is mapped to a
rooted tree whose nodes are labeled from a target alpha-
bet. Henceforth we will refer to symbols from our source
alphabet as source symbols and symbols from our target
alphabet as target symbols. We define a symbol tree over
an alphabet ∆ as a rooted, directed tree, the nodes of
which are each labeled with a symbol of ∆.

We want to capture the process by which a symbol tree
over the target language is derived from a string of source
symbols. Let us refer to the symbol tree that we want to
derive as the target tree. Any subtree of this tree will be
called a target subtree. Furthermore, we define a deriva-
tion string as an ordered sequence of elements, each of
which is either a source symbol or a target subtree.

Now we are ready to define the derivation process.
Given a derivation string S, a derivation step replaces
a substring S′ of S with a target subtree T that has the
following properties:

1. Any target subtree in S ′ is a subtree of T .

2. Any target subtree in S but not in S ′ does not share
nodes with T .

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

Figure 1: A French sentence aligned with an English
parse tree.

il ne va pas

ne va pas

he

PRP

NP

ne pas

he

PRP

NP

S

NP VP

PRP RBAUX VB

he notdoes go

VB

go

il ne va pas

ne va pas
RB

not

ne he
RB

not

S

NP VP

PRP RBAUX VB

he notdoes go

il ne va pas

S

NP VP

PRP RBAUX VB

he notdoes go

NP VP

PRP RBAUX VB

he notdoes go

Figure 2: Three alternative derivations from a source sen-
tence to a target tree.

Moreover, a derivation from a string S of source sym-
bols to the target tree T is a sequence of derivation steps
that produces T from S.

Moving away from the abstract for a moment, let us
revisit the example from Figure 1. Figure 2 shows three
derivations of the target tree from the source string “il
ne va pas”, which are all consistent with our defini-
tions. However, it is apparent that one of these deriva-
tions seems much more “wrong” than the other. Specif-
ically, in the second derivation, “pas” is replaced by the
English word “he,” which makes no sense. Given the vast
space of possible derivations (according to the definition
above), how do we distinguish between good ones and
bad ones? Here is where the notion of an alignment be-
comes useful.

Let S be a string of source symbols and let T be a target
tree. First observe the following facts about derivations
from S to T (these follow directly from the definitions):

1. Each element of S is replaced at exactly one step of
the derivation.

Daniel Quernheim What’s in a translation rule? 05.05.2011 3 / 12

Alignment (again)

analysis. The search for these rules is driven exactly by
the problems raised by Fox (2002) – cases of crossing
and divergence motivate the algorithms to come up with
better explanations of the data and better rules. Section
2 of this paper describes algorithms for the acquisition
of complex rules for a transformation model. Section 3
gives empirical results on the explanatory power of the
acquired rules versus previous models. Section 4 presents
examples of learned rules and shows the various types of
transformations (lexical and nonlexical, contiguous and
noncontiguous, simple and complex) that the algorithms
are forced (by the data) to invent. Section 5 concludes.
Due to space constraints, all proofs are omitted.

2 Rule Acquisition

Suppose that we have a French sentence, its translation
into English, and a parse tree over the English translation,
as shown in Figure 1. Generally one defines an alignment
as a relation between the words in the French sentence
and the words in the English sentence. Given such an
alignment however, what kinds of rules are we entitled
to learn from this instance? How do we know when it is
valid to extract a particular rule, especially in the pres-
ence of numerous crossings in the alignment? In this sec-
tion, we give principled answers to these questions, by
constructing a theory that gives formal semantics to word
alignments.

2.1 A Theory of Word Alignments

We are going to define a generative process through
which a string from a source alphabet is mapped to a
rooted tree whose nodes are labeled from a target alpha-
bet. Henceforth we will refer to symbols from our source
alphabet as source symbols and symbols from our target
alphabet as target symbols. We define a symbol tree over
an alphabet ∆ as a rooted, directed tree, the nodes of
which are each labeled with a symbol of ∆.

We want to capture the process by which a symbol tree
over the target language is derived from a string of source
symbols. Let us refer to the symbol tree that we want to
derive as the target tree. Any subtree of this tree will be
called a target subtree. Furthermore, we define a deriva-
tion string as an ordered sequence of elements, each of
which is either a source symbol or a target subtree.

Now we are ready to define the derivation process.
Given a derivation string S, a derivation step replaces
a substring S′ of S with a target subtree T that has the
following properties:

1. Any target subtree in S ′ is a subtree of T .

2. Any target subtree in S but not in S ′ does not share
nodes with T .

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

Figure 1: A French sentence aligned with an English
parse tree.

il ne va pas

ne va pas

he

PRP

NP

ne pas

he

PRP

NP

S

NP VP

PRP RBAUX VB

he notdoes go

VB

go

il ne va pas

ne va pas
RB

not

ne he
RB

not

S

NP VP

PRP RBAUX VB

he notdoes go

il ne va pas

S

NP VP

PRP RBAUX VB

he notdoes go

NP VP

PRP RBAUX VB

he notdoes go

Figure 2: Three alternative derivations from a source sen-
tence to a target tree.

Moreover, a derivation from a string S of source sym-
bols to the target tree T is a sequence of derivation steps
that produces T from S.

Moving away from the abstract for a moment, let us
revisit the example from Figure 1. Figure 2 shows three
derivations of the target tree from the source string “il
ne va pas”, which are all consistent with our defini-
tions. However, it is apparent that one of these deriva-
tions seems much more “wrong” than the other. Specif-
ically, in the second derivation, “pas” is replaced by the
English word “he,” which makes no sense. Given the vast
space of possible derivations (according to the definition
above), how do we distinguish between good ones and
bad ones? Here is where the notion of an alignment be-
comes useful.

Let S be a string of source symbols and let T be a target
tree. First observe the following facts about derivations
from S to T (these follow directly from the definitions):

1. Each element of S is replaced at exactly one step of
the derivation.

Daniel Quernheim What’s in a translation rule? 05.05.2011 4 / 12

Different alignments

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

Figure 3: The alignments induced by the derivations in
Figure 2

2. Each node of T is created at exactly one step of the
derivation.

Thus for each element s of S, we can define
replaced(s, D) to be the step of the derivation D during
which s is replaced. For instance, in the leftmost deriva-
tion of Figure 2, “va” is replaced by the second step of the
derivation, thus replaced(va, D) = 2. Similarly, for each
node t of T , we can define created(t, D) to be the step
of derivation D during which t is created. For instance,
in the same derivation, the nodes labeled by “AUX” and
“VP” are created during the third step of the derivation,
thus created(AUX, D) = 3 and created(VP, D) = 3.

Given a string S of source symbols and a target tree
T , an alignment A with respect to S and T is a relation
between the leaves of T and the elements of S. Choose
some derivation D from S to T . The alignment A in-
duced by D is created as follows: an element s of S is
aligned with a leaf node t of T iff replaced(s, D) =
created(t, D). In other words, a source word is aligned
with a target word if the target word is created during the
same step in which the source word is replaced. Figure 3
shows the alignments induced by the derivations of Fig-
ure 2.

Now, say that we have a source string, a target tree,
and an alignment A. A key observation is that the set
of “good” derivations according to A is precisely the set
of derivations that induce alignments A′ such that A is
a subalignment of A′. By subalignment, we mean that
A ⊆ A′ (recall that alignments are simple mathematical
relations). In other words, A is a subalignment of A′ if A
aligns two elements only if A′ also aligns them.

We can see this intuitively by examining Figures 2 and
3. Notice that the two derivations that seem “right” (the
first and the third) are superalignments of the alignment
given in Figure 1, while the derivation that is clearly
wrong is not. Hence we now have a formal definition
of the derivations that we are interested in. We say that
a derivation is admitted by an alignment A if it induces a
superalignment of A. The set of derivations from source
string S to target tree T that are admitted by alignment A
can be denoted δA(S, T). Given this, we are ready to ob-
tain a formal characterization of the set of rules that can

ne pas

he

PRP

NP
VB

go

NP VP

PRP RBAUX VB

he notdoes go

Derivation step: Induced rule:

input: ne VB pas

output:
VP

RBAUX x2

notdoes

S

NP VP

PRP RBAUX VB

he notdoes go

input: NP VP

output: S

x1 x2

Figure 4: Two derivation steps and the rules that are in-
duced from them.

be inferred from the source string, target tree, and align-
ment.

2.2 From Derivations to Rules

In essence, a derivation step can be viewed as the applica-
tion of a rule. Thus, compiling the set of derivation steps
used in any derivation of δA(S, T) gives us, in a mean-
ingful sense, all relevant rules that can be extracted from
the triple (S, T, A). In this section, we show in concrete
terms how to convert a derivation step into a usable rule.

Consider the second-last derivation step of the first
derivation in Figure 2. In it, we begin with a source sym-
bol “ne”, followed by a target subtree rooted at V B, fol-
lowed by another source symbol “pas.” These three ele-
ments of the derivation string are replaced with a target
subtree rooted at V P that discards the source symbols
and contains the target subtree rooted at V B. In general,
this replacement process can be captured by the rule de-
picted in Figure 4. The input to the rule are the roots
of the elements of the derivation string that are replaced
(where we define the root of a symbol to be simply the
symbol itself), whereas the output of the rule is a symbol
tree, except that some of the leaves are labeled with vari-
ables instead of symbols from the target alphabet. These
variables correspond to elements of the input to the rule.
For instance, the leaf labeled x2 means that when this rule
is applied, x2 is replaced by the target subtree rooted at
V B (since V B is the second element of the input). Ob-
serve that the second rule induced in Figure 4 is simply
a CFG rule expressed in the opposite direction, thus this
rule format can (and should) be viewed as a strict gener-
alization of CFG rules.

Daniel Quernheim What’s in a translation rule? 05.05.2011 5 / 12

From derivation steps to rules

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

Figure 3: The alignments induced by the derivations in
Figure 2

2. Each node of T is created at exactly one step of the
derivation.

Thus for each element s of S, we can define
replaced(s, D) to be the step of the derivation D during
which s is replaced. For instance, in the leftmost deriva-
tion of Figure 2, “va” is replaced by the second step of the
derivation, thus replaced(va, D) = 2. Similarly, for each
node t of T , we can define created(t, D) to be the step
of derivation D during which t is created. For instance,
in the same derivation, the nodes labeled by “AUX” and
“VP” are created during the third step of the derivation,
thus created(AUX, D) = 3 and created(VP, D) = 3.

Given a string S of source symbols and a target tree
T , an alignment A with respect to S and T is a relation
between the leaves of T and the elements of S. Choose
some derivation D from S to T . The alignment A in-
duced by D is created as follows: an element s of S is
aligned with a leaf node t of T iff replaced(s, D) =
created(t, D). In other words, a source word is aligned
with a target word if the target word is created during the
same step in which the source word is replaced. Figure 3
shows the alignments induced by the derivations of Fig-
ure 2.

Now, say that we have a source string, a target tree,
and an alignment A. A key observation is that the set
of “good” derivations according to A is precisely the set
of derivations that induce alignments A′ such that A is
a subalignment of A′. By subalignment, we mean that
A ⊆ A′ (recall that alignments are simple mathematical
relations). In other words, A is a subalignment of A′ if A
aligns two elements only if A′ also aligns them.

We can see this intuitively by examining Figures 2 and
3. Notice that the two derivations that seem “right” (the
first and the third) are superalignments of the alignment
given in Figure 1, while the derivation that is clearly
wrong is not. Hence we now have a formal definition
of the derivations that we are interested in. We say that
a derivation is admitted by an alignment A if it induces a
superalignment of A. The set of derivations from source
string S to target tree T that are admitted by alignment A
can be denoted δA(S, T). Given this, we are ready to ob-
tain a formal characterization of the set of rules that can

ne pas

he

PRP

NP
VB

go

NP VP

PRP RBAUX VB

he notdoes go

Derivation step: Induced rule:

input: ne VB pas

output:
VP

RBAUX x2

notdoes

S

NP VP

PRP RBAUX VB

he notdoes go

input: NP VP

output: S

x1 x2

Figure 4: Two derivation steps and the rules that are in-
duced from them.

be inferred from the source string, target tree, and align-
ment.

2.2 From Derivations to Rules

In essence, a derivation step can be viewed as the applica-
tion of a rule. Thus, compiling the set of derivation steps
used in any derivation of δA(S, T) gives us, in a mean-
ingful sense, all relevant rules that can be extracted from
the triple (S, T, A). In this section, we show in concrete
terms how to convert a derivation step into a usable rule.

Consider the second-last derivation step of the first
derivation in Figure 2. In it, we begin with a source sym-
bol “ne”, followed by a target subtree rooted at V B, fol-
lowed by another source symbol “pas.” These three ele-
ments of the derivation string are replaced with a target
subtree rooted at V P that discards the source symbols
and contains the target subtree rooted at V B. In general,
this replacement process can be captured by the rule de-
picted in Figure 4. The input to the rule are the roots
of the elements of the derivation string that are replaced
(where we define the root of a symbol to be simply the
symbol itself), whereas the output of the rule is a symbol
tree, except that some of the leaves are labeled with vari-
ables instead of symbols from the target alphabet. These
variables correspond to elements of the input to the rule.
For instance, the leaf labeled x2 means that when this rule
is applied, x2 is replaced by the target subtree rooted at
V B (since V B is the second element of the input). Ob-
serve that the second rule induced in Figure 4 is simply
a CFG rule expressed in the opposite direction, thus this
rule format can (and should) be viewed as a strict gener-
alization of CFG rules.

Daniel Quernheim What’s in a translation rule? 05.05.2011 6 / 12

Alignment graph with frontier set

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

{ il, ne, va, pas }

{ ne, va, pas }{ il }

{ il }

{ il }

{ il }

{ne,pas} {ne,pas}

{ne,pas} {ne,pas}

{ va }

{ ne } { va }

{ va }

{ pas }

Figure 5: An alignment graph. The nodes are annotated
with their spans. Nodes in the frontier set are boldfaced
and italicized.

Every derivation step can be mapped to a rule in this
way. Hence given a source string S, a target tree T , and
an alignment A, we can define the set ρA(S, T) as the set
of rules in any derivation D ∈ δA(S, T). We can regard
this as the set of rules that we are entitled to infer from
the triple (S, T, A).

2.3 Inferring Complex Rules

Now we have a precise problem statement: learn the set
ρA(S, T). It is not immediately clear how such a set can
be learned from the triple (S, T, A). Fortunately, we can
infer these rules directly from a structure called an align-
ment graph. In fact, we have already seen numerous ex-
amples of alignment graphs. Graphically, we have been
depicting the triple (S, T, A) as a rooted, directed, acyclic
graph (where direction is top-down in the diagrams). We
refer to such a graph as an alignment graph. Formally,
the alignment graph corresponding to S, T , and A is just
T , augmented with a node for each element of S, and
edges from leaf node t ∈ T to element s ∈ S iff A aligns
s with t. Although there is a difference between a node
of the alignment graph and its label, we will not make a
distinction, to ease the notational burden.

To make the presentation easier to follow, we assume
throughout this section that the alignment graph is con-
nected, i.e. there are no unaligned elements. All of the
results that follow have generalizations to deal with un-
aligned elements, but unaligned elements incur certain
procedural complications that would cloud the exposi-
tion.

It turns out that it is possible to systematically con-
vert certain fragments of the alignment graph into rules
of ρA(S, T). We define a fragment of a directed, acyclic
graph G to be a nontrivial (i.e. not just a single node) sub-
graph G′ of G such that if a node n is in G′ then either n
is a sink node of G′ (i.e. it has no children) or all of its
children are in G′ (and it is connected to all of them). In

VP

RBAUX VB

notdoes

ne pas

S

NP VP

input: ne VB pas

output:
VP

RBAUX x2

notdoes

input: NP VP

output: S

x1 x2

{ ne } { pas }

{ va }

{ ne, va, pas }

{ il } { ne, va, pas }

{ il, ne, va, pas }

Figure 6: Two frontier graph fragments and the rules in-
duced from them. Observe that the spans of the sink
nodes form a partition of the span of the root.

Figure 6, we show two examples of graph fragments of
the alignment graph of Figure 5.

The span of a node n of the alignment graph is the
subset of nodes from S that are reachable from n. Note
that this definition is similar to, but not quite the same
as, the definition of a span given by Fox (2002). We
say that a span is contiguous if it contains all elements
of a contiguous substring of S. The closure of span(n)
is the shortest contiguous span which is a superset of
span(n). For instance, the closure of {s2, s3, s5, s7}
would be {s2, s3, s4, s5, s6, s7} The alignment graph in
Figure 5 is annotated with the span of each node.

Take a look at the graph fragments in Figure 6. These
fragments are special: they are examples of frontier
graph fragments. We first define the frontier set of an
alignment graph to be the set of nodes n that satisfy the
following property: for every node n′ of the alignment
graph that is connected to n but is neither an ancestor nor
a descendant of n, span(n′) ∩ closure(span(n)) = ∅.

We then define a frontier graph fragment of an align-
ment graph to be a graph fragment such that the root and
all sinks are in the frontier set. Frontier graph fragments
have the property that the spans of the sinks of the frag-
ment are each contiguous and form a partition of the span
of the root, which is also contiguous. This allows the fol-
lowing transformation process:

1. Place the sinks in the order defined by the partition
(i.e. the sink whose span is the first part of the span
of the root goes first, the sink whose span is the sec-
ond part of the span of the root goes second, etc.).
This forms the input of the rule.

2. Replace sink nodes of the fragment with a variable
corresponding to their position in the input, then
take the tree part of the fragment (i.e. project the
fragment on T). This forms the output of the rule.

Daniel Quernheim What’s in a translation rule? 05.05.2011 7 / 12

Frontier graph fragments and rules

S

NP VP

PRP RBAUX VB

he notdoes go

il vane pas

{ il, ne, va, pas }

{ ne, va, pas }{ il }

{ il }

{ il }

{ il }

{ne,pas} {ne,pas}

{ne,pas} {ne,pas}

{ va }

{ ne } { va }

{ va }

{ pas }

Figure 5: An alignment graph. The nodes are annotated
with their spans. Nodes in the frontier set are boldfaced
and italicized.

Every derivation step can be mapped to a rule in this
way. Hence given a source string S, a target tree T , and
an alignment A, we can define the set ρA(S, T) as the set
of rules in any derivation D ∈ δA(S, T). We can regard
this as the set of rules that we are entitled to infer from
the triple (S, T, A).

2.3 Inferring Complex Rules

Now we have a precise problem statement: learn the set
ρA(S, T). It is not immediately clear how such a set can
be learned from the triple (S, T, A). Fortunately, we can
infer these rules directly from a structure called an align-
ment graph. In fact, we have already seen numerous ex-
amples of alignment graphs. Graphically, we have been
depicting the triple (S, T, A) as a rooted, directed, acyclic
graph (where direction is top-down in the diagrams). We
refer to such a graph as an alignment graph. Formally,
the alignment graph corresponding to S, T , and A is just
T , augmented with a node for each element of S, and
edges from leaf node t ∈ T to element s ∈ S iff A aligns
s with t. Although there is a difference between a node
of the alignment graph and its label, we will not make a
distinction, to ease the notational burden.

To make the presentation easier to follow, we assume
throughout this section that the alignment graph is con-
nected, i.e. there are no unaligned elements. All of the
results that follow have generalizations to deal with un-
aligned elements, but unaligned elements incur certain
procedural complications that would cloud the exposi-
tion.

It turns out that it is possible to systematically con-
vert certain fragments of the alignment graph into rules
of ρA(S, T). We define a fragment of a directed, acyclic
graph G to be a nontrivial (i.e. not just a single node) sub-
graph G′ of G such that if a node n is in G′ then either n
is a sink node of G′ (i.e. it has no children) or all of its
children are in G′ (and it is connected to all of them). In

VP

RBAUX VB

notdoes

ne pas

S

NP VP

input: ne VB pas

output:
VP

RBAUX x2

notdoes

input: NP VP

output: S

x1 x2

{ ne } { pas }

{ va }

{ ne, va, pas }

{ il } { ne, va, pas }

{ il, ne, va, pas }

Figure 6: Two frontier graph fragments and the rules in-
duced from them. Observe that the spans of the sink
nodes form a partition of the span of the root.

Figure 6, we show two examples of graph fragments of
the alignment graph of Figure 5.

The span of a node n of the alignment graph is the
subset of nodes from S that are reachable from n. Note
that this definition is similar to, but not quite the same
as, the definition of a span given by Fox (2002). We
say that a span is contiguous if it contains all elements
of a contiguous substring of S. The closure of span(n)
is the shortest contiguous span which is a superset of
span(n). For instance, the closure of {s2, s3, s5, s7}
would be {s2, s3, s4, s5, s6, s7} The alignment graph in
Figure 5 is annotated with the span of each node.

Take a look at the graph fragments in Figure 6. These
fragments are special: they are examples of frontier
graph fragments. We first define the frontier set of an
alignment graph to be the set of nodes n that satisfy the
following property: for every node n′ of the alignment
graph that is connected to n but is neither an ancestor nor
a descendant of n, span(n′) ∩ closure(span(n)) = ∅.

We then define a frontier graph fragment of an align-
ment graph to be a graph fragment such that the root and
all sinks are in the frontier set. Frontier graph fragments
have the property that the spans of the sinks of the frag-
ment are each contiguous and form a partition of the span
of the root, which is also contiguous. This allows the fol-
lowing transformation process:

1. Place the sinks in the order defined by the partition
(i.e. the sink whose span is the first part of the span
of the root goes first, the sink whose span is the sec-
ond part of the span of the root goes second, etc.).
This forms the input of the rule.

2. Replace sink nodes of the fragment with a variable
corresponding to their position in the input, then
take the tree part of the fragment (i.e. project the
fragment on T). This forms the output of the rule.

Daniel Quernheim What’s in a translation rule? 05.05.2011 8 / 12

Set of minimal frontier graph fragments

Figure 6 shows the rules derived from the given graph
fragments. We have the following result.

Theorem 1 Rules constructed according to the above
procedure are in ρA(S, T).

Rule extraction: Algorithm 1. Thus we now have a
simple method for extracting rules of ρA(S, T) from the
alignment graph: search the space of graph fragments for
frontier graph fragments.

Unfortunately, the search space of all fragments of a
graph is exponential in the size of the graph, thus this
procedure can also take a long time to execute. To ar-
rive at a much faster procedure, we take advantage of the
following provable facts:

1. The frontier set of an alignment graph can be identi-
fied in time linear in the size of the graph.

2. For each node n of the frontier set, there is a unique
minimal frontier graph fragment rooted at n (ob-
serve that for any node n′ not in the frontier set,
there is no frontier graph fragment rooted at n′, by
definition).

By minimal, we mean that the frontier graph fragment
is a subgraph of every other frontier graph fragment with
the same root. Clearly, for an alignment graph with k
nodes, there are at most k minimal frontier graph frag-
ments. In Figure 7, we show the seven minimal frontier
graph fragments of the alignment graph of Figure 5. Fur-
thermore, all other frontier graph fragments can be cre-
ated by composing 2 or more minimal graph fragments,
as shown in Figure 8. Thus, the entire set of frontier graph
fragments (and all rules derivable from these fragments)
can be computed systematically as follows: compute the
set of minimal frontier graph fragments, compute the set
of graph fragments resulting from composing 2 minimal
frontier graph fragments, compute the set of graph frag-
ments resulting from composing 3 minimal graph frag-
ments, etc. In this way, the rules derived from the min-
imal frontier graph fragments can be regarded as a ba-
sis for all other rules derivable from frontier graph frag-
ments. Furthermore, we conjecture that the set of rules
derivable from frontier graph fragments is in fact equiva-
lent to ρA(S, T).

Thus we have boiled down the problem of extracting
complex rules to the following simple problem: find the
set of minimal frontier graph fragments of a given align-
ment graph.

The algorithm is a two-step process, as shown below.

Rule extraction: Algorithm 2

1. Compute the frontier set of the alignment graph.

2. For each node of the frontier set, compute the mini-
mal frontier graph fragment rooted at that node.

VP

RBAUX VB

notdoes

ne pas

S

NP VP

NP

PRP

PRP

he

VB

go

go

va
he

il

Figure 7: The seven minimal frontier graph fragments of
the alignment graph in Figure 5

VP

RBAUX VB

notdoes

ne pas

VB

go
+ =

VP

RBAUX VB

notdoes

ne pas

go

S

NP VP
+ + =

NP

PRP

PRP

he

S

NP VP

PRP

he

Figure 8: Example compositions of minimal frontier
graph fragments into larger frontier graph fragments.

Step 1 can be computed in a single traversal of the
alignment graph. This traversal annotates each node with
its span and its complement span. The complement span
is computed as the union of the complement span of its
parent and the span of all its siblings (siblings are nodes
that share the same parent). A node n is in the frontier
set iff complement span(n) ∩ closure(span(n)) = ∅.
Notice that the complement span merely summarizes the
spans of all nodes that are neither ancestors nor descen-
dents of n. Since this step requires only a single graph
traversal, it runs in linear time.

Step 2 can also be computed straightforwardly. For
each node n of the frontier set, do the following: expand
n, then as long as there is some sink node n′ of the result-
ing graph fragment that is not in the frontier set, expand
n′. Note that after computing the minimal graph frag-
ment rooted at each node of the frontier set, every node
of the alignment graph has been expanded at most once.
Thus this step also runs in linear time.

For clarity of exposition and lack of space, a couple of
issues have been glossed over. Briefly:

• As previously stated, we have ignored here the is-
sue of unaligned elements, but the procedures can
be easily generalized to accommodate these. The

Daniel Quernheim What’s in a translation rule? 05.05.2011 9 / 12

Compositions of minimal frontier graph fragments

Figure 6 shows the rules derived from the given graph
fragments. We have the following result.

Theorem 1 Rules constructed according to the above
procedure are in ρA(S, T).

Rule extraction: Algorithm 1. Thus we now have a
simple method for extracting rules of ρA(S, T) from the
alignment graph: search the space of graph fragments for
frontier graph fragments.

Unfortunately, the search space of all fragments of a
graph is exponential in the size of the graph, thus this
procedure can also take a long time to execute. To ar-
rive at a much faster procedure, we take advantage of the
following provable facts:

1. The frontier set of an alignment graph can be identi-
fied in time linear in the size of the graph.

2. For each node n of the frontier set, there is a unique
minimal frontier graph fragment rooted at n (ob-
serve that for any node n′ not in the frontier set,
there is no frontier graph fragment rooted at n′, by
definition).

By minimal, we mean that the frontier graph fragment
is a subgraph of every other frontier graph fragment with
the same root. Clearly, for an alignment graph with k
nodes, there are at most k minimal frontier graph frag-
ments. In Figure 7, we show the seven minimal frontier
graph fragments of the alignment graph of Figure 5. Fur-
thermore, all other frontier graph fragments can be cre-
ated by composing 2 or more minimal graph fragments,
as shown in Figure 8. Thus, the entire set of frontier graph
fragments (and all rules derivable from these fragments)
can be computed systematically as follows: compute the
set of minimal frontier graph fragments, compute the set
of graph fragments resulting from composing 2 minimal
frontier graph fragments, compute the set of graph frag-
ments resulting from composing 3 minimal graph frag-
ments, etc. In this way, the rules derived from the min-
imal frontier graph fragments can be regarded as a ba-
sis for all other rules derivable from frontier graph frag-
ments. Furthermore, we conjecture that the set of rules
derivable from frontier graph fragments is in fact equiva-
lent to ρA(S, T).

Thus we have boiled down the problem of extracting
complex rules to the following simple problem: find the
set of minimal frontier graph fragments of a given align-
ment graph.

The algorithm is a two-step process, as shown below.

Rule extraction: Algorithm 2

1. Compute the frontier set of the alignment graph.

2. For each node of the frontier set, compute the mini-
mal frontier graph fragment rooted at that node.

VP

RBAUX VB

notdoes

ne pas

S

NP VP

NP

PRP

PRP

he

VB

go

go

va
he

il

Figure 7: The seven minimal frontier graph fragments of
the alignment graph in Figure 5

VP

RBAUX VB

notdoes

ne pas

VB

go
+ =

VP

RBAUX VB

notdoes

ne pas

go

S

NP VP
+ + =

NP

PRP

PRP

he

S

NP VP

PRP

he

Figure 8: Example compositions of minimal frontier
graph fragments into larger frontier graph fragments.

Step 1 can be computed in a single traversal of the
alignment graph. This traversal annotates each node with
its span and its complement span. The complement span
is computed as the union of the complement span of its
parent and the span of all its siblings (siblings are nodes
that share the same parent). A node n is in the frontier
set iff complement span(n) ∩ closure(span(n)) = ∅.
Notice that the complement span merely summarizes the
spans of all nodes that are neither ancestors nor descen-
dents of n. Since this step requires only a single graph
traversal, it runs in linear time.

Step 2 can also be computed straightforwardly. For
each node n of the frontier set, do the following: expand
n, then as long as there is some sink node n′ of the result-
ing graph fragment that is not in the frontier set, expand
n′. Note that after computing the minimal graph frag-
ment rooted at each node of the frontier set, every node
of the alignment graph has been expanded at most once.
Thus this step also runs in linear time.

For clarity of exposition and lack of space, a couple of
issues have been glossed over. Briefly:

• As previously stated, we have ignored here the is-
sue of unaligned elements, but the procedures can
be easily generalized to accommodate these. The

Daniel Quernheim What’s in a translation rule? 05.05.2011 10 / 12

Evaluation: parse trees covered

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 4550

Pa
rs

e
tre

e
co

ve
ra

ge

Maximum number of rule expansions

"Hansard-S"
"Hansard-P"

"Hansard-GIZA"
"FBIS"

Figure 9: Percentage of parse trees covered by the model
given different constraints on the maximum size of the
transformation rules.

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 4550

N
od

e
co

ve
ra

ge

Maximum number of rule expansions

"Hansard-S"
"Hansard-P"

"Hansard-GIZA"
"FBIS"

Figure 10: Same as Figure 9, except that here coverage is
evaluated at the node level.

ever, higher level syntactic constituents are more prob-
lematic for child-reordering models, and the main rea-
sons they fail to provide explanation of the parses at the
sentence level.

Table 1 shows that the extraction of rules can be per-
formed quite efficiently. Our first algorithm, which has an
exponential running time, cannot scale to process large
corpora and extract a sufficient number of rules that a
syntax-based statistical MT system would require. The
second algorithm, which runs in linear time, is on the
other hand barely affected by the size of rules it extracts.

k=1 3 5 7 10 20 50
I 4.1 10.2 57.9 304.2 - - -
II 4.3 5.4 5.9 6.4 7.33 9.6 11.8

Table 1: Running time in seconds of the two algorithms
on 1000 sentences. k represent the maximum size of rules
to extract.

NPB

DT NN RB

that Government simply tells

ADVP

VBZ

NPB

DT NNS

the people what is themgood for

WP VBZ JJ IN PRP

NPB

ADJP

VP

SG-A

SBAR-A

VHPN

VP

S

le gouvernement dit tout simplement à les gens ce qui est bon pour eux

input:

VBZ ADVP àNPB SBAR -S

output: S

VPx2

x1 x3 x4

Figure 11: Adverb-verb reordering.

4 Discussions

In this section, we present some syntactic transformation
rules that our system learns. Fox (2002) identified three
major causes of crossings between English and French:
the “ne ... pas” construct, modals and adverbs, which a
child-reordering model doesn’t account for. In section 2,
we have already explained how we learn syntactic rules
involving “ne ... pas”. Here we describe the other two
problematic cases.

Figure 11 presents a frequent cause of crossings be-
tween English and French: adverbs in French often ap-
pear after the verb, which is less common in English.
Parsers generally create nested verb phrases when ad-
verbs are present, thus no child reordering can allow a
verb and an adverb to be permuted. Multi-level reodering
as the rule in the figure can prevent crossings. Fox’s solu-
tion to the problem of crossings is to flatten verb phrases.
This is a solution for this sentence pair, since this ac-
counts for adverb-verb reorderings, but flattening the tree
structure is not a general solution. Indeed, it can only ap-
ply to a very limited number of syntactic categories, for
which the advantage of having a deep syntactic structure
is lost.

Figure 12 (dotted lines are P alignments) shows an in-
teresting example where flattening the tree structure can-
not resolve all crossings in node-reordering models. In
these models, a crossing remains between MD and AUX
no matter how VPs are flattened. Our transformation rule
model creates a lexicalized rule as shown in the figure,
where the transformation of “will be” into “sera” is the
only way to resolve the crossing.

In the Chinese-English domain, the rules extracted by
our algorithm often have the attractive quality that they
are the kind of common-sense constructions that are used
in Chinese language textbooks to teach students. For in-
stance, there are several that illustrate the complex re-
orderings that occur around the Chinese marker word
“de.”

Daniel Quernheim What’s in a translation rule? 05.05.2011 11 / 12

Evaluation: nodes covered

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 4550

Pa
rs

e
tre

e
co

ve
ra

ge

Maximum number of rule expansions

"Hansard-S"
"Hansard-P"

"Hansard-GIZA"
"FBIS"

Figure 9: Percentage of parse trees covered by the model
given different constraints on the maximum size of the
transformation rules.

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 4550

N
od

e
co

ve
ra

ge

Maximum number of rule expansions

"Hansard-S"
"Hansard-P"

"Hansard-GIZA"
"FBIS"

Figure 10: Same as Figure 9, except that here coverage is
evaluated at the node level.

ever, higher level syntactic constituents are more prob-
lematic for child-reordering models, and the main rea-
sons they fail to provide explanation of the parses at the
sentence level.

Table 1 shows that the extraction of rules can be per-
formed quite efficiently. Our first algorithm, which has an
exponential running time, cannot scale to process large
corpora and extract a sufficient number of rules that a
syntax-based statistical MT system would require. The
second algorithm, which runs in linear time, is on the
other hand barely affected by the size of rules it extracts.

k=1 3 5 7 10 20 50
I 4.1 10.2 57.9 304.2 - - -
II 4.3 5.4 5.9 6.4 7.33 9.6 11.8

Table 1: Running time in seconds of the two algorithms
on 1000 sentences. k represent the maximum size of rules
to extract.

NPB

DT NN RB

that Government simply tells

ADVP

VBZ

NPB

DT NNS

the people what is themgood for

WP VBZ JJ IN PRP

NPB

ADJP

VP

SG-A

SBAR-A

VHPN

VP

S

le gouvernement dit tout simplement à les gens ce qui est bon pour eux

input:

VBZ ADVP àNPB SBAR -S

output: S

VPx2

x1 x3 x4

Figure 11: Adverb-verb reordering.

4 Discussions

In this section, we present some syntactic transformation
rules that our system learns. Fox (2002) identified three
major causes of crossings between English and French:
the “ne ... pas” construct, modals and adverbs, which a
child-reordering model doesn’t account for. In section 2,
we have already explained how we learn syntactic rules
involving “ne ... pas”. Here we describe the other two
problematic cases.

Figure 11 presents a frequent cause of crossings be-
tween English and French: adverbs in French often ap-
pear after the verb, which is less common in English.
Parsers generally create nested verb phrases when ad-
verbs are present, thus no child reordering can allow a
verb and an adverb to be permuted. Multi-level reodering
as the rule in the figure can prevent crossings. Fox’s solu-
tion to the problem of crossings is to flatten verb phrases.
This is a solution for this sentence pair, since this ac-
counts for adverb-verb reorderings, but flattening the tree
structure is not a general solution. Indeed, it can only ap-
ply to a very limited number of syntactic categories, for
which the advantage of having a deep syntactic structure
is lost.

Figure 12 (dotted lines are P alignments) shows an in-
teresting example where flattening the tree structure can-
not resolve all crossings in node-reordering models. In
these models, a crossing remains between MD and AUX
no matter how VPs are flattened. Our transformation rule
model creates a lexicalized rule as shown in the figure,
where the transformation of “will be” into “sera” is the
only way to resolve the crossing.

In the Chinese-English domain, the rules extracted by
our algorithm often have the attractive quality that they
are the kind of common-sense constructions that are used
in Chinese language textbooks to teach students. For in-
stance, there are several that illustrate the complex re-
orderings that occur around the Chinese marker word
“de.”

Daniel Quernheim What’s in a translation rule? 05.05.2011 12 / 12

